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Semantic-based padding in Convolutional Neural Networks for improving the
performance in Natural Language Processing. A case of study in Sentiment Analysis.

Maite Gimènez, Javier Palanca, Vicent Botti

Departamento de Sistemas Informàticos y Computaciòn,
Universitat Politècnica de València

Abstract

In this work, we proposed a methodology for applying semantic-based padding in Convolutional Neural Networks for Natural
Language Processing tasks. Semantic-based padding takes advantage of the unused space required for having a fixed-size input
matrix in a Convolutional Network effectively, using words present in the sentence. We have evaluated the performance of the
methodology proposed intensively in Sentiment Analysis tasks using a variety of word embeddings. In all the experimentation
carried out the proposed semantic-based padding improved the results achieved when no padding strategy is applied. Moreover,
when we used a pre-trained word embeddings, we have managed to surpass the state of the art.
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1. Introduction

Recently, deep learning models had revolutionised the per-
formance of different classic machine learning tasks. In the
literature, one can found how techniques developed in Com-
puter Vision (1; 2; 3; 4) had been applied to Natural language
Processing (NLP) successfully (5; 6; 7). Convolutional Neu-
ral Networks (CNN), a deep neural network, proposed by (au-
thor?) (8), had proven that can improve or achieve competitive
performance in several NLP tasks such as Semantic Matching
tasks, Text Classification, Sequence Ordering or Context De-
pendency (9).

In order to be able to apply CNNs effectively to Natural Lan-
guage Processing problems, the text of a sentence should be
treated by the network similarly as it would treat an image. Em-
beddings, vectors of a fixed size, representing either words or
n-grams of characters are used for creating a matrix describ-
ing a sentence. Thus, a convolutional neural network can be
trained in solving a natural language processing task utilising
this matrix of embeddings. However, there are caveats when
transferring techniques from one area of study to another.

In this work, we will study one of the most prominent prob-
lems that we face when handling text as an image: the padding.
Unlike images that have a fixed size, or can be transformed to
a fixed size, a sentence has a variable number of words. Hence,
practitioners need to establish a single input size in order to be
able to apply CNNs. This problem is neglected, and the sen-
tence is padded with a vector of zeros. Our working hypothesis
is that this space that we allocate could be used more efficiently.
Therefore, we will pad the sentences with meaningful semantic
vectors.

Here, we propose a technique to fix the input size, alleviat-
ing the drawbacks of the standard zero-padding, and we prove
that this methodology improves the performance of the neural

network model. Moreover, this proposed methodology will not
adversely affect the complexity of the training or penalise the
convergence of the neural network. The contributions presented
in this paper could be summarised as follow:

• Study of the impact of the padding applied in Convo-
lutional Neural Networks when addressing Natural Lan-
guage Processing tasks.

• Proposed a general methodology for padding more effi-
ciently.

• Validate that the suggested semantic-based padding im-
proves the performance of a CNN architecture.

The primary goal of this work is improving how techniques
developed in Computer Vision or Speech Recognition can
be adequately used in Natural Language Understanding, tak-
ing into account all the nuances that text presents. We have
replicated state-of-the-art architectures and found that applying
semantic-based padding improves their performance in a statis-
tically significant way.

The rest of the paper is organised as follows. Next section
will explore the literature related to our problem, in particular,
we will describe the efforts of applying CNNs to NLP tasks.
Section 3 is devoted to define the methodology proposed for
semantic-based padding in CNNs. In Section 4, the experimen-
tation that validates our methodology is presented. Finally, in
Sections 5 and 6, we discuss our results and future work is pro-
posed.

2. Related Work

This section is devoted to describing Sentiment Analysis, the
task used to evaluate the performance of the proposed method-
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ology for padding Convolutional Neural Networks Besides, we
will review the research done in CNN applied to NLP tasks.

2.1. Sentiment Analysis

Sentiment Analysis (SA) is one of the classic tasks that
had attracted the interest of computational linguistics deeply.
Therefore, among all the possible NLP tasks we decided to
evaluate our proposed methodology on SA because this is
one of the most studied tasks within NLP. Consequently, the
datasets and the algorithms are well-studied, which allow us to
test our methodology in a more stable framework.

