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Abstract: The current investigation describes in detail a mass flow oriented model for extrapolation of
reduced mass flow and adiabatic efficiency of double entry radial inflow turbines under any unequal
and partial flow admission conditions. The model is based on a novel approach, which proposes
assimilating double entry turbines to two variable geometry turbines (VGTs) using the mass flow ratio
(MFR) between the two entries as the discriminating parameter. With such an innovative approach,
the model can extrapolate performance parameters to non-measured MFRs, blade-to-jet speed ratios,
and reduced speeds. Therefore, the model can be used in a quasi-steady method for predicting
double entry turbines performance instantaneously. The model was validated against a dataset
from two different double entry turbine types: a twin-entry symmetrical turbine and a dual-volute
asymmetrical turbine. Both were tested under steady flow conditions. The proposed model showed
accurate results and a coherent set of fitting parameters with physical meaning, as discussed in this
paper. The obtained parameters showed very similar figures for the aforementioned turbine types,
which allows concluding that they are an adequate set of values for initializing the fitting procedure
of any type of double entry radial turbine.

Keywords: turbocharger; twin-entry radial turbines; dual-volute radial turbines; unequal and partial
flow admission; quasi-steady models; adiabatic efficiency model; reduced mass flow model.

1. Introduction

Along with the growing interest in global environmental issues, the automotive manufacturers
are facing increasing challenges to reduce the gaseous emissions [1] coming from internal combustion
engines as well as to meet the strict emission legislation year by year [2]. Despite the rapid growth of
electric car sales in recent years, internal combustion engines will continue to be active until at least
2050, according to recent studies [3]. Moreover, nowadays, battery electric vehicles have heavy CO2

footprints when analyzed from cradle to grave [4,5]. It is foreseen that plug-in hybrid powertrains,
and small capacity turbocharged engines will cover the major part of passenger cars needs in decades
ahead [6]. To compete with an electric powertrain, automotive engineers are developing new internal
combustion engines to be environmentally friendly, while keeping the vehicle performance and
having sufficiently attractive fuel consumption to satisfy the customers’ requirements. Over the years,
automotive OEMs are increasingly downsizing their engines, which has been demonstrated to be an
efficient way in reducing the engine CO2 emissions with promising cost-to-benefit ratios compared
with many other advanced ICE technologies [7]. To assure the same engine brake output power and
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performance with the reduction in cylinder displacement, downsizing technologies need to use forced
induction-turbocharging. The traditional single entry turbine is widely used in turbochargers, due to
its straightforward construction. This has given many advantages in terms of fuel consumption and
emissions reductions with the previous and current regulations. However, concerning the future legal
requirements for low emissions (Euro 6d Full and Euro 7 regulations) with fuel efficiency, there is still
need and potential for optimization.

Nevertheless, a turbocharger turbine always confronts high unsteadiness of flows coming from
the reciprocating internal combustion engine [8]. In recent years, automotive OEMs are seeing
much interest in using the double entry turbines, especially for four cylinders turbocharged petrol
engines with wide valves overlap period in their timing diagram or in six-cylinder compression
ignition engines [9]. They have the advantages of utilizing the pulse energy coming from the engine
exhaust and minimizing the interferences between the cylinders during the exhaust process (engine
pumping losses). Some engine manufacturers choose twin-entry turbines (where the turbine scroll is
meridionally divided, as shown in Figure 1a); others opt for the dual-volute turbine (turbine scroll
is circumferentially divided, as shown in Figure 1b). The comparison of performance parameters
between these two types of double entry turbines has been extensively discussed since Pischinger and
Wunsche [10] until more recently, such as in the work by Romagnoli et al. [11].

Moreover, both turbines (twin-entry/dual-volute) have different geometries due to their designs,
merely by the type of flow division, as explained below:

• Twin-entry turbine (T#1TE): The scroll has a single wall around the entire perimeter of the turbine
housing such that each entry admits the exhaust gas over the whole circumference of the turbine
wheel. The entry closer to the turbine outlet is named as Shroud (Sh), and the entry which is
closer to the bearing housing side is called as Hub (H), and the same is shown in Figure 1a.

• Dual-volute turbine (T#2DV): The scroll is divided in a way that each scroll admits the exhaust
gas at a separate section of the rotor. The turbine scroll which has a longer volute is named as
Long Volute (LV), and the scroll which has a shorter volute is named as Short Volute (SV), as
shown in Figure 1b.

Shroud Entry

Hub Entry

Rotor exit

(a)

SV Inlet

LV Inlet

Shroud Entry

Hub Entry Tongue

Rotor exit

(b)

Figure 1. Difference in double entry radial turbine geometries due to their designs. (a) Twin-entry
turbine (T#1TE) [12], (b) Dual-volute turbine (T#2DV).

Hereafter, the respective turbocharger turbine entries/scroll are referred to by their names.
It is worth highlighting that the flow conditions between the entries of a double entry radial

inflow turbine can be divided into three different categories as follows:

• Full/equal admission have the same mass flow rate in each entry of the turbine.
• Unequal admission have different inlet temperature, pressure, and mass flow levels between the

entries of a double entry radial inflow turbine.
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• Partial admission block one of the turbine inlets and pass the flow through the open channel and
vice versa.

In normal engine operation conditions, the twin-entry or dual-volute turbochargers operate
under different flow admission conditions due to the pulsating exhaust gas natures coming from the
engine. However, it should be noted that the partial admission condition is not possible to appear
continuously under regular engine operating conditions. Many researchers have also reported that
the engine exhaust pulsatile flows significantly influence the performance of a double entry turbine
powered turbocharger [13–15]. Even though partial admission is not often found in automotive
applications, it is a quite important operation regime in other energy conversion and management
processes. These kinds of radial turbines are used for obtaining electric power from renewable energy
sources, such as geothermal energy [16,17], solar energy [18], and compressed air energy storage
systems [19]. The Organic Rankine Cycle (ORC) is widely used for these types of energy conversions
with an appropriate working fluid because it converts low-grade thermal energy into useful energy
[20]. In ORCs, the available thermal energy as a renewable heat source is not supplied continuously
due to the variations of available thermal energy [21–23]. In this case, the regulation of radial inflow
turbines based on partial admission operations is standard practice. The model proposed in this work
would also help to better simulate such essential regulation maneuvers in radial turbines.

Nowadays, automotive manufacturers are focusing on a wide range of engine operating
conditions which are different from traditional full load operation. To achieve an optimum matching
between the turbocharger and internal combustion engines, automotive manufacturers are relying on
one-dimensional engine cycle simulation tools to predict and study the effect of various parameters
on engine performance. 1D simulation codes make possible the calculation of gas dynamics engine
behavior at low computational costs. Furthermore, the method also shows a critical approach to
simulate the unsteady performance of the turbine [24]. Moreover, the exhaust system is essential for
meeting the emissions limits across the operating range of the engine. As asserted in [13], during
the engine part loads and transient conditions for the internal combustion engines, the turbocharger
turbine works at off-design conditions. It is not viable to capture this behavior by the standard turbine
maps provided by the manufacturers, as they only offer a narrow range of data that they could measure
in the gas stand. Therefore, the turbocharger turbine models should be capable of simulating the
real-life conditions, so that the prediction of exhaust gas mass flow, the pressure drop across the turbine
and the energy transfer to the compressor is essential.

Turbine map extrapolation tools are necessary when using one-dimensional modeling tools to
predict the system’s behavior outside of the turbine design operative conditions [25]. Numerous
researchers were able to succeed in modeling the extrapolation tools for conventional single entry
fixed and variable geometry turbines [26–30]. Some of these models are more physical and are able
to calculate the losses generated in the turbine while extrapolating the efficiency maps to off-design
conditions [31].

Mainly, turbocharger turbine models are based on steady flow maps. By providing information
about the mass flow rate and isentropic efficiency, they solve the system of equations by assuming a
quasi-steady behavior. In the case of double entry turbines, the steady flow map under full admission
condition (where the flow is the same in both entries of the turbine) is not enough for simulation
purposes. In reality, the exhaust pulses feeding each entry of the turbine will be timed so that
they are out of phase with each other; as a result, double entry turbines spend little time in full
admission and the majority of the time with unequal flows in their entries. Therefore, the turbine maps
should also cover the necessary flow conditions such as unequal and partial admissions between their
entries [22]. Moreover, the addition of the second inlet to the turbine volute brings extra complexity in
determining the steady-state turbine performance parameters. Addressing this, in previous work [12],
a detailed analysis of experimental data and how to process the performance parameters of twin-entry
radial-inflow turbine was shown for different steady flow admission conditions. Furthermore, an
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overview of the previous work is presented in this paper and the same techniques were applied to
process the experimental data of a dual-volute turbocharger.

Many methods for mean-line modeling of twin-entry turbines are available in the literature.
However, at partial and unequal admission conditions, the prediction of efficiency from the models
seem to be very difficult to obtain [32]. Hajilouy Benisi et al. [33] developed a twin-entry turbine
model by modifying the one-dimensional equations, which are used to analyze the flow in single entry
turbine. In addition, the loss models of single entry turbines were applied to the twin-entry by making
some changes. By doing this, some predicting results were obtained. However, the authors pointed
out that the calculated efficiency and the mass flow are overestimated. In the case of partial admission
conditions, there was a remarkable difference between predicted and experimental data. Costall et al.
[34] developed a model for twin-entry turbines and solved it using a gas dynamics code. The pulse
flow performance of a twin-entry turbine under unequal and full admission conditions was analyzed,
suggesting that, for full admission flow states, twin-entry turbine can be modeled as a simplified single
entry model, whereas for unequal flows a more complex model is necessary.

Moreover, the complete unequal admission maps are not always available because many gas
stands are not capable of operating in those conditions. Addressing this, Romagnoli et al. [11] proposed
a map-based method for predicting the partial and unequal admission flows in double entry turbines
(both twin and dual) from a given full admission map. Based on the experimental data, two correlations
were proposed, one for twin-entry and another for a dual-volute turbine, and they concluded that the
twin-entry turbine characteristic agreed reasonably well with their approach. However, the correlation
with the performance of a dual-volute turbine was less satisfactory. Newton et al. [35] proposed a
method for extrapolating from the full admission map of the dual-volute turbine to obtain the unequal
admission performances of both efficiency and mass flow parameters. The model is dependent on
three constants: one of them is used for predicting the efficiency ratio between the unequal and
full admission data points and the other two are used for estimating the mass flow ratio parameter.
The values of the constants are determined by using the minimal amount of unequal admission
flow data at different turbine speeds. The study concluded with good agreement between the model
predictions and experimental results. However, the analysis was restricted to one dual-volute geometry
turbine and it is not sure whether the same results can be found for another similar turbocharger
without further experimental campaigns. Moreover, the model also requires a significant amount of
experimental data for finding the values of the fitting constants. Chiong et al. [36] studied the pulse
flow modeling of a twin-scroll turbine under pulse flow operating conditions and pointed out that
the overall performance prediction of the model can be enhanced by taking into account the partial
admission characteristics during modeling.

Fredriksson et al. [37] proposed a mean-line model for asymmetrical twin-entry turbine by
specifying different flow conditions at each turbine inlet and static pressure at the outlet of a turbine.
The methodology is to solve each turbine passage from inlet to the splitter location separately, and
from the volute splitter to the rotor inlet, two streams mix into one uniform flow. The model further
considers the swirl energy loss from the divider wall to the rotor inlet in the form of pressure loss. The
results demonstrate that the mass flow parameters are well predicted for full and partial admission
flow conditions and efficiencies were over-predicted in the case of lower turbo speeds and pressure
ratios. Macek et al. [38] proposed a more complex model for twin-entry turbine using a loss parameters
calibration criteria and the modeling was based on approximation of real physics. Palenschat et al. [39]
implemented three significant changes in the single-entry model of Romagnoli and Martinez-Botas [27]
for predicting the variables of asymmetrical twin-entry turbine. Firstly, they added the second entry
model having the calculation procedure being identical to that of the single entry model. Secondly, they
added inlet duct models each one of the entries to resemble the flow passage from the turbine inlet to
the tongue. Third, they included the interspace model to obtain the resulting flow angle and the flow
properties after the mixing. The model was validated with three flow conditions: equal pressure, equal
mass flow, and unequal flow admissions. It was concluded that the performance of the model is best
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at equal-pressure conditions and becomes worse as flow imbalance between the branches is increasing.
The root mean square analysis showed that the model was able to predict all the parameters within
10% error concerning the experimental data for similar pressure conditions and, in unequal admission
flows, the difference in mass flow parameter between the model and experimental was about 20%.

