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Abstract 8 

This paper presents a systematic GIS-based methodology to obtain the shadow cast profile of a 9 
group of buildings on arbitrarily orientated and tilted surfaces. The model is integrated in the 10 
widely-employed 2D-GIS environment. Given its scalability, the methodology can be easily 11 
applied from a local level up to a district, city or even regional level. This work is of interest 12 
for a wide range of applications such as for instance in Solar Resource Assessments (SRA) in 13 
urban environments. 14 
The starting point is to use cadastral cartography and LiDAR altimetric data to obtain a 3D 15 
vector-based model of the buildings using high robust mode estimators. Once the geometry of 16 
the buildings is defined, analytical models are applied to calculate the shadow cast profile on 17 
any arbitrarily orientated and tilted surface of the surroundings.  18 
The model has been implemented in the R programming language. An extensive validation has 19 
been carried out for several buildings of Valencia (Spain) using CAD elevation views of the 20 
buildings and the SketchUp’s shadow tool. The error of the vector-based city model is lower 21 
than 1% in all LiDAR datasets. The maximum error of the overall methodology, including both 22 
height and shadow models, is lower than 2%.  23 
 24 

Keywords: urban shadow model, urban solar irradiation, 3D city model, daylight simulation, 25 
model validation, GIS  26 
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NOMENCLATURE  
Symbols 
𝑍𝑍 Height 𝑋𝑋𝑋𝑋 Ground coordinate 
𝛼𝛼 Plane azimuth or aspect 𝛽𝛽 Plane elevation or slope 
𝐺𝐺 Centroid of a polygon 𝑆𝑆𝑆𝑆 Shadow factor 
𝐾𝐾 Kernel function 𝑓𝑓 Probability density function 
ℎ Bandwidth 𝜆𝜆 Power parameter of transformation 
𝜇𝜇 Mean 𝜎𝜎 Standard deviation 
𝐵𝐵0 Building footprint 𝐵𝐵ℎ Surface of interest projection onto 𝜋𝜋ℎ  
𝐵𝐵𝑛𝑛 Surface of interest on its plane 𝐵𝐵𝑟𝑟 Surface of interest projection onto 𝜋𝜋𝑟𝑟 
𝑆𝑆0 Shadow footprint 𝑆𝑆ℎ Shadow profile projection onto 𝜋𝜋ℎ 
𝑆𝑆𝑛𝑛 Shadow profile on its plane 𝑆𝑆𝑟𝑟 Shadow profile projection onto 𝜋𝜋𝑟𝑟 
𝑝𝑝0 Vertex of 𝑆𝑆0 𝑝𝑝ℎ Vertex of 𝑆𝑆ℎ 
𝑝𝑝𝑛𝑛 Vertex of 𝑆𝑆𝑛𝑛 𝑝𝑝𝑟𝑟 Vertex of 𝑆𝑆𝑟𝑟 
𝜋𝜋ℎ Horizontal plane 𝜋𝜋𝑛𝑛 Plane of the Surface of interest 
𝜋𝜋𝑟𝑟 Non-vertical rotated plane  ℎ� Direction vector of the 𝜋𝜋ℎ 
𝑛𝑛� Direction vector of the 𝜋𝜋𝑛𝑛 �̂�𝑠 Direction vector of the sun 
𝑢𝑢�  Axis of rotation  𝜃𝜃 Angle of rotation 
Estimators   
EDFM Empirical Probability Density Function mode 
HRM Half-Range mode HSM Half-Sample mode 
SM Shorth mode LMSM Least Median of Squares mode 
RPM Robust Parametric mode MAE Mean Absolute Error 
RMSE Root-Mean-Square Error RE Relative Error 
Abbreviations / subscripts   
LiDAR Light Detection and Ranging LoD Level of Detail 
CAD Computer-Aided Design GIS Geographic Information System 
BIM Building Information Modeling DEM Digital Elevation Model 

1. Introduction 28 

Urban areas currently concentrate around half of the world's population but consume over two-29 
thirds of the world’s energy and account for around the same share of CO2 emissions [1]. This 30 
situation can be seen as an opportunity since cities could potentially cut their carbon emissions 31 
by 90 percent by 2050 [2] using current technologies and policies. This change in the paradigm 32 
of the cities has motivated the development and enrichment of 3D city models extending their 33 
functionality and usability in a perspective of sustainability [3]. Many of these applications are 34 
energy-related [4–6] and these 3D city models are the starting point in building or urban scales 35 
for assessing the urban solar resource [7]. In these applications, a correct shadow model is 36 
essential to make a suitable solar assessment, especially in urban contexts, where complex 37 
geometries cast very large and variable shadows resulting in a dramatic decrease of the incident 38 
solar radiation [8,9]. Accurate shadow models are essential in many research areas such as in 39 
urban daylight analysis, in urban building energy modelling or even for the analysis of solar 40 
thermal and photovoltaic potential on urban scale. Such areas require calculating accurately the 41 
specific shadow cast profile by nearby obstructions throughout each day and season.  42 
A shadow cast model must address multiple requirements, as the accuracy of the results, the 43 
adaptability to the different building shapes and orientations and finally, the scalability. 44 
Although there are many algorithms to obtain shadow profiles in urban environments, there is 45 
still no methodology which fulfills simultaneously the three above-mentioned requirements. 46 
Therefore, the primary goal of the present study was to perform and validate a simple solution 47 
for shadow profile cast calculation achieving: 48 



