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Abstract: Accurate correction of high distorted images is a very complex problem. Several lens
distortion models exist that are adjusted using different techniques. Usually, regardless of the chosen
model, a unique distortion model is adjusted to undistort images and the camera-calibration template
distance is not considered. Several authors have presented the depth dependency of lens distortion
but none of them have treated it with highly distorted images. This paper presents an analysis
of the distortion depth dependency in strongly distorted images. The division model that is able
to represent high distortion with only one parameter is modified to represent a depth-dependent
high distortion lens model. The proposed calibration method obtains more accurate results when
compared to existing calibration methods.
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1. Introduction

Lens distortion is a significant problem in the camera calibration process. This systematic error
needs a precise modelling and calibration for imaging-based measurement techniques. Several different
camera models have been proposed for different types of cameras. The most popular is the even-order
radial distortion polynomial model that models radial distortion by means of scaling by a factor [1].
However, results using the radial distortion model are not as accurate as desired when high distortion is
present. If high distortion is present, several models exist in the literature. Ricolfe-Viala in [2] compares
the performance of the radial-tangential model, logarithmic, polynomial, division, and rational function
distortion models with low and high distorted images under common criterion, showing that the
division model and the rational function lens distortion model can represent high distortion accurately.
In case of a wrong computed model, it can be refined with different methods, such as the disparity
map method presented in [3]. However, better model is computed if the calibration process takes into
account the model details.

Accurate lens distortion correction is a very complex problem since different focus implies different
distortion and moreover, the distortion differs if the distance between the object and the lens varies in
the depth of field range for a given focus [4]. If object location varies in the range of a sharply mapped
image, deformations in the image change depending on this distance. The variations in distortion in
the depth of field range are higher if fish-eye lenses are used. Figure 1 shows this strong perspective
effect at diverse depth distances with respect to the camera with high distorted images. Figure 1b
shows the distortion profiles of the top and down lines with respect to the center of the image and the
differences are obvious. Considering a common lens distortion model for all points in the image is not
very convenient if an accurate correction is needed.
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(a) (b) 
Figure 1. (a) Image of a planar checkerboard used as calibration template. The checkerboard is under 
perspective to notice the radial distortion variation when the camera-object distance changes. (b) 
Figure of the radial distortion profile depending on the camera-object distance. Solid red line 
represents radial distortion when object is away from the camera appearing at top of Image 1a. The 
blue dashed line represents the radial distortion when the object is close to the camera appearing at 
the bottom of the Image 1a. 

magnification. Magill’s model computes lens distortion at any specified focus distance. However, this 
model is valid to points in the “in focus” depth distance only. Subsequent studies proposed 
magnification-dependent radial distortion models and calibration methods [5–8]. Brown [5] 
proposed a distortion model dependent on magnification that considers distortion outside the “in 
focus” distance plane when the magnitude of the distortion is small. Fryer [6] presented the 
decentering distortion formulation. Fraser and Shortis [6] improved the model proposed by Brown 
to solve the problem of small magnitudes in distortion. Alvarez [8] derived a new radial distortion 
model for planar scenes such as the soccer field combining Brown’s and Fraser’s models. 

Based in results of Ricolfe-Viala in [3,9], the aim of this paper is to evaluate the depth dependence 
of the division model that is able to model high distortion accurately. First, the evaluation algorithm 
is described. Second, an empirical evaluation is performed. Third, a model is proposed based on the 
empirical evaluation results. 

2. Materials and Methods 

The image distortion model represents the mapping from the distorted image coordinates qd=(ud,vd), 
to the undistorted image coordinates, qp = (up,vp) [10]. Distorted coordinates are observable in the 
images and undistorted image coordinates are not physically measurable. r is the distance from the 
point q = (u,v) to the distortion center, defined as c0 = (u0, v0), and Δu = u − u0, and Δv = v − v0. r is 
computed as r2 = Δu2 + Δv2. Using the division model, the radial distortion is approximated with a 
polynomial as follows: 
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where rp represents the distance of the point qp = (up,vp) to the distortion center and rd is the distance 
of the point qd = (ud, vd) to the distortion center. βi represent the distortion parameters. According to 
the degree of the polynomial in the denominator, the accuracy of the lens distortion model varies. 
However, the advantage of the division model over the other high lens distortion models is that it is 
able to express high distortion with few parameters [2]. Most of the authors have demonstrated that 
accurate results are computed with only one parameter for many cameras [11,12]. In the experimental 
results section, outcomes of one parameter model are compared with the ones of the two parameters 
model. The aim is to measure the improvement when the number of parameters change. 