Sentiment Analysis is the task of, giving a text, identifying
the polarity conveyed in it. Traditionally, three classes of polar-
ity were considered: positive, negative or neutral. Nevertheless,
there are tasks where fine-grained polarity levels are considered
as well.

One of the early works on SA was developed by (author?)
(10). In this work, the authors evaluated the performance of
different machine learning classifiers using hand-crafted fea-
tures on movie reviews. Besides the supervised approach of
this work, there were unsupervised approaches like the one pro-
posed by (author?) (11). This task has been blooming since
then, and in 2013 the first shared evaluation of SA using Twitter
was held. (author?) (12) proposed a SA evaluation campaign
using data gathered from Twitter. This campaign is held annu-
ally, and many more similar tasks capture the interest of NLP
practitioners (13; 14; 15; 16; 17).

In the work of (author?) (18) we can find a comprehensive
study of the different techniques used to identify the polarity
of a text. At this point, most of the approaches used expert
knowledge for hand-crafting features to be extracted from the
text, building lexicons (19; 20; 21) and applied techniques such
as SVM, Maximum Entropy, Naive Bayes, etc., (22; 23; 24;
25).

Noteworthy, the massive growth in the usage of social net-
works facilitated the creation of large datasets. (26; 27) with
enough examples for training deep learning networks which
were already used in Computer Vision. Simultaneously, (au-
thor?) (28) proposed a new representation methodology of text,
word embeddings. Text representation entails a challenge for
Machine Learning, since previously used techniques were not
able to capture efficiently the semantic similarity of words.
However, word embeddings are able to learn from big data
(in an unsupervised fashion) a representation in a multidimen-
sional space of the words that capture the semantic relationships
between them. Recently, new techniques appeared for learn-
ing word embeddings, and new datasets have been collected
(29; 30).

2.2. Convolutional Neural Networks in NLP

Following the advances described in the previous section,
Convolutional Neural Network began to be applied in Natural
Language Tasks. This section is devoted to explaining the state
of the art in CNNs.

(author?) (31) defined Convolutional Networks as neural
networks that use convolutions instead of matrix multiplication

in at least one of its layers. A convolution is a linear operation
that takes two multidimensional arrays: an input ~x ∈ Rm,n and
a kernel ~w ∈ Rh,k where h < m ∧ k < n. After applying the
convolution to those arrays, it will produce multidimensional
arrays called feature maps. Each element of a feature map is ob-
tained after applying the convolution across a window of words
{~x0:h, ~x1:h−1, . . . ~xn−h+1:n}, and it is defined as:

ci = f(~w · ~xi:i+h−1 + bi) (1)

where ~c ∈ Rn−h+1, bi ∈ R is a bias term, and f a non linear
function.

CNNs were proposed by (author?) (32), but it was not until
recently than CNNs began to be massively used after the suc-
cess that these networks showed in computer vision (3; 4). Fol-
lowing the momentum of CNNs in Computer Vision, it began
to be used in NLP as well. Firstly, (author?) (33) proposed an
architecture using CNNs for Natural Language Processing. Re-
cently, CNNs architectures have been combined in an ensemble
of classifiers with recurrent neural networks to exploit the ben-
efits of both architectures (34; 35).

Besides, CNNs have been applied to several NLP tasks such
as Sentence Classification (36; 37), Document Ranking (38), or
Causal Relation Extraction (5).

3. A Semantic-based Padding

As we introduced previously, there are several methodolo-
gies for representing text. Nevertheless, in the last years, the
most extensively used is text embeddings. Embeddings are a
distributed representation of either words or characters in a mul-
tidimensional space as we defined in Section 2. We will focus
our work on word embeddings. Consequently, from now on we
will use the term embeddings as an equivalent term for word
embeddings.

