
Received October 5, 2020, accepted October 20, 2020, date of publication October 26, 2020, date of current version November 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3033853

hp-DCFNoC: High Performance Distributed
Dynamic TDM Scheduler Based on
DCFNoC Theory
TOMÁS PICORNELL , JOSE FLICH, (Senior Member, IEEE),
DUATO JOSE, (Senior Member, IEEE), AND
CARLES HERNÁNDEZ
Department of Computer Architecture, Universitat Politècnica de València, 46022 Valencia, Spain

Corresponding author: Tomás Picornell (tompic@gap.upv.es)

This work was supported in part by the Secretara de Estado de Investigacin Desarrollo e Innovacin (MINECO) under
Grant BES-2016-076885, in part by the European Regional Development Fund (ERDF) under Grant TIN2015-66972-C05-1-R and
Grant RTI2018-098156-B-C51, and in part by the EC H2020 European Institute of Innovation and Technology (SELENE) Project
under Grant 871467.

ABSTRACT The need for increasing the performance of critical real-time embedded systems pushes the
industry to adopt complex multi-core processor designs with embedded networks-on-chip. In this paper
we present hp-DCFNoC, a distributed dynamic scheduler design that by relying on the key properties
of a delayed conflict-free NoC (DCFNoC) is able to achieve peak performance numbers very close to a
wormhole-based NoC design without compromising its real-time guarantees. In particular, our results show
that the proposed scheduler achieves an overall throughput improvement of 6.9× and 14.4× over a baseline
DCFNoC for 16 and 64-node meshes, respectively.When compared against a standard wormhole router 95%
of its network throughput is preserved while strict timing predictability as property is kept. This achievement
opens the door to new high performance time predictable NoC designs.

INDEX TERMS Dynamic scheduler, multicore, real-time, tdma, time predictable network.

I. INTRODUCTION
The continuous quest for performance of critical real-time
embedded systems pushed the safety-critical systems indus-
try to move from platforms including relatively simple
electronic computing units to complex multicore processor
designs. The interconnection architecture included in these
processor designs has evolved from bus-centric architectures
interconnecting a relatively small number of cores to more
scalable distributed approaches implementing networks-
on-chip (NoCs) [1].

In a context in which NoCs are becoming ubiquitous in
safety-critical real-time systems [2]–[4] it becomes manda-
tory finding NoC designs that provide high quality real-time
guarantees. In this paper we aim at achieving this goal and
propose a new real-time specific NoC design that provides
top peak performance while preserving strict real-time guar-
antees. Our NoC design uses a dynamic scheduler that builds
on top of the delayed conflict-free NoC (DCFNoC) [5].
DCFNoC is a TDM-based NoC with unique features that

The associate editor coordinating the review of this manuscript and
approving it for publication was Rongni Yang.

are exploited by our dynamic scheduler design. The com-
bination of the dynamic scheduler and DCFNoC is termed
hp-DCFNoC (high-performance DCFNoC).

As the main contribution in this paper, we propose a
novel distributed dynamic scheduler that relies on DCFNoC
properties and improves the throughput of the baseline NoC
by taking advantage of unused TDM slots. We implement
the scheduler design in synthesizable verilog RTL showing
the feasibility of this approach and compare its performance
against the one provided byDCFNoC and a regular wormhole
NoC.

Our results show that hp-DCFNoC maximizes perfor-
mancewhen usingDCFNoC, achieving an overall throughput
improvement of 6.9× and 14.4× over a baseline DCFNoC
for 16 and 64-node meshes, respectively. Experimental
results also confirm that hp-DCFNoC is able to achieve
the same performance guarantees that DCFNoC. Addition-
ally, we show how hp-DCFNoC achieves a peak throughput
(0.45 flits/cycle/node), close to maximum throughput in a
4 × 4 wormhole NoC. In general terms, 95% of achiev-
able throughput by a wormhole router is guaranteed by
hp-DCFNoC.

194836 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-4011-1990

T. Picornell et al.: hp-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

The rest of this paper is organized as follows. Section II
briefly describes DCFNoC theory. Section III presents the
distributed dynamic scheduler design. Section IV provides a
performance evaluation of the proposed scheduler. Section V
discusses related work and, finally, conclusions are given in
Section VI.