Figure 1. (a) Image of a planar checkerboard used as calibration template. The checkerboard is under
perspective to notice the radial distortion variation when the camera-object distance changes. (b) Figure
of the radial distortion profile depending on the camera-object distance. Solid red line represents radial
distortion when object is away from the camera appearing at top of Image 1a. The blue dashed line
represents the radial distortion when the object is close to the camera appearing at the bottom of the
Image 1a.

The depth dependence of lens distortion model was presented by Magill in [4]. Considering
the depth influence upon distortions avoid systematic measurement error. Magill demonstrated that
lens distortion depends on magnification and established the radial distortion model dependent on
magnification. Magill’s model computes lens distortion at any specified focus distance. However,
this model is valid to points in the “in focus” depth distance only. Subsequent studies proposed
magnification-dependent radial distortion models and calibration methods [5–8]. Brown [5] proposed
a distortion model dependent on magnification that considers distortion outside the “in focus” distance
plane when the magnitude of the distortion is small. Fryer [6] presented the decentering distortion
formulation. Fraser and Shortis [6] improved the model proposed by Brown to solve the problem of
small magnitudes in distortion. Alvarez [8] derived a new radial distortion model for planar scenes
such as the soccer field combining Brown’s and Fraser’s models.

Based in results of Ricolfe-Viala in [3,9], the aim of this paper is to evaluate the depth dependence
of the division model that is able to model high distortion accurately. First, the evaluation algorithm is
described. Second, an empirical evaluation is performed. Third, a model is proposed based on the
empirical evaluation results.

2. Materials and Methods

The image distortion model represents the mapping from the distorted image coordinates
qd = (ud,vd), to the undistorted image coordinates, qp = (up,vp) [10]. Distorted coordinates are observable
in the images and undistorted image coordinates are not physically measurable. r is the distance from
the point q = (u,v) to the distortion center, defined as c0 = (u0, v0), and ∆u = u − u0, and ∆v = v − v0. r is
computed as r2 = ∆u2 + ∆v2. Using the division model, the radial distortion is approximated with a
polynomial as follows:

rp =
rd

1 + β0·r2
d + β1·r4

d + . . .
(1)

where rp represents the distance of the point qp = (up,vp) to the distortion center and rd is the distance
of the point qd = (ud, vd) to the distortion center. βi represent the distortion parameters. According to
the degree of the polynomial in the denominator, the accuracy of the lens distortion model varies.
However, the advantage of the division model over the other high lens distortion models is that it is
able to express high distortion with few parameters [2]. Most of the authors have demonstrated that
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accurate results are computed with only one parameter for many cameras [11,12]. In the experimental
results section, outcomes of one parameter model are compared with the ones of the two parameters
model. The aim is to measure the improvement when the number of parameters change.

2.1. Division Model Calibration

The model is calibrated based on the idea of metric point correction described in [13]. The metric
point correction consists of maintaining the features of the object in the image, to undistort the distorted
control points. For example, control points of a checkerboard template accomplish several constraints
that do not change under perspective projection. First constraint is the cross ratio (CR) between any
set of four control points [13] and the second one is that the control points that belong to a straight
line in the checkerboard should remain in a straight line in the image [14]. Figure 2 shows these
two constraints. Using these constraints, control points in distorted images are corrected to obtain
their undistorted positions. With both set of points, the distorted ones detected in the image and the
undistorted ones computed using the previous constraints, the division model is computed. Cross ratio
and straight line constraints for point correction are defined in the following.Sensors 2020, 20, x FOR PEER REVIEW 4 of 12 

 

 