• A good accuracy by applying analytical vector-based models.  49 
• An adaptable model based on robust statistical estimators and able to calculate cast 50 

shadows on arbitrary sloped and orientated surfaces.  51 
• A scalable methodology starting from open and available data in most countries and 52 

integrating the model into widely used 2D-GIS environments. 53 
Nowadays, the most common way to perform shading calculations is usually with design-54 
oriented software. Design-oriented models of buildings can predict their shadows with great 55 
precision. This software includes specialized applications such as Radiance [10], 56 
TOWNSCOPE II [11] or SOLENE [12] and general 3D-CAD or BIM applications such as 57 
SketchUp [13], Rhinoceros [14] or Autodesk Revit [15]. Although design-oriented software 58 
has a high accuracy and provides advanced visualization capabilities, the high computational 59 
cost in the specialized software and the lack of availability of 3D-CAD data at large scale or a 60 
city level, the use of these tools is usually limited to a local or architectural scale [7,16]. In order 61 
to model and analyze entire cities, non-analytical approaches have also been proposed, such as 62 
Machine Learning [17,18], which is a computationally efficient alternative to analytical 63 
methods. However, those approaches cannot completely replace analytical models, especially 64 
in environments with complex geometries such as the urban landscape. 65 
Among the analytical methods and for areas up to some square kilometers, shadow calculations 66 
and other spatial analysis are usually performed using Geographic Information Systems (GIS) 67 
models, which have proved to be the most powerful method to estimate the solar potential [8]. 68 
In these environments, shadow calculations have been commonly performed with a raster-based 69 
approach based on a digital elevation model (DEM) employing common open-source tools such 70 
as r.sun model [19] in GRASS GIS, the doshade command in the insol R package [20] or using 71 
proprietary software as the Solar Analyst extension [21] in ArcGIS. These tools have specific 72 
routines for the calculation of shadows using ray-tracing algorithms based on a DEM whereby 73 
the sunlight obstruction is evaluated for every grid cell for a given timestamp or solar position. 74 
This approach has the advantage of simplicity and high-speed processing, although this is at 75 
the expense of accuracy and large file size, both of which depend on the grid resolution [22]. 76 
Additionally, raster-based models are appropriate for modelling data changes continuously 77 
across a region, such as the natural terrain, where the grid resolution is not critical. Furthermore, 78 
raster models cannot be employed in areas of differing relief complexity nor for the modelling 79 
of vertical surfaces since they would present discontinuities.  80 
Different strategies have been developed recently to assess the solar potential on vertical 81 
surfaces which significantly contribute to the overall solar potential of modern cities [23] due 82 
their high areas. These include models based on hyperpoints [24,25], 2D triangular mesh 83 
[26,27] and 3D-voxel [28,29]. The latter are all grid-based models that discretize the space in 84 
basic computational elements such as hyperpoints, triangles or voxels, and apply ray-tracing 85 
algorithms to the planar-mid-point of the element. 86 
However, the previous approaches are usually not available or not implemented in common 87 
GIS software. Furthermore, only some of these publications [25,27] have validated the radiation 88 
results and none of them have experimentally validated the shadow results separately from the 89 
solar radiation. 90 
The other type of data in common GIS environments is vector data. Vector data in GIS is formed 91 
by one or more interconnected vertices or points which generate spatial entities representing 92 
real-world features, such as buildings. The accuracy of this approach depends on scale and the 93 
desired level of detail [30]. Vector-based models are more appropriate to automatically model 94 
[31,32] and analyze fine-scale urban spaces, characterized by a highly variable and 95 
discontinuous relief, and common available data, such as LiDAR and building footprints 96 
datasets. 97 
The degree of complexity of a 3D model in GIS environments is categorized according to the 98 
level of detail (LoD) concept of the standard CityGML [33]. Although there are many models 99 