When applying CNNs to Computer Vision, it has been
proved by (author?) (39) and (author?) (40) that the network
presents local invariance, i.e. can find relevant feature in a dif-
ferent position of the image, and is able to learn how to com-
pose features from shallow to deeper levels. Transferring these
properties to NLP tasks, a fundamental assumption will be that
the local invariance allows a CNN to learn which words are the
more relevant to the classification task, and the compositional
property allows the network to learn how to combine words
embeddings to understand the meaning of a sentence. How-
ever, since the size of the filter is frequently limited between
two and seven n-grams, CNNs are not suited to learn phrases
that change the meaning of a sentence entirely if the distance
between words is larger than the size of the kernel (9). Figura-
tive language, like the language used in sentences that contain
humour, irony or metaphors present these linguistic construc-
tions, where part of the sentence conveys a sentiment and the
other part the opposite. These long-distance relationships are
hard to capture by CNNs.

In the literature, there are two approaches to build a CNN for
text classification. On the one hand, word embeddings can be
concatenated and then apply a one-dimension convolution with
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Figure 1: Diagram depicting how to prepare text to train a CNN. The shad-
owed area corresponds to a filter that learns bi-grams. In 1a word embeddings
are stacked horizontally. The height of a filter is fixed, and the width will be
a multiple of the size of the embedding vectors; hence, a convolution in one
dimension is applied. In 1b word embeddings are stacked vertically. The width
of a filter is fixed to the size of the embedding vectors, and the height will
vary depending on the size of the n-gram to learn; hence, a convolution in two
dimensions is applied.

a stride of the size of the embeddings. On the other hand, em-
beddings can be stacked vertically and compute a convolution
were the width of the convolution has been fixed to the size of
the embeddings. In the figure 1 a diagram of both approaches
is presented.

However, in both cases, the input size of the convolution
must be constant through the whole dataset. The maximum
size of the matrix is determined by the sentence of the maxi-
mum length in the training dataset. Sentences shorter than this
value will be padded and sentences longer, in the test dataset,
will be trimmed. Therefore, the size of the embeddings matrix
will be:

Rm×e (2)

being m the size of the longest sentence, and e the size of the
embeddings used.

This restriction will lead to the inclusion of padding. Padding
guarantees that all the input sentences will have the same di-
mensions and the convolution can be computed efficiently. This
padding is filled with a vector of a particular token, usually a
vector of zeros.

Padding with a vector of zeros will introduce noise in the
input sentence that will influence the training of CNN model.
To address the problems presented, we propose to pad the sen-
tence with embeddings of words present in the text. Therefore,
when the kernel is sliding through the matrix of words towards
the end of the sentence, it will learn relationships between the
end of the sentence and the beginning, forcing the network to
learn long-distance relationships between words. In addition,
this proposed semantic-based padding neither increase the size
of the input of the CNN nor represent a bottleneck preprocess-
ing the input data set because this padding process was already
being carried out and our proposed method doesn’t constitute a
computational overload.

Three padding methodologies are proposed.

• Random: This is the most basic way to fill the embed-

dings matrix. Each one of the empty rows will be filled
with embeddings from random words present in the sen-
tence. This padding doesn’t keep any semantic meaning,
but we include it as a baseline.

• Loop: This is our first proposed semantic-based padding.
After including each word of a sentence, the same sen-
tence is included repeatedly, similarly as in the memory
tape of a Turing machine, until the end of the matrix is
filled. Hence, we are forcing the CNN architecture to learn
long-distance relationships between phrases.

• Roll: This last padding is a variant of the previous one. In
this case, we will repeat each word of the sentence once in
the embeddings matrix. Thus, at maximum, the sentence
will appear two times. If the length of the sentence is two
times shorter than m —from Equation 2—, the size of the
embeddings matrix, zero-padding will be still added at the
end.

We include this variant, under the assumption that includ-
ing zero-padding might be helpful for capturing the feature
of how long the sentence was before the padding, while
still caputuring long distance relationships between words.
In systems with hand-crafted features, the length of the
sentence is a ubiquitous feature that most of the models
include (41; 42).

