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Abstract: During the past few decades, the combination of flourishing maritime commerce and 
urban population increases has made port-cities face several challenges. Smart Port-Cities of the 
future will take advantage of the newest IoT technologies to tackle those challenges in a joint fashion 
from both the city and port side. A specific matter of interest in this work is how to obtain reliable, 
measurable indicators to establish port-city policies for mutual benefit. This paper proposes an IoT-
based software framework, accompanied with a methodology for defining, calculating, and 
predicting composite indicators that represent real-world phenomena in the context of a Smart Port-
City. This paper envisions, develops, and deploys the framework on a real use-case as a practice 
experiment. The experiment consists of deploying a composite index for monitoring traffic 
congestion at the port-city interface in Thessaloniki (Greece). Results were aligned with the 
expectations, validated through nine scenarios, concluding with delivery of a useful tool for 
interested actors at Smart Port-Cities to work over and build policies upon. 

Keywords: Smart Port-Cities; composite indicator; real-time; Internet of Things; traffic congestion; 
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1. Introduction  

Traditionally, port and cities have been working as independent siloes, striving separately to 
reach innovation goals towards better sustainability and economic growth. During the past few 
decades, the increasing pace of urban population growth [1] and expansion of maritime commerce [2] 
have brought forth environmental and societal challenges which affect both sides. In light of new 
wave technologies that are already having an impact on port-cities, the moment to tackle joint 
challenges making use of the most advanced innovations towards the future Smart Port-Cities is now [3]. 
Looking only at the big numbers, there are 33 megacities in the world (with more than 10 million 
inhabitants) [4]; 25 of them are port-cities, accumulating more than 25% of global container trade 
volume [5]. Naturally then, useful solutions addressing Smart Port-City challenges will be a key game 
changer from both business and societal perspective in the forthcoming years. This is the context in 
which this work is framed. 

A Smart Port-City is, by definition, the combination of a Smart City with a Smart Port. The notion 
dates back to the SmartPORT initiative proposed by Hamburg in 2012 [6]. However, the concept goes 
far beyond that. A Smart Port-City entails the integration of information from the two domains in a 
transparent manner and the realization that port-city actions must be envisaged as a holistic entity 
taking advantage of the era of massive data [7]. One of the main challenges of Smart Port-Cities is the 
establishment of effective policies between the Port Authorities (and relevant agents) and the 
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Municipality or Regional Governments [3]. Agreeing upon security, mobility, energy and 
environmental matters appears crucial for the future of port cities. Those policies should lead to a 
more efficient and productive mutually beneficial relationship between the involved entities. 
According to the Association Internationale Villes et Ports (AIVP) Agenda 2030 for Sustainable Port-
Cities [8], “port cities are the best scenarios to test innovative solutions tackling different issues”. AIVP went 
farther in the list, and clearly defined 10 sustainable goals: climate change, energy transition, 
sustainable mobility, renewed governance, port culture and identity, port-city interface, health and 
life quality and protecting biodiversity.  

Among the former, a huge concern for citizens, municipalities, and all kinds of organisations 
(Non-Governmental Organizations—NGOs—included) are those related with vehicle traffic [9] and 
its effects, which are directly related to climate change. Nowadays, the vast majority of urban vehicles 
are still powered by non-degradable, highly-polluting fossil fuels [10], with a series of hazardous 
consequences to the ecosystem and its inhabitants [11]. There is a growing trend to establish norms 
and policies seeking to reduce the pollution levels at cities; either supported by legislation [12] or just 
initiatives for improving both traffic congestion and the well-being levels of citizens [13]. Linking 
with the goal of this work, this effect is even more noticeable in port-cities, where the fact of hosting 
a port in the immediate surroundings of living neighborhoods entails its own hindrances (e.g., [14]). 
While business efficiency may drive operational and technical innovations, sometimes supported by 
Information and Communications Technology—ICT [15], sustainability is also a true stakeholder 
value for port authorities. Achieving sustainability goals for a port, such as by reducing its emissions 
or being more transparent on port-city relations can provide a long-term payback. Despite being 
difficult to measure, this payback can yield immaterial gains such as increased residential citizens’ 
acceptance of port operations, which would be an ideal pillar to build policies upon. There are 
documented examples of ports striving through numerous initiatives and investments to raise 
awareness and improve citizen acceptability [16]. However, today, there are no consolidated 
indicators to demonstrate to the citizens the strong commitment of port authorities, to reduce the 
environmental impacts and other potential burdens of their activities. The most relevant reference is 
the Global Reporting Initiative—GRI—guidelines for sustainability, which does not even have 
seaport-sector-specific guidelines [17]. 

Taking advantage of Internet of Things—IoT—techniques and real-time features opens a wide 
range of options for defining port-cities policies such as enabling decision-making after analysing 
traffic congestion at specific spots in cities. Allowing the different actors in the port-city relation to 
measure, analyse and act based on solid, formal, reliable indicators will enable, for instance, setting 
specific thresholds on the traffic volumes, establishing alarms and alerts over certain ranges, 
accounting for responsibilities during specific events, proposing alternative mobility solutions or 
simply checking the evolution throughout time for tackling further actions. 

The port-city interface is normally modelled as a single convergence point having the following 
features: demographics, urban development, public tender procurement, traffic, noise, pollution, 
employment and sustainability. To drive towards sustainable benefits over that interface, it is 
worthwhile to follow the principles indicated in the “Sustainable Cities” report by the European 
Commission [18], which indicates that clear quantified indicators must be used for that purpose. Not 
only are indicators powerful for measuring progress and performance in specific areas; according to 
the Policy Influence for Indicators—POINT—study [19], those indicators have a huge potential to 
drive the creation of policies. To use them as tools for defining policies, indicators must be both 
quantifiable and measurable. Additionally, the construction of those indicators must be a joint 
activity of both municipality/regional authorities and the port itself. Co-design of the methodology, 
significance, relevance, and boundaries of each indicator is a challenging task that must be faced in a 
joint fashion. 

The indicators will be, sometimes, rather simple (e.g., the number of jobs generated by the port). 
In contrast, more often those indices will be complex due to the influence of different parameters 
(e.g., the environmental pollution from the port or the traffic increase attributable to port activities). 
In this work, the authors propose to use composite indicators with that purpose. According to the 
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European Commission, composite indicators are ideal for situations where different parts of an event 
representation have no common meaningful unit of measurement and there is no obvious way of 
weighting them to have a single illustrative value [20]. This definition fits perfectly the usual case on 
Smart Port-Cities interface points. The rationale behind that usage will be to come up with composite 
indicators to be used to advocate desirable policies, ensuring that the process of construction is 
transparent, and it has clear backing statistical conceptual principles. 

The paper’s objectives can then be summarized as follows: 

(1) To explore how to translate the knowledge of the field of composite indicators to the port-city 
interface. 

(2) To define how to build solid indicators with that purpose, focusing on their calculation and 
prediction to represent real-world phenomena in the context of a Smart Port-City 

(3) To analyse the various technological options to construct an architecture leveraging IoT 
techniques covering the indicator implementation. 

(4) To propose an IoT-based software framework accompanied with a methodology for its co-
design and deployment on a real use-case. 

(5) To effectively conduct a small scale experiment consisting of implementing a composite 
indicator use-case reflecting the traffic congestion in the interface between the port and the city 
of Thessaloniki (Greece). 

Underlying those objectives, there appears a hypothesis aim to be validated: “IoT can be used 
for deploying solid, robust services for assisting the decision-making on setting port-city policies”. 

The framework developed has been applied and deployed in a real Smart Port-City 
(Thessaloniki), thus providing a legitimate testbed. Additionally, the work in this paper has usability 
potential as an IoT solution for mission-critical infrastructures of the Smart City, as the port and its 
interface with the city can be considered as such [21]. Besides, the work has advanced in the definition 
of semantic modeling of city knowledge, specifically in the traffic congestion realm. Finally, one of 
the last objectives of this work is to apply time-series forecasting over traffic and city data, clearly 
seeking to extract knowledge using machine learning (ML). In particular, it focuses on both 
understanding phenomena from historic data and catering to short-term prediction decisions using 
real-time data. 

The reminder of the article is organized as follows: Section 2 presents the state-of-the-art and 
relevant previous work. Section 3 explains thoroughly the proposed framework and its methodology 
to be applied in a use-case, which is presented as well. Section 4 shows the results of applying the 
framework to a real traffic congestion scenario. Section 5 briefly discusses the knowledge to be 
extracted from the results and its utility. Last, Section 6 concludes the article with some suggestions 
on future work directions. 

2. Related Work 

2.1. Open Data in Smart Ports and Smart Cities 

Open data is a key element in the relationship between the Smart Cities and Smart Ports. 
Reference [22] describes open data initiatives as part of the efforts by governments to provide 
transparency, better empower citizens, foster innovation, and reform public services by investigating 
the impacts of open data innovation on different Smart City domains like the economy, education, 
energy, the environment, governance, tourism, transport and mobility. Reference [23] explains that 
open data is not only global data collected and opened by the government, but also includes data 
shared among individual citizens and industries with the government and public. Related with this 
paper experiment’s domain, reference [24] analyses the current and future situation of open data in 
Smart Ports. It summarises the benefits of using open data for enabling typical applications in the 
port operations (e.g., truck gate appointments, vessel calls data management, yard operation 
scheduling or hazardous material tracking within the port premises), helping coordinate port 
operations to deal with unexpected delays caused by city issues like traffic congestion and a fluid 
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exchange information between the port community and the port vicinity. However, a reluctancy of 
ports to release certain data to the community (researchers, other stakeholders) was also observed, 
especially those that concern business model operations or private protected data. 

Nowadays, the main world cities provide their own open data platforms. For example, the 
European Data Portal has analysed the status and features of Open Data portals in eight of the largest 
capital cities [25] in Europe and in medium-sized European cities [26] like Thessaloniki. The 
information from these portals is useful for the ports, as it is originated by sensors connected to the 
surrounding areas providing flow of information between the entire city, the port neighborhood, and 
the port. The analysis, use and processing of this data is leading to the advent of applications and 
services improving the daily activities of the port and their impact on the environment.  