Figure 2. Geometric invariants for correcting points locations detected in the image. Template features 
remain under perspective projection also in distorted images. Cross ratio guaranties that parallel lines 
remain parallels under perspective projection. Straight lines are also straight under perspective 
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which are used to compute the coefficients βi. Considering a two parameter model, two coefficients 
βi are arranged in a vector β=[β0, β1]T and considering u0, v0 in the center of the image, given n points 
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Equation (2) is expressed as a · β = b. Using least squares, the algebraic solution of β is computed 
as β = (aT · a)-1 · aT · b. To improve the algebraic solution of β and the initial value of the distortion 
center u0, v0, the Levenberg-Marquart algorithm can be used. The Levenberg-Marquart algorithm 
solves non-linear least squares problems, especially in least squares curve fitting. A function to 
minimize and the initial values for the parameters set are necessary. In this case, the error function to 
be minimized is: 
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This error function measures the mean radial distance between computed undistorted control 
points and distorted control points corrected with a given model. The set of parameters are β0, β1 and 
the distortion center u0, v0. Initial values for β0, β1 are the solution of (7) and u0, v0 is the center of the 
image. The minimization of the error function (8) computes the best values for β0, β1, u0, v0. 

If a first-order division model is computed with only one parameter β0, expression (7) is reduced 
as follows: 
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In this case, expression (8) is also reduced as: 

Figure 2. Geometric invariants for correcting points locations detected in the image. Template features
remain under perspective projection also in distorted images. Cross ratio guaranties that
parallel lines remain parallels under perspective projection. Straight lines are also straight under
perspective projection.

2.1.1. Control Points Correction

If template control points in the image with coordinates q1d = (u1d,v1d), q2d = (u2d,v2d), q3d = (u3d,v3d),
q4d = (u4d,v4d) satisfy the cross-ratio invariability, the following equation arise:

CR(q1d, q2d, q3d, q4d) =
s13·s24

s14·s23
= CR(p1, p2, p3, p4) (2)

where sij defines the distance between points qi and qj represented as sij
2 = (ui − uj)2 + (vi − vj)2; p1, p2,

p3, p4 are four consecutive control points of the calibration template arranged in a line represented
in Figure 2. Any set of four consecutive control points arranged in a line in the calibration template,
have to satisfy the CR(p1, p2, p3, p4). These lines are vertical and horizontal. In consequence, one point
participates in the cross ratio computing of six sets of points, three for horizontal neighbor points and
three for vertical neighbor points. Using the cross ratio invariability, distorted positions of image points
are corrected according to the positions of neighbor points doing a nonlinear search that minimizes the
following error function:

JCR =
n∑

l=1

m−3∑
k=1

‖CR(qk, qk+1,l, qk+2,l, qk+3,l) −CR(p1, p2, p3, p4)‖ (3)
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Since a checkerboard template arranges control points in straight lines, n is the number of straight
lines and m is the number of points in each line, qk,l is a point k of the straight line l, where l = 1, . . . , n
and k = 1, . . . , m. CR(p1, p2, p3, p4) is computed when the calibration template is designed.

On the other side, given a control point qi = (ui, vi) in the distorted image, the straight line
constraint to undistort the control point position is defined with the straight line equation.

al·ui + bl·vi + cl = 0 (4)

where al, bl, cl represent the parameters of a line l. Points that fit in a line perfectly, make the following
function null.

JST =
n∑

l=1

m∑
i=1

‖al·ui + bl·vi + cl‖ (5)

To undistort all distorted image positions an error function is minimized that includes the cross-ratio
invariability and the straight line constraint.

JCP =
n∑

l=1

 m∑
i=1

‖al·ui + bl·vi + cl‖+
m−3∑
k=1

‖CR(qk, qk+1,l, qk+2,l, qk+3,l) −CR(p1, p2, p3, p4)‖

 (6)

Minimizing previous function, distorted control points qd,i are corrected to undistorted ones qp,i.
Figure 3 shows the result. Blue dots correspond to detected control points in the image qd,i and red
lines correspond to the undistorted control points qp,i.Sensors 2020, 20, x FOR PEER REVIEW 5 of 12 
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To summarize, the image high distortion can be easily modelled with a first-order or second-
order division model. To calibrate the division model, a set of distorted and undistorted points are 
needed. Distorted points are detected in the image and undistorted points are computed doing a 
metric correction taking into account that some constraints of the calibration template remain 
unchanged under perspective projection in a high distorted image. The calibration procedure is as 
follows: 