The current paper demonstrates the methodology for modeling both twin-entry and dual-volute
turbines to extrapolate the performance maps into off-design conditions for all the flow admission
conditions. The approach for modeling this is the same for both types of turbines, and it is mainly based
on systematizing the characteristic maps of the turbine, which is explained in [12]. The paper is divided
into five main sections. In Section 2, an experimental method to obtain the performance maps of a
double entry turbine at different mass flow ratios is summarized. In Sections 3 and 4, the VGT model
of Serrano et al. [30] (which is summarized in Appendix A) is re-designed and adapted to work for
double entry turbines. The re-design procedure is done using data from one of the two types of double
entry turbines analyzed in this work (twin-entry). The results of modeling are discussed by comparing
with the experimental data for both types of double entry turbines (twin-entry and dual-volute). The
main variables are reduced mass flow and apparent adiabatic efficiency. This apparent efficiency is a
magnitude proposed and defined in this paper to achieve the proposed objectives. In Section 5, a new
model for double entry turbines efficiency fitting and calculation is detailed with a procedure based on
a merit function pointing to the defined apparent efficiency to predict the behavior of every turbine
branch under all the tested MFR and BSR conditions. The proposed model is further validated with a
different type of double entry radial-inflow turbine, namely a dual-volute asymmetric radial-inflow
turbine. In Section 6, the procedure for extrapolating the turbine maps of double entry turbine is
discussed. In Section 7, conclusions of the work are presented.

2. Experimental Study

To develop the flow oriented model as well as extrapolate and interpolate the maps, the twin-entry
and dual-volutes turbine measurements are needed. A turbocharger test rig has been designed to
investigate this type of turbochargers under a variety of operational conditions, based on the flow
simulation of a turbocharger using compressed air [12].

Figure 2 shows the schematic representation of the test rig and its main components. The test rig
is fed by a two-stage, oil-free centrifugal compressor, which is the oil-free type and powered by a 450
kW electric motor. The flow capacity ranges 4000–7200 Nm3/h and a maximum relative pressure of
5.30 bar can be reached. The combustion chamber shown in Figure 2 is not operated as the tests were
performed in quasi-adiabatic conditions with a turbine inlet temperature around 363 K. Downstream
of the combustion chamber, the airflow is branched into two pipes, which are called Turbine Entry 1
(for Sh/LV) and Turbine Entry 2 (for H/SV), referring to their positions shown in Figure 3. Each of
these branches is instrumented with a V-cone type sensor for measuring the air mass flow rate and
a control valve for varying the flow going into the branch, allowing to test the turbocharger with
different flow admission conditions. At the downstream of the turbine, a third V-cone sensor is placed
for measuring the total mass flow exiting from the turbine. There is also a possibility of changing the
outlet conditions of the turbocharger compressor using back-pressure valves. The objective was to
obtain the adiabatic efficiency maps of the turbine at different flow admission conditions. The ducts
and turbochargers are thermally insulated, as shown in Figure 4b, to reduce the extern al heat transfer.
Sensors to measure the parameters such as pressure, temperature, turbocharger speed, and mass flow
rate at the essential sections of the various fluids are also available and their measurement precisions
are shown in Table 1.
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Figure 2. Schematic layout of a turbocharger gas stand for testing the double entry turbine. The
locations of the main sensors are also shown.
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Control
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Figure 3. Gas stand for testing the double entry turbines at different flow admission conditions in
steady flow situations.

Table 1. List of main sensors used in the experimental work , showing their typical uncertainty.

Variable Sensor Type Range Typical Uncertainty

Gas mass flow
V-cone and

Thermal vortex 45–1230 kg/h
<1% of the

measured values
Gas pressure Piezoelectric 0 to 5 bar 12.5 mbar

Gas/metal temperature K-type thermocouple 273 K to 1500 K 1.5 K

Oil pressure Piezoelectric 0 to 5 bar 12.5 mbar
Oil temperature RTD 173 K to 723 K <0.5 K
Oil mass flow Coriolis Few tens gr/s 2 % of the measured value

Turbocharger speed Inductive sensor <300 krpm <500 rpm
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Figure 4. Dual-volute turbocharger setup in the gas stand.

Finally, the turbochargers were tested in partial, full, and unequal admission conditions for
modeling purpose. It is worth highlighting that the unequal admission was tested by feeding each
entry with an unequal amount of steady flow in steady state conditions. The different admission tests
are defined according to the mass flow ratio definition [12] as shown in Equation (1), where the actual
mass flow rate in shroud/long volute entry has been divided by the overall mass flow rate through
the turbine.

MFR =
ṁSh/LV

ṁSh/LV + ṁH/SV
(1)

The main points of the turbocharger test facility and the methodology for testing the twin-entry
or dual-volute turbine in a quasi-adiabatic state were demonstrated with the measurement uncertainty
in earlier work [12]. The experimental data presented in [12] have been used here for the correlation of
the model. Similar testing conditions were used for examining the dual-volute turbocharger, and the
data were used for the model validation.

Performance Parameters

The experiments provided the necessary data to calculate turbine map parameters: reduced mass
flow, reduced turbine speed, expansion ratio, adiabatic efficiency, and blade to jet speed ratio. As
described by Serrano et al. [12], representing the double entry turbine performance parameters with the
average values between the two entries (e.g., expansion ratio and turbine scroll temperature) showed
an impact on resulting maps and made it difficult to analyze the parameters. Moreover, representing
both branches with one turbine flow parameter, the mass flow distribution between respective entries
under equal and unequal admission conditions is not known. Thus, as detailed in [12], the two entries
are treated separately for calculating the turbine map parameters as follows.

In the following equations, the term i represents the generic code for the turbine inlet branch.
The reduced turbine speed nred is computed for each branch using appropriate turbine scroll inlet
temperature, as shown Equation (2).

nred,i =
n√
T0t,i

(2)

where n is the turbocharger speed and T0t,i is the turbine total inlet temperature at the corresponding
turbine entry. The turbine reduced mass flow rate ṁred is computed for each entry, as shown in
Equation (3)

ṁred,i =
ṁi ·

√
T0t,i

p0t,i
(3)
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where ṁi and p0t,i are the turbine mass flow rate and total inlet pressure for a corresponding entry.
The turbine total to static pressure ratio Πi(0t,4) is estimated by Equation (4). p4 is the common turbine
outlet pressure and therefore it does not have an index.

Πi,(0t,4) =
p0t,i

p4
(4)

When the twin-entry/dual-volute turbine is working in an engine, the inlet conditions are changed
in both branches due to the staggered firing orders in the cylinders [40] and corresponding interval
opening of the cylinders valves [41]. Accordingly, it was assumed that the power produced by each
turbine branch is different [12]. Therefore, the turbine total to static efficiency was computed as two
individual turbines, as shown in Equation (5), on the basis of the enthalpy–entropy adiabatic expansion
of the turbine shown in Figure 5. Hereafter, it is referred as apparent efficiency.
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Figure 5. Enthalpy–entropy expansion process in twin-entry/dual-volute radial turbines.

ηi
MFRx(t/s) =

T0t,i − TMFRx
4t

T0t,i − T4s,i
(5)

where TMFRx
4t is the mass averaged mixed turbine outlet total temperature that is measured in the

gas stand. Since the temperature that is coming from the individual turbine branches is mixed at the
turbine outlet station (see Figure 5), it is a convenient method to assume the outlet stations are at equal
temperatures [12]. T4s,i is the isentropic turbine temperature and it is estimated independently for both
turbine entries as shown in Equation (6).

T4s,i = T0t,i ·
(

1
Πi,(0t,4)

) γ−1
γ

(6)
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Lastly, Equation (7), shows the definition of a blade to jet speed ratio, which is estimated for each
branch with their corresponding inlet temperature and expansion ratio.

σi =
2 · π · n · r3√√√√2 · cp · Ti,0t ·
[

1−
(

1
Πi,(0t,4)

) γ−1
γ

] (7)

By treating both turbine inlet branches separately, it is possible to obtain two different efficiency
maps linked to the mass flow parameter maps, as shown in Figure 6 (here, the experimental results of
dual-volute turbocharger are shown, since the followed procedure is the same as for the twin-entry
turbine that was determined in [12]). The mass flow parameter and efficiency data are normalized by
the experimental maximum values of every scroll.

It can be observed in Figure 6a,c that the flow parameter maps show comparable characteristics
to any single-entry variable geometry turbine (VGT) [42]. The non-linear relation between MFR and
reduced mass flow is also noticeable. For instance, in the case of long volute (Figure 6a), there are
small differences between reduced mass flow values at MFR = 1 and MFR = 0.65 and a much higher
difference among MFR = 0, MFR = 0.22, and MFR = 0.5. The same phenomenon is observed in the short
volute case (Figure 6c) but with the opposite trend, i.e., the high difference among MFR = 1, MFR = 0.65,
and =0.5 and almost the same values for MFR = 0.22 and MFR = 0. Furthermore, Figure 6b,d shows
that there are significant differences in apparent efficiencies between Long Volute (LV) and Short Volute
(SV). As mentioned in [12], the apparent efficiency is useful to introduce order for the characterization
of double entry turbines such as twin-entry/dual-volute. However, it is not a good efficiency definition,
for the case of unequal admission, to reflect which branch is extracting energy more efficiently from the
flow upstream the turbine. It is, however, in the cases of MFR = 0 and MFR = 1 for partial admissions
and MFR = 0.5, at which the turbine is acting as full admission and has almost the same mass flow in
both branches, where the apparent efficiency interpretation signifies the energy extraction of every
branch reasonably.

The performance maps obtained using the method proposed in [12] provided reliable information
of flows going into each turbine branch at different flow admission states. In addition, this approach
allows using the current VGT turbine models as two turbines and extrapolating the mass flow and
efficiency parameters to off-design conditions.
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Figure 6. Turbine flow and efficiency maps of a dual-volute turbocharger (T#2DV).

3. Reduced Mass Flow Fitting

The approach of considering the two entries as individual turbines makes the resulting mass
flow parameters show an explicit dependency of the flow behavior with the mass flow ratio (MFR,
Equation (1)) (referring to Figure 6 and [12]). Accordingly, the model presented by Serrano et al. [30],
which is briefly described in Appendix A.1, is re-designed to deal with twin-entry and dual-volute
turbines.

The model considers now two turbine entries as two separate equivalent nozzles, as shown in
Figure 7, each as if it were a VGT. These turbine entries have their respective set of maps depending
on the MFR instead of the VGT position. The flow passage is divided into several regions, as shown
in Figure 7 (station numbers are kept similar to the VGT turbine shown in Figure A1). The value of
the effective area of two nozzles is calculated in the same way as in the case of a single entry VGT
turbine, which uses the individual characteristic curves of expansion ratio versus reduced mass flow
rate shown in Figure 6 for each branch.

Considering the assumption of two individual turbines, it is now possible to express the effective
equivalent nozzle area for each entry, as shown in Equation (8).

Aj
e f f ,i =

aj
i · A

j geom
4,i ·

√√√√√
1 +

(
σ

j
i

)2
·

( Dj
4m,i

Dj
3

)2

−1

+bj
i

ηi
MFRx(t/s)√√√√√√√√√√

1 +
(

cj
i ·

Aj geom
4,i

Aj geom
3,i

)2

·

 1

Π
j
i,(3,4)

2

1−ηi
MFRx(t/s) ·

1−

 1

Π
j
i,(3,4)


γ−1

γ




2

(8)

Πj
i,(3,4) represents the pressure in the space between stator and rotor, estimated using Equation (9)

with dj
i as a fitting constant [30].