2.2. Interoperability at Middleware Level of Heterogeneous Data in a City 

From an architectural point of view, a study of the current status of functionalities, components 
and platforms to achieve IoT interoperability that can be used in a Smart Port City solution was 
performed. 

Some research projects focused on achieving interoperability between IoT platforms provide a 
detailed state of the art overview of the architecture of existing IoT platforms. The INTER-IoT [27] 
study is based on a layered classification approach regardless of the application domains. This project 
covered the whole IoT architecture to achieve a complete interoperability solution including devices 
and platforms. The ACTIVAGE project [28] study is closely related with middleware platforms and 
is based on a layered classification: device level, connectivity level, cloud level and application level; 
providing a complete picture of the features and functionalities of the main IoT platforms. After 
reviewing the literature, the main research needs on that regard for completing this paper are data 
access from several heterogeneous data sources and open data and the middleware interoperability. 

Related to access to the data sources, [29] presents a city-wide IoT data management layer 
providing some Representational State Transfer—REST—and linked Open Data Application 
Programming Interfaces—APIs—that collect and show data related to elderly people. That work 
highlights the need of defining a common format to integrate the data, allowing one to define 
different levels of data abstraction, scalable infrastructure, and semantic meaning to the stored 
information. Reference [30] explains an ontology for semantic interoperability and linked data 
integration. The FIWARE project [31] proposes some data models [32] to enable data portability for 
different applications highlighting their potential for Smart City solutions. Regarding middleware 
interoperability, some available open source technologies like Apache Kafka [33] provide real-time 
processing of IoT events, while some works (e.g., [30]) depict “the sensor middleware” as a main 
element that collects, filters, and combines data streams from virtual sensors or physical devices. In 
addition to solutions like Kafka, that approach ensures proper semantic annotations of the data 
collected. FIWARE provides the ORION Context Broker [34], a component to manage the entire 
lifecycle of context information in a common format. 

Focusing on middleware-level implementations for Smart Cities in the literature, [35] performs 
an exhaustive analysis of the international organizations involved in Smart City standardisation. It 
presents a complete study about Smart City vendors and their software systems. It starts by exposing 
the two barriers to Smart City solutions. First, the current Smart City technologies are based on non- 
interoperable custom systems that are not replicable in other cities. Second, the architectural design 
efforts have not yet converged to a clear reference, creating uncertainly among stakeholders. It 
compares 47 different Smart City software systems based in their domain work, communication 
protocols, training and promotion resources, location of deployments and open software design and 
architecture. It emphasizes the importance of the methodology to choose a Smart City software 
architecture system. Reference [36] lists some platforms and solutions from a design and architectural 
point of view classifying them by their requirement analysis, challenges achieved and reference 
architecture and comparing them based in the following components: IoT middleware, data 
repository, data processing, stream processing, cluster management, cloud environment, data access, 
security, and machine learning. [35] shows that the FIWARE Platform covers all the main domains 
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expected in Smart City solutions. FIWARE is an open system that offers a public API and is 
compatible with main communication protocols which has been successfully deployed, for example 
in some cities in Spain and Argentina. In addition, it is used in some research projects. Reference [37] 
explains the main components of FIWARE platform and offers a light application to illustrate the 
usage of the FIWARE platform to build rich applications for smart cities. The FIWARE community 
[38] envisages an attempt of an official approach to a Smart City solution with the aim of providing 
added value from the data handled by the context broker. Finally, [39] does a performance evaluation 
of FIWARE based on smart cities’ needs. It indicates that the use of FIWARE as a core element can 
rely on a basic configuration for low load levels, but in the case of high load levels deploying an 
appropriate shared cluster to be used as global data storage facility is recommended. That work used 
the official FIWARE agents to access to the data from heterogeneous data sources. In addition, it is 
worth explaining that the implementation of IoT agents and connectors between data sources and 
middleware layer need to be improved to support the load of current and future large-scale scenarios 
for IoT. To improve this flaw, the current work by FIWARE developers is targeting the creation of its 
own methodology and implementation of the agents to improve the platform performance. The 
FIWARE platform has been selected to form the device and middleware level component of the 
architecture presented in this paper and it has been customised to adapt it to Smart Port-City 
expectations. 

2.3. Top-Layer Services for Smart Port-Cities Based on IoT 

The basis of IoT technologies are heterogeneous, measurable, understandable, and 
interconnected objects. Their implementation in cities and communities provides applications and 
services for Smart Cities. Reference [40] provides several definitions of the smart cities concept and 
an analysis of the evolution of smart cities-related research. Reference [41] identifies the components 
of a smart city and related aspects of urban life, the key dimensions of a smart city, a list of indicators 
for smart cities assessment in some rating systems and examples of initiatives. The study in [40] is 
done from an Information Systems perspective and is focused on number of aspects of smart cities: 
smart mobility, smart living, smart environment, smart citizens, smart government, and smart 
architecture, as well as related technologies and concepts. However, not all technological services in 
cities can be rendered to a “smart city” concept [42]. According to [43], only those that make extensive 
use of IoT, advanced communication networks and enable user-device interaction can be considered 
attributable to this concept. The smart city approach has been now widely adopted by cities 
worldwide as well as via research activities. In [42], several significant examples of top-layer services 
in smart cities are explained. Spain stands out in smart city real deployments, especially in Barcelona 
[44] and Santander [45].  

Northern-Europe countries have been focused on energy through the AIM [46] and IntUBE [47] 
projects and on air pollution management through GreenIoT [23]. Internationally, IBM launched a 
series of deployments creating ad hoc private company units for smart city projects, especially in 
America [48], while China has embarked on an ambitious initiative throughout the whole country to 
strengthen city management and to improve city services and functions [49]. Among the previous, 
the most frequent initiatives are those focused on smart civil infrastructure, air pollution, 
demographics, smart urban mobility, and smart energy. 

There is a smaller volume of literature focusing on the application of top-layer services to smart 
ports and smart port-cities. The work in [50] explains that, to some extent, the smart port concept can 
be considered a subset of the smart city. It provides examples of successful implementation of those 
technologies in relevant ports, indicating that they can improve the port terminal performance, 
customer satisfaction or reduce the environmental impact. Reference [51] lists a considerable number 
of smart port initiatives, some smart ports term explanations and a classification of a smart port’s 
activity domains and subdomains. It consists of four main activity domains: operations, environment, 
energy, and safety and security, which are, in general, pretty aligned with the smart city concerns 
exposed in Figure 1b. 
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Figure 1. Smart Cities services analyses 2010-2018. Data extracted from the study done in [42]: (a) 
percentage of appearance in papers; (b) main areas of interest for deploying Smart City services. 

There have been some trials to establish a formal classification of top-layer services for smart 
cities (we have clarified that smart port-cities are a subset of the latter. For the paper, authors decided 
to use the taxonomy proposed in [52]. This classification was chosen because it enables the 
combination of smart services dealing with more than one smart city dimension, which is aligned 
with the hypothesis of our work. For example, persistent high traffic congestion or other 
transportation/mobility services produce harmful emissions to the atmosphere (NOx, CO2, PMs, etc.) 
while affecting the local life quality, shaping the perception from the citizenry and potential future 
civil infrastructure investments and demographic evolution. Some of the former (public safety or 
demographics) deal with smart living and smart governance. Therefore, a classification system 
considering multidimensional spots of one smart service was preferred compared to a single tag 
division. The taxonomy selected drills down every smart city service under three categories, 
following the so-named “DMS” schema, where “D” stands for data, “M” refers to analytic methods 
and “S” encodes the service description.  

Following that taxonomy, the work in this paper can be properly framed in a “traffic, weather 
and port-activities” data (D), “co-design and implementation of a composite indicator” (M) and 
“interpretation of real-time and predicted values” (S). 

2.4. Real-Time Composite Indicators in Smart Port-Cities 

A composite indicator (CI) relies on a mathematical combination of individual indicators that 
represent different dimensions of a concept. The main objective of this work is to design a system 
leveraging the IoT data and techniques to represent a complex phenomenon using composite 
indicators. 

Some advantages of using a CI are ease of interpretation, facilitation of rankings, 
appropriateness for acknowledging evolution through time, provision of big picture and 
benchmarking suitability. On the other side of the coin, CIs may send misleading messages if not 
interpreted properly, may entail loss of information, may deviate focus on relevant dimensions and 
requires high quantity and quality levels of the data to be used to populate all sub-indicators ([53,54]). 
However, if properly tackled and analysed, it can be a paramount keystone for future smart port-city 
policies, according to the authors. 

The usage of CIs has long tradition in some sectors, especially in measuring country 
performances [55]. However, there is a trend on an increasing use of the composite index 
methodology—first detailed and explained by the European Commission (EC) in 2002 [20]—for 
representing interesting indicators in other realms. Some examples were found focusing on land use 
type and ecosystem services in urban contexts [56], on environmental sustainability (e.g., the 
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Environmental Sustainability Index proposed by the World Economic Forum (WEF) [57] or the Port 
Environmental Index of the PIXEL project [58]), in the urban economy (e.g., Internal Market Index by 
DGMARKT [59] or Economic Sentiment Indicator by the EC [60]), on societal aspects (the Human 
Development Index published by the United Nations [61]) and in science, technology and 
information advances (e.g., Technology Achievement Index by the United Nations [62] or the ICT 
index proposed by Fagerberg [63]). 

Regarding a technical implementation of a CI analytic software, the main reference found is 
enclosed in an initiative from the EC-funded Joint Research Centre (JRC) together with the 
Organisation for Economic Co-operation and Development (OECD) published in the “Handbook on 
Constructing Composite Indicators” [64]. This publication provides a complete methodology and user 
guide to the construction and use of composite indicators. While there are several types of composite 
indicators, the handbook focuses only on those which compare and rank country performance. This 
is out of scope of our research but provides a clear view of the composite indicator topic related with 
constructing a composite indicator and explaining a toolbox for constructors. Some years a European 
Commission’s Competence Centre on composite indicators and scoreboards (COIN) was launched 
the COIN Tool, a MS Excel-based software tool to help develop and analyse composite indicators and 
scoreboards. It provides guidelines on how to develop methodologies to construct robust composite 
indicators. As previously, the tool was focused on rankings, but it is a clear example of digitising the 
process of creating and managing a composite index and its results. It is interesting how they apply 
the formulas of their methodology using MS Excel formulae and interaction interface. Nevertheless, 
COIN does not process data in real time or take advantage of IoT platforms. 