1. A set of images from different camera-template distances are captured. 
2. Control points are detected in captured images to obtain qd,i. 
3. Control points are corrected to obtain qp,i using the procedure described in subsection 2.1.1. 
4. Using points of all images, camera parameters are computed with the algorithm described in 

subsection 2.1.2. This step is very important because data coming from all images are used 
together to compute one lens distortion model that represents all of them. According to Figure 1, 
lens distortion is depth dependent. In consequence, to compute a unique model that represents 
lens distortion in images captured with different camera-template distances is not the best 
practice. To be rigorous, the depth dependence of the lens distortion has to be represented in 
the model to describe the distortion accurately. 

2.2. Depth-Dependent Division Model Calibration 

As it was shown in Figure 1, lens distortion is distance dependent. In consequence, to adjust a 
unique model using data of images taken at different distances to the camera is not a very good 
practice. Moreover, images with different perspective give control points at different distances to the 
camera that fail in validating the calibration result. If so, biased parameters are computed. To obtain 
a lens distortion model that represent the true image deformation, this should depend on the camera-
object distance. This means that all lens distortion model parameters should be dependent on the 
camera-template distance. In this case, a first- and second-order division model is adjusted. 
Therefore, parameters β0, β1 have to depend on the camera-object distance. To solve this problem, two 
functions β0(d) and β1(d) are proposed that give the value of the parameter β0, β1 for a given camera-
object distance. In this case, the depth-dependent second-order division model is as follows: 
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Figure 3. Result of control points correction. Blue dots correspond to detected distorted control points
in the image qd,i and red lines correspond to the undistorted control points qp,i. Correction is done
taking into account that control points of a checkerboard template accomplish two constraints that do
not change under perspective projection. The first one is the cross ratio between any set of four control
points and the second constraint is that control points that belong to a straight line in the checkerboard
should remain in a straight line in the image.

2.1.2. Computing the Model Parameters

The parameters of the division model described in (1) are the coefficients of the polynomial in the
denominator denoted as βi and the distortion center u0, v0. Given a set of distorted points qd,i and
the undistorted ones qp,i, where i represents the number of points in the image, n pairs (rd,i, rp,i) arise,
which are used to compute the coefficients βi. Considering a two parameter model, two coefficients βi
are arranged in a vector β = [β0, β1]T and considering u0, v0 in the center of the image, given n points in
the image, β is computed as follows:

rp,1·r2
d,1

. . .
rp,n·r2

d,n

rp,1·r4
d,1

. . .
rp,n·r4

d,n

·β =


rd,1 − rp,1

. . .
rd,n − rp,n

 (7)
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Equation (2) is expressed as a · β = b. Using least squares, the algebraic solution of β is computed as
β = (aT

· a)−1
· aT
· b. To improve the algebraic solution of β and the initial value of the distortion center

u0, v0, the Levenberg-Marquart algorithm can be used. The Levenberg-Marquart algorithm solves
non-linear least squares problems, especially in least squares curve fitting. A function to minimize and
the initial values for the parameters set are necessary. In this case, the error function to be minimized is:

JMP =
1
n
·

n∑
i=1

rp,i −
rd,i

1 + β0·r2
d,i + β1·r4

d,i

2 (8)

This error function measures the mean radial distance between computed undistorted control
points and distorted control points corrected with a given model. The set of parameters are β0, β1 and
the distortion center u0, v0. Initial values for β0, β1 are the solution of (7) and u0, v0 is the center of the
image. The minimization of the error function (8) computes the best values for β0, β1, u0, v0.