Besides, we will include a fourth padding methodology in all
our experiments, a classic zero-padding, that we will denomi-
nate in our experiments None padding.

A diagram illustrating the different paddings proposed can be
found in Figure 2.

Considering this example sentence that could be found in a
dataset ’I love this movie’; and assuming that the maximum
length of sentences seen in training is ten. Each one of the
paddings used will transform the sentence as follows:

• None: < I >< love >< this >< movie >< END ><
END >< END >< END >

• Random: < I >< love >< this >< movie >< I ><
movie >< love >< love >< movie >< this >

• Loop: < I >< love >< this >< movie >< I >< love ><
this >< movie >< I >< love >

• Roll: < I >< love >< this >< movie >< I >< love ><
this >< movie >< END >< END >

Brackets separate tokens. The token < END > is used for
padding the end of a sentence and it will be replaced by a vector
of zeros.

All the experiments will be executed with the four types
of paddings. Our objective is to prove that semantic-based
paddings can improve the performance of the CNN architec-
ture, regardless of the variations that training deep learning
methods may present. Accordingly, we have trained and evalu-
ated CNN models with the padding used in the state-of-the-art
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Figure 2: Diagrams with the different paddings compared in paper. Here we define wei as the word embedding of the i-th word in the sentence. The first matrix
corresponds to the standard None padding, following the Random, Roll, and Loop padding. The shadowed area is the area of interest of one of the four-grams
learned kernels. Each kernel will slide through the sentence learning the feature maps.

systems and the paddings we proposed. This will allow us eval-
uating fairly the improvements of the methodology.

No other preprocessing of the sentences will be carried out.
Firstly, because deep learning networks will learn an internal
representation which best suits the task at hand. Secondly, be-
cause we want to isolate the effect of the padding from other
conditioning factors.

4. Experiments and Results

In this Section, we will describe the experiments conducted
for validating that the semantic-based padding actually im-
proves the performance of the systems where it has been ap-
plied. We have selected a classic NLP task: sentence-level sen-
timent analysis on various well-known datasets.

Following the description of the experimental setup is de-
scribed. Also, we will discuss the results achieved.

4.1. Experimental setup
In order to test the performance of the proposed paddings, we

decided to employ a state-of-the-art architecture. The architec-
ture proposed by (author?) (37) will be used. In the Figure 3 a
diagram of this architecture is depicted. This CNN architecture
is a manageable deep learning model which allow us to eval-
uate the performance of our proposed semantic-based padding
with different embeddings and datasets extensively. Besides,
this architecture has been validated in the literature ((author?)
(43, 44, 9)).

We have reimplemented the single-channel architecture pro-
posed using the toolkit Tensorflow developed by (author?) (45)
and selected the same hyperparameters described in the litera-
ture. This is, we use three types of CNN kernels size R3×e,
R4×e, and R5×e respectively, being e the size of the embed-
dings studied; each type of convolution will learn 100 feature
maps; we use rectified linear units after applying the convolu-
tion operation; the dropout rate is 0.5, and the fully connected
layer consists on 150 neurons. We have trained the model using
mini-batches of size 100 through Adam gradient descent. We
have used a Titan XP GPU for carrying out all the experimental
phase gracefully donated by NVIDIA. We opted for reimple-
menting the system because this allows to validate the perfor-
mance of the padding without the variances that might appear

due to the particularities of the toolkit or even the hardware used
to train the reported state-of-the-art systems.

4.1.1. Sentiment Analysis
Sentiment Analysis, as we discussed in Section 2, is one of

the most studied tasks in NLP. This is the reason that led us to
select this task for this work. It allows us to compare our pro-
posed method to a well-known task and datasets. The datasets
used are:

• SST-5: Stanford Sentiment Treebank ((author?) (26)),
also found in the literature as SST-fine is a dataset consist-
ing of movie reviews that were annotated for five levels of
sentiment: strong negative, negative, neutral, positive and
strong positive. This dataset is annotated both phrase-level
and sentence-level. Only the label for the whole sentence
was considered as the golden truth.