and strategies to obtain a vector-based 3D city models from LiDAR data, usually these methods 100 
are sensitive to the local point density as well as to the noise, outliers and missing data [34]. 101 
The higher the LoD the higher the density of required points. Furthermore, the use of high LoDs 102 
for analytic purposes increases substantially the computational cost or limits the scale of the 103 
model to be processed. In contrast, calculation errors due to the use of a low granularity (LoD) 104 
could be high [35]. Therefore, the LoD must be carefully selected according to the shape of the 105 
buildings, the accuracy and the extension of the study. Furthermore, the LoD should be coherent 106 
with the quality and availability of the LiDAR datasets.  107 
Wang et al. [34] stated that the prismatic modelling (LoD1) is suitable for multilevel flat 108 
buildings which prevail in cities. In parallel, the open and available sources in most countries 109 
are usually low-density airborne LiDAR data (<1 pts/m2) which are coherent with the different 110 
variants of LoD1 proposed by Biljecki et al. [36]. Then, the prismatic modelling, which is the 111 
simplest LoD, thoroughly models the real-world features in an urban context and can be applied 112 
to large areas using low computation resources.  113 
Assuming a given fine footprint of the buildings (i.e. cadastral map), the critical parameter to 114 
model accurately in LoD1 is the building height which, as the geometric reference of the model, 115 
could have higher influence on the results than the granularity (LoD) of the model according to 116 
Biljecki et al. [35]. This is a key point particularly in shadow analysis, where an error in the 117 
geometric model may involve much larger errors in the shadow cast [37]. As a consequence 118 
and giving the considerable level of contamination of LiDAR datasets, statistical estimators 119 
with high robustness to outliers are essential to obtain correct height values of each building 120 
and therefore, to enable accurate shadow calculations. 121 
Vector-based shadow algorithms are based on the search for the intersections between the sun 122 
rays and the surface of interest [38,39]. Recent publications contribute to their advance in GIS 123 
environments [29,40–43]. Among the previous literature, the shadow model used by Vulkan et 124 
al. [42] and implemented in the shadow R package [44], allows the calculation of shadow 125 
profiles on horizontal planes based on a 2.5D vector-based model through trigonometric 126 
relations. The present work tries to move a step beyond the previous shadow model of Vulkan 127 
et al. [42] by adding the possibility to calculate shadows on tilted surfaces, and by including a 128 
quantitative validation of the model. 129 
This paper proposes and validates a simple solution for shadow modelling in cities from open 130 
and available data in most countries and using widely used 2D-GIS environments. Given the 131 
previous literature review, the present model includes the following novelties: 132 

• Analytical vector-based shadow model to obtain a non-discretized shadow profile cast 133 
in arbitrary sloped and orientated surfaces integrated in the widely used 2D-GIS 134 
environment. 135 

• Quantitative experimental validation of the shadow model for five-hour interval of two 136 
representative days in three surfaces of different slopes.  137 

• Analysis and discussion on the best robust mode estimators to calculate the height of 138 
the buildings using LiDAR data. 139 

2. Model description 140 

The developed methodology is able to obtain a 3D vector-based city model of the existing 141 
buildings and their cast shadow profiles over any arbitrarily orientated and tilted planar surface 142 
in a 2D-GIS environment (scheme in Figure 1). The methodology consists in building a 3D city 143 
model (steps 1 to 3) in a 2D-GIS environment, using high robust statistic estimators. After this, 144 
an analytical shadow model is applied (steps 5 to 9) to calculate the shadow profile on any 145 
arbitrarily orientated and tilted 3D surface for any time of the year. 146 



 147 
Figure 1. Workflow of the proposed methodology. 148 

The modelling approach starts with the use of the cadastral map (1) and the contained LiDAR 149 
data (2) to build the 3D city model (3) by the vertical extruding of the buildings’ footprint with 150 
their estimated height value. Once it has been obtained and given the sun position, the shadow 151 
model starts by calculating the horizontal shadow footprint (5). The latter, combined with the 152 
plane equations of the shaded surface (4), is projected onto the plane of the surface of interest 153 
surface of interest (6). Finally, depending on the slope 𝜷𝜷 of the surface of interest the model 154 
processes differently these results in a 2D-GIS environment. In non-vertical surfaces (8), the 155 
shadow profile (9) is obtained as the intersection of the horizontal projection of the surface of 156 
interest and the shadow footprint, while in vertical surfaces (7) a previous rotation of the two 157 
polygons in the horizontal plane is required. 158 