Narrowing down the research scope, another interesting project targeting composite indicators 
appeared. The CITYkeys project (EU-funded) [65] is focused on discovering and implementing CIs 
for smart cities. A huge set of actionable indicators were defined in this project, including cyber-
security, local food production, healthy lifestyle, ground floor usage, among others; clearly observing 
the relevant intervening actors, different examples of deployment and thorough descriptions [66]. 
However, the calculation was mostly based on Likert evaluations, suing very simplistic scorings (e.g., 
[67]) and static data coming from reporting or literature databases. Although a performance system 
was proposed [68], the work in CITYkeys was assumed as incomplete for the purpose of this paper. 
Another implementation analysed by the authors was the “Dashboard thinking cities” promoted by 
Telefónica using FIWARE commodities in all the procedure [69]. This option was carefully studied 
considering that: (i) it uses FIWARE Context Broker (ORION) and (ii) other components that were 
considered to be included in this paper, (iii) it enables a KPI-powered module explicitly designed to 
create “Key Performance Indicators” (KPIs) for smart cities and (iv) it allows a multi-dimensional 
multi-service approach built upon open data and open-source technologies. However, it was 
discarded as there was not found any relevant real application of the concept, seeming for the 
moment an interesting proposal pending to be validated in practical cases. Besides, it did not consider 
including options for tailoring the structure of the CI or interacting with prediction options. 

The specific experiment of this paper tackles a traffic congestion use-case. Measuring traffic 
congestion in a systematic way has proved to be useful. As an example, in [70] a congestion use-case 
in a real port in China was optimised using a predictive algorithm. In this regard, using composite 
indicators has already been explored in [71], in which a e composite index—Traffic Congestability 
Value (TCV)—was defined to monitor the congestion by measuring in real-time number of vehicles 
and average while driving through specific land areas on the East of India. 

Finally, fine-tuning the research looking for validated CIs in smart ports, the most relevant work 
revealed in the state of the art is [51]. There, a Smart Port Index is proposed to allow ports improve 
their resilience and sustainability. However, in this development, the joint perspective from the city 
was not included. Besides, the usability was formulated to inter-port comparison and the KPIs values 
were extracted over literature references and not supported by an IoT-based system. 

The previous analysis confirmed authors’ perception that there is not an ad hoc framework and 
methodology that both smart ports and smart cities can rely on to build useful composite indicators 
in real time. 
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2.5. Machine Learning for Traffic Congestion Forecasting 

Although not part of the main hypothesis of the work, the authors explored the state of the art 
of predictive models to forecast traffic and traffic congestion. In particular, this matter is framed 
within the supervised timeseries modelling, which is a discipline within machine learning. 

Few consolidated tools have been found on relation of road traffic prediction for port-cities. The 
most relevant proprietary solutions are AIMSUN [72], PTV Vissim [73] and IBM traffic prediction 
tool [74], which has been successful in port-cities in Singapore. Regarding open tools, Veins [75] is 
the most referenced and used, in a field that stands out for tailored and customised approaches.  

About the machine learning models used, there has been an evolution since the “beginning” of 
this field of study, which date back to 40 years ago [76]. The most used techniques in modern 
approaches are neural and Bayesian networks, fuzzy and evolutionary techniques, applied to specific 
application environments with different accuracy outcomes [77]. 

The expectations on this paper are to replicate some of the already-validated models and 
methods of the literature and have them applied to a real composite indicator use-case. The objective 
is not to advance the state of the art on this field, but rather to find a way to merge these technologies 
with a real-time framework based on IoT concepts. 

3. Materials and Methods 

3.1. Framework 

The core of this work consisted of the design and implementation of a technological framework 
to calculate and represent a smart port-city composite indicator (CI). The construction of the software 
pillars of the framework was driven by the authors taking advantage of the advances of the research 
project PIXEL [78]. The authors are active participants in that project, which has the aim to develop 
an IoT-based platform enabling the interoperable interconnection of data sources in ports towards 
operations and environmental impact optimisation. 

The intention of the proposed framework is to properly process raw data to become actionable 
information in composite index format. To round out the complete system, the framework is escorted 
by a methodology for its deployment and usage (see Section 3.4). 

For the scope of this paper, using the results of previous research [79] has allowed the authors 
to end up with a solid basis to deploy the framework. Some reference architectures leveraged were 
RAMI4.0 [80] and IIRA [81], which provide a consolidated layered-approach for IoT service-oriented 
implementation for practical deployments in a mixture of Industries. The essence was adopted, while 
specific additions and tailoring were necessary. Drawing from the heart architecture of PIXEL, the 
framework designed to validate our hypothesis makes use of certain components, altogether with 
some custom modules and carefully selected extensions. Figure 2 depicts the architecture’s modular 
composition. 

With the vision of delivering an actionable, practical, simplified IoT architecture for enabling 
composite indicators calculation in smart port-cities, a set of mandatory elements were to be included. 
First, from the IoT-technical perspective, there was the need to collect and pre-process the data. 
Afterwards, it needs to be semantically annotated to be interoperable and used by the upper layers. 
Visualisation and storage are also required (at least, on a bare minimum expression) on every IoT-
service system [82]. Second, according to the nature of the service to be provided (see taxonomy in 
Section 2.3), a series of modules must be embedded; (i) forecasting values of the indicator, (ii) long-
term storage for training predictive models and for statistical analysis, (iii) execution of the CI 
computation and (iv) intelligence to orchestrate the data and process flow. Moreover, the authors 
made the strategic choice of relying on micro-services and containerization for service provision in 
order to facilitate development and deployment [83]. 
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Figure 2. Architecture of the proposed framework: (a) IoT layered reference architecture RAMI4.0 
and IIRA—image extracted from [79]; (b) Modules and technologies of the framework. The figures 
are aligned to reflect the mapping reference layer - component. 

All the previous considerations, added to other requirements summarized in Table 1 led the 
authors to propose the architecture depicted in Figure 2b. Besides, the rest of this section aims at 
describing succinctly the main function of each module, the technologies selected and the 
development details for this work. 

Table 1. Technical and functional requirements for designed the IoT framework of this paper. 

Requirement Type 1 Coverage by Module 
Short- and long-term storage of the data Technical Data storage 

Automatic scheduled execution Technical Orchestrator 
Flexibility for filtering, selecting the data Technical Data storage 

Semantic interoperability and common syntax Technical Data Broker, agents 
Agile integration and deployment Technical Containerisation 
To be able to add new data sources Functional Data Broker, agents 

To train a predictive model and use it for inferring CI Functional Training, inference 
To setup the weights and methods to calculate the CI Functional CI, orchestrator, UI 

To visualise the current value of the indicator (real-time) Usability UI – User interface 
To visualise the evolution of the indicator during a day Usability UI 

To visualise the predicted evolution of the indicator Usability UI, training, inference 
To make the framework as configurable as possible Usability UI 
1 Here, authors did not consider exploitability and non-functional requirements, neither used specific 
tools or methodologies to come up with the table above. Requirements were extracted from authors’ 
previous experiences and from concerns witnessed by contact with close port-city stakeholders. 

3.1.1. Data Broker Module 

This is a classic IoT component with the crystal-clear mission of gathering into a centric element 
all the “entities” that provide data to the framework. A crucial concept in this module is the “data 
format consistency”. Here, the design in this work was to work under uniformed syntactic and 
semantic structures for all data sources incoming. Hence, an additional processing element must be 
incorporated (interoperability agent) to make raw data comply with the expected schema. Authors 
have prepared the framework (and encourage all future users) to use standardised interfaces to 
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communicate this module southbound and northbound. Taking advantage of the use of the open-
source reference for IoT solutions, all data formats in this experiment have been designed to follow 
FIWARE NGSI data models [32]. For the implementation of this module, the project PIXEL was the 
main reference. While the Data Broker module selected technology is FIWARE ORION [34], the 
interoperability agents are not mandatory to be implemented with a closed specific technology. 
Recommendation from authors is to use the pyngsi Python framework provided by PIXEL project 
[84]. The selection of ORION brings an IoT flavor to the whole framework, guaranteeing the real-
timeness of the system thanks to the publish-subscription approach. Instantiation of this module and 
agents in the experiment of this paper is explain in Section 3.4.1. 

3.1.2. Data Storage Module 

The goal of this module is to guarantee persistence of the data feeding the composite indicator. 
The most significant conditions to be met by this module were high availability, containerisation, 
open-source, and low-resources consumption. Instead of opting for complex implementations of data 
storage modules such as PIXEL Information Hub [85], Apache Hive [86] or the classic relational 
databases like MySQL [87] or MariaDB [88], the choice for this work was Elasticsearch [89]. This 
selection was preferred over simpler technologies such as MongoDB [90] due to Elasticsearch’s 
comprehensive data flattening, easy-to-use programming interface and automated filtering 
capabilities. 

3.1.3. Orchestration Module 

This acts as the orchestrator providing the intelligence to the procedure. As commented, one of 
the decisions was to deliver the backend modules (CI calculation and prediction) as “independent” 
containerised services. This module is in charge of coordinating the process to rhythmically execute 
those services, indicating which data must them be fed with and other variables coming from user 
preferences. Some options were discussed for the implementation, such as Node-RED [91], Docker 
Swarm [92], Kubernetes [93] or PIXEL’s Operational Tools [94]. However, as the application for Smart 
Port-City composite indicators proved to be straightforward from a service layer point of view, the 
authors decided to design this module in the framework as a combination of Docker compose [95] 
instructions and Linux bash scripts scheduled using cron. 

3.1.4. Visualization Module 

The options for visualizing composite indicators are motley. Ranging from direct-database-
connection tools such as Kibana [96] or Grafana [97] for simple inspection to a fully customized 
layout, the state of the art is plenty of opportunities. Drawing from the requirements in Table 1, the 
election had to be customizable enough to allow the authors build their own visualizations and 
configuration forms. Therefore, based on the baseline approach tackled by PIXEL project, the 
framework Vue.js (JavaScript) [98], was selected. On that regard, the authors developed a set of 
tailored tabs with dynamic graphs to represent the information associated to a CI utility. Details on 
the application to this experiment can be found in Section 3.4.4. 