• SST-2: Stanford Sentiment Treebank binary ((author?)
(26)). The sentences of this dataset are the same sen-
tences that previous dataset. However, in this case, only
two classes are considered: positive and negative sen-
tences. Sentences with strong positive and positive labels
are merged in the positive class. Similarly, sentences with
strong negative and negative labels are joined as negative
sentences. Finally, neutral sentences are discarded.

Table 1 reflects the statistics of the datasets studied. Note-
worthy, the input matrix has size R52×e being e the size of the
embeddings studied. Thus, on average 32 positions of the input
matrix are filled with padding (Pad). Therefore, it is reasonable
to argument that how we pad the input sentence will have an im-
pact on the training of our deep learning model. In addition,
the number of sentences that require a considerable amount of
padding corresponds to the head of a truncated Gaussian in both
datasets, as it can be visualised in Figures 4 and 5. However, the
tail of these Gaussians, i.e. the longer sentences, determine the
size of the input matrix. Besides, this problem will increase in
tasks where the average length of the sentences is smaller than
in these datasets and where sentences present more variability
in their lengths.
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Figure 3: Model architecture without any kind of padding (None padding).

Train Dev. Test Vocabulary Length Min Max Pad

SST-2 6920 872 1821 17539 19.3 2 52 32.45
SST-5 8544 1101 2210 19500 19.14 2 52 32.85

Table 1: Statistics of the number of words and padding needed in the datasets.

Padding Accuracy |∆| p-v. None p-v. Roll

E
m

be
dd

in
gs

Random

None 74.83 (0.74) - - -
Random 72.96 (1.09) - - -

Roll 75.18 (1.1) 0.34 P < .001 -
Loop 77.31 (0.16) 2.47 P < .001 P < .001

Table 2: Results obtained experimenting with Random Word Embeddings on the SST-2 dataset.

Padding Accuracy |∆| p-v. None p-v. Roll

E
m

be
dd

in
gs

Random

None 33.91 (1.50) - - -
Random 33.51 (0.96) - - -

Roll 34.42 (1.54) 0.50 P < .001 -
Loop 35.03 (1.51) 1.52 P < .001 P < .001

Table 3: Results obtained experimenting with Random Word Embeddings on the SST-5 dataset.

4.1.2. Word Embeddings Studied
In this section, we will describe the word embeddings stud-

ied. We decided to use different word embeddings to validate
the ability of the semantic-based padding to improve the per-
formance of a model regardless of the methodology used for
training these embeddings.

• Random: In this case, we assigned a vector of size R100

to each word. These vectors are initialised with random
noise. Values are drawn from a uniform distribution.
These word embeddings are the only one used that were

not pre-trained. Hence, they have no previous knowledge.
Consequently, we need to train word embeddings while we
are learning the classification task.

• NNLM-50: These word embeddings were trained follow-
ing the Neural Network Language model proposed by (au-
thor?) (46). It maps each word into a 50-dimensional
embedding vector. The Neural Network that learned
these embeddings was trained on English Google News
200B corpus. Besides, it has a pre-built out-of-vocabulary
(OOV) method that maps words that were not seen in the
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Figure 4: Distribution of the sentences length in the dataset SST-2.
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Figure 5: Distribution of the sentences length in the dataset SST-5.

vocabulary of the training dataset with hash buckets. Each
hash bucket is initialised using the remaining embedding
vectors that hash to the same bucket.

• NNLM-50-norm: Similar to the previous one but in this
case, word embeddings were normalised.

• NNLM-128: These words embeddings are trained in
the same fashion as NNLM-50. However, each word is
mapped into a 128-dimensional embedding vector.

• NNLM-128-norm: Analogous, these words embeddings
are a normalized version of NNLM-128. Each one of the
NNLM models were proposed by (author?) (46)

• W2V-250 Word embeddings based on skipgram version of
word2vec proposed by (author?) (28). They were trained
using the English Wikipedia corpus. The algorithm used
for training was hierarchical softmax, and sub-sampling
was set to 1e-5. All the words OOV were mapped into one
bucket which was initialised with zeros.