2.1 City model 159 

First, a model of the desired buildings, district or city is developed. The starting point is the flat 160 
footprint of the buildings included in the cadastral cartography and the associated LiDAR point 161 
cloud dataset, which contains the height value 𝑍𝑍 of a 𝑋𝑋𝑋𝑋 regular grid. 162 
A vector-based 3D model of the buildings is then obtained following a similar procedure to 163 
Ledoux and Meijers [45]. The latter is based on the vertical extruding of the 2D building 164 
footprint, with a height value 𝑍𝑍 obtained by a statistic estimator of the LiDAR points contained 165 
in each polygon.  166 
These height values of each building can be assumed as a sample drawn from a unimodal, 167 
continuous distribution. Because of the nature of the data (e.g. presence of obstacles or clouds, 168 
planimetric and altimetric uncertainties or disparity between the footprints) these samples may 169 
contain a very significant presence of outliers or data from outside the population which is 170 
sampled. As a consequence, the height values of the LiDAR data enclosed within a building 171 
footprint are a potentially highly skewed and kurtotic sample [46]. For this reason, a proper 172 
measure of the central tendency, with low bias and high efficiency and robustness to outliers, 173 
is essential to obtain accurate and reliable information from these datasets. 174 
In this paper, the seven high robust statistic estimators studied by Bickel [47] and Bickel and 175 
Frühwirth [48] have been considered to measure the central tendency. Furthermore, the 176 
arithmetic mean or central value, used in many cases in the generation of LiDAR-based city 177 
models [45,49], has been included in the comparative study. As indicated in the results, the 178 
latter has shown that the mean value is not a proper estimator of the building height due to its 179 
inherent outlier sensitivity. The robust statistics correspond to the median and the six mode 180 
estimators studied in Bickel and Frühwirth [48] which can be classified into three groups:  181 

(1) Kernel density estimation: non-parametric method to estimate a smoothed empirical 182 
probability density function of a random variable. Considering a Gaussian kernel 𝐾𝐾, the 183 



density function 𝑓𝑓 of a random variable 𝑥𝑥 based on a finite data sample {𝑥𝑥}𝑖𝑖=1𝑛𝑛 is given 184 
in Eq.(1): 185 
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where ℎ > 0 is the smoothing parameter called the bandwidth which balances the trade-186 
off between bias and noise, hence the choice of ℎ is crucial for the performance of its 187 
estimator. Then, the bandwidth selection is based on the optimal properties of 𝑓𝑓 by using 188 
the Sheather & Jones (1991) procedure [50] implemented in the stats R package [51]. 189 
Once the function 𝑓𝑓 is obtained, the empirical probability density function mode 190 
(EDFM) is defined as the value for which 𝑓𝑓 reaches a maximum.  191 

(2) Direct estimation: this set of methods does not involve density estimation. Four different 192 
mode estimators have been considered: the half-range mode (HRM) which is based on 193 
finding iteratively the half-range modal interval, defined as the interval of fixed range 194 
that contains the maximum number of observations. The half-sample mode (HSM) is 195 
also based on the iterative calculation of the modal interval, in this case using half-196 
samples instead of half-ranges. Finally, the last two estimators are non-iterative and use 197 
only the first shortest half-sample to estimate the mode. These estimators are the shorth 198 
mode (SM), defined as the mean of these points, and the least median of squares mode 199 
(LMSM), defined as the midpoint.  200 

(3) Parametric estimation: this estimation is based on the data transformation into a normal 201 
distribution and then on an analytical calculation of the mode of this transformed data. 202 
Within this group of procedures, the strategy proposed by Bickel [47] has been 203 
considered. In this case, a power transformation 𝑦𝑦 = 𝑥𝑥𝜆𝜆 with respect to the power 204 
parameter 𝜆𝜆 is applied and the mean 𝜇𝜇 and standard deviation 𝜎𝜎 of the transformed data 205 
𝑦𝑦 is estimated using the sample median and the standardized median absolute deviation. 206 
The robust parametric mode (RPM) can be estimated according to the Eq.(2): 207 
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The previous statistical estimators have all been compared with CAD elevation views in order 208 
to determine which estimator is the best estimate for the actual building height. As a result, an 209 
LoD1 block model of the city is obtained according to the level of detail (LoD) concept of the 210 
standard CityGML [33], which indicates the complexity and the degree of abstraction of a 3D 211 
city model. This 3D city model, also known as 2.5D model, is easily integrated in 2D-GIS 212 
environments by saving the height value of each 2D building polygon as an attribute in the 213 
associated database. 214 

2.2 Shadow model 215 

The shadow model consists in an analytical procedure, applied and integrated in 2D-GIS 216 
environments, to obtain the shadow profile on any arbitrarily orientated and tilted surface for 217 
any point in time. 218 
Once the buildings are defined, in order to implement the shadow model, a distinction is 219 
established between the shading objects (which cast shadows) and the shaded objects or surface 220 
of interest which receive such shadows.  221 
The shading objects are fully defined by the 3D block city model. For the shaded objects, the 222 
associated database contains the centroid 𝐺𝐺 height value of each polygon (𝑍𝑍), its inclination (𝛽𝛽) 223 
and orientation (𝛼𝛼) of the plane 𝜋𝜋𝑛𝑛. 224 