II. DELAYED CONFLICT-FREE NETWORK
In this section we briefly describe the methodology for
designing TDM-based networks relying on the DCFNoC
approach. DCFNoC builds a network in which conflict-free
transmission is guaranteed by using a time-division multi-
plexing (TDM) window. DCFNoC relies on the utilization of
channel dependency graphs (CDGs) to identify the existing
message dependencies (contention) and eliminate message
conflicts by the simple introduction of delays at the router
output ports. The CDG helps to identify where conflicts
occur in the NoC and how these conflicts are always the
consequence of dependencies betweenmessages reaching the
same destination with a variable number of hops. In this
context, the introduction of delays at the output ports of
specific routers located at particular positions in the NoC,
ensures transmissions are naturally serialized and conflicts
are avoided by design.

In order to describe DCFNoC we assume a 2 × 2 mesh
using the Dimension Order Routing DOR [6] algorithm
(see Figure 1a). From this topology and based on the
routing algorithm we build its channel dependency graph
(CDG). The CDG can be used to derive the paths for every
source-destination pair of end nodes (see Figure 1b). For
instance, path 0→ 3 will cross links {0−1}, {1−3}whereas
path 1→ 3 will use link {1− 3}. Notice that these two paths,
with dots, may create conflicts since they share {1 − 3} link
and ejection link (dotted e3) at router 3 (ejection links are
represented by (e#).

From the CDG, the DCFNoC approach follows two steps.
In the first step we layer the CDG to obtain an equivalent
layered CDG (CDGl). To do so, we assign a layer (L#) to
each link (nodes in the CDG) following a partial order as
determined by the routing algorithm (see Figure 1c). If we
assume links introduce one cycle delay, each layer then rep-
resents one cycle delay. Notice that building a layered CDG
is always possible when the CDG is acyclic [6] and thus,
DCFNoC is compatible with any deterministic or partly adap-
tive deadlock-free routing algorithm. Note that a mechanism
to avoid deadlocks is a limitation implemented in themajority
of existing NoC. The CDGl shows arranged (downwards in
the figure) the paths for every source-destination pair of end
nodes following the routing algorithm. Assuming only one
node injects a message at a time, potential conflicts will
only occur due to channels connecting non-consecutive layers
(represented by red dashed arrows in Figure 1c).

To avoid those potential conflicts, in the second step,
the CDGl is modified by inserting delays to enforce all paths
cross all layers, thus, to have the same length. Figure 1e
shows how to remove every potential conflict (red arrow)

FIGURE 1. Building a DCFNoC from a 2D mesh with XY routing algorithm.

of Figure 1c. In this particular example potential conflicts
with end node 3 are shown. As a result, we add one cycle
delay (horizontal lines) to remove every potential conflict.
Note that we add one delay because in this case arrow
indicates channels connecting non-consecutive layers with
a jump of one layer. The longer the jump, the more delays
we need. The main idea behind DCFNoC is that conflicts
can be avoided if transmissions are serialized by forcing all
messages to traverse the same number of layers in the same
order (from L0 to L3).

The key idea is to spread the delays amongmultiple routers
for every path between source and destination nodes. The
resulting graph after the addition of delays is a delayed lay-
ered channel dependency graph CDGdl , see Figure 1d. Note
that in this plot only channels and dependencies for paths
with destination end node 3 are shown. In CDGdl all paths

VOLUME 8, 2020 194837

T. Picornell et al.: hp-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

FIGURE 2. CDGdl subgraph by destination for the 4 × 4 mesh topology and the XY routing algorithm (paths shown only from every node to
node 15). Colours represent the TDM-slot of a potential arrangement of messages in the network.

experience the same latency as injection channels are located
at L0 and ejection channels are located at L3. Additional
delays are represented by a horizontal line after the arrow. The
delay for every possible path is equal to the network diameter
plus two (injection and ejection layers/channels).