• W2V-250-norm: These embeddings are a normalized ver-
sion of W2V-250. These last two embedings were pro-

posed by (author?) (28).

All word embeddings modules studied, except for the Ran-
dom word embeddings, were downloaded from the on-line li-
brary Tensorflow Hub 1.

Moreover, since word embeddings can be trained for improv-
ing the task at hand, we have included experiments where the
word embedding input will be updated while training the senti-
ment analysis classifier. Experiments carried out with embed-
dings are labelled in the results as training.

4.2. Results

In this Section, we will expose the results of our experimen-
tation. As we described previously, we have implemented the
model presented in Section 4.1 to validate the impact of the
semantic-based padding in Sentiment Analysis tasks. More-
over, we have repeated ten times each experiment, and we re-
port the mean accuracy of the experimentation and its standard
deviation.

We reported as well the absolute difference of the semantic-
based padding and the zero-based padding, i.e. None padding.

In addition, we have calculated the T-test (47) between None-
padding and the semantic-based padding, i.e. Roll-padding and
Loop-padding, to demonstrate that it exists a significant dif-
ference between the state-of-the-art padding and the semantic-
based padding. Also, we have computed the T-test between the
two proposed semantic-based paddings to find out if there are
differences among these two methodologies for padding sen-
tences.

The results of the experimentation with dataset SST-2 can
be found in Tables 2, 4, 6, and 8. Similarly, the results of the
experimentation with dataset SST-5 can be found in Tables 3,
5, 7, and 9.

In several experiments, we have improved the results pre-
sented in the state-of-the-art papers (37; 43). These experi-
ments are highlighted in bold. Noteworthy, if the model with
None padding, the one used in the literature, achieves the state-
of-the-art performance, our proposed semantic-based padding
improves the accuracy. Moreover, in all the cases the semantic-
based padding outperforms the zero padding approach.

5. Discussion and Future Work

Following, we will evaluate the results presented in Section
4.2. Firstly, the most obvious conclusion we can draw from
the experiments assessed is that semantic-based padding im-
proves the performance of the Sentiment Analysis. And it does
it in a statistically significant way, as the p-value calculated be-
tween the results achieved without padding and the ones ob-
tained with both semantic-based padding are below < .05 in
almost every case. However, when we are training the word em-
beddings simultaneously with the SA task, the performance of
the semantic-based padding does not have an impact as relevant

1For more information, please visit the following URL https://www.

tensorflow.org/hub/
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Padding Accuracy |∆| p-v. None p-v. Roll

E
m

be
dd

in
gs

NNLM-50

None 75.17 (1.42) - - -
Random 76.00 (1.06) - - -

Roll 76.44 (0.91) 1.26 .015 -
Loop 77.50 (0.71) 1.50 P < .001 P < .001

NNLM-50
training

None 76.30 (1.06) - - -
Random 76.58 (2.31) - - -

Roll 77.20 (0.85) 0.89 P < .001 -
Loop 76.82 (0.69) 0.51 .03 P < .001

NNLM-50
norm.

None 76.49 (0.73) - - -
Random 75.81 (0.90) - - -

Roll 77.47 (0.54) 0.97 P < .001 -
Loop 77.92 (1.11) 1.42 P < .001 .17

NNLM-50
norm. training

None 76.48 (0.64) - - -
Random 75.37 (0.92) - - -

Roll 76.86 (0.91) 0.38 P < .001 -
Loop 77.70 (0.61) 1.21 P < .001 P < .001

Table 4: Results obtained experimenting with NNLM-50 Word Embeddings on the SST-2 dataset.

Padding Accuracy |∆| p-v. None p-v. Roll

E
m

be
dd

in
gs

NNLM-50

None 35.41 (1.24) - - -
Random 35.71 (1.28) - - -

Roll 36.01 (0.64) 0.59 P < .005 -
Loop 36.20 (0.54) 0.78 P < .001 .64

NNLM-50
training

None 35.30 (0.83) - - -
Random 35.05 (0.94) - - -

Roll 37.40 (0.70) 2.10 P < .001 -
Loop 37.08 (1.45) 1.78 P < .001 .62

NNLM-50
norm.