3.1.5. Dual Computing Approach 

While the majority of the previous modules are functional enablers, carrying out mandatory 
tasks for the correct execution of the service, the core calculations to extract valuable knowledge out 
of the data are still to be revealed. Authors have designed the framework to have two clearly 
differentiated “data processing spots”, as it can be seen in Figure 3. In a simplified way, raw data 
comes from the left block in, it is converted into a common agreed format through the interoperability 
agents, it is stored and then it is retrieved from the CI mathematical backend calculations to obtain 
the final single metric. 
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Figure 3. Dual computing approach followed for the proposed framework. 

This structure was decided by authors to allow flexibility to change/correct/adapt/add further 
data sources in a constrained part of the architecture, without affecting the structure of the whole 
framework, leaving the calculation from input data to the composite indicator (and subindices) as a 
fixed code not supposed to be changing throughout the time. Additionally, this way, the most 
burdening computation could be jointly borne by different equipment. 

(1) Data processing spot #1: KPIs computation block 

Following the rationale behind one of the tools created in PIXEL, the Port Environmental Index 
(PEI) [99], the authors decided to address the CI calculation from a cascade down-top indicator flow. 
Henceforth, for this work, it was adopted the approach of considering each piece of data input as one 
KPI (Key Performance Indicator) to be monitored, constituting one leaf piece of the indicators tree. 

This block constitutes the basis of the CI calculation, aiming at converting data into actionable 
KPIs and make them ready to use is what the agents perform. NGSI prefix is used to explicitly state 
FIWARE compliance. It is worth to mention that the NGSI agents’ development is an action that will 
deviate from one “Smart Port-City composite index” use-case to another. As data will be different, 
the treatment at this level will vary and it will be needed a careful, tailored analysis to handle the 
development of the agents. The functions that all NGSI agents must provide are the following: 

• To retrieve the data from the original source: the framework has been designed to accept a two-
fold connection mode: (a) the agent actively queries the data source origin following a periodic 
pattern. This option will apply whenever the data is behind a reachable API; or (b) the agent 
includes an embedded data broker so that the active origin can publish on it. This case is usually 
present in the cases where built-in IoT stations or smart sensors are used. 

• To process the data and convert it to KPIs: this development will be different for each data 
source, becoming the most craftsmanship development when a composite indicator tool wishes 
to be deployed using our framework. It might range from a simple format conversion to a 
complex data relation, combination, and construction. Additionally, each NGSI agent may have 
different number of inputs and outputs. Despite the fact that the usual case (see Section 3.4.1) is 
to realise a 1:1 relation, the framework has been prepared to accept 1:N, N:1 and N:N setups as 
well. 

• To update the entity in the Data Broker: The main goal of the agent is to make data reach the 
information layer of the IoT stack of our framework. Hence, the KPIs obtained are submitted to 
the Data Broker (ORION) via a PUT HTTP—Hyper Text Transfer Protocol—message in order to 
update the “KPI entity”. The format selected has been to extend one of the FIWARE Data 
Models: KeyPerformanceIndicator [100]. More details can be found in Appendix A. 

(2) Data processing spot #2: Composite Index calculation and prediction block 

This block consists of a series of calculations that will be invariant, following a clear algorithm. 
These calculations are transparent for the actors intervening in the composite index definition and 
usage, remaining as a “black box” that takes some inputs, processes them, and provides an output 
(result of the execution). According to the designed framework methodology (see Figure 4), this 
processing spot performs a non-serialised 6-step mathematical operation procedure: 
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Figure 4. Composite Index calculation and prediction block. 

(1) To configure the CI inputs, the structure of the tree and the associated parameters, such as 
aggregation methods, normalization methods and weighting values through a developed visual 
interface. See Section 3.4.4. to discover the utilization of this component. 

(2) According to the parameter set in (1), including the scheduling, the periodic calculation of the 
index. First, the KPI values are properly normalised (crucial step on a CI procedure). Then, 
starting by the leaf node, a cascading algorithm including aggregation, weighting and 
combination leads towards a final index value. Technologically, this component has been 
developed as a dockerised (packaged in a Docker container [101]) standalone Java application.  

(3) To configure the predictive component of the framework by the user, specifying batch sizes, 
periodicities and model to be used for the inference of KPIs. 

(4) According to (3), the training module groups the KPIs stored, fits again the pre-trained model 
selected, updates it, and makes it ready to be used. Technically, this module has been developed 
as a dockerised Python script. 

(5) To apply the prediction over predicted KPIs. This module has also been developed as dockerised 
Python script. 

(6) To visualise the results of both real-time calculation of the composite index (2) and the observation 
of the predicted evolution of the composite indicator via a specific dynamic graph (5). 

3.2. Proposed Use Case 

The experiment conducted in this paper consist of envisioning, designing, implementing, and 
testing an IoT-powered composite indicator reflecting the traffic congestion in the interface between 
the port and the city of Thessaloniki in Greece. 

The Port of Thessaloniki is spotted very close to the city center, which has been throughout the 
years built around the economic opportunities that a port brings. During the last ten years, a huge 
number of diverse activities have been transferred to the surrounding area of the port, which has 
been increasingly selected as the ideal place to establish office-based businesses. Several luxury hotels 
and new business centers, including brand-new and re-modelled buildings have been constructed 
just outside the port area, thus being directly influenced by normal daily port activities. Establishing 
a physical base near to the port may have certain disadvantages, such as the noise or the (possible) 
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impact of dust in the air. However, there are also pluses, such as the views offered to customers and 
employers and the privilege of direct contact with the business heart of the city.  

For what directly concerns this work, in the selected use-case setup (Figure 5), the 
aforementioned port activities and growing businesses are hugely impacting the traffic congestion in 
the surrounding streets to the port and city center. Moreover, the industrial area of Thessaloniki, the 
main bus station and logistic centers are all located at the west side of the city. The main truck gate 
of the Port is on its west side resulting in a significant amount of traffic during the peak hours. Here, 
peak hour is determined by the truck movements (entries and exits of the port), which curve is similar 
to Figure A4a) (in Appendix B). The context explains what makes the area already environmentally 
burdened. 

 

(a) 

 

(b) 

Figure 5. Setup of the use-case. Port-City of Thessaloniki and its interface. (a) Picture of cranes of the 
ports’ container terminal; (b) One of the truck gates of the port. 

The objective of the use-case is to demonstrate the hypothesis proposed by using the framework 
outlined in Section 3.1 towards allowing a port-city to build policies upon a legit, reliable, real-time 
based composite indicator.  

According to the previous, the event that is wished to be modelled is the traffic congestion at the 
interface of the port with the city. The composite index defined is, therefore, a Traffic Congestion Index 
(TCI). The TCI must consider the different elements intervening (in a per-day assumption), as well as 
the different actors that are involved in the policies definition.  

On the one hand, the traffic congestion level is represented by the number of vehicles at the gates 
of the port (real port-city interface). However, there are other factors influencing the congestion level, 
such as port activities (e.g., by the number of ships being operated), the weather conditions (e.g., by 
affecting port operations decreasing productivity [102] or noticing that rainfall leads to more traffic 
congestion in cities [103]), the seasonality (season, month, day within the week) and, naturally, the 
contribution for the city itself, i.e. traffic on the port surroundings attributable to the city. Higher 
number and of more complex nature requirements could be argued to be considered [104], but for 
the scope of this work, the main factors affecting the congestion were the previous.  

On the other hand, the main actors involved in the traffic congestion event to tackle with the TCI 
are the port authority, the city municipality and, indirectly, the citizens of Thessaloniki. During the 
work exposed in this paper, an active participation was received from the port authority, funneled 
via the participation in the PIXEL project. The Port Authority of Thessaloniki (THPA) collaborated 
within that project by providing traffic data at the gates of the port, by co-designing the concept of 
the experiment (possible influences in the traffic, relevant data sources to explore), by indicating a 
series of functional requirements and by outlining the visualization layout that a port authority 
would like to have in that kind of experiment. With regards to public participation, the authors did 
not have close enough contact with the local community nor resources to involve, in this case, citizens, 
the municipality or other entities into the experiment. As this use-case is aimed to serve as a starting 
point—proof of concept—, this was finally deemed not mandatory thus not included in the 
methodology of the experiment. However, to bring their perspective into the experiment, authors 
designed the system flexible enough to allow the introduction of new parameters at any moment. 
Additionally, this intervention has been also properly considered within the methodology (see steps 
1 and 2 of the methodology in Section 3.4). 
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The experiment draws from historic and real-time data (see Section 3.3), deploying a number of 
IoT techniques (see Section 3.4) leveraging the framework developed (see Section 3.1), ending with 
the visualization (see Section 4) and interpretation of results (see Section 5). The paper does not aim 
to go beyond in the effective implementation of policies in the city of Thessaloniki. However, 
according to the authors, the work carried out might clearly be used for that purpose. 

For replication of a smart port-city composite index experiment, and for clarifying the use-case 
composition, Table 2 illustrates the main features and characteristics. The framework exposed might 
cover a wide range of use-cases, which could be represented using the proposed format. 

Table 2. Representation of a smart port-city composite index use-case. 

Event to Model Actor Intervening Relevant Data Further Usage of Index 

Traffic congestion 
at the interface of 
the port with the 

city - TCI 

Port Authority 

- Traffic at the gates of 
the port 
- Vessels berthed at the 
port 

Internal process- and 
relationship-centric practices, 
leading to less traffic and 
pollution. 

City Municipality - Traffic in the city 
- Weather in the city 

Monitoring and auditing. 
Public/citizens Knowledge and port acceptance. 

3.3. Data 

The experiment has been run with a series of raw data coming from diverse sources. In this 
section, we aim at describing the historic and real-time data used, as well as the pre-processing made 
to store and utilise it properly. 

3.3.1. Traffic at the Gates of the Port Using Radio-Frequency Identification—RFID—Sensors 

The baseline data for the experiment comes from two RFID sensors placed at the gates of the 
port of Thessaloniki, as depicted in Figure 6. The gates are 10A and 16 (as numbered by the port) and 
are equipped with RFID-based sensors allowing them to identify and catalogue all vehicles entering 
and exiting the port. 