TDM slots at the end nodes are used to guarantee every
node can only inject messages in a given slot and that only one
node injects in a particular cycle. Combined with additional
delays we enforce the serialization (one-message-per-layer
rule). Destination end nodes do not affect slot assignment
since conflicts are avoided completely. Figure 2 shows a
subgraph of the CDGdl derived from a 4 × 4 mesh topology
and the DOR routing algorithm. Only links and dependencies
for paths with destination end node 15 are shown in the plot.
In the figure every TDM injection slot is associated to one
injector ID. As shown in the plot, TDM slots can be assigned
arbitrarily with the guarantee that conflicts will not be created
within the network. We use colours to represent the location
of packets according to the TDM slot assignment. Note that
every row represents a network layer in the CDGdl . To avoid
conflicts, DCFNoC enforces the one packet per layer rule
allowing only one injector per slot. Up to eight messages
will be within the network, one from each end node but each
message will be on a different layer. Messages from end
node 0 will take six cycles as they cross six links. On the
other hand, messages from end node 11 will take six cycles
but only one network link will be crossed ({11 − 15}). Five
delay cycles are added to the path to globally avoid conflicts.

The way in which delays are implemented is design spe-
cific. So, each router will have a predefined output port
delay configuration depending of its locationwithin theCDG.
Notice that each delay (layer) will need a latch to store the
message for one cycle. In DCFNoC, extra delays accounted
in CDGdl are added to the output port of the router.

DCFNoC methodology is topology agnostic and it only
requires that the CDG resulting from a particular topology
and routing implementation is acyclic. Figure 3 illustrates

FIGURE 3. Breaking cycles in bi-torus.

how DCFNoC can be applied in a bi-torus topology. Routing
loops via wrap-around links can be avoided by applying a
couple of routing restrictions. For instance, we can force paths
through the wraparound links take one direction or another
depending whether source end nodes are odd or even.

After breaking cycles (i.e. making the CDG acyclic) the
longest path in the topology (network diameter) in a 4 × 4
Bi-torus is four. Thus, the resulting CDGdl will contain 6
layers (from L0 to L5) as the longest paths in this NoC
traverse four links (e.g. from node 0 to node 10). Shorter
paths will have additional delay cycles to serialize packets
and avoid conflicts. It is important to recall that the delay for
every possible path with DCFNoC is equal to the network
diameter plus two (injection and ejection layers/channels).

III. A DISTRIBUTED DYNAMIC SCHEDULER DESIGN
DCFNoC limits flit injection to only one node at a time
in a given slot. Therefore, although timing guarantees are
preserved, network throughput is severally limited to one flit
per cycle regardless of network size. hp-DCFNoC overcomes
this limitation by introducing a dynamic scheduler design that
is able to inject more than one flit per cycle by exploiting
the existing conflict-free paths (paths that do not share any
network resource between them). In particular, we exploit two
conflict-free situations: (1) packets from two nodes injected
in the same slot that do not share any resource along their path

194838 VOLUME 8, 2020

T. Picornell et al.: hp-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

and (2) messages injected at different cycles. In both cases
they will never conflict in DCFNoC. Our dynamic scheduler
exploits these two properties to maximize the number of
packets that can be injected in the NoC at a given cycle while
preserving the real-time properties provided by DCFNoC.

FIGURE 4. Scheduler phases. Notification phase configures next
transmission window.

hp-DCFNoC implements a distributed TDM scheduler at
network interfaces of every end node. The scheduler uses
two DCFNoC networks, one for notification and one for data
transmission as shown at the upper part of Figure 4. Two
phases are identified. In the notification phase the scheduler
determines which routes will be used by each node in a
given time slot. If routes are compatible (i.e.. do not gener-
ate conflicts) they can be scheduled in the same time slot.
In the second phase data is actually transmitted. During the
transmission phase all the slots are run. Data transmission
and notification phases are overlapped to maximize both
throughput and average message latency.

A. SCHEDULER ARCHITECTURE
The proposed scheduler consists of several modules intercon-
nected as shown in Figure 5. This picture shows a detailed
architectural diagram of a 4-way distributed TDM scheduler
for a 16-node system in a 4 × 4 mesh network. Each wayi
module has a queue with pending messages the node wants
to inject (4 messages in this particular configuration). In the
scheduler a route scheduling table (RST with as many entries
as ways) keeps the following information related to pend-
ing messages: valid bit (valid), way id (wayid), destination
node (dst), the set of available slots (slot x), a selected slot
vector (selected) and the corresponding id of the selected slot
(slot sel).