None 34.19 (0.97) - - -
Random 34.73 (1.41) - - -

Roll 36.32 (1.64) 2.13 P < .001 -
Loop 36.35 (1.22) 2.16 P < .001 .54

NNLM-50
norm. training

None 35.15 (0.87) - - -
Random 35.30 (1.69) - - -

Roll 36.79 (0.72) 0.38 P < .001 -
Loop 37.58 (0.65) 1.21 P < .001 P < .001

Table 5: Results obtained experimenting with NNLM-50 Word Embeddings on the SST-5 dataset.

as when embeddings are not trained. Updating the weights of
the embedding input during training helps to increase the per-
formance in the task. Therefore, the margin for improvement
with the semantic-padding is narrower. As future work, we
could modify the learning rate and the number of training epoch
hyperparameters to validate the impact of semantic-padding in
these scenarios.

Secondly, Random padding always performs worst than any
other padding. This is because the model is learning relation-
ships between words that have no relationship between them
in the sentence. Despite the individual impact of some words
in determining the sentiment of a sentence. This experiment
also proves that CNNs are learning how words interact with
each other, and when random connections appear the model
performs worst.

In the results presented both semantic-based paddings boost

the performance achieved by the zero padding. The improve-
ment found between both systems is very similar, which is val-
idated by the p-value obtained. In most of the experiments, the
difference between the two proposed semantic-based paddings
is not statistically significant. On the one hand, the end of sen-
tence tokens present on the Roll semantic-based padding en-
codes the length of the sentence, which is a typical feature
in models trained with hand-crafted features. On the other
hand, the Loop semantic-based padding allows CNN to learn
the same pattern of words in more positions of the embedding
input matrix. Although both proposed semantic-based paddings
achieve performance very similar, outperforming the state-of-
the-art used zero padding, the features learned by the model
differ. It will be interesting to investigate in future work how
this internal representation learned affects the performance of
the model.
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Padding Accuracy |∆| p-v. None p-v. Roll

E
m

be
dd

in
gs

NNLM-128

None 81.34 (1.3) - - -
Random 81.31 (0.41) - - -

Roll 82.45 (0.45) 1.09 P < .001 -
Loop 82.36 (0.67) 1.02 P < .001 .53

NNLM-128
training

None 75.04 (3.23) - - -
Random 73.75 (0.81) - - -

Roll 75.76 (1.17) 0.72 .067 -
Loop 75.57 (1.50) 0.53 .14 .65

NNLM-128
norm. training

None 81.63 (0.56) - - -
Random 80.08 (1.06) - - -

Roll 82.25 (0.75) 0.62 P < .001 -
Loop 82.00 (0.75) 0.37 P < .001 .43

NNLM-128
norm. training

None 75.09 (1.81 - - -
Random 74.58 (0.75) - - -

Roll 77.55 (0.53) 2.46 P < .001 -
Loop 76.57 (0.25) 1.48 P < .005 P < .001

Table 6: Results obtained experimenting with NNLM-128 Word Embeddings on the SST-2 dataset.

Padding Accuracy |∆| p-v. None p-v. Roll

E
m

be
dd

in
gs

NNLM-128

None 38.59 (1.82) - - -
Random 38.60 (0.41) - - -

Roll 40.93 (1.45) 2.3 P < .001 -
Loop 40.07 (0.65) 1.47 P < .001 .41

NNLM-128
training

None 34.95 (1.20 - - -
Random 33.72 (1.91) - - -

Roll 39.47 (1.12) 4.52 P < .001 -
Loop 39.57 (0.57) 4.62 P < .001 .84

NNLM-128
norm.