The shadow profile is represented in a 2D-GIS environment given its projection 𝑆𝑆ℎ onto the 225 
horizontal plane 𝜋𝜋ℎ. The shadow factor 𝑆𝑆𝑆𝑆 is defined as the ratio of the shaded area 𝑆𝑆𝑛𝑛 with 226 
respect to the total surface 𝐵𝐵𝑛𝑛. The shadow factor is consequently equal to the ratio of their 227 
horizontal projections, as indicated in Eq.(3): 228 

 
𝑆𝑆𝑆𝑆 =  

𝑆𝑆𝑛𝑛
𝐵𝐵𝑛𝑛

=
𝑆𝑆ℎ
𝐵𝐵ℎ

 (3) 

The shadow model starts from the shadow footprint 𝑆𝑆0 on a horizontal plane 𝜋𝜋ℎ by means of 229 
the model developed by Vulkan et al. [42]. This model consists in shifting the contour of the 230 
buildings in the opposite direction to sun azimuth by a distance depending on the building 231 
height and the sun elevation.  232 
Once the corresponding polygon 𝑆𝑆0 is obtained, the model applies the operation of projection 233 
onto a plane along the direction of a given vector for each vertex 𝑝𝑝0 of the polygon 𝑆𝑆0. 234 
Specifically, the model calculates its projection 𝑆𝑆𝑛𝑛 onto the plane 𝜋𝜋𝑛𝑛 in the direction of the sun 235 
�̂�𝑠 by applying vector equations to each point 𝑝𝑝0. The projected point 𝑝𝑝𝑛𝑛 of point 𝑝𝑝0 onto the 236 
plane 𝜋𝜋𝑛𝑛 in the specified direction �̂�𝑠 is given in Eq.(4): 237 

 
𝑝𝑝𝑛𝑛 = 𝑝𝑝0 − 𝑡𝑡 · �̂�𝑠 𝑡𝑡 =

𝑛𝑛� · 𝑣𝑣1����⃗
𝑛𝑛� · �̂�𝑠

𝑣𝑣1����⃗ = 𝐺𝐺 − 𝑝𝑝0

𝑝𝑝0 ∈ 𝜋𝜋ℎ 𝑝𝑝𝑛𝑛,𝐺𝐺 ∈ 𝜋𝜋𝑛𝑛 ‖𝑛𝑛�‖ = ‖�̂�𝑠‖ = 1
 (4) 

Once the projection 𝑝𝑝𝑛𝑛 of each vertex 𝑝𝑝0 is obtained, the polygon 𝑆𝑆𝑛𝑛 is assembled. In order to 238 
integrate the results in a 2D-GIS environment and to use the corresponding tools, the model 239 
distinguishes between vertical and non-vertical shadowed surfaces (Figure 2).  240 
For non-vertical surfaces, the representation of the shadow profile in a 2D-GIS environment is 241 
obtained as the intersection between the horizontal projection of the surface of interest 𝐵𝐵ℎ, 242 
which is usually equivalent to the given footprint, and the shadow footprint 𝑆𝑆ℎ, obtained by 243 
projecting each vertex 𝑝𝑝𝑛𝑛 of the polygon  𝑆𝑆𝑛𝑛 on the horizontal plane 𝜋𝜋ℎ, i.e., setting the height 244 
of each vertex 𝑝𝑝𝑛𝑛 to zero. 245 

 246 
Figure 2. Shadow model for a) non-vertical and b) vertical surfaces 247 

For vertical surfaces, it is not possible to apply the previous approach given that, on a horizontal 248 
2D environment, the vertical surfaces are represented as lines and not as polygons.  249 
For this reason, a rotation is applied to the surface of interest 𝐵𝐵𝑛𝑛 and the shadow footprint 𝑆𝑆𝑛𝑛 250 
onto a plane 𝜋𝜋𝑟𝑟, which is not vertical. Thus, the rotated surface of interest 𝐵𝐵𝑟𝑟 and the shadow 251 
footprint 𝑆𝑆𝑟𝑟 is obtained using a same angle 𝜃𝜃 and rotation axis 𝑢𝑢�  for both polygons.  252 
Although any non-vertical plane 𝜋𝜋𝑟𝑟 could be considered, the horizontal plane at 𝐺𝐺 point (𝜋𝜋𝑟𝑟 in 253 
Figure 2) is recommended, because in this way the real magnitude of the shadow profile is 254 
obtained. The angle 𝜃𝜃 and the axis of rotation for this operation is given in Eq.(5):  255 



 
𝜃𝜃 = acos

𝑛𝑛� · ℎ�

‖𝑛𝑛�‖ · �ℎ��
                       𝑢𝑢� =

𝑛𝑛� × ℎ�
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When the angle and axis has been considered, the resulting rotation of such polygons on a 256 
horizontal plane is achieved by applying the Rodrigues' rotation formula [52] to every vertex 257 
𝑝𝑝𝑛𝑛 of the polygons 𝐵𝐵𝑛𝑛 and 𝑆𝑆𝑛𝑛. Eq.(6) defines the calculation, according to the right-hand rule, 258 
of the resulting rotated point 𝑝𝑝𝑟𝑟 of point 𝑝𝑝𝑛𝑛 by an angle 𝜃𝜃, rotation axis 𝑢𝑢�  and using 𝐺𝐺 as a 259 
center of rotation:  260 