Πj
i,(3,4) = 1 + dj

i ·
(

Πj
i,(0t,4) − 1

)
(9)

In Equation (8), the terms i and j represent the generic codes for the turbine inlet (shroud or hub;
long volute or short volute) and the turbocharger (twin-entry/dual-volute), respectively. Therefore,
for each turbine, there are two effective area equations (one for each turbine entry), dependent on their
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corresponding turbine entry geometries, the measured data of apparent efficiency (ηi
MFRx(t/s)), and the

four fitting constants (aj
i , bj

i , cj
i , and dj

i).
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Equivalent Nozzle Entry 2 
(Hub) 
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Hub Entry

Rotor exit

AA'

0

3

4

1

0 Turbine inlet station
1 Stator inlet station
3 Rotor inlet station
4 Rotor outlet station

(a) The vaneless twin-entry radial turbine stations distribution and simplifying two entries into two
equivalent nozzles
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(Long Volute) 
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Equivalent Nozzle Entry 2 
(Short Volute) 0 Turbine inlet station

1 Stator inlet station
3 Rotor inlet station
4 Rotor outlet station

AA'

Rotor 
exit

 Short
 Volute

Long 
Volute 

Long 
Volute 

4

1

AA'

3

0

(b) The vaneless dual-volute radial turbine stations distribution and simplifying two volutes into two
equivalent nozzles

Figure 7. Vaneless double entry turbines station distribution and modeling approach.

The effective area of the nozzle shown in Equation (8) is dependent on the stator and rotor outlet
geometrical area. In the case of variable geometry turbine, these areas are estimated based on the
geometry of the turbine and VGT positions, as outlined in Appendix A.1 and [30]. Nevertheless,
twin-entry and dual-volute turbocharger used in this work are vaneless turbines. Therefore, the stator
nozzle area is estimated using the turbine rotor diameter (D3) and blade height (Bh), as shown in
Equation (10) (see Figure 8). In vaneless turbines, it is considered that the stator outlet area is the same
as the rotor inlet area.

Ageom
3 = π · D3 · Bh (10)

For estimating the geometrical area at the rotor outlet, Equation (A4) can be used. In Equation (8),
D4m is an arithmetic mean diameter between turbine rotor shroud (D4) and rotor hub (Dnut) diameters,
as shown in Equation (11) (see Figure 8).

D4m =

(
D4 + Dnut

2

)
(11)

As aforementioned, twin-entry and dual-volute turbines have different volute designs and
geometries. Subsequently, the stator and rotor geometrical areas are estimated in different ways
for every turbine type, as further explained below. To have a clear explanation, firstly the method for
determining the geometrical areas of twin-entry turbine is defined, and then for a dual-volute turbine.
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Nut

Turbine Entry

Bh

Dnut

D4

D4m

Rotor outlet 
geometrical area 

D3

Nut

Figure 8. Geometrical description of vaneless turbine.

3.1. Twin-Entry Turbine

In twin-entry turbines, the induction flow path from the turbine inlet to the leading edge of the
rotor blades is divided into shroud and hub branch, as shown in Figure 9. Due to the assumption
of two individual turbines, the blade height has been shared between two branches by splitting the
actual value in half (as in the current case it is symmetrical turbine). Subsequently, the stator area
variation for two branches can be obtained as shown in Equation (12). In the case of asymmetric inlets,
the proper fraction of blade height would be assigned for each turbine inlet.

ATE geom
3,i = π · DTE

3 ·
(

BhTE

2

)
(12)

Nut
D4,H

D4,Sh

D4m

Rotor outlet geometrical 
area of shroud side

Rotor outlet geometrical 
area of hub side

Nut

D4

Hub Entry

Shroud Entry

Dnut

D3

BhH BhSh

Figure 9. Geometrical description of twin-entry turbine (T#1TE).

For calculating the rotor outlet geometrical area (ATE geom
4,i ) in the case of twin-entry turbines, it is

more relevant to consider the rotor outlet area for each branch in the view of two turbine approach
modeling. For this purpose, the area estimated using Equation (A4) is shared equally between shroud
and hub branch, as shown in Equation (13). By this, it is ensured that the mean-line (D4m) divides the
blade-to-blade duct into shroud and hub branches, as shown in Figure 9. Once the geometrical area of
each branch is known, it is possible to estimate the rotor outlet mean diameters of shroud (D4m,Sh) and
hub (D4m,H) branch using Equations (14) and (15) based on Figure 9

ATE geom
4,i =

Ageom
4
2

(13)

ATE geom
4,Sh

2
= π ·

(
D2

4 − D2
4m,Sh

4

)
(14)

ATE geom
4,H

2
= π ·

(
D2

4m,H − D2
nut

4

)
(15)
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The geometrical areas and diameters estimated from Equations (12) to (15) are used in
corresponding effective equivalent nozzle area (ATE

e f f ,i) of each branch while fitting the model. It
is worth highlighting that Equation (8) also depends on the apparent efficiency of each branch. For
that, the apparent efficiency values obtained by applying Equation (5) to each branch are used.

3.2. Dual-Volute Turbine

In dual-volute turbine, the flow path is designed in a way that each entry feeds separate sections
of the rotor, due to the different volute lengths. Based on this different flow paths, the stator and
rotor geometrical areas are estimated in different ways (see Figure 10). Doing this, it is appropriate to
determine the mass flow parameter through the long and short volutes.

Nut

BhLV = BhSV

D4m,LV=D4m,SV

D3

Dnut

D4

SV Inlet

LV Inlet

A2,LV

A2,SV

Figure 10. Geometrical description of dual-volute turbine (T#2DV).

As the flow is expanding at different sections of the rotor (Figure 10), the stator area is estimated
by blade height (Bh) and half the wheel length ((π/2) · D3) for each volute, as shown in Equation (16).
Similarly, the rotor outlet area of each volute is also determined by considering half the value of entire
area, which is estimated using Equations (A4) and (17). It is due to the flow coming from each volute
is not expanding through the entire circumference of the rotor. The rotor outlet diameter (DDV

4m,i) is
estimated in the same way as in vaneless turbines, as shown in Equation (11).

ADV geom
3,i = π ·

(
D3

2

)
· BhDV (16)

ADV geom
4,i =

Ageom
4
2

(17)

Once the effective equivalent nozzle area (Equation (8)) of each turbine entry of the turbocharger
T#1TE and T#2DV is known, the reduced mass flow parameter in each branch can be calculated using
the expression of the flow through an orifice with an isentropic expansion, as shown in Equation (18).

ṁj
red,i = Aj

e f f ,i ·
√

γ

R
·

 1

Πj
i,(0t,4)

 1
γ

·

√√√√√√ 2
γ− 1

·

1−

 1

Πj
i,(0t,4)


γ−1

γ

 (18)

3.3. Effective Area (Aeff) Fitting as a Function of MFR

Using the turbochargers T#1TE [12] and T#2DV (Figure 6), it is possible to study the behavior
of the fitting coefficients of Equation (8) for both entries and with different mass flow ratios (MFR).
The non-linear fitting procedure is performed individually using the individual performance map
data of each turbine entry. These parameters are measured with the experimental method introduced
in Section 2. The details about measurement procedures and data analysis can be read in [12]. They
are calculated using Equations (2)–(7). Once the experimental reduced mass flow parameter of each
entry is known, the experimental (Aj

e f f ,i) of each turbine inlet can be calculated by using Equation (18).
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Equation (8) is then used to fit the values for aj
i , bj

i , cj
i , and dj

i coefficients for the whole turbine map
of each entry with a least square method, which minimizes the root mean square error between the
modeled and experimental values. By this, the coefficient values of Equation (8) are obtained, and
these values for each turbine entry of the turbocharger T#1TE and T#2DV are plotted in Figure 11
versus the corresponding MFR. The analysis of individual map fitting coefficients of both entries of
two turbochargers are detailed in Section 3.3 to obtain some physical trends.

Coefficient Analysis and Calibration

As mentioned above, the fitting is performed as two individual turbines with their corresponding
turbine entry map data and, each MFR map has been fitted separately to study the behavior of the
coefficients, as shown in Figure 11. It is worth highlighting that, according to the MFR definition in
Equation (1), for an increasing MFR, the turbine mass flow parameter of the shroud/long volute entry
increases and hub/short volute decreases.

• Coefficient a: It represents the rotor discharge coefficient as shown in Equations (8) and (19). The
rotor effective flow area is variable with MFR, considering the amount of mass flow entering into
each branch, i.e., growing as the mass flow grows, and this is true according to the definition of
the discharge coefficient. Therefore, it is regarded as some quadratic behavior with MFR and the
magnitude of this coefficient should be between 0 and 1. It is observed that the coefficient “a”
trends are exactly as expected.

Aj
4,i = Aj geom

4,i · a (19)

• Coefficient b: The significance of this parameter is from velocity triangle speed ratio, and its
order of magnitude can be estimated using Equation (20) as described in [30]. This coefficient is
dependent on the mass flow passing through the turbine. More mass flow in a turbine branch
gives higher “b” values than lower mass flow. This is due to higher radial velocities at rotor inlet,
for the same peripheral speed and expansion ratio values. This trend is clearly shown in Figure
11c,d for both branches of every turbine type.

b =

(
υ0

Css

)2
+

(
w3

Css

)2
=

Aeff
A0
·
(

1
ΠT

)( 1
γ

)
+ O

[
10−1

]
= O

[
10−1

]
+ O

[
10−1

]
→ O

[
10−1

]
≤ b ≤ O

[
100
] (20)

• Coefficient c: It is the ratio between rotor and stator discharge coefficients (“a” and “CDs”), as
shown in Equation (21). As the effective flow area of the stator is variable with the mass flow ratio
in the turbine, the value of “c” is expected to increase. Besides, “c” must always justify Equation
(21), i.e., as an effective section introduced through the discharge coefficient (CDs) should not be
higher than unity [30].

CDs =
( a

c

)
≤ 1 (21)

• Coefficient d: It is related to the pressure ratio in the rotor with respect to the total turbine pressure
ratio [30]. Its value decreases with more flow into the branch and tends to 0.5. This implies that,
with high mass flow in the branch, the pressure ratio in the rotor tends to be half of the total
pressure ratio in the turbine. With low mass flow, most of the expansion is occurring in the rotor.
Both are the expected logical trends.

Summarizing, all the coefficients values and trends with MFR have physical meaning, as they
are derived from theoretical considerations [30]. These coefficients showed the exact expected trends
with the various MFRs in both turbines, asymmetrical dual-volute and symmetrical twin-entry. By
reviewing the fitting coefficients of each turbine entry of the two different radial in-flow types and for
several MFRs in Figure 11, it is possible to impose those physical trends with MFRfor each turbine
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entry: a linear trend for coefficients “b”, “c”, and “d” and a quadratic behavior for “a”. In this approach,
seven coefficients of each turbine entry can be adjusted using a non-linear fitting method for all MFRs
of a given branch at the same time. This implies that one single fitting procedure and one set of
parameters will be needed for each entry of the turbine to predict the reduced mass flow in all flow
admission conditions. Further elaborating this conclusion, only measuring three MFRs is enough
for fitting the whole range of turbine mass flow parameter: any other non-measured MFRs can be
predicted. The three most convenient MFRs to be measured in a gas stand are MFR = 0, MFR = 1, and
MFR = 0.5 (partial admissions and full admission, respectively).
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Figure 11. Reduced mass flow coefficients obtained using the individual MFR fitting for both T#1TE
and T#2DV turbines. Each turbine entry map is fitted one by one.