During the scheduling phase, each node receives notifica-
tionmessages from other nodes via the notificationDCFNoC.
Every time a notification arrives to the scheduler the route
checker modules compare the routes information included in
the received notification with the one for the pending local
messages. A notification message can include several routes.
In our implementation we use slots of two cycles for each
node to send notifications. Each cycle ways/2 routes are
notified. By using two cycles the width of the notification net-
work is reduced. The route checker modules determine which
routes are disjoint with the pending messages and which ones
are incompatible. The selected slot is updated in the RST
module using a chain of Fixed Priority Arbiters (FPA). Once
notification phase ends, RST information is stored in the data
window module. This module injects pending messages in
the assigned slot by using an enable signal during the data
transmission phase.

In order to maximize performance, the scheduler is
pipelined in two stages. In the first stage notifications are
received (or injected) and checked. In the second stage the
compatible slots are found.

B. NOTIFICATION PHASE
At each network interface newly generatedmessages arrive in
order and are stored in a two slot buffer (way). Each message
generates a pending route to be scheduled (the suitable slot
must be computed). Routes are determined by a source and
destination pair (src-dst). Message destination andway ID are
stored in the route scheduling table, which is used to find the
most suitable slot. Each RST row contains one control bit per
each possible slot in the next transmission window. A control
bit set to one means that this route can use that slot ID for
transmission. The scheduler must guarantee two conflicting
paths do not end up using the same slot. We define as many
slots as end nodes and statically assign one slot per node. Each
slot will be prioritized by the scheduler to the assigned node.
Thus, the scheduler guarantees that at least one node will be
able to use its prioritized slot and is irrevocable. This is the
most valuable guarantee, no one can use this slot unless it uses
a disjoint route. This is key to ensure that DCFNoC timing
guarantees are preserved.

The notification phase uses a TDM network in order to let
every node send their notifications in turns. To avoid wasting
a complete TDMwindow to notify all nodes we use DCFNoC
native support for broadcast. Thus, every node will broadcast
its notifications on a single slot to the rest of nodes. Also,
DCFNoC guarantees all notifications arrive at the same time
to all nodes which simplifies the scheduler design. The noti-
fication reception time (timei) identifies the sender node and
therefore is equal to Notification ID. On every notification
window, the first node sending notifications is assigned in a
round-robin fashion.

On every notification reception the end nodes process the
notifications. The RST is updated taking into account the
conflicts that may arise between received notifications and
the current assignments of paths to slots. Notice that all nodes
update the RST at the same time and via the same manner.
Also, each end node checks if there is a pending route (i.e.
a route that is waiting to be served) that requests the same
network resources to determine if these routes are compatible.
The rules used by the scheduler to determine priorities in case
of incompatible paths are the following:
• The notified route uses the priority slot of the receiver.
(For the examples provided belowwe consider TDMslot
i is assigned to node i by default). Given that these routes
are compatible by default no action is required at the
receiver side. Figure 6 illustrates this case. Notification
node 4 uses priority slot of receiver (slot 6). Receiver has
one route in the RST with slot 6. In this case, receiver
has the priority to use this slot. When the notification
turn arrives, receiver node will send the notification and
other nodes using this slot with incompatible routesmust
disable this selected time slot in the RST.

VOLUME 8, 2020 194839

T. Picornell et al.: hp-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

FIGURE 5. Scheduler to optimize DCFNoC performance and resource utilization.

FIGURE 6. First priority rule in case of incompatible paths: notified route
uses the priority slot of the receiver.

FIGURE 7. Second priority rule in case of incompatible paths: notified
route uses the priority slot of the sender.

• The notified route uses the priority slot of the sender. The
receiver must disable the requested time slot in the RST.
Figure 7 shows an example where notification node 4
uses its own priority slot (slot 4). Receiver (node 6) has
one route in the RST with slot 4 and both routes have
incompatible paths. In this case, sender has the priority
to use this slot and therefore, receiver node must disable
this selected time slot in the RST row.