If a first-order division model is computed with only one parameter β0, expression (7) is reduced
as follows: 

rp,1·r2
d,1

. . .
rp,n·r2

d,n

·β0 =


rd,1 − rp,1

. . .
rd,n − rp,n

 (9)

In this case, expression (8) is also reduced as:

JMP =
1
n
·

n∑
i=1

rp,i −
rd,i

1 + β0·r2
d,i

2 (10)

To summarize, the image high distortion can be easily modelled with a first-order or second-order
division model. To calibrate the division model, a set of distorted and undistorted points are needed.
Distorted points are detected in the image and undistorted points are computed doing a metric
correction taking into account that some constraints of the calibration template remain unchanged
under perspective projection in a high distorted image. The calibration procedure is as follows:

1. A set of images from different camera-template distances are captured.
2. Control points are detected in captured images to obtain qd,i.
3. Control points are corrected to obtain qp,i using the procedure described in Section 2.1.1.
4. Using points of all images, camera parameters are computed with the algorithm described

in Section 2.1.2. This step is very important because data coming from all images are used
together to compute one lens distortion model that represents all of them. According to Figure 1,
lens distortion is depth dependent. In consequence, to compute a unique model that represents
lens distortion in images captured with different camera-template distances is not the best practice.
To be rigorous, the depth dependence of the lens distortion has to be represented in the model to
describe the distortion accurately.

2.2. Depth-Dependent Division Model Calibration

As it was shown in Figure 1, lens distortion is distance dependent. In consequence, to adjust a
unique model using data of images taken at different distances to the camera is not a very good practice.
Moreover, images with different perspective give control points at different distances to the camera that
fail in validating the calibration result. If so, biased parameters are computed. To obtain a lens distortion
model that represent the true image deformation, this should depend on the camera-object distance.
This means that all lens distortion model parameters should be dependent on the camera-template
distance. In this case, a first- and second-order division model is adjusted. Therefore, parameters β0, β1

have to depend on the camera-object distance. To solve this problem, two functions β0(d) and β1(d) are
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proposed that give the value of the parameter β0, β1 for a given camera-object distance. In this case,
the depth-dependent second-order division model is as follows:

rp =
rd

1 + β0(d)·r2
d + β1(d)·r4

d

(11)

where functions β0(d) and β1(d) represent the parameter β0, β1 for a given distance. To adjust the
functions β0(d) and β1(d), an empirical experiment is proposed. Several checkerboard images are
taken at different camera-template distances. Camera location in front of the checkerboard is adjusted
to guarantee that the checkerboard plane is as parallel as possible to the image plane to avoid
perspective that can influence in a bad result. This guaranties that all control points are in the same
camera-object distance and a unique valid distortion model represents them. A set of images at
different camera-checkerboard distances are taken to compute one parameter β0, β1 with every image.
This is the main difference with the method to compute just one model to represent the lens distortion
with independence to the camera-template distance. With one model, all control points from all images
participate in the calibration of the model. Now, only control points coming from one image captured
in a specific camera-template distance are used to compute one model that is valid for this distance.
Using control points coming from images captured at different camera-template distances, a set of
models are computed that are valid for a specific distance. The aim is to define functions β0(d) and
β1(d) that are able to represent the evolution of parameters β0, β1 throw the different models that are
valid for different distances. Figure 4 shows one example of images taken under these conditions.
A set of parameters β0, β1 are computed with every image taken at different distances that are used to
adjust the function β0(d) and β1(d) empirically.Sensors 2020, 20, x FOR PEER REVIEW 7 of 12 
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3. Results

In our experiment, an EoSens® 12CXP+ (Mikrotron, Unterschleißheim, Germany) of
4096 × 3072 pixels, 23.04 × 23.04 mm active area is assembled on an ABB IRB 140 showed in Figure 5.
Camera location is obtained by using the location of the end of the robot arm that is provided by its
control unit. With this location, it is possible to know the camera-template distance and moreover, it is
possible to orientate the camera sensor plane with the template plane to be as much parallel as possible.
Two lenses with 8 mm and 12 mm manual focus are mounted on the camera to compare the results.
The training model plane is a 1210 mm × 970 mm checkerboard with 580 corner points (29 × 20). Corner
detection has been done with the function cvFindCheckerboardCorners() from the openCV library [15].
Figure 3 shows distorted detected points in one image and their computed undistorted position.
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Figure 5. Robot arm ABB IRB 140 (ABB, Stuttgart, Germany) with an EoSens® 12CXP+ camera of
4096 × 3072 pixels (Mikrotron, Unterschleißheim, Germany).

