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Abstract 

 
Radon is a radioactive gas known to be a human carcinogenic element that causes lung cancer. The 

Directive 2013/59/EURATOM stablishes action plans for its monitorization and control in water and air 

specially at workplaces. There are several techniques to reduce the concentration of radon in air mainly 

based on improving ventilation rates. However, intelligent and energy-efficient buildings are well 

insulated and have centralized ventilation systems where air is recirculated continuously. This strategy 

has a negative influence on radon accumulation at indoor spaces. So, ventilation systems should be 

composed by filters with suitable materials to adsorb radon from indoor air. This work studies the radon 

adsorption ability of the most used adsorbent (activated carbon) and some not-processed substrates 

coming from Moringa oleifera, a natural plant with high potential as adsorbent for heavy metals and 

coagulant in and water treatment. The radon adsorption efficiency of the different solids is analyzed, 

showing promising results for radionuclide removal from air. 
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1. Introduction 

Radon is a radioactive gas which comes from the natural radium disintegration. It is considered 

as a human carcinogenic element by the World Health Organization (WHO) (WHO, 2009) 

since, after inhaled, its progeny emits alpha particles that are deposited in lungs causing cellular 

damage; in fact, it is the second cause of lung cancer after smoking. 

In order to control and minimize radon inhalation by people, the Directive 2013/59/EURATOM 

sets action plans and limit values for radon exposure for buildings and workplaces in order to 

control and minimize radon inhalation by exposed workers.  

There are several techniques to reduce the concentration of radon in air, that include increasing 

the rate of ventilation of the closed spaces with fresh air, sealing of basements to avoid 

exhalation to indoor air from soil and bed rock or selection of appropriate construction materials 

(Guyot et al., 2018). Nowadays, intelligent and energy-efficient buildings are well insulated and 

have centralized ventilation systems where air is recirculated continuously. These energy saving 

strategies have a direct influence in the quality of the indoor air, because fresh air supply from 

the outside is needed for ensuring air quality and a healthy indoor climate (Cucoş et al., 2015). 

If air exchange rate is uncontrolled or ventilation system doesn’t work properly an accumulation 

of contaminants in the air takes place. This is especially relevant in the case of Radon. When 

Radon is present in indoor air because is exhaled for example from construction materials, 

concentration of this gas will reach significant and dangerous levels at houses and workplaces 

(Cucoş et al., 2015). Centralized ventilation systems are composed by ducts, air particle filters, 

conditioning system and fan that are not capable to remove radon from air. As activated carbon 

has demonstrated to be a very good adsorbent for radon in water (Karunakara et al., 2015), the 

use of carbon filters coupled with the recirculated air system will be useful to reduce radon 

concentration in indoor air up to safe levels.  



Although carbon has a high adsorption capacity for most of substances, it is possible that other 

adsorbent materials have higher adsorptive ability to remove radon gas. Moreover, the high cost 

of activated carbon has led to the development of new materials with similar characteristics but 

lower costs. 

Moringa oleifera is a multipurpose tree with different applications for its nutritional, 

pharmaceutical and water purification properties. Different substrates from seeds, husk, wood 

and roots have shown ability as adsorbents in water treatment for heavy metals-removal 

(García-Fayos et al., 2016). In spite of its probed adsorbent capacity, no previous studies have 

been found that analyze the ability of this plant to remove radionuclides from water or air.  

This work proposes the study of radon adsorption from air by using several adsorbent materials 

from Moringa, as a way to improve indoor air coupled with mechanical ventilation systems. 

Radon adsorption capacity of active carbon and different Moringa substrates are compared in 

terms of radiation adsorption and Radon measurement. Furthermore, humidity adsorbed by each 

solid during exposition to radiation is analyzed in order to predict possible influence of this 

parameter on radon adsorption, as it is known by other works (García-Tobar, 2014). 