FIGURE 8. Third priority rule in case of incompatible paths: notified route
does not use either the priority slot of the sender nor the receiver’s one.

• The notified route does not use either the priority slot of
the sender or the receiver’s one. Figure 8 illustrates this
case. The sender is node 4 and uses slot 15. Receiver
is node 6 and has one route in the RST with slot 15.
Both routes have incompatible paths due to destination
node sharing. In this case, the first node that notified
the routed (node 4 in our example), has the priority to
use this slot, therefore receiver node must disable this
selected time slot in the RST row.

Once notification turn arrives, the slot manager on every
node selects one data slot for each pending route through a
chain of FPA. Slot selection process is based on the updated
control bits of the RST. First, by means of Round-Robin
arbiter, one pending route is selected and uses the first FPA to
select a time slot. The FPA selects the first active bit of each
SRT row starting from this node’s priority slot. The remaining
pending routes use the next entry of the one provided by FPA.
It is important to take into account that the slot selection
process is exclusive. That is, no pending route can select the

194840 VOLUME 8, 2020

T. Picornell et al.: hp-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

FIGURE 9. Data phase. At the end of notification phase the slot manager sends information about the slots
assigned to each message.

same slot. Once slot selection ends the selected control bit is
enabled and the selected slot is stored at the row.

Selection and notification process take two cycles at each
node. The process selects and notifies half of the pending
routes in the first cycle and the other half in the second cycle.

C. DATA PHASE
After the notification phase each node knows the exact slot
in which the different messages have to be scheduled. The
duration of the data phase that guarantees all nodes have one
slot is a complete TDM window. The size of each slot is
the maximum size among all the routes using the slot and
depends on the size of messages scheduled for that slot.

To maximize performance transmission phase is over-
lapped with notification phase. As Figure 9 shows, when
a notification phase ends the slot manager module sends
information about the slots assigned to each message. Once
the new data window is ready the system starts sending stored
messages from ways corresponding to an assigned slot.

The upper part of Figure 11 shows how the data win-
dow module activates the notification phase of the next data
transmission phase before the current transmission window
is completed. Note also that shifting notification phase to the
end of the current data window transmission maximizes the
chances to find compatible routes since more messages are
potentially available.

D. ASSIGNMENT OF TDM SLOT PRIORITIES
The success rate of slot assignments for pending routes is
significantly influenced by how priority slots are designated
to the different nodes. Achieving a higher rate of selected
slots requires finding the maximum number of disjoint paths
(i.e. without conflict) and for this a policy for slot assignation
has to be designed. This assignment is computed by software
before the application is deployed.

Let us illustrate this with an example. Figure 10a shows
a 4 × 4 network in which packets are routed using XY.

FIGURE 10. Disjoint paths between node 0 and node 1 in (a). In
(b) node 0 and node 15. Paths sharing red resources or destination node
are incompatible.

As shown in the plot, nodes 0 and 1 have many potential
conflicting paths since they share many links to the potential
target destinations. On the contrary, as shown in Figure 10b,
node 0 and node 15 do not have conflicts except those that
target one of these two nodes as destination. For this setup,
the best slot assignment is the one that assigns priority slots
to nodes with no or few number of sharing resources for all
potential target destinations.

In this section, we show how to find the optimal slot
assignment for uniform traffic with XY routing in a 2D mesh
network. To do so, we have done an exhaustive search with
an offline program to get the configuration with less number
of conflicting paths. The pseudo-code of this search is shown
in Algorithm 1. The algorithm explores for all potential paths
(i.e. source and destination pair) in the network which is the
priority assignments that maximizes the number of disjoint
routes. Note that the algorithm also takes into account the
amount of ways in the scheduler.