None 38.35 (0.95) - - -
Random 38.32 (0.70) - - -

Roll 39.56 (1.43) 1.21 P < .001 -
Loop 40.07 (0.98) 1.72 P < .001 .76

NNLM-128
norm. training

None 34.12 (2.53) - - -
Random 33.35 (0.98) - - -

Roll 35.46 (0.78) 1.34 P < .005 -
Loop 36.62 (0.98) 2.50 P < .001 .78

Table 7: Results obtained experimenting with NNLM-128 Word Embeddings on the SST-5 dataset.

Another future work will be to try this technique with new
tasks within Natural Language Processing. Also, new datasets
of Sentiment Analysis might be worth evaluating, particularly
those where the relationship between phrases in a sentence has
a significant impact such as corpora where irony or humour is
present. Following this line of future work, since there are pre-
trained word embeddings and datasets in other languages, one
could evaluate if the semantic-based padding also improves the
performance of NLP tasks in other languages.

6. Conclusions

In this work, we have proposed a random padding and
two semantic-based paddings for Natural Language Processing
tasks and proved its performance with two Sentiment Analy-
sis datasets and seven different word embeddings. For each

experiment performed the semantic-based padding proved to
improve the performance of the system. Moreover, when the
model without padding achieved state-of-the-art performance,
the semantic-based padding outdo the accuracy reported in state
of the art.

Finally, we had proposed future work that can expand the
achievements presented in this work. Namely, study the internal
representation learned by the Convolutional Neural Network,
which will improve the interpretability of the network as well;
and expand the experimentation to other domains.

In summary, studying the internals of deep learning networks
can lead us to improve the performance of the system. More-
over, it contributes to validate or discard hypothesis of what the
model is learning, guiding the development of new architec-
tures.
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Padding Accuracy |∆| p-v. None p-v. Roll

E
m

be
dd

in
gs

W2V-250

None 80.38 (3.24) - - -
Random 80.49 (0.21) - - -

Roll 81.88 (0.81) 1.5 P < .001 -
Loop 82.14 (0.94) 1.76 P < .001 .50

W2V-250
training

None 73.67(5.27) - - -
Random 73.99 (1.21) - - -

Roll 76.27 (0.98) 2.60 P < .001 -
Loop 75.83 (1.57) 2.16 P < .001 .08

W2V-250
norm.

None 77.18 (0.68) - - -
Random 75.11 (2.12) - - -

Roll 77.97 (0.74) 0.79 .03 -
Loop 78.08 (0.61) 0.90 P < .005 .32

W2V-250
norm. training

None 75.37 (1.66) - - -
Random 75.03 (0.45) - - -

Roll 76.26 (0.67) 0.89 P < .005 -
Loop 77.25 (1.58) 1.88 P < .001 P < .005

Table 8: Results obtained experimenting with W2V-250 Word Embeddings on the SST-2 dataset.

Padding Accuracy |∆| p-v. None p-v. Roll

E
m

be
dd

in
gs

W2V-250

None 33.75 (0.90) - - -
Random 32.20 (0.79) - - -

Roll 35.71 (1.28) 1.96 P < .001 -
Loop 35.26 (1.04) 1.50 0

W2V-250
training .

None 32.67 (0.19) - - -
Random 30.28 (1.80) - - -

Roll 34.34 (0.87) 1.67 P < .001 -
Loop 33.18 (1.99) 0.51 .058 P < .001

W2V-250
norm.

None 34.85 (1.32) - - -
Random 33.90 (1.21) - - -

Roll 35.44 (0.33) 0.59 P < .005 -
Loop 35.55 (1.24) 0.70 P < .005 .72

W2V-250
norm. training

None 33.03 (2.37) - - -
Random 32.40 (2.83) - - -

Roll 35.26 (1.29) 2.23 P < .001 -
Loop 34.11 (2.18) 1.08 P < .005 .008

Table 9: Results obtained experimenting with W2V-250 Word Embeddings on the SST-5 dataset.

7. Acknowledgments

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the Titan Xp GPU used for this re-
search. The work of the first author is financed by Grant PAID-
01-2461 2015, from the Universitat Politècnica de València.
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