 𝑝𝑝𝑟𝑟 = 𝐺𝐺 + 𝑣𝑣2����⃗ · 𝑐𝑐𝑐𝑐𝑠𝑠  𝜃𝜃 + (𝑣𝑣2����⃗ · 𝑢𝑢�) · 𝑢𝑢� · (1 − 𝑐𝑐𝑐𝑐𝑠𝑠  𝜃𝜃) + (𝑢𝑢� × 𝑣𝑣2����⃗ ) · 𝑠𝑠𝑠𝑠𝑛𝑛  𝜃𝜃

𝑝𝑝𝑟𝑟 ∈ 𝜋𝜋𝑟𝑟                                    𝑣𝑣2����⃗ = 𝑝𝑝𝑛𝑛 − 𝐺𝐺                                   ‖𝑢𝑢�‖ = 1
 (6) 

Once the non-vertical rotation 𝑝𝑝𝑟𝑟 of each vertex 𝑝𝑝𝑛𝑛 is obtained, the polygons 𝑆𝑆𝑟𝑟 and 𝐵𝐵𝑟𝑟 are 261 
assembled. Finally, the shadow profile in a 2D-GIS environment is obtained by applying the 262 
same procedure than for non-vertical shadowed surfaces, i.e., which is intersecting their 263 
horizontal projection. 264 

3. Results, model validation and discussion 265 

The methodology has been applied to several buildings of the Polytechnic City of Innovation 266 
(CPI) of the Universitat Politècnica de València (39°28’58’’N, 0°20’52’’O), which is located 267 
in the east of Spain (Figure 3). Such buildings present two significant points of interest for the 268 
validation which are that the detailed architectural CAD drawings from the construction are 269 
available, and that the buildings cast shadows on horizontal, vertical and tilted surfaces of the 270 
surroundings. 271 
The methodology has been implemented in the R programming language [47] and has been 272 
validated using 3D-CAD software.  273 

 274 

3.1 Figure 3. Location of the case study site in Valencia, Spain.City model 275 

The CPI consists of 30 multilevel flat buildings. The total building footprint area is of around 276 
12700m2, placed in a 190x90m land, with building height values in the range from 14 to 29m 277 
with respect to the ground level, with a footprint area between 50 and 2150m2. Along the west 278 
side of the CPI, there is a 6º tilted garden over 20m width, approximately. 279 



In order to validate the city model, the height of each building was obtained using the statistic 280 
estimators of central tendency explained in the Section 2.1 compared to the mean, as evidence 281 
of their robustness towards outliers, and two open access government LiDAR datasets of low-282 
density (0.5 pts/m²), which correspond to the years 2009 and 2015 [53].  283 
The accuracy of each statistic applied to each dataset has been evaluated by comparing the 284 
results obtained with the heights defined in the CAD elevation views. Two error estimators 285 
have been calculated for each case: the root-mean-square error (RMSE) and the mean absolute 286 
error (MAE), as given in Eq.(7): 287 

 
𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �∑ �𝑥𝑥𝐶𝐶𝐶𝐶𝐶𝐶,𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖�

2𝑛𝑛
𝑖𝑖

𝑛𝑛
     𝑅𝑅𝑀𝑀𝑅𝑅 =

∑ �𝑥𝑥𝐶𝐶𝐶𝐶𝐶𝐶,𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖�𝑛𝑛
𝑖𝑖

𝑛𝑛
   

(7) 

 288 
Both error metrics are used together to measure the model performance. The MAE is used to 289 
evaluate the average magnitude of the error while the RMSE, compared with the prior, is 290 
employed to diagnose the presence of large errors. The RMSE and MAE of each estimator and 291 
LiDAR dataset for all the buildings has been obtained in meters. The results are shown in Table 292 
1, where the final row “total” has been calculated by running estimators over the merged LiDAR 293 
datasets. 294 

 RMSE (MAE) [m] 

 SM LMSM HSM HRM EDFM RPM Median Mean 
LiDAR 
2009 

0.061 
(0.047) 

0.060 
(0.047) 

0.064 
(0.050) 

0.063 
(0.051) 

0.063 
(0.048) 

0.065 
(0.053) 

0.065 
(0.052) 

1.423 
(1.222) 

LiDAR 
2015 

0.061 
(0.045) 

0.061 
(0.045) 

0.059 
(0.045) 

0.063 
(0.049) 

0.056 
(0.043) 