E. RESCHEDULING TECHNIQUE
As explained in Section III-A the proposed scheduler over-
laps notification and transmission phases (see the upper part
of Figure 11). However, as notification and data transmis-
sion phases have large timing differences, performance may
be compromised. To solve this drawback, we propose a

VOLUME 8, 2020 194841

T. Picornell et al.: hp-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

Algorithm 1: Algorithm to Get Best Priority Slot Map-
ping

1 : f u n c t i o n bu i l d _p s l o t _map (# ways , # t i l e s , # s l o t s)
2 :
3 : t i l e s temp_map
4 : t i l e s bes t_mapp ing
5 : t i l e t x
6 : t i l e t y
7 : way wx
8 : i n t t em p _ d i s j o i n t = 0 ;
9 : i n t b e s t _ d i s j o i n t = 0 ;
10 : d e s t i n a t i o n dx
11 :
12 : f o r eve ry t i l e i n t i l e s (t x)
13 : temp_map (t x) . p r i o _ s l o t = g e t _ p s l o t (s l o t s) ;
14 : f o r eve ry t i l e i n t i l e s (t y)
15 : temp_map (t y) . p r i o _ s l o t = g e t _ p s l o t

(s l o t s) ;
16 : e nd f o r
17 :
18 : f o r eve ry way i n ways (wx)
19 : temp_map (t x) . way (wx) . s e l _ s l o t =
20 : (temp_map (t x) . p r i o _ s l o t + wx) % s l o t s ;
21 : f o r eve ry t i l e i n t i l e s (dx)
22 : temp_map (t x) . way (wx) . d e s t = dx ;
23 : e nd f o r
24 : e nd f o r
25 :
26 : t em p _ d i s j o i n t = c h e c k _ d i s j o i n t (temp_map) ;
27 : i f (t emp_ d i s j o i n t > b e s t _ d i s j o i n t)
28 : bes t_mapp ing = temp_map ;
29 : b e s t _ d i s j o i n t = t em p _ d i s j o i n t ;
30 : e n d i f
31 : e nd f o r
32 :
33 : r e t u r n bes t_mapp ing ;
34 :
35 : end f u n c t i o n

FIGURE 11. Comparison between common scheduler phases (up) and
using rescheduling technique (down). Notification phase configures next
transmission window. Data transmission phase is now broken down in
transmX0 and transmX1.

rescheduling mechanism that finds the best way to seize
notification and timing of each phase.

Let us illustrate the proposed mechanism with an example.
The timing of the notification phase depends on the number of
nodes (#nodes), the number of cycles required for notification
(#noticy) for each node and the network latency (netL).

Notification delay = (#nodes× #noticy)+ netL (1)

Data delay depends on the number of nodes (#nodes) and
the message length in cycles (messageL). Both Notification
and Data delay refers to the maximum delay may last these

phases.

Data delay = #nodes× #messageL (2)

A 4×4 DCFNoC mesh has a latency of 7 cycles and needs
2 cycles for node notification. Using messages of 5 flits:

Notification delay = (16× 2)+ 7 = 39 cycles

Data delay = 16× 5 = 80 cycles (3)

As we can see there is a huge difference between the 39
cycles of the notification phase and the 80 cycles required for
transmitting data. Thus, we propose a rescheduling approach
in which data phase is split. The first half of window slots in a
first round and the other half of the slots in a second one. After
this modification notification and data delay are as follows:

Notification delay = (16× 2)+ 7 = 39 cycles

Data delay =
16
2
× 5 = 40 cycles (4)

Notification delay remains in 39 cycles since we notify
routes from all network nodes but data delay changes from
80 to 40 which results in an almost perfect overlapping.

At the lower part of Figure 11 we show the new procedure
for notification and transmission using this rescheduling tech-
nique. Data transmission phase is broken down in transmX0
and transmX1. The first notification notX0 deals with the
first half of the data window slots and the second one notX1
schedules the remaining slots.

To maximize efficiency of the rescheduling technique it is
important to match the notification phase of all nodes notX0
with the same or less slots for data transmission in order to
maximize the matching at the end of whole data window (see
the lower part of Figure 11).

FIGURE 12. Analysis of notification nodes targeting scheduling slots in
common scheduler phases (up) and using rescheduling technique (down).
Note that resulting transmission phase when rescheduling is the addition
of transmX0 and transmX1.

Figure 12 shows how the scheduling window is organized
in the regular case (top) and when the rescheduling technique
is applied (bottom). In both cases each node is assigned the
priority in a given slot but routes are notified differently. In the
regular scheduling the notification phase occurs once every N
slots while with the rescheduling technique the notification
phase occurs several times per window (two times in this
example). Notifying routes more frequently increases the

194842 VOLUME 8, 2020

T. Picornell et al.: hp-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

chances to schedule packets. Note that nodes can use any of
the slots. However, packet transmission for non priority nodes
only occur if the node with priority is not using the assigned
slot.