Figure 12 shows the obtained results of the coefficients from a global fitting with MFR after
imposing the discussed linear and quadratic trends. The first conclusion emerging is that the obtained
trends are very similar between twin-entry and dual-volute turbines. It is an excellent result since initial
values are mandatory for non-linear fitting procedures, and in this case the same set of initial values
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can be used for fitting both types of turbines. In addition, being the tested turbines so different (twin
symmetric vs. dual-volute asymmetric) it can assume that averaging for each branch the parameters
set obtained in this paper (Table 2) is general enough to be used as initial values for the readers in their
respective model calculation of another turbine.
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Figure 12. Reduced mass flow coefficient trends obtained using a global fitting procedure. Trends are
imposed and all MFRs are fitted at the same time. The coefficients from individual MFR fittings are
also shown for comparison.

The differences observed between T#1TE and T#2DV can be well explained by the effect of the
asymmetry, i.e., T#1TE is symmetric between hub and shroud and T#2DV is not. In Figure 12a–d, this
effect is especially evident in coefficients “a”, “c”, and “d” and does not show much for “a/c’. While in
the twin turbine these coefficients (representing discharge coefficients) are quite symmetrical, this is
not the case in the dual-volute with coefficient “a” at the short volute (Figure 12b). At the short volute,
coefficient “a” shows lower values than at the long volute as the flow reduces (MFR increasing for
the short volute) and coefficient “a/c” (representing stator discharge coefficient) does not show this
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trend. The asymmetry effects are due to the volute tongue greatly affecting the rotor outlet discharge
coefficient when compared to the stator outlet discharge coefficient.

Table 2. Reduced mass flow fitting coefficient trends value for T#1TE and T#2DV turbines obtained in
a global fitting procedure.

Reduced Mass Flow Fitting
Coefficient

T1#TE T2#LV T1#TE T2#LV

Shroud Long Volute Hub Short Volute

aj
i = a1 ·MFR2 + a2 ·MFR + a3

a1 −0.3192 −0.2691 −0.4586 −0.1803
a2 0.8856 0.8176 −0.0837 −0.3768
a3 0 0 −(a1+a2) −(a1+a2)

bj
i = b1 ·MFR + b2

b1 0.6134 0.4037 −0.8364 −0.5848
b2 0.3130 0.625 1.2262 1.0732

cj
i = c1 ·MFR + c2

c1 1.3234 1.6468 −1.0741 −2.0935
c2 0.7695 0.6412 2.0191 2.2996

dj
i = d1 ·MFR + d2

d1 −0.4799 −0.4938 0.3804 0.5332
d2 1 1 (1−d1) (1−d1)

Figure 13a,b shows the model fitting results of two entries for the twin-entry (T#1TE) and
dual-volute turbocharger (T#2D) with their corresponding coefficients, which are obtained using
the global fitting process previously described. In Figure 13, it can be observed that the errors in
modeling the reduced mass flow parameters of two turbine branches are small enough at various
MFR (within ±5%) in both T#1TE and T#2DV turbochargers. Normalized reduced mass flow in the
dual-volute case (Figure 13b) shows that RMS error for long volute is below 1.4% and for short volute
below 0.5%. Therefore, it can be considered that the procedure explained above can be valid for other
twin-entry or dual-volute turbochargers.
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(a) Twin-entry (TE) turbocharger (T#1TE)
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Figure 13. Reduced mass flow Modeled versus Experimental for T#1TE and T#2DV turbochargers
using the global fitting constants shown in Table 2.
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The procedure for estimating a new turbine reduced mass flow map is as follows. Firstly, the
seven initial values of fitting coefficients here proposed for each turbine inlet (seven for shroud and
seven for hub or seven for long volute and seven for short volute, depending on turbine type) need to
be provided for the non-linear fitting procedure. Values provided in Table 2 can be used as an example
of initial values for non-linear fitting calculation. Further, the final values can be obtained with the
corresponding effective area (Aj

e f f ,i), geometries, and the turbine map data. After the fitting, the model
can calculate the reduced mass flow for any non-measured MFR, reduced speed, and pressure ratio,
even for far-off non-measured conditions by substituting the fitted Aj

e f f ,i in Equation (18).

4. Efficiency Fitting Using VGT Model

In the case of efficiency fitting, the model described in Appendix A and [30] is re-designed
in a similar way to the reduced mass flow fitting procedure. The efficiency equation (Equation
(22)) (hereafter called apparent efficiency) is fitted independently for each entry of the turbine. As
aforementioned, the turbochargers used in this study are vaneless turbines; accordingly, the VGT
model is modified. The stator flow outlet angle (ϕflow

2 ) is no longer guided by blades as in VGT turbine
model; accordingly, the K?

2 term is expressed as shown in Equation (24). However, in zj
i (Equation (25)),

the set of each turbine maps depending on the MFR are provided. It is a first and straightforward
adaption of Equation (A15) and the model explained in [30].

η
j
i, (t/s) = −K1 ·

(
σ

j
i

)2
+ K?

2 ·

1− K3(
σ

j
i

)2


1

γ−1

·
(

σ
j
i

)
(22)

K1 = 2

 rj
4,i

rj
3

2

(23)

K?
2 = 2

Aj
e f f ,i

Aj geom
0,i

(
zj

i · tan α
j flow
3,i +

√
K1

2
· tan β

j metal
4,i

)
(24)

zj
i = −(a′ji · n

j
red,i + b′ji ) · σ

j
i + (c′ji · n

j
red,i + d′ji ·MFRj2 + e′ji ·MFRj + f ′ji ) (25)

Nevertheless, in vaneless turbines, the volute or casing will take over the function of flow guidance
at the entry to a rotor in addition to flow distribution and acceleration [13]. Therefore, a physical
definition based on the geometry for a compressible flow has been considered according to Watson and
Janota [13], to calculate the rotor inlet gas angle (αflow

3 ) for vaneless turbines, as shown in Equation (26).

tan αflow
3 =

r0 · ρ3 · 2π · Bh · CDr3

A0 · ρ0 · CD0
(26)

Just for calculating this flow angle, it was assumed that the discharge coefficient at the tongue
(CD0) (station 0 in Figure 14) is similar to the radial discharge coefficient (CDr3) and, therefore, their
ratio is very close to 1. For estimating the density ratios shown in Equation (26), an iterative procedure
should be used; to avoid this, an isentropic expansion between stations 0 and 3 was assumed. Then,
the density ratio can be expressed as a function of pressures ratio (p3/p0). However, the pressure ratio
between stations 0 and 3 is not available in the turbine maps, thus an additional assumption is made
at this point for this particular purpose. Equation (9) can be used to express the isentropic expansion
between stations 0 and 3, as shown in Equation (27). It can be noted that coefficient “d” in Equation (9)
comes from the reduced mass flow fitting and it represents the pressure ratio in the rotor with respect
to the total turbine pressure ratio.
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ρ3

ρ0
=

(
p3

p0

) 1
γ

=

1 + dj
i ·
(

Πj
i,(0t,4) − 1

)
Πj

i,(0t,4)


1
γ

(27)

Therefore, Equation (26) can now be expressed as Equation (28) for both branches and it should
be calculated with their corresponding turbine entry geometry and expansion ratios according to the
assumption of two turbines modeling.

tan α
j flow
3,i =

 rj
0,i · 2π · Bj

h,i

Aj
0,i

 ·
1 + dj

i ·
(

Πj
i,(0t,4) − 1

)
Πj

i,(0t,4)


1
γ

(28)

In Equation (28), Aj
0,i is the area at the tongue of each branch, Bj

h,i is the blade height of each

branch, and rj
0,i is the radius of the centroid of section Aj

0,i, as shown in Figure 14. In this manner, the
rotor inlet gas angle (αflow

3 ) for vaneless twin-entry or dual-volute turbines can be approximated.

0 Turbine inlet station
1 Stator inlet station
3 Rotor inlet station
4 Rotor outlet station

r0

0

3

4

A0

1

Figure 14. Geometrical description for calculating the flow angle in vaneless twin-entry/dual-volute
turbines.

Figure 15 illustrates the variation of the rotor inlet flow angles with the total to static turbine
expansion ratio of each turbine branch. Here, the results are corresponding to the twin-entry turbine
T#1TE [12]. In Figure 15, it can be observed that as the flow in Shroud or Hub branch is increasing, the
flow angle becomes lower. At MFR 0.2 (yellow circled points) and MFR 0.8 (black diamond points)
conditions, the flow is lower in Shroud and Hub branches respectively. The flow angle values are
higher and shows a continuous reduction of their values from lower to higher turbine expansion ratios.
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Figure 15. Rotor inlet flow angles at different flow admission conditions for Shroud and Hub branch of
T#1TE.
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It is noteworthy that the K1 term in Equation (22) is dependent on the ratio of rotor outlet radius
of each branch (rj

4,i) and turbine wheel radius (rj
3). For this, the geometry simplifications of twin-entry

and dual-volute turbines as demonstrated above for fitting the reduced mass flow model are also
considered in fitting the apparent efficiency.

In this way, the apparent efficiency model has been fitted separately for each branch of the
twin-entry turbocharger using the data of whole turbine map to analyze the behavior of the coefficients
for each turbine branch with MFR. Accordingly, a set of coefficients for each MFR of the individual
twin-entry turbine [12] branch is obtained, as shown in Table 3. It is evident that the model does not
show any clear trends with the mass flow ratios (e.g., the reduced mass flow fitting parameters), except
that coefficients d′ji and e′ji tends to zero in all the MFR for both branches. In addition, the value of the

coefficient a′ji is close to zero for many MFRs.
Figure 16 shows the model results of both branches at different MFR by using the coefficients

from Table 3. The results are coherent with the experimental data of each branch with an average
root mean square error of 0.02017 for both branches together (separate RMSE for each branch can
be read at Figure 16). Furthermore, the model is sufficient to extrapolate until off-design conditions
of each turbine branch map with there corresponding MFR fitting constants from Table 3. However,
this model has a limitation that it is not potential to extrapolate to non-measured MFRs and reduced
turbine speed as compared to the reduced mass flow model. This is because of the coefficients do not
show any apparent trends with the MFR. Consequently, in this paper, the model has been improved to
enable extrapolating to non-measured MFRs and speeds of twin-entry/dual-volute turbochargers. The
procedure to refine the model is based on the analysis of twin-entry turbocharger experimental data.
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Figure 16. Comparing the apparent turbine efficiency results from VGT turbine model with the
experimental values for T#1TE turbocharger. Each MFR map is individually fitted for the respective
turbine branch.
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Table 3. Apparent efficiency fitting coefficients from Equation (25) for each turbine branch of T#1TE [12].
Every MFR map is fitted individually.

MFRx Branch a′TE b′TE c′TE d′TE e′TE f ′TE

0 Sh — — — — — —
H 0.0205 1.4095 0.1379 0 0 0.6572

0.2 Sh 0.1349 0.3864 0.4552 0 0 3.850× 10−14

H 2.313× 10−14 1.064 0.0854 0 0 0.6612

0.31 Sh 0.1443 0.0180 0.2638 0 0 0.3116
H 2.238× 10−14 0.9210 0.0768 0 0 0.6227

0.43 Sh 0.1380 0.0501 0.2382 0 0 0
H 1.496× 10−13 0.8709 0.0678 0 0 0.7276

0.53 Sh 2.228× 10−14 0.7188 0.1006 0 0 0.5424
H 3.994× 10−14 0.7276 0.0551 0 0 0.8262

0.57 Sh 2.220× 10−14 0.7060 0.0814 0 0 0.6297
H 0.1508 4.441× 10−14 0.2012 0 0 0.1183

0.67 Sh 2.515× 10−14 0.8564 0.1024 0 0 0.5150
H 0.1416 7.668× 10−11 0.1990 0 0 0.3941

0.8 Sh 2.869× 10−14 1.0488 0.1160 0 0 0.5362
H 0.0205 0.5535 0.5070 0 0 5.038× 10−12

1 Sh 2.222× 10−14 1.4958 0.1515 0 0 0.6301
H — — — — — —

5. Proposed Model for Twin-Entry and Dual-Volute Turbines

5.1. Mixed Flow Approach

According to the assumption of two entries as an individual turbine, the apparent efficiency of
each turbine branch is estimated with the enthalpy difference. This difference is between the turbine
scroll inlet temperature and the mix of temperatures that is available at the outlet of a turbine as shown
in Equation (6) and Figure 17. However, at the rotor outlet, temperatures coming from the individual
turbine branch will be different under full and unequal flow admission conditions. This is due to the
different expansions of the flow with their given efficiencies in each branch [12].