 

2. Material and methods 

2.1. Adsorbent preparation 

Moringa oleifera seeds were collected in Burkina-Faso. They were manually dehusked, and 

then stored for being later conditioned. As several parts of the plant have potential for water 

treatment, different adsorbent materials have been prepared for experimental tests: 

a) Husk. To remove humidity from the husk, it was dried in a heater (Digitronic) at a 

temperature of 100º C  during 24 hours. Then, the dried husk was grinded with an 

electrical mill (Moulinex Super Junior “S”) and after, it was washed with distilled water 

since turbidity values of washed effluent were lower than 1 NTU. The husk was again 

dried in the heater, following the procedure described before. Finally, the sample was 

manually powder and sieved, thus obtaining a fraction of size between 125 to 250 µm 

of diameter. This fraction was stored for being used later as biosorbent (“Moringa 

husk”). 

b) Wood. Wood of the Moringa oleifera trunk was cut and dried at 60º C during 3 hours in 

an oven. After the dried wood was grinded with an electrical mill (Moulinex Super 

Junior “S”) and after, it was washed with distilled water since turbidity values of 

washed effluent were lower than 1 NTU. The wood was again dried in the heater, 

following the procedure described before. Finally, the sample was manually powder and 

sieved, thus obtaining a fraction of size of 1 mm of diameter. This fraction was stored 

for being used later as biosorbent (“Moringa wood”). 

c) Seeds without oil. Since oil can interfere in the potential of seeds as coagulants for 

water treatment, it was extracted before adsorption tests. Oil extraction from Moringa 

oleifera seeds was performed by using a Soxhlet apparatus and ethanol as solvent. 50 g 

of Moringa oleifera crushed seeds were fed to a lab-scale Soxhlet extractor fitted in a 

500 mL round bottom flask with 350 mL of solvent. Extraction time was 6 hours, and 

20 cycles were performed. Defatted solid obtained after extraction is used as 

bioasorbent (“Solid without oil”). 



d) Seeds without coagulant and without oil. Deffated solid it is also used for preparing a 

liquid extract that works as coagulant for water treatment. A 5% (w/v) suspension using 

distilled water was prepared, mixed with a magnetic stirrer for 60 minutes and left to 

settle for 20 minutes. Liquid extract is filtered through a 0.45 m cellulose acetate filter 

(Spartan 30 B, VWR International) and solid stored for being used as bioasorbent 

(“Solid without coagulant and without oil”). 

 

2.2. Experimental tests 

Radon adsorption tests have been performed in an experimental set-up that allows to measure 

radon that exhalates from soil to the air.  

All measurements have been done using a high density plastic deposit impermeable to radon. A 

pitchblende stone has been deposited just on the bottom of the deposit, covered with no 

radioactive soil sample as it is shown at Fig. 1. The device used for adsorbent location was a 

canister, which is one of the most used detectors for radon measurements. 

 

Fig. 1. Radon adsorption experimental set-up 

Before each test, the canister was dried in an oven for 8 hours at 110 ° C. Later, it was weighed 

to know the mass of solid before adsorption. After this the canister was inserted on the surface 

of uncontaminated soil and covered with a high-density container not permeable to radon, in 

order to accumulate it inside during the exposition period. During this time of exposition, radon 

escapes from the interstitial space of the grains and is transported to the surface, being adsorbed 

by the material inside the canister. After this, the canister was weighed again in order to 

calculate how much humidity it has absorbed, as radon adsorption is significantly influenced by 

this parameter. 

 

2.3. Radon measurements 

Before performing radon measurement, it is necessary to wait 3 hours until the radon reaches 

equilibrium with its descendants. After this time, it was analyzed by gamma spectrometry using 

a scintillation detector. The concentration of radon gas is determined from its descendants, 

214Pb and 214Bi, whose gamma peaks are located at 242, 294, 352 and 609 kEv as it is shown 

in Fig. 2.  



 

Fig. 1. Gamma spectrometry results for radon descendants 

From the obtained counts by the regions of interest of descendants’ gamma peaks, subtracting 

the background level, and considering the exposure time of the canister, as well as the humidity 

correction coefficient, the radon concentration has been calculated. 

The net counts rate (N) for the exposed recipient is calculated as the difference between the 

background rate and the counts rate of canister accounts exposed to radiation. The initial net 

account rate is given by Eq. 1 

N0 =
N

e−λt     (Eq.1) 

Where N0: initial count rate  (cps), N: net count rate (cps), t: time elapsed between the end of 

the exposure and the moment of measurement and λ: decay radón constant (time -1), which is 

calculated by Eq.2. 