IV. EVALUATION
In this section we compare the performance achieved by
hp-DCFNoC with DCFNoC and a regular wormhole NoC.

A. EXPERIMENTAL SETUP
We implement all designs: hp-DCFNoC, DCFNoC, and a
wormhole NoC in verilog RTL. The resulting implementation
can be synthetized in FPGAs and ASIC. To obtain perfor-
mance numbers we simulate the system using the Xilinx
Vivado [7] RTL simulator.

FIGURE 13. 4 × 4 mesh system with schedulers using two DCFNoC
networks.

Figure 13 shows a schematic of the NoC platform for the
4 × 4 mesh system. Note that our approach includes the
schedulers and two DCFNoC networks, one for notification
and one for data transmission.

For traffic generation we create uniform traffic patterns
using a message system generator that is attached to each
network interface. In order to create uniform traffic pattern,
we use a pseudo random number generator with Linear Feed-
back Shift Registers (LFSR) to generate a random destina-
tion label for every message, thus all nodes have the same
probability to be targets. The use of uniform traffic allows
us to simulate an unpredictable network load as well as
unpredictable used paths. One thousand warm-up messages
are generated at the beginning of each test.

We implement NoCs of 16 (4×4mesh) and 64 nodes (8×8
mesh) using this platform.

B. THEORETICAL WORST-CASE PERFORMANCE
hp-DCFNoC preserves the performance guarantees provided
by DCFNoC network. hp-DCFNoC performance is tightly
coupled with the scheduling period. While traditional TDM
approaches have difficulties to find schedules for large net-
works hp-DCFNoC is able to find conflict-free scenarios in
arbitrarily large NoC sizes. hp-DCFNoC achieves this with-
out degrading the quality of the achieved guarantees by sim-
ply ensuring that no more than one node is injecting packets
in the same time slot unless it uses a disjoint route. Since only
one node is injecting in a particular cycle the resulting NoC
guaranteed productivity is equal to 1/N flits/cycles/node

being N the number of network nodes. Hence, the network
injects 1/tslot (one message per TDM slot), at a minimum,
resulting in N/PTDM (N messages per TDM period), or in
other words N messages per window. Regarding message
latency, all communication flows experience a latency that
is equal to the time required to traverse the NoC diameter
(H) plus the ejection and injection links (2).

hp-DCFNoC provides TDM periods significantly better
than other proposals. For instance, for a 25-node mesh NoC
the approach in [8] requires a period of 34 while hp-DCFNoC
requires only 25 cycles. Additionally, approaches using ILP
to find optimal scheduling periods suffer from limited scal-
ability not being able to find schedules for meshes beyond
25 nodes [8]. Other approaches based on heuristics, although
being able to find schedules for larger NoCs, result in TDM
periods that are significantly worse than the ones achieved by
hp-DCFNoC. For instance, in [9] a 64-node mesh requires a
period of 481 cycles while hp-DCFNoC requires only 64.

In terms of latency, for very small injection rates and the
smallest NoC sizes DCFNoC latency is slightly worse than
the one achieved in ILP [8] for the shortest paths but better for
the longest ones. For higher NoC sizes and/or higher injection
rates DCFNoC achieves always better results [4]. The reason
for this is the smaller period of DCFNoC that decreases the
average time each message is waiting until it is aligned with
the assigned slot. The smaller period also enables DCFNoC
achieve small latency values for higher injection rates. Other
similar approaches like PhaseNoC [10] achieve the same
schedule period but at the cost of higher latency. In summary,
hp-DCFNoC baseline performance is in general better than
the rest of state-of-the-art TDM approaches.

C. TESTING WORST-CASE PERFORMANCE
Figure 14 shows hp-DCFNoC throughput guarantees for a
4×4 mesh system. Horizontal line represents the throughput
guaranteed for each node (1/16 = 0.0625 flits/cycle/node).
For this experiment we configure node 5 to inject traffic at
10% injection rate while the rest of nodes are injecting at
50%. Note that while the guaranteed throughput is lower
than the one injected by node 5 the scheduler is able to
meet latency guarantees also when the other messages are
injecting at a high rate. For node 5 throughput reaches 0.10
flits per cycle, above the minimum guaranteed throughput,
and average message latency does not exceed the horizontal
line.