 

(a) 

 

(b) 

Figure 6. Data coming from RFID sensors in the gates of the Port of Thessaloniki: (a) RFID arcs at the 
entrance to the port of the trucks gate (16); (b) RFID tag and vehicle detection plate at the common-
vehicles gate (10A). 

The data has been provided to the authors of the paper under the collaboration with the 
Thessaloniki Port Authority, S.A. (THPA) framed within the PIXEL research project. This data has 
been granted by THPA and served by its IT department via a web API created explicitly for the 
mentioned project. Internally, the data is managed by a Port Community System. 

Historical data from April 2018 has been used. The experiment was decided to be kept up to end 
of February 2020 in order not to have data influenced by the COVID-19 pandemic. The “raw” format 
of the data is represented in Figure 7.  
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Figure 7. Data format of vehicles crossing the port gates. 

Therefore, for using the data for the TCI, a pre-processing step was needed. Data from April 
2018 was queried from the past entries/exits of vehicles and the same structure was established for 
real-time and future continuous usage of the composite index. The process consisted of retrieving all 
vehicles in the period, filtering by the “gate” field, analysing the timeframes they crossed through the 
gates (fields: “time”), establish hourly ranges and count afterwards the number of vehicles on that 
range. This exercise was materialised in Python scripts and the data digested was store in a proper 
database to later feed the model training according to the software design of the framework (see 
Section 3.1). 

3.3.2. Traffic at the City Provided as Open Data 

For including city traffic data from the surroundings of the port, the authors used an open data 
source consisting of digested information from car fleet equipped with Global Positioning System—
GPS—providing location and speed information of the city of Thessaloniki. This data (with especial 
interest due to the historic offering) was served by courtesy of CERTH-HIT (member of PIXEL) via 
the TrafficThess website [105]. This website has varied information of the different roads of the city 
(referred as links) updated each 15 minutes, which is perfectly aligned with the used baseline dataset 
for this task. The pre-processing followed over the raw data involved: (i) selecting five of the 
surrounding links to the gates of THPA, (ii) extracting the data for those five links from April 2018 
till February 2020 (same reasoning than before), (iii) selecting the interesting fields of the information 
provided, (iv) building a Comma-Separated Value (CSV) table with the average of the average speeds 
of the 5 surrounding links. This is briefly illustrated through the images in Figure 8: 

 
(a) 

 
(b) 

Figure 8. Traffic city data origin and procedure is shown as a figure, (a) Selected relevant surrounding 
links over the TrafficThess web interface; (b) Structure and management of historic data in CSV 
format. 
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As explained, TrafficThess’ historical is sampled every 15 min. To make the calculations 
consistent, both historic and real-time data was averaged and condensed to have a 60-minutes 
granularity. Thereafter, the dataset was properly stored, ready to be used for TCI computation. 

3.3.3. Vessels Berthed in the Port 

Similar to the traffic at the gates of the port, the authors were provided with historic and real-
time data of the vessels processed in the Port of Thessaloniki courtesy of the Port Authority. This data 
was served by the Information Technology department of the Port of Thessaloniki via a REST API 
web analogous to the previously mentioned. The query to that API returns all the vessels that were 
operated (one API per year) in a JavaScript Object Notation (JSON) format including rich information 
and details of every single vessel in a year. This information is only timestamp-referred by including 
fields of “start_work” and “end_work” of each ship, therefore certain data pre-processing after 
acquisition was needed. The procedure followed was: (i) downloading the data of all vessels 
processed in April 2018-February 2020, (ii) fine-tuning the timeframe, (iii) grouping, filtering and 
counting the vessels to prepare a CSV file the proper info: number of vessels at berth/manoeuvring 
in the port separated by periods of 60 minutes This is briefly illustrated through the images in Figure 
9: 

 

 

(a) (b) 

Figure 9. Vessel count per hour in the Port of Thessaloniki: (a) Raw data format; (b) Structure and 
management of historic CSV. 

Regarding the pre-processing, most data from the raw retrieval was ignored except for counting 
the number of vessels in a timeframe. Filtering by the fields of “start” and “end” work, the dataset 
was built. The technology used for the pre-processing were Python scripts, taking advantage of the 
features of the library pandas. 

3.3.4. Weather 

The authors have used the free web service provided by Stratus Meteo of Greece [106]. Different 
sensors are installed throughout Greece and for this case we made use of the one closest to the Port 
of Thessaloniki (presented in Figure 10)  
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(a) 

 
(b) 

Figure 10. Selection of sensor data source for weather. (a) Global meteo sensor stations distributed 
throughout Greece; (b) Sensor selected close to the gates of the Port of Thessaloniki. 

Historical and real-time measurements of temperature, wind speed, precipitation intensity, 
humidity and dew point (among others) were ready to use considering the following hindrances: the 
information retrieved from this external service was only served with a daily granularity. In that 
regard, a preliminary action needed was to re-shape the data to adjust the structure for the posterior 
modelling. Moreover, the dataset of weather was also available from September 2018, therefore 
diminishing the quantity of data for training and validating the model and the expected accuracy. 

Table 3 shows a summary of the data that has been used for the experiment: 

Table 3. Summary of data used in the experiment. 

Data 
Source 

Technology 
Used Relevant Parameters 

Refresh Frequency 
of Pre-Processed 

Data 
Units History 

Available 

Gates’ 
traffic 

RFID Vehicles Per hour 
Vehicles/hour April 2018 

Weather Meteo station 
Temp, wind speed, 

precipitation intensity 
Per day °C, kmh, mm 

September 
2018 

City 
traffic 

GPS Average speed Per hour Kmh/vehicle April 2018 

Vessels in 
port 

Vessel calls Time ranges Per hour # of vessels April 2018 

3.4. Methodology of the Experiment 

The experiment has consisted of deploying the framework of Section 3.1 for the use-case outlined 
in Section 3.2. To conduct the experiment, a methodology of various steps was envisaged and took 
place. The explanations below aim as well at being a guide-for-using for any person wishing to 
replicate a similar practical case using our framework. 

On one hand, the “conceptual” methodology was comprised of the actions needed to be tackled 
by the involved people (port, city, citizens, societal agents). The idea is to have a useful CI that will 
lead relevant actors to set sustainable, smart policies upon it. Therefore, this activity is of paramount 
importance. For this experiment, the only actor that participated was the Port Authority of the Port 
of Thessaloniki, under the scope of the project PIXEL. The “conceptual methodology” has three steps, 
whose details are shown in Figure 11. The purple boxes represent the moments where the technical 
staff will need to intervene to guarantee effective deployment of the framework. 
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Figure 11. Conceptual methodology for deploying the framework on a practical experiment. 

On the other hand, the framework had to be customized and instantiated for conducting the 
experiment. Apart from enough equipment material to run the modules integrated (see Section 3.4.4), 
the technical intervention went as follows: 

1. Definition and development of the NGSI agents: developed by technical experts after gaining 
information of the data available (see Section 3.2). 

2. Definition of the composite index (TCI) by stakeholders using the visual interfaces developed in 
the framework. 

3. Setup and running of the predictive component, from user parameters to actual software 
running. 

4. Configuration, implementation, and integration of all the pieces together to have a real-time 
composite index calculation. 

In the next sub-sections, we are describing the materialization of the steps above for the 
experiment developed in this paper. 

3.4.1. Definition and Development of NGSI Agents for the TCI 

The technology selected to implement the NGSI agents was the Python pyngsi framework. It was 
developed as part of the H2020 PIXEL project. Writing a NGSI agent using this framework avoids 
developing them from scratch, because it offers a clean code structure and a documented tutorial. 
Therefore, the developer of an agent can focus on writing his own logic to build NGSI entities. 

Figure 12 shows how the agents developed enable to process experiment data from 
heterogeneous data sources, content formats and protocols using a common interface, convert the 
data received in the NGSI entities based on FIWARE data models and send it to the Orion Context 
Broker. Specifically, for the use case, the data sources were two-fold: historic datasets consisted of 
structured CSV files while real-time data was to be retrieved by specific HTTP requests to REST APIs. 
This drove the authors to create two agents per data source: one for the historic and another for the 
real-time connection. In both, data was transformed in a JSON schema, covering the key-value 
representation of NGSI v2 context data. As designed in the framework (Section 3.1), the NGSI v2 data 
model defined is a custom extension of the KeyPerformanceIndicator FIWARE Data Model. It was 
extended following the design principles and guidelines offered by FIWARE official documentation 
[107]. 
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Figure 12. NGSI agent internal process for data conversion in the TCI experiment. 

According to the previous, all NGSI agents needed to be developed in one experiment must 
follow the three-step processing. Within the syntactic and semantic transformation, several other 
computations such as filtering, grouping, cleaning, discarding may take place. Additionally, all 
interoperability agents have certain inseparable parameters, which are the refresh time (RT) and the 
“kpiName” field name. In the experiment of this paper, a total of seven agents were developed to 
ensure proper storage and usage of historic and real-time data. In Table 4 details are found of their 
development. 

Table 4. Interoperability NGSI agents developed in the experiment. 

Data Agent type Format Transformation RT kpiName 
Gates traffic—
Historic 

Active over static 
file 

CSV 
Pre-processing explained 
in Section 3.3. 

- 
Kpi-traffic-gate-
10A/16 

Gates traffic—
real-time 

Active over 
dynamic source 

REST 
API 

Filtering, grouping and 
JSON conversion. 

60′. 
Kpi-traffic-gate-
10A/16 

City traffic 
Active over 
external website 

CSV 
Pre-processing explained 
in Section 3.3 

60′ Kpi-traffic-city 

Weather 
Active over 
external website 

CSV 
Pre-processing explained 
in Section 3.3 

24 h 

Kpi-weather-
temperature 
-windSpeed 
-precipIntensity 

Vessel count—
historic 

Active over static 
file 

CSV 
Pre-processing explained 
in Section 3.3 

- Kpi-vessel-count 

Vessel count—
real-time 

Active over 
dynamic source 

REST 
API 

Filtering, grouping and 
JSON conversion. 