Ten images, similar to the ones in Figure 5, are taken at several camera-checkerboard distances
with both lenses. Distances are from 300 mm to 1650 mm in steps of 150 mm. Twenty division models
are computed, one for each image and for each lens. The process is as follows:

1. The checkerboard control points are detected in each image to obtain qd,i.
2. Distorted control points qd,i are undistorted to obtain qp,i using the metric correction method

described in Section 2.1.1.
3. Detected control points in each image qd,i and undistorted points in each image qp,i are used to

adjust a particular division model for each image. A division model is adjusted as follows:

a. The algebraic solution is computed solving Equation (7) and considering as the distortion
center the center of the image.

b. Model parameters and distortion center are refined minimizing the error function defined
in (8).

One particular division model represents the distortion for one camera-template distance.
The method to compute the model is described in Section 2.1.2, but in this case, control points
of one image are used instead of using control points of several images. The computed parameters with
each model are β0, β1 and the distortion center u0, v0, that are valid for one distance. Figure 6 shows
the computed parameters for each image for 8 mm and 12 mm lenses. The variation of lens distortion
parameters depending on the distance is similar if 8 mm or 12 mm lens are used. Distortion center u0, v0

does not change significantly when the camera-checkerboard distance varies, but distortion parameters
β0, β1 change as it is shown in Figure 6a–d. As it was presented by Magill in [3] and shown in Figure 1,
distortion is depth-dependent and distortion parameters are sensitive to the camera-object distance.
The asterisks in Figure 6a–d show the computed value of parameter β0, β1 for each image and both
lenses respectively. According to the sensibility of parameters β0i and β1i to the distance, the values of
the lens distortion parameters decreases with the distance in an exponential form. In consequence,
the following experimental function can represent the variation of the distortion model parameter β0,
β1 with the distance d:

β(d) =
k1

d
+ k0 (12)
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Figure 6. Variation of the second order lens distortion model parameters with the camera-object
distance. The computed parameters are β0, β1 and distortion center u0, v0. The asterisks show the
computed value of the parameter for each image and the dashed line shows the value given by the
function β0(d), β1(d) adjusted using the least squares technique with asterisk data, β0i and β1i. (a,c,e) is
for 8 mm lens and (b,d,f) is for 12 mm lens.
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k0 and k1 are the adjustable parameters. The aim is to represent the depth dependent variation
of camera lens distortion parameters with the simplest function that is possible to describe this
phenomenon. A mathematical analysis of this phenomenon would result in a more complex equation
with more parameters to identify, but from a practical point of view, the empirical analysis shows that
the two parameters equation proposed in (12) are enough to describe this phenomenon. The dashed
lines in Figure 6a–d show the value given by the functions β0(d) and β1(d) adjusted with the least
squares technique using data β0i and β1i represented with asterisks. In both cases, using 8 mm lens or
12 mm lens, the variation of distortion parameters with camera-object distance is represented accurately.
A more complex function presented in (12) does not improve the results significantly and it would only
complicate the computing process. The function proposed in (12) is able to describe this phenomenon
accurately in both cases.

If control points of all images were used to compute the distortion parameter β, only one division
distortion model would be computed for all images. Computed value is represented with a solid red
line in the Figure 6a–d.

In addition, to simplify the lens distortion model also, a first-order division model is computed
with the same data. In this case, the aim is to know how the division model degree can improve the
distortion correction capacity of the model. The procedure is similar as before but in this case the
division model is represented by the distortion center u0, v0, and one parameter β0 only, instead of two
β0 and β1 as before. The first degree depth dependent division model is defined as follows:

rp =
rd

1 + β0(d)·r2
d

(13)

Using corrected and distorted control points of each image, initial value of β0 is computed with
Equation (9) and final values of β0 and u0, v0 are computed with Equation (10). Figure 7 shows that
the variation of β0 with respect to the camera-object distance is similar as before. In consequence,
Equation (12) is also used to represent the depth dependency of lens distortion parameters with the
camera-object distance. Asterisks in Figure 7a,b show the computed value of parameter β0 with each
image and both lenses. The blue dashed line in the Figure 7a,b is the computed values of function
represented in (12) when it is adjusted using data β0i represented with asterisks. The solid red line in
the Figure 7a,b represents the computed parameter β0 using control points of all images together.