λ =
ln2

3,8 days
      (Eq.2) 

Radon concentration has been calculated as:  

CRn =
N0−Nbackground

Ef·Cf
· 1000     (Eq.3) 

Where, CRn is radon concentration (Bq/m3); Ef detector efficiency and Cf: correction factor 

correction for the absorbed humidity 

 

3. Results 

In this point, experimental results of radon adsorption are presented. First of all, it is analyzed 

the adsorption capacity of each tested substrate as well as the radon concentration resulted from 

each measurement. Later, humidity adsorbed by each solid during exposition to radon and its 

influence in the adsorption capacity is discussed. 

3.1. Adsorption capacity 

Table 1 shows values of adsorption ability for each substrate expressed as number of counts per 

hour of exposition to radon and per gram of adsorbent, as well as result of radon concentration 

measurement in Bq/m3 obtained by equation (1). 

 

 

 

 

 



Table 1. Adsorption ability of each tested adsorbent 

Adsorbent Adsorption ability 

(counts/(h·gram)) 

Radon concentration 

(Bq/m3) 

Moringa husk 70,53 402,68  10,68 

Moringa wood 67,93 352,68  09,91 

Solid without oil 58,07 444,42  10,70 

Solid without oil and without coagulant 60,82 457,22  10,99 

Activated carbon 425,27 3770,59  21,41 

 

As it can be seen in Table 1, the adsorption ability of the different substrates of Moringa 

oleifera is very similar, ranging between 58 and 70,5 counts/(h·gram). On the other hand, 

activated carbon has shown adsorption ability between 6-7 times higher than Moringa 

substrates. Something similar is shown in values of radon concentration as they are proportional 

to number of counts. 

In this point, it is important to consider that the activated carbon is a processed solid whereas 

the solids of Moringa used in the tests have not been processed as adsorbents and have been 

used in their natural state. As these not processed materials show a certain adsorption potential, 

they can be considered as promising natural adsorbents for radon caption, not reported before. 

Future studies should be done to determine the porosity and specific area of each solid in order 

to analyse their influence on adsorption capacity in terms of these parameters. 

 

3.2. Influence of humidity 

Table 2 shows the percentage of humidity adsorbed by each substrate during the time of 

exposition to radiation. 

Table 2. Humidity adsorbed by substrates during radon exposition 

Adsorbent Humidity adsorption 

during exposition (%) 

Moringa husk 1,991 

Moringa wood 0,284 

Solid without oil 0,934 

Solid without oil and without coagulant 1,353 

Activated carbon 1,793 

As it is shown in Table 2, there are significant differences in the percentage of humidity 

adsorbed by each substrate during radon exposition. The Moring husk is the solid that has 

adsorbed the high amount of humidity (close to 2%) whereas Moringa wood is the one that has 

adsorbed less humidity (below 0,3%). This can be explained by the different structure of both 

solids, since the husk of Moringa has a more opened structure than the wood so it can adsorb a 

higher amount of humidity. It is especially relevant the lower amount of humidity adsorbed by 

the wood, which increases its potential as radon adsorbent because it would have lower 

influence of this parameter in its adsorption efficiency.  

 



4. Conclusions 

In this work, different solids has been tested in order to analyzed their potential use for radon 

caption trough air filters for decreasing concentration of this hazardous radionuclide from 

indoor air. 

The novelty of the work is the application of Moringa oleifera substrates as adsorbents, with the 

aim of finding natural materials which can be used without the complex and costly processes of 

conditioning that adsorbents such as activated carbon required. 

The results of the work have shown that Moringa substrates have capacity to adsorb radon from 

air, specially Moringa husk. With respect to humidity adsorption, some parts of the plant adsorb 

radon even with a humidity adsorption rate higher than activated carbon.  

These screening results show for the first time the ability of Moringa to adsorb radionuclides (in 

this case radon from air) and set the base to develop research to improve Moringa oleifera radon 

adsorption capacity.  

Future studies should be done to study the influence of particle size, porosity and specific area 

of each material on the adsorption capacity of Moringa substrates.  
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