Meanwhile, the turbine operating under partial admission conditions (MFR 1 or 0 (i.e., all flow
in one of the entry by blocking the other and vice versa)) the power produced by the turbine is only
due to that working branch (Entry 1 or 2). Besides, in these conditions, there is only one turbine outlet
temperature , which is easy to measure in the gas stand.

Therefore, the first hypothesis tested, the turbine outlet temperature in all the admission conditions
can be calculated using only the extreme flow cases (MFR 0 and 1) as two individual turbines. Based
on the T#1TE turbocharger fitting results in Table 3, the coefficients which trends to zero (a′TE

i , d′TE
i

and e′TE
i ) are avoided in further analysis. For that reason, only 3 fitting parameters (b′TE

i , c′TE
i and

f ′TE
i ) of each branch are used in Equation (25). These parameters are fitted again for the apparent

efficiency (Equation (22)) for partial flow admission cases. Figure 18 shows the extrapolation of extreme
flow cases for shroud and hub branch of twin-entry turbine T#1TE [12], using the individual fitting
constants of MFR0 and 1 in Table 4 and combining them in Equation (29) for efficiency. In addition,
the global fitting constants of reduced mass flow of each branch shown in Figure 12 and Table 2 are
used for mass flow parameters calculation. Equation (29) shows the parameters that account for angle
incidence losses in the flow oriented model. These are the only losses of the model in Equation (22),
apart from the discharge coefficients accounted by the flow model. Equation (29) shows how the
incidence losses depend linearly of both reduced speed and blade to jet speed ratio.
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zTE
i = −(b′TE

i · σTE
i ) + (c′TE

i · nTE
red,i) + f ′TE

i (29)

P4 

C02/2 C02/2

Entry 1
SH/LV

Entry 2
H/SV

0tSh/LV

0Sh/LV

P0t,Sh/LV

P0,Sh/LV

0tH/SV

0H/SV
P0,H/SV

P0t ,H/SV

4

4s,Sh/LV

4s,H/SV

MFRx

MFRx

MFRx4Hx/SVx

C42/2

4tHx/SVx

C42/2

Entropy 

E
n
th

al
p
y 

Hx/SVx

Shx/LVx

H/SV
MFRx

4tShx/LVx

4Shx/LVx

C42/2

S,H/SVh S,Sh/LVh

4tMFRx

Sh/LV
MFRx

Figure 17. Twin-entry/dual-volute radial turbines expansion process in partial admission conditions.

Table 4. Fitting coefficients of partial admission conditions using apparent efficiency.

MFRx b′TE c′TE f ′TE

0 (H) 1.4685 0.1493 0.6280
1 (Sh) 1.4278 0.1189 0.6895

A methodology proposed by Payri et al. [43] has been used to extrapolate the partial admission
maps. Figure 18 shows that the accuracy is good and can be noted that the hub branch with a higher
trimming (with a higher rotor inlet to outlet radius ratio) shows a significant difference in mass flow
parameter between different reduced speeds for a given pressure ratio. It means a higher work in the
centrifugal forces field than the Shroud branch with a lower radius ratio. Figure 18 also shows slightly
higher peak efficiency at Hub branch, probably due to the higher trimming (higher specific work) and
the lower tip leakage losses when the flow is concentrated in hub branch than in shroud [44,45].
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Figure 18. Extrapolation of partial admission conditions for T#1TE (MFR 0 and 1).

For predicting the same turbine outlet temperature as in experiments at different flow admission
conditions, a look-up table is generated with the extrapolated efficiency, blade to jet speed ratio, and
reduced turbine speeds of MFR 0 and 1 separately, corresponding to hub and shroud entries in the
turbine T#1TE. Eventually, if every other flow admission condition ( MFRs other than 0 or 1) is merely
a quasi-steady mass average of what happens at MFR 0 and MFR 1. It is possible to calculate the static
turbine outlet temperature (TTE

4,i ) using Equation (30). Here, ηTE
i, (t/s) is the estimated efficiency of every

MFR (either 0 or 1, for Hub or Shroud branches, respectively) at every BSR and every reduced speed
obtained from extrapolated efficiencies of partial admission conditions shown in Figure 18.

It is worth checking that, in the case of partial admission conditions, the estimated temperatures
using Equation (30) should be equal to the experimental temperature values and, the same can be seen
in Figure 19. It is important to note that the temperatures are very symmetrical between MFR 0 and 1
in all turbine reduced speeds.

TTE
4,i = TTE

0t,i

[
1− ηTE

i, (t/s)

(
1−

(
ΠTE

i,(0t,4)

) 1−γ
γ

)]
−

c2
4

2 cp
(30)

To check the validity of this approach, the mixed static turbine outlet temperature in full and
unequal admission conditions is estimated as a mass-weighted average between the individual turbine
outlet temperature (Equation (30)), as shown in Equation (31). As flow expansion from each branch
finishes in a common turbine outlet station, the individual turbine outlet temperatures after the
expansion are mixed depending on the flow passing through each inlet. In fact, from the gas stand, the
mixed temperature is the only information available at the turbine outlet station throughout full and
unequal flow admissions at the turbine inlet.

TMFRx
4 = TTE

4,Shx ·MFRx + TTE
4,Hx · (1−MFRx) (31)
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Figure 19. Estimated turbine outlet temperature using extrapolated maps of MFR0 and 1 for T#1TE.

In Figure 20, it can be observed that the prediction of temperatures using the mixed flow approach
(Equation (31)) is always higher for unequal and full flow admissions. Moreover, Figure 20 also shows
an additional aspect that the prediction of temperatures is nearly symmetrical between specific MFRs
with respect to MFR = 0.5 (see Figure 20a–c) and also the error was maximum at MFR = 0.5. The
difference between estimated mixed temperature and experimental values were further investigated
with MFR and a new parameter MFR′x, as shown in Equation (32); this is done to observe the symmetry
with respect to the MFR= 0.5.

Figure 21 shows the temperature prediction error (∆TMFRx
4 ) for all the MFRs and reduced turbine

speeds. Based on Figure 21a,b, the following conclusions can be made:

• The error is substantially zero for both partial admission conditions, as there are no mixing of
flows at the outlet branch of the turbine. Moreover, the deviation of the error in MFR 0 and 1 is
quite symmetrical to MFR 0.5.

• The errors are always positive in the case of unequal and full admission flows. It is understood
that the proposed mixed approach is always under-predicting the apparent efficiency. The error
is lower at highly uneven flows between branches and maximum around full admission, i.e.,
increasing from low unbalanced flows (i.e., MFR 0.2 and 0.8) to having same flows (MFR 0.5) in
both branches.

• The parameter MFR′x given in Equation (32) shows a significant turbine outlet temperature error
as nearly symmetric and equally far from full admission conditions, as demonstrated in Figure
21b. In this figure, the error tends to be lower (efficiency lower) when new parameter MFR′x is
equal to 0.5 and higher (efficiency higher) when it is similar to zero.

• The reasoning for always positive errors can be explained as losses due to the sudden expansion
of flows when the turbine is working only with one branch while the other is blocked; in these
conditions, the flow also expands into a non-flow branch. As a consequence, this gives the lower
efficiency as compared to the turbine operating with two branches together at different flow
admissions.

• Having the two turbines individually for each inlet with an extreme flow condition and
predicting the situations of other flow admissions by a mixing approach always produces higher
temperatures. The efficiency losses for the individual turbines are added through the mixing
method and increase the entropy of the turbine flow.

• In adiabatic calculations, the outlet temperature represents more or less efficiency; as a result, a
higher temperature gives a lower performance. The best conditions are those where the TMFRx

4
error is always higher and which corresponds to having the highest flow in the hub branch and
also having the same mass flow in both branches (according to Figure 21); this is especially true at
low turbocharger speeds (blue colors in Figure 21). Thus, it means that the losses between both
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branches of the twin-entry turbine are maximum when there is no flow in one of the branches. As
the flow conditions are changing from partial to full admission state, the efficiency is better.

From the above conclusions, it can be understood that, having a calibration function, it is possible
to reduce the error and obtain the same outlet temperature as in the experimental points in all flow
conditions. Once the right mixed turbine outlet temperature is known, the model will have the
capabilities of predicting the proper efficiency of each branch in all flow situations.

MFR′x = |MFRx − 0.5| (32)
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Figure 20. Estimated mixed turbine outlet temperature for full and unequal flows using extrapolated
maps of MFR 0 and 1 for T#1TE.
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Figure 21. Error prediction in all admission conditions using the extreme flow maps for T#1TE.
(a) Mixed turbine outlet temperature error with MFR, (b) Mixed turbine outlet temperature error
with MFR′x.
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5.2. Mixed Flow Approach Corrected

Based on the outcome of mixed outlet temperatures in all the admission conditions in Section 5.1,
it is clear that a fitting parameter can be feasible for adjusting the error (∆TMFRx

4 ) generated by the
mixed flow approach in the case of full and unequal flow admissions. In a way that is appropriate to
reduce the error, more analysis was done with variables such as a blade to jet speed ratio (BSR), MFRx,
and reduced turbine speed, as shown in Figure 22.

If the error is examined against MFRx parameter and turbine reduced speed, as shown in
Figure 22a,b, respectively, the error shows a comparatively parabolic trend with reduced turbine
speed and also the error decreases from full admission to partial admission conditions. Furthermore,
if the error is observed with the blade to jet speed ratios of each branch for a different MFRx, as
shown in Figure 22c, the error shows a logarithmic trend with MFRx parameter and also moderately
linear as BSR grows. Besides, if the error is compared with the similar reduced turbine speed of
all the flow admission conditions, as shown in Figure 22d, the y-intercept values shows a parabolic
dependency with the same reduced turbine speed for different MFRs and BSR. Moreover, in Figure 22,
it is also clear that the observed trends can agree with MFR′x, as this parameter shows that the error
is symmetric, as shown in Figure 22b. It should be taken into account that the trend of the error in
TMFRx

4,TE is the same than the trend of any correction coefficient designed to increase the efficiency at
unequal and full admission conditions, in order to reduce error. By considering all these, a new fitting
function (z′j) is proposed, as shown in Equation(33), because of the noticed trends shown in Figure 22.
Equation (33) is a term that is used to correct angle incidence losses, by reducing them in the light of
new findings, in the flow oriented efficiency model of Equation (22). For z′j, five fitting coefficients are
introduced, which are the same for both branches. It is worth noting that the term z′j becomes zero at
MFRx = 0 or MFRx = 1 since in this cases the error in temperature does not exist and efficiency is not
under-predicted.

z′j =
(
MFR′x − 0.5

)
· ln
[(

MFR′x
)kj

0 + kj
1 · σ

j
i

]
·

kj
2 + kj

3 · σ
j
i · n

j
red,i −

kj
4

(
nj

red,i

)2(
MFR′x + σ

j
i

)
 (33)

The proposed fitting function (z′j) is added to the old zj
i function (Equation (29)), as shown in

Equation (34).
zj

i = −(b
′j
i · σ

j
i ) + (c′ji · n

j
red,i) + f ′ji + z′j (34)

It is important to note that the final zj
i function, Equation (34), has 11 fitting coefficients in total for

the two branches: three coefficients for each branch (b′ji , c′ji , and f ′ji ) obtained from data at MFRx = 0

and MFRx = 1 and further kept constant in the mixed flow approach and five coefficients (kj
0, kj

1, kj
2, kj

3,

and kj
4) of z′j that are associated to correct the extra losses (not real) generated by the mixed flow

approach. Now, Equation (34) is used in Equation (24) as well as in Equation (30). As a result, the
final TMFRx

4 (Equation (31)) is now calculated with z′j for reducing losses (Equation (34)) apart from
partial admission conditions. In summary, all 11 fitting coefficients are globally fitted together for both
branches using a non-linear fitting procedure by using all the partial, unequal, and full admission flow
data of each branch of T#1TE. It is worth highlighting that z′j is equal to zero while fitting the partial
admission conditions (MFRx 0 or 1); consequently, the coefficients obtained while fitting the partial
admission data should be similar to coefficients shown in Table 4. Table 5 shows the values of 11 fitting
coefficients obtained while fitting the mixed turbine outlet temperature.
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Figure 22. Analysis of T#1TE turbine outlet temperature error with different parameters in order to
find an a correction function to reduce the error. (a) Error with MFRx and same reduced turbine speeds,
(b) Error with reduced turbine speed of each branch and MFRx, (c) Error with the BSR of each branch
and MFRx, (d) Error with same reduced turbine speed for different MFRx and BSR.