To compare the accuracy of the proposed method the error function defined in (8) and (10) is
used. Equation (8) is for the second-order division model and Equation (10) is for the first-order one.
This function measures the mean error radial distance between computed undistorted control points
and distorted control points detected in the image and corrected with a given model. Compared
models are the unique model computed with data of all images, the first-order depth-dependent
division model and the second-order depth-dependent division model. All of them are compared with
8 mm and 12 mm lens. Results are shown in Table 1 for 8 mm lens and Table 2 for 12 mm lens. First and
second row show the computed error using the second and first-order depth dependent division
model for each image respectively. Third row shows the error using a unique division model that
undistorts all images with independence of the camera-object distance. Analyzing 8-mm lens results,
the error has a mean value from 5.08 to 2.45 with a standard deviation from 2.92 to 1.07 pixels using the
depth-dependent model depending on the model order. If a unique model is used it increases from 9.85
to 7.73 with and standard deviation from 4.83 to 2.98. The depth dependent computed model projects
all undistorted points in a range of ± 2.92 pixels in the worst case and the unique model does it in a
range of ± 4.83 pixels. Depth-dependent model represents the distortion accurately and a second-order
model does not improve the image correction significantly. Similar results are for 12 mm lens.

The proposed method suggests that the camera sensor plane has to be as parallel as possible to
the template plane in order to be sure that the camera-template distance is similar at all areas of the
image. To analyze the plane parallelism effects in the calibration process, an experiment is performed
that captures images where the camera sensor plane is not parallel to the template plane. Small errors
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are induced in the capturing stage. In this case a first order division model is computed with images
captured with 8 mm lens. Calibration deficiencies are measured using Equation (10). Values are shown
in Table 3. If they are compared with error values computed in Table 1 where both planes were parallel,
no significant difference exists.Sensors 2020, 20, x FOR PEER REVIEW 10 of 12 
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Table 1. Calibration error with 8-mm lens and parallel planes (mean and standard deviation) a.

Camera-Object Distance (mm)

300 450 600 750 900 1050 1200 1350 1500 1650

Second order
depth-dependent

model
4.75 ± 2.23 4.86 ± 2.38 4.25 ± 2.83 3.45 ± 1.85 3.04 ± 1.53 3.37 ± 1.63 3.15 ± 1.07 2.45 ± 1.32 2.99 ± 1.52 3.01 ± 1.58

First order
depth-dependent

model
4.34 ± 2.37 5.08 ± 2.88 4.03 ± 2.92 3.27 ± 2.08 3.63 ± 2.05 3.85 ± 1.83 2.99 ± 1.14 2.83 ± 1.06 2.73 ± 1.17 3.18 ± 1.03

Unique model 8.16 ± 4.73 7.29 ± 4.83 8.94 ± 4.23 9.85 ± 3.72 9.14 ± 3.36 8.63 ± 3.23 7.73 ± 3.32 8.94 ± 3.09 8.45 ± 2.98 7.79 ± 3.01

a Calibration error is the evaluation of the error function defined in Equation (8) for the second-order model and
Equation (10) for the first-order model. It measures the mean of the radial distance between the undistorted points
qp used to calibrate the model and the detected points qd undistorted with the calibrated model.
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Table 2. Calibration error with 12-mm lens and parallel planes (mean and standard deviation) a.