60′ Kpi-vessel-count 

3.4.2. Definition of the Traffic Congestion Index 

According to the use-case definition, the TCI composite index represents the congestion status 
due to diverse factors. To build the CI structure, the authors proceeded to analyse the data, establish 
a levelled tree layout and weighted the nodes. This exercise must be tackled jointly by technical staff 
and stakeholders in a potential replication of the experiment. 

• Grouping of data into KPIs: Following the state of the art analysed in the projects PIXEL and 
CITYkeys, the authors decided to group the data for feeding KPIs by common origin and 
meaning [99]. This drove the design to couple the traffic on one side (gates of the port and city), 
vessel information on other side and weather information on a third and final string. The leaf 
nodes (KPIs) were also individually separated by isolated pieces of information (Gate 16 of the 
port, Gate 10A of the port, vessel count, temperature, wind speed and precipitation intensity) 
This led to a three-levels composition, being the KPIs the leaf nodes, three subindices and the 
TCI as the root node, resulting in a 7:3:1 matrix. 

• Exploratory Data Analysis (EDA) of available historical data: Authors carried out a thorough EDA 
of the historic of data (see Section 3.3). A summary of that EDA is attached in Appendix B. The 
main aim of this EDA was to discover how the data performs through time, noticing seasonality, 
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and, mainly, to find the correlation between the different data with the main reference source: 
the traffic at the gates of the port. The results of this correlation were the following: 

• Weighting: The last-but-one configuration for the CI was to select the weighting method and 
values to give to each node. This is a crucial action that has been widely studied in the 
composition of CIs [108]. There is not a universal weighting method and it must be analysed 
case by case, introducing a challenging choice [109]. The most used method is equal weighting, 
followed by analytical methods (regression analysis, benefit-of-doubt, principal component 
analysis), with opinion-based methods only used marginally. The choice depends on the nature 
of data and indicator items: (i) equal weighting tends to be used when no historical data is 
known, (ii) analytical methods are case-to-case analysed depending on the items and (iii) 
opinion-based methods are mostly used in social sciences (cases where the target indicator is 
highly subjective). In this experiment, the authors opted for an analytical method driven by the 
analysis of historic data available. The specific scheme selected was to base the weighting values 
on the correlation of all items with the main reference item. For establishing those values, g the 
authors came to map KPI-weight, sub-index-weight, which brought to solve three equations 
systems (see numbers and structure of the points above).  ∑𝑊𝑖 ×  𝐶𝑜𝑟𝑟𝑖 − 𝑜𝑡ℎ𝑒𝑟_𝑠𝑜𝑢𝑟𝑐𝑒𝑠_𝑖𝑛_𝑠𝑡𝑟𝑖𝑛𝑔 =  1 (1)

The relation among KPIs is known by Table 5, therefore the Gauss method was used to solve 
them and come up with the weights, which are displayed in Figure 13. 

Table 5. Correlation between all data sources with the traffic at the gates of the port. 

Source Correlation Explanation 

Average speed in 
nearby streets 

−19.2% 
As the cars move slower (less speed), the more traffic at the 
gates is experienced, being the most statistically relevant 
factor influencing the congestion 

Number of vessels 
berthed +11.7% 

More vessels at the berth, more traffic at the gates. Although 
the correlation is not high, this % is significant. 

Temperature −7.7% 
The colder, the more traffic, which under a logical point of 
view: summer-less traffic. Not much statistical impact. 

Wind speed −8.6% 
The winder, the less traffic, but with no relevant relation to be 
conclusive. 

Precipitation 
intensity +3.7% Very loosely coupled, almost no statistical correlation. 

 
Figure 13. Tree definition and weighting for calculating the Traffic Congestion Index. 
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• Aggregation method: According to the literature, there are three widely used aggregation methods 
[108]: additive aggregation, geometric aggregation and non-compensatory aggregation, being 
the first one the most popular by far. Additive aggregation provides transparency and allows a 
simple understanding of the results, being much dependent on the synergies between items. 
Geometric aggregation also provides a good understanding of results but requires uniformity in 
measurement units and scales, being very dependent of synergies as well. Non-compensatory 
methods are fit for cases where the indicator is going to be deployed in several instances (e.g., 
ports, countries) and those aim to be compared and ranked. Non-compensatory methods are the 
most computationally expensive of the three. For this experiment, the authors considered that 
the relevance of all indicators was not equal, being the traffic at the gates the reference item. 
Noticing the previous, the choice was to select additive aggregation. However, the framework 
developed in this paper has been designed to allow the selection of any of them for future uses. 

• Normalization method: The items to build the indicator must be comprehended in the same scale 
in order to be aggregated. Thus, a normalization step was included in this computation. A lot of 
methods for normalization are available, and to be able to finally select one as definitive several 
robustness test must be done. The objective of the work in this paper was to demonstrate the use 
of these calculations using a specific IoT architecture rather than going deep into normalisation 
arguments. Scale method was discarded due to magnitude variation, as well as the ranking due 
to its only execution in Thessaloniki. Z-score method and Min-Max were the main candidates 
and, considering that in this experiment the authors had valuable historic data for more than 18 
months, the Min-Max option was selected. 

3.4.3. Predictive Component: Training and Validation 

In the scope of the composite indicators using the proposed framework, the prediction will 
always drill down as a timeseries forecasting problem. According to the revision outlined in Section 
2.4, in this case, a model must be trained with past data and requested to infer new values for a certain 
horizon using the same period than the available dataset, so a custom predictive model had to be 
used by transforming timeseries problem into a classical structured supervised ML problem. In those, 
no fresh data is required as input to a “prediction black box” to influence the prediction. Therefore, 
what must be done is re-train the model periodically to be sure to be exploiting the new data as much 
as possible. 

For this experiment (see Section 3.3), the periodicity of data is 60 min (except for weather, that is 
daily). Thus, it was decided by the authors to establish 60 min as the periodicity and one day as the 
horizon. 

Regarding the selection of the model, several options were available (see Section 2.4). Especially 
interesting were Autoregressive Integrated Moving Average—ARIMA—models or time series 
regression models such us Seasonal ARIMA (SARIMA) or Autoregression Vector [110], among 
others, widely available in Python libraries in the open-source community. Authors realized, thanks 
to the EDA, that some data registers presented missing values. Besides, both traffic in the city and 
weather data presented strong daily and monthly seasonality. Henceforth, a model engine needed to 
be selected that properly handled those criteria. According to the authors, the most appropriate 
selection was to use Prophet [111], a general purpose timeseries forecasting tool developed by 
Facebook. This election was strengthened while observing some of its traits: easily integrable in agile 
deployments with heterogeneous data. Detailed analysis of the use of other state-of-the-art models 
such as gradient methods were applied in one activity of PIXEL project [112], which outperformed 
Facebook Prophet by significant margins, but required more effort and data to be integrated, 
hindering the automation capacity and seeming overkill targets for what is needed in a Smart Port-
City CI application. 

Regarding re-training and evaluation, the framework has been designed to be re-trained under 
request. At each re-training iteration, the model will be evaluated on left-out datasets following a 
70/30 dataset split, using different error metrics. For this experiment, the model was re-trained three 
times, resulting in a validation that can be consulted in the repository of the materials of the paper: 
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(1) To convert and clean the historic CSVs into the accepted data format for training the Prophet 
model. Here, the attributes had to be adapted and seven different models were created. The 
framework and methodology designed (see Section 3.1) established that all KPIs must be 
predicted, and then the CI is calculated after those values. For that reason, one model per each 
KPI was trained and used. This was developed by the authors using Jupyter Notebooks [113]. 
The procedure was studied to be replicated in an automated way for (2). 

(2) To create Python scripts that gather and group the KPIs data from the data storage and convert, 
clean, and adapt the information for re-training the seven models. In this experiment, three re-
trainings took place, according to the framework usability evaluation depicted at the beginning 
of Section 4. The outcomes were new models that have used more historic data to be trained, 
therefore more accurate and usable. For storing and retrieving those models (binary files), the 
Python built-in library pickle has been used. 

(3) To apply the models. As commented, the forecasting horizon was set to 1 day with a 60 min 
periodicity. This way, each morning, the framework runs the inference over the trained models. 
Prophet models do not need input data; therefore, a prediction is requested (automated through 
a Python script) with that periodicity and horizon. The outcome (future timestamps with 
predicted TCI values) are used to be represented for the user via the UI component.  

3.4.4. Component Integration and Deployment 

When all modules were developed and ready to be used from an isolated perspective, then the 
authors proceeded to the integration and deployment. Using the authors’ university department own 
premises, a prototype of the framework was deployed to run the use-case of the experiment. The 
different modules (as designed in Section 3.1) were integrated, connected using the proper ports and 
following the containerization (Docker) approach, resulting on a continuous working system. The 
schema of Figure 14 aims at representing the module interactions, data flow and “network 
configuration” of the deployment of the framework for this case.  

As it can be seen, the deployment follows the design of Figure 2 (Section 3.1), keeping 
consistency with horizontal and vertical competences of every module. However, it is worth to 
mention that some additional elements—not explicitly stated in the framework design—were needed 
to achieve effective integration. These additional elements, and a summary of the integration flow, 
are narrated below. 

The NGSI Agents retrieved the raw data from the different origins, converted them into the 
proper format based in the FIWARE KPI datamodel, and then updated the attributes of the related 
FIWARE ORION entity. As one mandatory addition, the Data Broker modules had an associated 
MongoDB database. This database is embedded natively with ORION in order to persist the last 
value of the entities’ attributes, which is named context data. Afterwards, to be able to connect the 
Data Broker with the long-term storage database of the framework (Elasticsearch), another auxiliary 
element was required: FIWARE Cygnus [114]. This component subscribed to the ORION entities and 
created a sink to connect with the upper-layer database. With that purpose, the NGSIElasticsearchSink 
[115] was used. 

The orchestrator module was deployed as a crucial piece of the framework. The integration 
consisted of properly using Linux cron job to schedule the prediction scripts and TCI calculation. 

Atop those, the Elasticsearch REST API module—another additional element—was needed to 
act as a bridge between the data storage module and the visualization UI. It was built using NodeJS 
[116] and the Elasticsearch Node.js client [117], with the purpose of avoiding queries to Elasticsearch 
directly from the UI. This module prepares the data with the specific format used by the map and the 
different charts that are displayed in the dashboard section of the UI and stores the tree specification 
in the database. Finally, the UI was served like a static web page by an Apache Server [118], so it was 
able to be accessed by the users via a common web browser. This web browser makes the necessary 
requests to the Elasticsearch API module.  