Table 5. Fitting coefficients of mixed turbine outlet temperature correction with new fitting function
for T#1TE.

MFR1 (Sh) Fitting Function (z′TE) MFR0 (H)

b′TE
Sh c′TE

Sh f ′TE
Sh kTE

0 kTE
1 kTE

2 kTE
3 kTE

4 b′TE
H c′TE

H f ′TE
H

1.4685 0.1493 0.6280 4.9408 0.0330 0.1386 0.0495 5.135E-03 1.4278 0.1189 0.6895

Figure 23 shows the level of correlation between the mixed turbine outlet temperature measured
in the gas stand and modeled TMFRx

4 values for all the mass flow ratios data points in the map of
twin-entry turbine (T#1TE). It can be observed that modeled TMFRx

4 values show good accordance
with the experimental points, which is evidenced by a Root Mean Square Error (RMSE) of 1.3518 (K).
By using the proposed fitting function (z′j) within the K?

2 term of the apparent efficiency equation
(Equation (24)), it is possible to obtain the mixed turbine outlet temperature of all the MFRs only with
the 11 fitting coefficients shown in Table 5 and the 14 flow coefficients shown in Table 2. The efficiency
model is a flow oriented model and both must be fitted together. Once the outlet temperature values
are predicted well, these values can be used to obtain the apparent efficiency of each branch.



Appl. Sci. 2020, 10, 1955 28 of 43

290 296 302 308 314 320 326 332 338 344 350
290

296

302

308

314

320

326

332

338

344

350

+1 %

-1 %

MFR 0
MFR 0.2
MFR 0.31
MFR 0.43
MFR 0.53
MFR 0.57
MFR 0.67
MFR 0.8
MFR 1

Figure 23. Comparing the prediction of modeled mixed turbine outlet temperature with experimental
values for T#1TE turbocharger.

5.3. From Mixed Flow Corrected Approach to Apparent Efficiency Merit Functions

In Section 5.2, it is shown that the mixed turbine outlet temperatures can be well predicted by
adding the suggested calibrated function in Equation (29), as shown in Equation (34). However, most
of the time, the double entry turbine maps will be in terms of apparent efficiency either adiabatic or
adiabatized from standard gas stand maps [46]. Therefore, one must find the relation between real
efficiencies calculated with the corrected mixed flow approach and the apparent efficiencies measured
in the gas stand, instead of that with measure outlet mixed flow temperatures. With this approach,
it is now possible to use the final TMFRx

4 (Equation (31)) in Equation (35) to obtain total temperature
and later on in apparent efficiency definition in Equation (5) to estimate the efficiency values similar
to the experiments. By continuing the simplification of apparent efficiency (Equation (5)) using the
final TMFRx

4t for both branches, it is possible to obtain the final apparent efficiency expressions for both
branches as shown in Equations (36) and (37). It is worth noting that the final formulation shown in
Equations (36) and (37) are a function of actual efficiencies (not apparent), expansion ratios, and total
inlet temperature of both turbine branches to follow the mixed flow corrected approach to obtain the
apparent efficiency measured in a gas stand.

TMFRx
4t = TMFRx

4 +
c2

4
2cp

(35)

ηShx/LVx
MFRx (t/s) =MFRx · ηTE/DV

Shx/LVx
+

1−MFRx(
1−

(
ΠShx/LVx

0t,4

) 1−γ
γ

)

·
[

1 +

(
ηTE/DV

Hx/SVx

(
1−

(
ΠHx/SVx

0t,4

) 1−γ
γ

)
− 1

)
THx/SVx

0t

TShx/LVx
0t

] (36)
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ηHx/SVx
MFRx (t/s) = (1−MFRx) · ηTE/DV

Hx/SVx
+

MFRx(
1−

(
ΠHx/SVx

0t,4

) 1−γ
γ

)

·
[

1 +

(
ηTE/DV

Shx/LVx

(
1−

(
ΠShx/LVx

0t,4

) 1−γ
γ

)
− 1

)
TShx/LVx

0t

THx/SVx
0t

] (37)

If both branches have the same temperature at the inlet (as could be the case in some gas-stand
tests), Equations (36) and (37) are significantly simplified and Equations (38) and (39) are obtained.

ηShx/LVx
MFRx (t/s) = MFRx · ηTE/DV

Shx/LVx
+ (1−MFRx) · ηTE/DV

Hx/SVx
·

(
1−

(
ΠHx/SVx

0t,4

) 1−γ
γ

)
(

1−
(

ΠShx/LVx
0t,4

) 1−γ
γ

) (38)

ηHx/SVx
MFRx (t/s) = (1−MFRx) · ηTE/DV

Hx/SVx
+ MFRx · ηTE/DV

Shx/LVx
·

(
1−

(
ΠShx/LVx

0t,4

) 1−γ
γ

)
(

1−
(

ΠHx/SVx
0t,4

) 1−γ
γ

) (39)

ηTE/DV
Shx/LVx

and ηTE/DV
Hx/SVx

are the actual apparent efficiencies of individual branches that come from

Equation (22) with the new zj
i fitting function (Equation (34)) inside the K?

2 term. However, the merit
function for fitting the coefficients are based on apparent efficiencies (Equations (36) and (37)) since
they are what can be experimentally obtained. The z′j coefficients are the same for the actual apparent
efficiencies of two branches (ηTE/DV

Shx/LVx
and ηTE/DV

Hx/SVx
) as the mixed turbine outlet temperature is common

for both apparent efficiency definitions as expressed beforehand. In summary, both apparent efficiency
equations (Equations (36) and (37)) have 11 fitting coefficients together and they are globally fitted
using a non-linear fitting procedure for a given double entry turbine using the whole data points from
the maps of the two branches (all available MFRs). For initial values, the fitting constants of mixed
turbine outlet temperature model shown in Table 5 were used. A statistically based function, as shown
in Equation (40), is used for minimizing the overall root mean square error of the apparent efficiencies
of both branches, and also not to have very different errors between them.

εRMSoverall =
(

εRMSηShx
+ εRMSηHx

)
+
∣∣∣εRMSηShx

− εRMSηHx

∣∣∣ (40)

In Figure 24a, the level of correlation between the experimental and modeled apparent efficiency
values (Equations (36) and (37)) of twin-entry turbocharger is shown. It can be observed that modeled
efficiency values of Shroud and Hub branch are well predicted with the experimental data, which is
evidenced by the overall RMSE and individual branch RMSE values. It is worth highlighting that all
the partial, unequal, and full admission flow efficiency values of each branch are well fitted at the
same time and with the 11 fitting coefficients shown in Table 6. The final efficiency equations have
been applied to the dual-volute turbine to validate the method outlined above. Figure 24b shows the
agreement between the measured and predicted efficiency for long and short volute of the dual-volute
turbine using Equations (36) and (37). This plot shows partial, unequal, and full admission flow
data points taken for all different speed lines of both turbine inlets; however, all the values shown in
Figure 24b have been normalized again by the peak efficiency point of each volute. The overall RMSE
for the prediction of apparent efficiencies of two volutes is 0.0338 (i.e., around 3.4% mean error from
normalized values). The model is able to capture all the apparent efficiency values of two branches at
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different MFRs, and, by fitting with less number of MFR maps (only five MFRs in the case of T#2DV),
it is also able to produce good results.

The results presented in Figure 24 were obtained by also using the reduced mass flow model
previously described, since the efficiency model is mass flow oriented, i.e., using the model outlined
above with 11 fitting parameters for the efficiency and 14 parameters for the reduced flow. As they are
in different models, the number of measured points needed for fitting both models is not the addition
of all of them but the higher number, i.e., 14. Therefore, at least 14 points, measured at three different
MFRs (0, 1, and 0.5), are needed for a global model fitting of the whole double entry turbine.
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Figure 24. Turbine apparent efficiency Modeled versus Experimental for both T#1TE and T#2DV
turbochargers. Model constants are found using all the MFR data points of both branches together for
that particular turbocharger.

The values of the coefficients of apparent efficiency model of both double entry turbines are
summarized in Table 6, where MFR1 and MFR0 coefficients are applicable only for fitting the partial
admission flows (i.e., having the flow only Shroud or Hub branch) and z′ function coefficients act as a
correction factor to increase the efficiency when the model goes from partial admission flows to full
admission flows. From these results, it can be concluded that the apparent efficiency model developed
here can be used for both types of double entry turbines and it is not necessary to modify the fitting
equations. Moreover, the coefficient values are similar for twin-entry and dual-volute turbines. Thus, a
different calibration is not necessary, and their average values can be used as initial values for fitting
either twin or dual-volute turbine. While fitting the apparent efficiency model, it is also essential to
take into consideration the geometry simplifications for this type of turbines, as explained in Section 3.
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Table 6. Final apparent efficiency fitting coefficients for both T#1TE and T#2DV turbochargers. Model
constants for both turbines are found in a global fitting using both branches together and all the MFRs
data points.

Turbine
Type

MFR1 Fitting Function (z′) MFR0

b′Sh/LV c′Sh/LV f ′Sh/LV kTE/DV
0 kTE/DV

1 kTE/DV
2 kTE/DV

3 kTE/DV
4 b′H/SV c′H/SV f ′H/SV

twin-entry 1.4471 0.1517 0.5767 4.0841 0.0753 0.2193 0.0582 6.721E-03 1.4164 0.1250 0.6643

dual-volute 1.3997 0.1041 0.9309 4.0735 0.0779 0.1862 0.0241 2.568E-03 1.4074 0.1354 0.9088

Table 7 shows the values of correlation quality for both double entry turbines studied in these
papers, which is calculated using Equation (41) [47]. It is done to evaluate the predictive potential of
the reduced mass flow and apparent efficiency models with there number of fitting coefficients.

R2
adj = 1−

(n− 1)∑n
m=1

(
V (m)exp −V (m)pred

)2

(n− c)∑n
m=1

(
V (m)exp −V (m)mean

)2 (41)

where Vexp, Vpred, and Vmean are the experimental, predicted, and mean experimental values,
respectively. n is the number of data points and c is the number of fitting coefficients in the model.
From the R2

adj values shown in Table 7, it can be concluded that both models are well predicting the
measured data, as the adjusted coefficient of determination values are closer to unity.

Table 7. Values of adjusted coefficient determination for both T#1TE and T#2DV.