Camera-Object Distance (mm)

300 450 600 750 900 1050 1200 1350 1500 1650

Second order
depth-dependent

model
5.85 ± 3.32 4.63 ± 2.57 4.62 ± 2.62 3.38 ± 2.04 2.98 ± 2.13 3.05 ± 1.86 3.23 ± 1.57 2.56 ± 1.14 2.63 ± 1.38 2.79 ± 1.49

First order
depth-dependent

model
4.72 ± 3.01 4.98 ± 2.63 4.41 ± 2.98 3.43 ± 2.52 3.36 ± 2.82 3.58 ± 2.81 2.97 ± 1.74 2.43 ± 1.57 2.57 ± 1.05 2.63 ± 1.14

Unique model 8.96 ± 5.82 8.09 ± 5.94 8.16 ± 4.94 9.64 ± 4.82 9,52 ± 4.82 9.72 ± 3.95 8.62 ± 4.39 7.89 ± 3.92 9.94 ± 3.67 8.82 ± 3.73

a Calibration error is the evaluation of the error function defined in Equation (8) for the second-order model and
Equation (10) for the first-order model. It measures the mean of the radial distance between the undistorted points
qp used to calibrate the model and the detected points qd undistorted with the calibrated model.

Table 3. Calibration error with 8 mm lens and non-parallel planes (mean and standard deviation) a.

Camera-Object Distance (mm)

300 450 600 750 900 1050 1200 1350 1500 1650

First order
depth-dependent

model
4.88 ± 2.83 4.75 ± 2.62 4.15 ± 2.39 3.55 ± 2.02 3.17 ± 2.12 3.27 ± 1.94 3.38 ± 1.35 2.91 ± 1.27 2.87 ± 1.48 3.27 ± 1.31

Unique model 9.34 ± 5.73 8.02 ± 4.63 9.04 ± 5.36 9.75 ± 4.97 9.37 ± 4.05 8.03 ± 3.95 8.16 ± 3.78 8.03 ± 3.65 9.82 ± 3.89 8.71 ± 4.31

a Calibration error is the evaluation of the error function defined in Equation (10). It measures the mean of the radial
distance between the undistorted points qp used to calibrate the model and the detected points qd undistorted with
the calibrated model.

4. Discussion

Attending to the results presented in Tables 1 and 2, the depth dependent distortion model is able
to correct the image more accurately if it is compared to the non-depth-dependent model. The depth
dependence is not considered if a unique model is computed using data from several images captured in
different camera-object distances. In consequence, a biased model is computed that does not represent
the distortion accurately taking into account that lens distortion is a depth-dependent phenomenon.

The variation of lens distortion parameters with the camera-object distance can be described
with the equation proposed in (12) easily. A more complex function does not improve the results
significantly. Going deeper, the Equation (12) is able to represent variation of lens distortion parameters
when the model changes from first to second degree or when the lens changes. In this case, it has been
validated for 8 mm and 12 mm lenses.

From the point of view of the degree of the division model, a first-order degree model corrects the
image distortion acceptably but it can be improved with a second-order model if necessary.

With the proposed method, images are captured without perspective to have similar
camera-checkerboard distance in all parts of the image. Since the image plane is as parallel as
possible to the camera sensor plane, image focusing is easier and all control points in the image are
focused. This improves the detection of control points in the image and reduces the noise level in the
calibration process. With existing methods, the image perspective makes the focusing process harder
and some parts in the image are blurred.

It may be considered that the proposed method is useless because it needs special equipment to
perform the lens distortion calibration. In this case, a robot arm is used to localize the camera and
to measure the camera-checkerboard distance. However, similar results are computed if the camera
is localized with a tripod and camera-object distance is measured. As it is demonstrated in Table 3,
perfect parallelism between the camera sensor plane and the checkerboard plane is not definitive to
obtain accurate results.

5. Conclusions

A deep analysis of the high distortion image correction has been done. In this case, the analysis
is focused in the distance dependence of the distortion in the image. The depth dependence of lens
distortion model was presented by Magill in [4] and this paper presents an analysis in high distorted
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images. A variation of the camera lens distortion division model is presented that includes the
camera-object distance to obtain accurate results as it is shown in Tables 1–3. The division model is
able to correct high distorted images with only one parameter. This parameter can be adjusted to the
camera-object distance to perform an accurate correction of high distorted images. Better results are
computed if they are compared to the image correction, if only one model is computed that does not
depend on the camera-object distance. The distortion center parameters do not vary significantly if
the camera-object distance changes. At present, the proposed analysis is a step forward in the field of
high lens distortion correction that will help in any application where the lens distortion correction
represents a crucial step.
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