Sensors 2020, 20, 4131 23 of 41 

 

 
Figure 14. Integration and deployment of the framework for running the experiment. 

Regarding technical details of the deployment, all the modules were deployed in the same 
machine, except the data source REST APIs (city traffic, weather and THPA). This machine belongs 
to the authors’ investigation group private cloud and its hardware specifications are detailed in the 
Table 6. In addition, both the software specifications of the pre-built modules (FIWARE components 
and Apache Server) and of the technologies used to develop and run the other modules are detailed 
in the Table 7.  

Table 6. Hardware specifications of the server. 

Item Specifications 
CPU 4 CPUs x Intel® Xeon® CPU E3-1220 v5 @ 3.00 GHz 

Storage Memory HDD 100 GB 
RAM Memory 16.05 GB 

Cluster FUJITSU PRIMERGY TX1330 M2 

Table 7. Software specifications of the framework. 

Item Specifications/Version 
Server OS Ubuntu Server 18.04.4 LTS 

Java OpenJDK 1.8.0_252 
Apache Maven 3.5.4 
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Node.js + npm 12.18.1 LTS + 6.14.5 
Python + pip 3.8.3 + 20.1.1 

Docker + Compose 18.09.7 + 1.17.1 
Apache Server 2.4.43 
Elasticsearch 7.8.0 

MongoDB 3.6.3 
FIWARE Orion 3.4.0 

FIWARE Cygnus 2.2.0 

Development IDEs 
Eclipse IDE for Enterprise Java Developers (v. 2020-06) 

Visual Studio Code (version 1.46) 

3.4.5. User Configuration 

Once the modules are integrated and the deployment is set, the last step of the methodology was 
to adjust the visualization and other configurations to interpret the CI. These configurations—in a 
supposed replication of the experiment – must be done by the actors interested in the composite 
index. In this experiment, the authors took the liberty to configure the solution assuming how it might 
be used by such actors. There were two configurations, and all was enabled to be set via user interface: 

(1). To translate the CI calculation configurations for actionable instructions 

The TCI definition is explained in Section 3.4.2. The CI structure and weights were there defined 
from an operational point of view. The configuration at this step meant to translate that definition 
into software instructions. There, the authors created the number of levels of the tree and then, create 
all the tree nodes, beginning from the root node and finalizing in the leaf nodes. For each node, it was 
introduced the name (in leaf nodes, it must coincide with the name of a valid KPI stored previously 
in the Elasticsearch database), description and, depending of the node level, the weight, weighting 
method, aggregation method and NGSI Agent. Furthermore, it was necessary to select a common 
normalization method and to introduce the URL of the normalization API, needed to run the TCI 
(Figure 15). The selected normalization method for the experiment was Min-Max [119] per KPI. 

  

(a) 

 
(b) 

 
(c) 

Figure 15. Composite indicator configurations: (a) normalization method and API; (b) tree structure 
creation, from results of Section 3.4.2.; (c) configuration for each node of the TCI tree. 

(2). To establish thresholds, reference numbers in the visualization of results 
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Another section of the UI where the authors stated configuration parameters was the dashboard, 
that will be explained in detail in the Section 4. The authors inserted the threshold values for low and 
high traffic in the line graph and the threshold values of traffic at the gates that will be translated to 
the gates’ color in the map (Figure 16). For the experiment, the configuration values selected were:  

0 ≤ TCI < 0.2, Low congestion 

0.2 ≤ TCI < 0.46, Medium congestion 

0.46 ≤ TCI < 1, High congestion 

(2)

 
(a) 

 
(b) 

Figure 16. Configuration of thresholds: (a) for the representation of current status in a map; (b) for 
visualizing margins of TCI evolution and prediction. 

4. Results 

The objective of the proposed framework was to provide usable, reliable, actionable knowledge 
via a composite indicator. The experiment deployment presented above was aimed at demonstrating 
the usefulness of the framework. Therefore, results were needed to validate that objective. 

In the context of the TCI, the traits that had to be analysed were:  

(i) composite indicator makes global sense and represents the reality, 
(ii) predictions are valid and realistic, so that the model can be trusted, and 
(iii) the interface usability makes it easy to interpret the information to build Smart Port-City policies 

upon. 

As explained in Section 3.3, the historical data in the experiment covers from April 2018 to 
February 2020 (except for the weather, which is available from September 2018). From that point on 
(February 2020), this framework was designed, and the data from that moment was gathered in real-
time. The Port and the City of Thessaloniki have certain seasonality patterns on the traffic and 
weather, therefore, in order to validate the framework, the strategic choice was made to select certain 
dates to obtain results to analyse. Drawing from the EDA carried out, it was noticed that summer 
months’ performance varied in comparison to winter months; diverse variation within the week and 
the hour of the day were also observed. Henceforth, it was decided to define 9 scenarios to cover most 
of the situations that the port-city traffic might experience. Specifically, three timeframes were 
selected (one week in March, another in August and another in January), selecting three different 
days at three different hours. The dates selected were Tuesday at 9 a.m., to represent a busy period 
with regards to vessel operations and traffic at the gates, Thursday at 3 p.m. to reflect moderate traffic 
period (at average) and Saturday to reflect low port activity and high city life. This way, authors 
aimed at having enough base to reassure whether the framework will be valid. 

For visualising the results, the authors created a UI dashboard, as contemplated in the top-layer 
component of the framework. It is shown in Figure 17, representing the results of scenario 1.1.  



Sensors 2020, 20, 4131 26 of 41 

 

 
Figure 17. UI dashboard to visualise and interpret the calculation and prediction of the TCI. 

The first quadrant is titled “Current traffic congestion at port gates” and it is formed of an 
OpenstreetMap [120], which has been created using the library Leaflet [121], including two markers 
that correspond with the location of the two gates (10A and 16, from left to right) that are analysed. 
The markers’ color indicates the congestion level in its corresponding gate. At its right, the gauge 
chart shows the current value of the TCI index. The third quadrant is titled “Historic and prediction 
of TCI index value”. This line graph shows the evolution of the TCI in the whole day and it is split 
into two parts: the first one represents real values until the current time while the second one 
represents predicted values. Furthermore, the graph includes two lines that indicate the upper (red 
color and TCI value of 0.45) and lower (green color and TCI value of 0.2) thresholds. Finally, the bullet 
chart represents the current value of the three indices (traffic, vessels, and weather) obtained during 
the TCI calculation process. Most quadrants’ interfaces of this visualization UI have been created 
using the library amCharts [122]. 

According to the authors, the previous screen enables the port and city stakeholders to interpret 
the current and the short-term predicted evolution of the traffic congestion. Stakeholders will be able, 
then, with this framework, to realise the real-timeness of the indicator, being able to make timely 
comparisons and knowing, with a quick glance, the status of the congestion in the port-city interface. 
The objective (iii) was met. 

The same exercise was repeated for the nine mentioned scenarios, obtaining, for each, the value 
of the TCI on that moment and the predicted TCI values (thus its expected evolution) for the rest of 
that day (find all the screenshots in Appendix C). In the table below, there is a summary of the results 
and main conclusions extracted upon them. The rationale behind the column “Explanation and 
evolution” comes from the EDA. In general, the TIC values (and short-term prediction) are considered 
valid if it can be established a direct reasoning from the conclusions extracted during the EDA. 

Observing the results in Table 8 and Figure 18, the objective (i) can be considered achieved. The 
value of the index is always comprehended in the 0–1 range, indicating 1 as maximum traffic 
congestion and 0 minimum traffic congestion. In general, values are higher on labor days and lower 
on weekends, experiencing more traffic congestion in the mornings. The graph below aims at 
representing those values. 
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Table 8. Experiment results, reasoned per scenario. 

Sc.# Date TCI Value Explanation and Evolution 

1.1 
19 March 2019 

9 a.m. 
0.48240252 

Peak is observed at the hour of the scenario execution, which is aligned with the 
EDA and the expected situation. The curve is a bit more flattened than logically 
expected, but downwards timing seems proper. 

1.2 
21 March 2019 

3 p.m. 
0.46978970 

The hour of the scenario is exactly experiencing the start of congestion dawn, 
where the peak was reach just before 3 p.m. The prediction curve looks proper. 

1.3 
23 March 2019 

12 p.m. 
0.31322503 

Scenario 1.3 can be trusted as well as the prediction for the central hours (9 to 15) 
experiences usual up and downs and it is kept between mid-congestion margins. 

2.1 
13 August 2019 

9 a.m. 
0.43149143 

As a usual Tuesday, levels of congestion remain constant high levels during the 
labor days. Curve reflects with high accuracy the usual picture in vessel-operations 
busy months. 

2.2 
15 August 2019 

3 p.m. 
0.20111357 

Scenario 2.2 shows unusual representation: despite being a Thursday, the traffic 
congestion is experienced and predicted between 0.2 and 0.3. However, this must 
be considered nothing but a good functioning of the framework and the prediction, 
as the 15th August is national holy day in Greece. 

2.3 
17 August 2019 

12 p.m. 
0.35446125 

Scenario 2.3 follows the same rationale than 1.3, therefore it is valid. The only 
addition is that more traffic congestion (in general), is perceived and forecasted. 
This makes sense as 17th August is summer period and, normally, more traffic is 
experienced in the city on Saturdays at central hours. 

3.1 
14 January 2020 

9 a.m. 
0.44768116 Same exact observation, thus rationale than 2.1. 

3.2 
16 January 2020 

3 p.m. 
0.50527066 As in 1.2, hour of experiment coincides with congestion dawn. Curve looks legit. 

3.3 
18 January 2020 

12 p.m. 
0.21129410 

Scenario 3.3 registered one of the lowest TCIs, both at the measurement hour and 
in the real-time previous values and the forecasted (max. 0.3). This makes sense as 
winter's Saturdays are less congested (in general) than the rest of the days. City's 
weekend tourist life is not as vibrant as at summer. 

 

Figure 18. Results of the experiment—graph of TCI values per scenario. 