Model
R Squred Adjusted R2

adj

Twin-Entry Dual-Volute

Shroud Branch Hub Branch Long Volute Short Volute

Reduced mass flow 0.9963 0.9964 0.9952 0.9984
Apparent efficiency 0.9333 0.9287 0.9572 0.9319

6. Extrapolating Turbine Performance Parameters

The method for extrapolating the turbine performance parameters of the double entry turbines
is based on the models developed in Sections 3 and 5. Both turbine branches should be extrapolated
simultaneously since the apparent efficiency model of each turbine branch shown in Equations (36)
and (37) are dependent on the expansion ratios, efficiency, and total inlet temperature between there
turbine inlet branches. Besides, the reduced mass flow and apparent efficiency equations of each
turbine inlet branch are interrelated. As the apparent efficiency (Equations (36) and (37)) appears in
the reduced mass flow (Equation (18)), and the effective equivalent nozzle area (Equation (8)) which
comes from the reduced mass flow appears in the apparent efficiency equations. Therefore, a system
with the reduced mass flow and the apparent efficiency equations of both turbine branches should be
solved together using an iterative procedure for the extrapolation purpose.

In Figure 25, the procedure used for extrapolating the performance maps of double entry turbine
is presented. Following the flowchart, the extrapolation procedure starts with the input of the available
map data of each turbine branch. By using this information, the equivalent nozzle area of each turbine
branch can be solved from Equation (8) with the non-linear fitting procedure for finding the appropriate
coefficient values (“a”, “b”, “c” and “d”) of each turbine branch. Later, using the fitted “d” value, the
next step will be estimating rotor inlet flow angle with the help of turbine geometry and also data
from the maps. Later, using the information of efficiency maps of each turbine branch, the apparent
efficiencies (Equations (36) and (37)) are fitted together to find the 11 fitting parameters that are
discussed in Section 5. After obtaining all the necessary coefficients for the model, the system made of
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Equations (8), (36) and (37) can be solved with an iterative procedure to obtain the extrapolated values
of equivalent nozzle area and apparent efficiencies of each turbine branch. Finally, by substituting
the extrapolated equivalent nozzle area values in Equation (18), the extrapolated reduced mass flow
parameters can be obtained.

Reduced mass flow and
apparent efficiency

extrapolation of double
entry turbines

Read turbine 
map of entry 1

Read turbine 
map of entry 2

Solve equivalent 
nozzle area for entry 
1 from Equation 18 

Solve equivalent 
nozzle area for entry 
2 from Equation 18

Equivalent 
nozzle area 
of entry 1

Equivalent 
nozzle area 
of entry 2

Fit the entry 1 equivalent 
nozzle area coefficients 
using Equation 8 by 

respecting the geometry 
simplifications

Fit the entry 2 equivalent 
nozzle area coefficients 
using Equation 8 by 
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simplifications
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'a1', 'b1', 'c1' and 'd1' 

of entry 1

Solve the rotor inlet 
flow angle for entry 1 
using the Equation 28
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using the Equation 28
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b2' ,c2', f2'
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(same for both entries but, with there 
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and apparent efficiency 

for entry 1
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for entry 2

Coefficients  
'a2', 'b2', 'c2' and 'd2' 
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Equation 18

Extrapolated reduced
mass flow and apparent
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entry 1
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Figure 25. Procedure for extrapolating the reduced mass flow and apparent efficiency of double
entry turbine.
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6.1. Twin-Entry Turbine Extrapolation

For the extrapolation of reduced mass flow parameters, the coefficients in Table 2, which are
graphically shown in Figure 12, are used. In the case of apparent efficiency, the fitting coefficients
shown in Table 6 are used.

Figure 26 shows the model extrapolation results against experimental data for both reduced
mass flow and apparent efficiency of T#1TE in Shroud and Hub branches. In Figure 26, the results
of some MFRs are disclosed, including the unequal, full, and partial admission flows in the turbine.
In Figure 26, it is clear that the extrapolation produced by the model (solid lines) at both lower and
higher turbine reduced speeds in all the shown MFRs are not only in considerable accordance with the
experimental data (different symbol points) for both branches but producing expected and consistent
results. Figure 26a,b, shows the extrapolation results of reduced mass flow parameters in shroud and
hub branch. In the shroud branch, it is notable that there is a small difference between the mass flow
parameters at different reduced speeds for a given pressure ratio. This is due to the lower rotor inlet to
outlet radius ratio in this branch (see Figure 9); therefore, it acts more like a low trimmed radial inflow
turbine. However, this is not the case in hub branch (Figure 26b) due to the higher rotor inlet to outlet
radius ratio.

The Figure 26c shows the extrapolation results of MFR 0.2 where the flow conditions are lower
in shroud entry and model able to produce good accordance with the experimental data. However,
it is notable that there are some errors found between the extrapolated and measured data at higher
reduced speeds. It is worth highlighting that when the shroud branch is working at MFR 0.2, most
of the flow expansion is produced by the hub branch and not by shroud one. Therefore, the actual
efficiency of this branch should be much lower than the shown apparent efficiency, since it is getting
the benefit of the lower mixed outlet temperature generated by the higher expansion in the vicinity
branch. Similar results can be found in Figure 26d when the turbine is working at MFR 0.8. In this
case, there is more flow in the shroud branch than hub branch.

Figure 26e,f shows the extrapolation result of unequal admission conditions, where the hub
branch is having more flow than the shroud one. In this case, the model is also able to produce with
good precision in both limbs at all speeds. Figure 26g,h shows extrapolation result when the turbine is
working at almost full admission conditions. The model is able to predict well the peak efficiencies
points for both branches. From the experimental data analysis, it was concluded that the maximum
apparent efficiencies are always found when there is more flow in the hub side [12]. The extrapolation
results from the model also show the same effect, i.e., the peak efficiencies of different reduced speeds
can be seen with the higher flows in the Hub branch. Moreover, the extrapolation of having the flows
only in Shroud or Hub are well captured by the model, as can be seen in Figure 26i,j. The overall
quality of the prediction is high and both the reduced mass flow and apparent efficiency models can
bring reasonable extrapolation in all the turbine reduced speeds in both branches.

6.2. Dual-Volute Turbine Extrapolation

Figure 27 shows the extrapolation results of reduced mass flow against the expansion ratio and
apparent efficiency against the blade to jet speed ratio for both long and short volute entry. The results
are presented for certain MFRs, including the partial, full, and unequal admission flow states. For this
turbine, some exceptions were made to check the model capabilities in the extrapolations. In Figure 27,
the filled points correspond to the data used for fitting the model and non-filled points correspond
to the data used for checking the model predictions. In this way, the model has to extrapolate in the
blade to jet speed ratios, reduced mass flows, and speeds in both turbine volutes. Figure 27a,c,e shows
the results of long volute at mass flow ratios of 0.22 and 0.5; in these cases, the turbine reduced speed
of 10,059 rpm/

√
K has been fully extrapolated by the model for both reduced mass flow and apparent

efficiencies of that volute.
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Figure 26. Reduced mass flow and apparent efficiency extrapolation to non-measured data points for
Shroud and Hub branches of the twin-entry turbine using all maps fitting coefficients.
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Figure 27. Dual-volute turbine reduced mass flow and apparent efficiency extrapolation for both
volutes using only the filled points fitting coefficients. Non-filled points are predicted by the model.

Furthermore, in the case of MFR 1 in the long volute, the reduced speed of 2834 rpm/
√

K has
been extrapolated by the model and shows perfect accord with the experimental data. The same
analysis was done with the short volute for the shown MFRs in Figure 27b,d,f and the outcomes from
the model were quite aligned with the measurement data. In the case of extreme flow in short volute
(MFR 0), the reduced speed of 9024 rpm/

√
K extrapolated by the model shows notable differences

compared to the experimental data.
The difference between the model and experimental data are maximum in the case of MFR 0.22 in

the long volute at higher reduced speeds. This condition is where the flow is lower in that volute, and
the short volute does most of the flow expansion. Some inconsistency is also seen at lower reduced
speeds of MFR0.65 in short volute. Nevertheless, the model can extrapolate mass flow and efficiencies
of both volutes considerable well in all the flow admission conditions.
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7. Conclusions

In this paper, a model for extrapolating the performance maps of twin-entry and dual-volute
radial inflow turbines in terms of different flow admission conditions, rotational speed, and blade to
jet speeds ratios is presented. For the development of the model, both double entry turbines were
tested at different flow admission conditions in a special turbocharger gas stand. The procedure for
analyzing the performance maps of this type of turbines is outlined in this paper, and the detailed
discussions are presented in [12]. Systematizing the performance maps of double entry turbines gave
the awareness to model any double entry turbine as if it is formed of two VGTs and made it possible to
extrapolate the maps to off-design conditions.

For extrapolating the reduced mass flow parameter of double entry turbines, the method uses
seven calibration coefficients for each branch, which are fitted using the available turbine map dataset.
Seven coefficients are fitted independently using the turbine map corresponding to Entry 1, and the
other seven are adjusted using the turbine map corresponding to Entry 2. The reduced mass flow
coefficients must be fitted first since one of them is used for estimating the rotor flow inlet angle of
each turbine branch and they are used in the efficiency model equation.

Due to the assumption of each turbine inlet being an individual turbine, their apparent efficiencies
are computed using the respective branch turbine inlet temperature and mixed temperature available
at the outlet of the turbine. Therefore, to take into account these mixing effects in the efficiency
model, the based VGT efficiency model has been refined by analyzing the twin-entry turbocharger
experimental data. Eventually, a new corrected mixed flow efficiency model has been developed in
this paper, and that model uses 11 calibration coefficients to fit the efficiencies of both turbine branches.
The model is also validated using the dual-volute turbine data of each volute and the results are in
accordance with the experimental information. It is also essential to take into account the geometrical
simplifications of different double entry turbines demonstrated in this paper while fitting both reduced
mass flow and apparent efficiency models.

After fitting the calibration coefficients of a double entry turbine, for extrapolation purposes, a
system with the reduced mass flow and apparent efficiency of both individual turbine branches must be
solved together, using an iterative procedure, as the mass flow and apparent efficiency variables of each
branch are interconnected. The extrapolation results show good agreement with the experimental data
for both twin-entry and dual-volute turbines. From the results, it can be concluded that both reduced
mass flow and apparent efficiency models can extrapolate beyond normal turbine map measured
range in whatever mass flow ratios, reduced turbine speed, and blade to jet speed ratio for each turbine
branch.

One of the main advantages of the model is that it can be used for both twin-entry and dual-volute
turbines just by giving attention to the geometrical simplifications while fitting the type of turbine.
It is essential to have a standard turbine map of each turbine branch measured in nearly adiabatic
conditions and with at least two extreme flow conditions (one in each turbine branch (MFR 0 and 1))
and also one full admission flow state (where the flow is equally shared in between the entries of the
turbine). These three flow admission conditions are needed to fit the coefficients of reduced mass
flow and apparent efficiency model and also for extrapolating to other MFRs. However, the more
information there is on the flow conditions in each turbine branch, the better is the performance of the
extrapolation capabilities of the model.
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Nomenclature

A Area (m)
a Rotor discharge coefficient (-)
a′ Apparent efficiency fitting coefficient (-)
Bh Blade height (m)
b Reduced mass flow fitting coefficient (-)
b′ Apparent efficiency fitting coefficient (-)
BEVs Battery Electric Vehicles (-)
BSR Blade Speed Ratio (-)
c′ Apparent efficiency fitting coefficient (-)
c Reduced mass flow fitting coefficient (-)
cp Specific heat capacity (J kg−1 K−1 )
CD Discharge coefficient (-)
Css Isentropic jet velocity (ms−1)
d′ Apparent efficiency fitting coefficient (-)
D Diameter (m)
DV Dual-volute (-)
e′ Apparent efficiency fitting coefficient (-)
EGR Exhaust Gas Recirculation (-)
ETE Effective Turbine Efficiency (-)
f ′ Apparent efficiency fitting coefficient (-)
ILS Independent Lubrication System (-)
H Hub (-)
K Efficiency equation coefficient (-)
k0 Apparent efficiency fitting coefficient (-)
k1 Apparent efficiency fitting coefficient (-)
k2 Apparent efficiency fitting coefficient (-)
k3 Apparent efficiency fitting coefficient (-)
k4 Apparent efficiency fitting coefficient (-)
LV Long Volute (-)
ṁ Mass flow (kg/s)
MFR Mass Flow Ratio (-)
n Rotational speed (rpm)
p Pressure (Pa)
r Rotor radius (m)
Sh Shroud (-)
SV Short Volute (-)
T Temperature (K)
TE Twin-entry (-)
u Blade tip speed (ms−1)
v Absolute velocity (ms−1)
VGT Variable Geometry Turbine (-)
VNT Variable Nozzle Turbine (-)
∆hSh/LV