0.062 
(0.046) 

0.062 
(0.046) 

1.306 
(1.073) 

Total 0.061 
(0.046) 

0.061 
(0.046) 

0.061 
(0.047) 

0.063 
(0.050) 

0.060 
(0.046) 

0.064 
(0.050) 

0.063 
(0.049) 

1.366 
(1.148) 

Table 1. Root-mean-square error and mean absolute error of city models in two LiDAR datasets. 295 

Very similar results can be observed for the seven high robust statistics studied by Bickel and 296 
Frühwirth [48]. These measures of central tendency show mean errors lower than 0.1m and no 297 
significant differences between the two datasets are observed. Such results are consistent with 298 
the employed LiDAR datasets, which present a maximum RMSE in the 𝑍𝑍 coordinate of 0.20m 299 
[53]. 300 
Despite the high level of similarity between the different statistical estimators, the estimator 301 
which provides the best fitting with the real height, according to the results of the most recent 302 
(2015) and the merged set of LiDAR data, is the empirical probability density function mode 303 
(EDFM) based on a Gaussian kernel function and using the bandwidth according to the 304 
Sheather and Jones [50] procedure.  305 
In contrast, the mean value is not a proper estimator of the building height, since it presents a 306 
high error due to its high sensitivity to outliers. 307 



 308 

Figure 4. City model fit using the empirical probability density function mode (EDFM) for two LiDAR datasets: a) 309 
2009 and b) 2015. 310 

Figure 4 shows a comparison between the actual building height, extracted from the CAD 311 
drawings, and the height obtained by the proposed model, using the EDFM with both LiDAR 312 
datasets. The maximum relative error is smaller than 1% in all cases.  313 

3.2 Shadow model 314 

In order to apply and validate the shadow model, the best building height estimator and LiDAR 315 
dataset have been taken, which corresponds to the EDFM of 2015 data. For such model, the 316 
shadow profile has been calculated in three surfaces (Figure 5) with different 𝛽𝛽 inclination (A-317 
horizontal, B-vertical and C-tilted) for five hours (from 10 to 14 local time) at both solstices to 318 
test both short and long shadows for the location. 319 

 320 
Figure 5. Studied surfaces of the Polytechnic City of Innovation (CPI): horizontal (A), vertical (B) and tilted (C). 321 

In order to have a reference, the set of buildings has been modelled in SketchUp using their 322 
detailed architectural 2D-CAD views. The shadow profile has been obtained for each surface 323 
and hour (Figure 6) by using the SketchUp’s shadow tool developed by Yezioro and Shaviv 324 
[54]. 325 



 326 
Figure 6. Shadow profiles on the studied surfaces for five hours on June 21st: horizontal surface (A.1) and its detail 327 

(A.2), vertical surface (B) and tilted surface (C). 328 

Following the procedure explained in the Section 2.2, the shadow factor and the relative error 329 
series have been obtained for the five-hour interval of each representative day in the studied 330 
surfaces.  331 

 332 

 333 
Figure 7. Hourly shadow factor (1) and their relative error (2) against the SketchUp’s shadow tool results for a) the 334 

June 21st and b) December 22nd. 335 

Figure 7 plots the shadow factor SF series and their relative error (RE) against the CAD 336 
(Sketchup) results as given in Eq.(8). 337 



 
𝑅𝑅𝑅𝑅 =

|𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|
𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶

  (8) 

On the one hand, the time series of the shadow factor 𝑆𝑆𝑆𝑆 show that the shading is significantly 338 
greater in the early hours of the morning than in the early afternoon on the inclined and vertical 339 
surfaces, while for the horizontal surface the inter-daily fluctuations are not so variable.  340 
These results are explained taking into account that the two non-horizontal surfaces are oriented 341 
to the southeast (𝛼𝛼 = 288.6°, counterclockwise convention measuring from the south), so the 342 
shadows are null in this orientation at 14:26 local time for June 21st and 14:14 local time for 343 
December 22nd. There are taller buildings in the southeast and southwest direction, which 344 
explains the small variation of the shadow factor on the horizontal surface. 345 
Regarding the annual variation of the shadow factor, the results show that the shading is much 346 
greater in the winter solstice than in the summer solstice, mainly because the solar elevation in 347 
winter is much lower in the site latitude. 348 
On the other hand, the series of the relative error show higher accuracy on the sloped surface 349 
than on the horizontal, while for the vertical surface this precision is variable over time, showing 350 
maximums at certain time points. The two primary elements influencing the model accuracy 351 
are:  352 

1. The city model error propagation, since the errors in the geometric model could lead to 353 
greater errors in the shadow cast. The height of the buildings that cast shadows on the 354 
sloped surface has an average error of 3cm, similar to the values of the other surfaces, 355 
which are 5cm for the horizontal and 6cm for the vertical surface. However, the shadow 356 
on the vertical surface presents the maximum relative error on June 21st at 12:00 local 357 
time when the shadow cast is only due to a building whose height error is 10cm.  358 