With regards to the last objective, (ii), the “explanation and evolution” column in table 8 details 
how the prediction of the TCI meets the logical expected curve. Besides, the performance metrics 
obtained of the model utilised show little error (Mean Absolute Error—MAE), especially in the most 
significant data references: traffic at port gates and traffic at port city. 

As a point of discussion and utility of the framework, the technical solution developed provides 
an extension component for PIXEL platform, a potential enabler of FIWARE stack [123] and could be 
offered as an independent software tool atop those platforms 

Those facts together make the authors conclude, that, on the light of the results, the TCI 
experiment demonstrates that the proposed framework and methodology might help tackling 
current and future Smart Port-City challenges. 
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5. Discussion 

The authors believe that the outcomes of this work might hugely contribute to cities and ports 
by implementing an IoT-based solution, which is the main focus of this special issue. Specifically, the 
TCI experiment carried out may support the effective implementation of policies in the city of 
Thessaloniki. To mention one, the TCI can be used in the reports of the port and the city to evaluate 
how the different urban planning initiatives or port land construction works are affecting the traffic 
in the surroundings. Another port-city policy that could be fed with the TCI are the citizens’ safety 
associated to noise and pollution levels attributable to that port-city interface. From another 
perspective, the TCI value could be incorporated to the traffic lights cycle, allowing thus to reduce 
the congestion which might be a policy objective. 

For a port authority, a deployment following the line of this TCI experiment can bring several 
benefits: first, having a unique point combining a series of relevant available resources, after its 
collection, having it monitored and published; second, being able (through data analysis) to identify 
periods of time in which the traffic is above accepted levels, focusing on the areas or procedures that 
can be optimized, correlating between processes and corresponding equipment, giving priority to 
areas (or procedures) with realistic reduction potential and thus optimising inbound and outbound 
truck flows and equipment movements; third, to establish internal process-centric practices, such as 
gate policies to specify a time slot during which trucks are allowed to enter the port area or 
relationship-centric practices, such as training operators (of machinery, vehicles, etc.) with the goal 
of minimising bad practices leading to higher traffic congestion that can have a negative 
environmental impact. Last but not least, visibility and acceptance from the community. From the 
municipality perspective, the TCI can be useful for another set of targets. Understanding the main 
contributor to the traffic congestion may help the administration to apply tailored control, influencing 
demographics, urban development, taxes or fines. Public bodies may also benefit from experiments 
like the TCI as a tool for auditing performance and ensuring to keep traffic levels among reasonable 
thresholds. Additionally, the semaphores and other signaling rhythms adjusting systems would have 
another input to be fed from. Finally, as a joint benefit, linking with the hypothesis proposed in this 
paper, the TCI may serve as a meeting point for all the actors above to know the current status of 
traffic congestion and to agree upon policies. 

6. Conclusions and Future Research Lines 

In this research, the authors have analysed the related work on the fields of smart port and smart 
city services, looking for finding a software-based solution to address relevant challenges of the smart 
port-cities of the future. The work was devoted to developing a framework to leverage IoT techniques 
focusing on the calculation and prediction of indicators representing real-world phenomena. In 
particular, as an outcome of this paper, the solution has been applied to real data on the port-city 
interface of Thessaloniki in Greece.  

IoT open-source components have been used in the design and deployment of the framework, 
introducing elements for enabling short-term prediction, high usability and configuration capabilities 
for the user and an interpretation interface. Heterogeneous data sources have been handled using 
specific defined data formats, achieving syntactic and semantic interoperability. The software has 
been successfully integrated in virtualised servers hosted in one machine by the authors. Results were 
satisfactory in all the scenarios defined for the framework validation. 

According to the authors, this field of work will open a wide variety of options to be explored, 
both from the application point of view (different actors, usability, standardization, methodology) 
and from the technical perspective.  

On the one hand, the co-design and flexibility of the system will allow incorporating data and 
wills from different actors. For the citizens, having access to such an indicator would mean a step 
forward in the democratisation of the information and procedures, which can increase the acceptance 
of the government and of the port activities. This concept aims at boosting the so-called “enlightened 
political participation” [124] of the citizens to affect the decisions on their environment beyond the 
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periodic voting. This is clearly a field to explore further as the outcome of this paper will offer the 
citizens and other entities the possibility to access and actively participate in such actions. 

On the other hand, additional options for technology research are motley. Specifically, authors 
would be interested on see this framework as a basis for including more complex prediction models, 
a higher number of data sources and with more refined orchestration approaches. Regarding the 
framework composition, the authors believe that the dual approach designed will open interesting 
research lines; there is a trend in the distributed systems to move computation to the “edge” of the 
network to bring benefits such as reducing latency, optimizing bandwidth use, improving privacy 
and security, and alleviating network congestion and traffic in general [125]. In future applications, 
heavier training and predictions will be moved to the “NGSI agent side” of the system, allowing the 
central server to process, offer and show more data sources with more accuracy degree closer to real 
real-time. The fact of being built upon open source consolidated technologies makes the proposed 
tool a perfect testbed to be leveraged by the community, going beyond classical private customized 
approaches. 

Supplementary Materials: The authors have decided to provide the Supplementary Materials via a public 
repository in GitHub: https://github.com/iglaub/article_sensors_iotcities. Both code and data used in the 
experiment do have certain publication restrictions. Some code pieces (interoperability agents and predictive 
models) are part (under construction) of the PIXEL project, thus details of distribution are still to be unleashed. 
The repository for this paper contains only samples of those agents and models. Regarding the data, it was 
provided to the authors in the context of the PIXEL project pilot in the Port of Thessaloniki. Authors are gathering 
permission to make the raw data public. In the meantime, the repository clearly explains the origin of the data, 
allowing interested researchers to directly contact the data owners. The material included in the repository is: (i) 
code: sample scripts for the aim of replicability, sample notebooks for predictions, the backend model calculating 
the TCI and the visualisation interface, (ii) figures included in the article and (iii) information about the data. 

Author Contributions: Conceptualization, I.L. and A.B.; methodology, I.L..; software, I.L. and R.V.; validation, 
A.B.; formal analysis, I.L. and C.E.P.; investigation, A.B.; data curation, I.L.; writing—original draft preparation, 
I.L. and A.B.; writing—review and editing, C.E.P. and R.V.; visualization, R.V.; supervision, C.E.P.; project 
administration, C.E.P. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded, by the European Commission, via the agency INEA, under the H2020-
project PIXEL, grant number 769355, and, when applicable, by the H2020-project DataPorts, grant number 
871493, via the DG-CONNECT agency. 

Acknowledgments: The authors extend their appreciation to the Port Authority of the port of Thessaloniki, to 
the National Observatory of Athens and to the HIT department of the Greek institute CERTH, for providing 
data to conduct the experiment under a collaborative spirit drawing from the scope of the project PIXEL 
(copyright compliance was obtained through publication of deliverable D4.4 of the project). 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the 
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to 
publish the results. 

Appendix A 

This appendix refers to the data models defined and used in this paper in the framework design 
and in the use-cases experimentation. 

(i) Example of KPI used in the experiment (Traffic at Gate10A of the Port)—extension of 
KeyPerformanceIndicator JSON by FIWARE. 
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Figure A1. Example of an KPI datamodel. 

(ii) Example of result after TCI calculation in the experiment. As in the previous, the FIWARE data 
model is also used as a basis, as we consider the TCI as another indicator (just the final single 
one): 

 
Figure A2. Example of an output KPI generated by the TCI. 

Appendix B 

This appendix aims at summarising the Exploratory Data Analysis of the baseline information 
(the most relevant: the traffic of the gates of the port) that was carried out by the authors to realise 
about data nature (performance in time, seasonality, patterns, etc.). This was conducted via the 
application of usual data science techniques, using Jupyter Notebooks and the library pandas. 

For this analysis, the technical team assumed that there was no major differences (per average) 
on the gates behaviour within a certain month. Therefore, only Gate10A’s results are shown. 
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(a) 

 
(b) 

Figure A3. Heatmap of traffic at port gates. (a) Per month; (b) Per day of the week. 

There were some interesting reflections to be extracted: January, May and September are the 
months with more traffic congestion, both in volume and in number high congested hours (till 5 
p.m.). The central hours of the day are the ones in which the congestion is higher, especially between 
12 and 2 pm, where the maximum rates are noticed. Months with less traffic are April and November. 

However, within the same day and within the week, the differences are notable. To focus on the 
scenarios of the experiment, it was interesting to include in this summary the usual “curves” of traffic 
evolution at gates of the port during each day of the week. Additionally, it was decided to leave the 
graphs separated for entries and exits. For the use-case in the experiment, those were put together to 
calculate the “traffic at the gate”. 

 
(a) 

 
(b) 

 
(c) 

(d) 

Figure A4. Average evolution of traffic in port gates, separated per direction. (a) Gate 10A- Entry; (b) 
Gate 10A - Exit. (c) Gate 16—Entry; (b) Gate 16—Exit. 

Noticing the experiment scenarios, the evolution on days Tuesday, Thursday and Saturday was 
especially relevant to depict in this summary: Saturdays are not very congested with regards to 
traffic, logical as it is not a working day. However, more traffic is noticed on Saturdays for different 
reasons, such as some office works. Thursdays (with Fridays) are the days with more traffic, possibly 
due to the need to process the pending cargo/activities before finishing the week. For Tuesdays, it is 
observed that keep an almost identic distribution per hour considering the sum of the traffic of the 
two gates at both directions.  
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Appendix C 

This appendix provides the screenshots of the results obtained for the nine scenarios defined in 
the experiment. 

 
Figure A5. Visualization of the scenario 1.2 in the UI dashboard. 

 
Figure A6. Visualization of the scenario 1.3 in the UI dashboard. 
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Figure A7. Visualization of the scenario 2.1 in the UI dashboard. 

 
Figure A8. Visualization of the scenario 2.2 in the UI dashboard. 
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Figure A9. Visualization of the scenario 2.3 in the UI dashboard. 

 
Figure A10. Visualization of the scenario 3.1 in the UI dashboard. 
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Figure A11. Visualization of the scenario 3.2 in the UI dashboard. 

 
Figure A12. Visualization of the scenario 3.3 in the UI dashboard. 
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