MFRx
Apparent work Entry 1

∆hH/SV
MFRx

Apparent work Entry 2

∆hShx/LVx Actual work Entry 1

∆hHx/SVx Actual work Entry 2

∆hS,Shx/LVx Isentropic work Entry 1

∆hS,Hx/SVx Isentropic work Entry 2
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Subscripts and Superscript
0 Turbine inlet static states
0t Turbine inlet total states
4 Turbine outlet static states
4s Turbine isentropic state
4t Turbine outlet total states
4m Average value at the rotor outlet
eff Refers to effective equivalent nozzle
exp Experimental value
flow Refers to the flow
geom Refers to geometry
i Discriminates Sh from H in TE or LV from SV in DV
j Refers to TE or to DV turbine
mean Mean value
pred Predicted value
red Refers to reduced variables
r Radial
Neq Refers to equivalent nozzle
t/s Total to static

Greek letters
Π Corresponding pressure ratio
η Corresponding efficiency
γ Heat capacity ratio
σ Corresponding blade speed ratio
α Absolute velocity angle (rad)
β Relative velocity angle (rad)

Appendix A. Description of VGT Flow Oriented Model

Appendix A.1. Mass Flow Model

The procedure developed by the authors of [30,43] for modeling the turbine mass flow parameter
is mainly based on viewing the turbine as a single equivalent nozzle that covers from station 0
to 4 of the radial turbine, as shown in Figure A1. The primary assumption of this model is the
behavior of the turbine is quasi-steady throughout the nozzle simulating the turbine; from both the
thermodynamic and fluid dynamics perspective. The fundamental approach followed by Serrano et al.
[30] is calculating for every turbine operating point an equivalent nozzle flow area (Aeff) that represents
the whole turbine expansion. Accordingly, this equivalent nozzle flow area (Aeff) should allow
calculating the mass flow parameter for the entire operative range of the turbine; thus, it is possible to
plot the whole mass flow curve. To do so, first, the continuity equation is applied to stator, rotor and
equivalent nozzle, as shown in Equation (A1). Then, using the velocity definition and solving the mass
flow, an expression for the equivalent nozzle area shown in Equation (A2) is obtained. By assuming
a certain hypothesis, as described in the work of Serrano et al. [30], and doing some simplifications,
a new expression of the throat area of the equivalent nozzle is obtained, as shown in Equation (A3).
It mainly depends on the information available in a standard turbocharger map and the measurable
geometry of the turbine with four fitting constants (a, b, c, and d) in Equation (A3).

ṁ = A2′ρ2′v2′ = A4ρ4v4 = ANeqρ4vNeq (A1)

ANeq = A4

√√√√√√1 +
(

u4
vNeq

)2
−
(

u3
vNeq

)2
+
(

w3
vNeq

)2

(
A4
A2′

)2 ( ρ4
ρ2′

)2
+ 1

(A2)
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Aeff =
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√
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(A3)

where Ageom
2′ is the geometrical throat section of the stator vanes and can be calculated for any

VGT as described in [30]. The rotor outlet geometrical area (Ageom
4 ) is calculated by taking the

arithmetic diameter between the turbine rotor shroud (D4) and rotor hub (Dnut) diameters, as shown
in Equation (A4).

Ageom
4 = π ·

(
D2

4 − D2
nut

4

)
(A4)
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0 Turbine inlet station

1 Stator inlet station
2 Stator outlet station
2' Stator throat station
3 Rotor inlet station
4 Rotor outlet station

2'0 4

Equivalent Nozzle 

Figure A1. Turbine as single equivalent nozzle and stations distribution.

In Equation (A3), D3 is turbine rotor diameter, D4m is the mean diameter between turbine rotor
shroud (D4) and rotor hub (Dnut) diameters, ηts represents the turbine total-static adiabatic efficiency,
σ is the blade to jet speed ratio calculated using the Equation (A5), and Π2′ ,4 represents pressure ratio
in the VGT rotor. Π2′ ,4 is calculated from the total to static turbine pressure ratio by using a fitting
constant “d” as shown in Equation (A6). It is obtained by making the hypothesis that the turbine stator
pressure drop to the whole turbine total-to-static pressure drop ratio is constant for a VGT position [30].
A constant average value of turbine efficiency (ηts = ηts = 0.8) is assumed relaying on “b” coefficient
to avoid the possible inconsistency during the extrapolations.

σ =
2 · π · n · r3√√√√2 · cp · T0t ·
[

1−
(

1
Π0t,4

) γ−1
γ

] (A5)

Π2′ ,4 = 1 + d · (Π0t,4 − 1) (A6)

The coefficients “a” and “c” in Equation (A3) are directly related to the rotor and stator discharge
coefficient. The other two coefficients (“b” and “d”) come from the theoretical considerations previously
described (more details can be read in [30]). These four fitting parameters are calculated using
regression analysis, with the help of a suppliers performance map and the turbocharger geometry data
as input to the model. Once the equivalent nozzle (Equation (A3)) is known for every turbine operative
point, the reduced mass flow parameter can be calculated using the definition of the sub-critical mass
flow parameter through an orifice of single isentropic nozzle given by Equation (A7).

ṁred = Aeff ·
√

γ

R
·
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1
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) 1
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·

√√√√√ 2
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γ
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Appendix A.2. Efficiency Model

The efficiency model presented in [30] is based on the use of the Euler equation of turbo-machinery
for radial gas turbines and assuming constant meridional component velocities. By this, both
assumptions, and doing some simplifications, the definition of the total to static adiabatic efficiency of
the turbine (Equation (A8)) can be expressed as Equation (A9).

ηt/s =
T0t − T4t
T0t − T4ts

(A8)

ηt/s =
u3c0 tan α3 −

[
u3

(
r4
r3

)
− c0 tan β4

]
u3

(
r4
r3

)
cpT0t

(
1−

(
1

Π0t,4

) γ−1
γ

) (A9)

Based on the definition of blade to jet speed ratio (σ) in Equation (A5), Equation (A10) is obtained
for a constant tip speed maps.

ηt/s = −2 ·
(

r4

r3

)2
· σ2 + 2 · Aeff

Ageom
0

·
(

tan α3 +
r4

r3
· tan β4

) [
1

Π0t,4

] 1
γ

· σ (A10)

It is worth highlighting that the above equation is dependent on Aeff, which can be calculated
using Equation (A3). The rotor inlet flow angle (α3) is estimated as a function of stator outlet flow
angle (ϕmetal

2 ), as shown in Equation (A11) [13,30]

tan α3 = zgeom
3 · sin ϕmetal

2 (A11)

Coefficient zgeom
3 is based on the geometry of VGT stator vanes and was obtained theoretically, as

described in [30]. The final turbine efficiency equation is lumped into Ki terms, as shown in Equation
(A12). A fitting parameter “z” is introduced into K?

2 and it has six coefficients that mainly depend on
the reduced turbine speed, blade to jet speed ratio, and VGT position, as shown in Equation (A15).
Equations (A13) and (A16) are related to physical values from the turbine geometry and turbine map,
as described in [30].

ηt/s = −K1 · σ2 + K?
2 ·
(

1− K3

σ2

) 1
γ−1
· σ (A12)

K1 = 2
(

r4

r3

)2
(A13)

K?
2 = 2

Aeff

Ageom
0

(
z · zgeom

3 sin(ϕmetal
2 ) +

√
K1

2
tan(βmetal

4 )

)
(A14)

z = −(a′ · nred + b′) · σ + (c′ · nred + d′ ·VGT2 + e′ ·VGT + f ′) (A15)

K3 =
u2

3,red

2cp
(A16)
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41. Semlitsch, B.; Wang, Y.; Mihăescu, M. Flow effects due to valve and piston motion in an internal combustion
engine exhaust port. Energy Convers. Manag. 2015, 96, 18–30. doi:10.1016/J.ENCONMAN.2015.02.058.

42. Serrano, J.R.; Tiseira, A.; García-Cuevas, L.M.; Inhestern, L.B.; Tartoussi, H. Radial turbine performance
measurement under extreme off-design conditions. Energy 2017, 125, 72–84. doi:10.1016/j.energy.2017.02.118.

https://doi.org/10.1115/GT2017-64349
https://doi.org/10.4271/2009-01-0310
https://doi.org/10.1016/j.applthermaleng.2010.04.016
https://doi.org/10.1016/j.ijmecsci.2011.05.003
https://doi.org/10.1016/j.enconman.2014.01.043
https://doi.org/10.1016/j.enconman.2008.06.031
https://doi.org/10.1016/j.enconman.2016.09.032
https://doi.org/10.1016/j.energy.2019.05.062
https://doi.org/10.1016/j.enconman.2011.12.001
https://doi.org/10.1115/1.4000566
https://doi.org/10.1115/1.4025763
https://doi.org/10.1115/GT2012-69018
https://doi.org/10.4271/2015-01-1718
https://doi.org/10.4271/2018-01-0971
https://doi.org/10.1115/1.4006607
https://doi.org/10.1016/J.ENCONMAN.2015.02.058
https://doi.org/10.1016/j.energy.2017.02.118


Appl. Sci. 2020, 10, 1955 43 of 43

43. Payri, F.; Serrano, J.R.; Fajardo, P.; Reyes-Belmonte, M.A.; Gozalbo-Belles, R. A physically based
methodology to extrapolate performance maps of radial turbines. Energy Convers. Manag. 2012, 55, 149–163.
doi:10.1016/j.enconman.2011.11.003.

44. Xue, Y.; Yang, M.; Martinez-Botas, R.F.; Romagnoli, A.; Deng, K. Loss analysis of a mix-flow
turbine with nozzled twin-entry volute at different admissions. Energy 2019, 166, 775–788.
doi:10.1016/j.energy.2018.10.075.

45. Serrano, J.R.; Navarro, R.; García-Cuevas, L.M.; Inhestern, L. Turbocharger turbine rotor tip leakage loss and
mass flow model valid up to extreme off-design conditions with high blade to jet speed ratio. Energy 2018,
147, 1299–1310. doi:10.1016/j.energy.2018.01.083.

46. Serrano, J.R.; Olmeda, P.; Arnau, F.J.; Samala, V. A holistic methodology to correct heat transfer and bearing
friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery. Int.
J. Eng. Res. 2019, doi:10.1177/1468087419834194.

47. Harrell, F.E. Ordinal Logistic Regression. In Regression Modeling Strategies: With Applications to Linear
Models, Logistic Regression, and Survival Analysis; Springer: New York, NY, USA, 2001; pp. 331–343.
doi:10.1007/978-1-4757-3462-1_13.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.enconman.2011.11.003
https://doi.org/10.1016/j.energy.2018.01.083
https://doi.org/10.1177/1468087419834194
https://doi.org/10.1007/978-1-4757-3462-1_13
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Experimental Study
	Reduced Mass Flow Fitting
	Twin-Entry Turbine
	Dual-Volute Turbine
	Effective Area (Aeff) Fitting as a Function of MFR

	Efficiency Fitting Using VGT Model
	Proposed Model for Twin-Entry and Dual-Volute Turbines 
	Mixed Flow Approach
	Mixed Flow Approach Corrected
	From Mixed Flow Corrected Approach to Apparent Efficiency Merit Functions

	Extrapolating Turbine Performance Parameters
	Twin-Entry Turbine Extrapolation
	Dual-Volute Turbine Extrapolation

	Conclusions
	Description of VGT Flow Oriented Model
	Mass Flow Model
	Efficiency Model

	References