2. The shadow and surface size, since the shadow factor 𝑆𝑆𝑆𝑆 is a relative measure of the 359 
shaded area with respect to the total surface area. For this reason, the accuracy is 360 
logically greater in larger areas. 361 

Therefore, the greater precision of the model in the sloped surface is due to the combination of 362 
a greater precision in the city model and to a large area and shadow size (Figure 6).  363 
However, despite these differences between the results obtained, the most notable aspect of the 364 
series of the relative error is the very low error which is obtained. 365 
For the validation of the overall methodology, including both height and shadow models, the 366 
shadow profiles were also obtained in the SketchUp’s shadow tool and the shadow factor 𝑆𝑆𝑆𝑆 367 
was calculated in each case. Table 2 presents the RMSE and the MAE of the overall 368 
methodology by the shadow factor obtained against the SketchUp results of each surface and 369 
day. 370 

 RMSE (MAE) [%] 

 June 21st  December 22nd  Total 

Horizontal (A) 0.16 (0.13) 0.29 (0.27) 0.23 (0.20) 

Vertical (B) 0.26 (0.18) 0.15 (0.13) 0.21 (0.16) 

Sloped (C) 0.09 (0.08) 0.04 (0.03) 0.07 (0.05) 

Total 0.18 (0.13) 0.19 (0.14) 0.19 (0.14) 

Table 2. Root-mean-square error (RMSE) and mean absolute error (MAE) of the overall methodology measured by 371 
the shadow factor obtained against the SketchUp’s shadow tool for different days and surfaces. 372 



The results show that the average accuracy of the shadow factor on the sloped surface is 373 
significantly higher than in the other two surfaces according to the relative errors shown in 374 
Figure 7.  375 
In contrast, the results show no significant differences between the total values of the two 376 
selected days. However, there are significant and complementary differences between the 377 
vertical and horizontal surface at both solstices, because the surfaces are perpendicularly 378 
oriented. 379 
Finally, Figure 8 summarizes the validation of the overall methodology for the three surfaces 380 
on the two representative days. The hourly results of the model have been compared with 381 
respect to the reference SketchUp’s shadow tool results. 382 
 383 

 384 
Figure 8. Overall methodology fit for all surfaces through the shadow factor evaluation. 385 

4. Conclusions 386 

An accurate estimation of shadow profiles is essential for several downstream applications on 387 
urban scale. In these applications, a shadow cast model must be accurate, adaptable to the 388 
geometric complexity of the buildings and scalable. 389 
The present article presents an accurate and systematic GIS-based methodology which has been 390 
developed to obtain the shadow cast by a group of buildings on arbitrarily orientated and tilted 391 
surfaces. The methodology is integrated into the scalable and widely used 2D-GIS environment 392 
and can be useful for the solar resource assessment in fine-scale urban environments of most 393 
countries using open access data. 394 
The starting point of the model is to employ cadastral cartography and LiDAR altimetric data 395 
to obtain a 3D vector-based model of the existing buildings, by means of robust statistical 396 
estimators. Analytical models are finally applied for the calculation of the shadow cast on any 397 
surrounding surface. 398 
The above-mentioned methodology has been validated on 30 buildings of the Universitat 399 
Politècnica de València (UPV, Spain). The validation has been performed using the CAD 400 
elevation views of the buildings and 3D-CAD software. Different LiDAR point cloud datasets 401 
have been employed and evaluated for the 3D model validation, while the shadow model has 402 
been validated for both different surface orientations and points in time. The following 403 
conclusions have been drawn: 404 

• The error obtained in the validation of the vector-based 3D model of the buildings is 405 
lower than 1% with all robust mode estimators.  406 

• The mean value is not a proper estimator of the building height because of its inherent 407 
high sensitivity to outliers. The authors recommend to use robust estimators such as the 408 
EDFM. 409 



• The maximum relative error of the overall methodology, including both 3D and shadow 410 
model, is lower than 2% for the shadow factor calculations. 411 

• The accuracy of the model is not dependent on the day of the year or hour of the day 412 
but the shadow factor calculation is particularly sensitive to propagation of the height 413 
model errors of the involved buildings and, to a lesser degree, to the size of the shadow 414 
and the surface.  415 

As future work, the presented methodology will be used to calculate the direct solar irradiation 416 
in buildings, including facades and tilted roofs. For a full solar resource assessment, the diffuse 417 
component will be considered by using the sky view factor (SVF) of the surfaces of interest. 418 
The methodology will be further improved by including a 3D city model that estimates the 419 
inclination and orientation of building roofs and a shadow model that uses them as shading 420 
objects. 421 
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