Figure 14b analyzes for an 8 × 8 NoC a different traffic
scenario. In this case, six nodes (10, 20, 30, 40, 50 and 60)
inject at 50% injection rate while others injects at 5%. For a
64-node configuration hp-DCFNoC guarantees a throughput
of 1/64 flits/cycle/node. However, with the dynamic sched-
uler we have that nodes injecting at 5% are able to sustain
this throughput that is above the one actually guaranteed in
spite of having several nodes with a very high injection rate.
Note however that for nodes injecting at 50% throughput is
not preserved.

VOLUME 8, 2020 194843

T. Picornell et al.: hp-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

FIGURE 14. Throughput guarantees for a 4 × 4 and 8 × 8 mesh system. In
(a) node 5 is injecting traffic at 10% injection rate while others are
injecting at 50%. In (b) nodes (10, 20, 30, 40, 50 and 60) inject at 50%
injection rate while the rest inject at 5%.

FIGURE 15. Network throughput using baseline scheduler (BaseSched)
for different ways in a 4 × 4 mesh system.

1) IMPACT OF THE NUMBER OF WAYS
Figure 15 shows the network throughput achieved for a
4 × 4 mesh system with the baseline scheduler (BaseSched)
without the re-scheduling technique. As shown, throughput
achieved with the scheduler is significantly better than the
one achieved by DCFNoC (0.00625 flits/cycle/node) even
with the a small number of ways (4). Recall that the num-
ber of ways represents the maximum amount of messages
that are pending to be scheduled in each notification phase.
Thus, increasing the number of ways increases the potential
throughput of the network although this also implies higher
hardware costs. For a 16-node NoC the throughput improves
from 0.18 to 0.42 flits/cycles/node when moving from 4 to
16 ways. An interesting observation is that improvements are
not so relevant for more than 8 ways.

2) IMPACT OF RESCHEDULING
By implementing the rescheduling technique, the scheduler
is able to maximize DCFNoC utilization reaching a signifi-
cantly higher performance. Figure 16 and 17 show results for
4×4 and 8×8mesh systems usingDCFNoCwithout dynamic
scheduler (DCFNoC), the baseline scheduler (BaseSched)
and the improved scheduler that implements the reschedul-
ing technique (ImpSched). For the 4 × 4 mesh scheduler
we use 8 ways. Data window contains 16 slots (one per
node). Figure 16a shows how network throughput has been
improved from 0.062 (1/16) to 0.30 when using the dynamic
scheduler reaching 0.43 flits/cycle/node with the ImpSched.

In other words, the number of messages that can be transmit-
ted per slot goes, on average, from 1 in DCFNoC to 5.8 in the
BaseSched to 6.9 in ImpSched. For the ImpSched this results
in nearly 110 messages per window. With respect to latency
values Figure 16b shows how average message latency is kept
low until 0.48 flits/cycle/node.

For a 8 × 8 mesh, the scheduler implements 16 ways
at each node and data window contains 64 slots (one per
node). Before analyzing the results, it is important to remark
that in a 8 × 8 mesh the throughput achieved per node is
roughly divided by 2 with respect to a 4 × 4 mesh. Hence,
network performance per node is expected to be reduced in a
similar manner. Figure 17a shows network throughput for the
64-node mesh. DCFNoC obtains 0.015 (1/64), BaseSched
gets 0.12 and the improved scheduler reaches 0.23 flits/cycle/
node. These throughput numbers show how a network with
64 nodes is able to improve network capacity up to 14 mes-
sages per slot which doubles the capacity achieved in the
4 × 4 mesh. This means that the network is able to send
nearly 900 messages every TDM window. Figure 17b shows
how the network keeps very low message contention until
0.20 flits/cycle/node keeping latency values low.

3) hp-DCFNoC VERSUS WORMHOLE
The goal of hp-DCFNoC is improving the performance
achieved with DCFNoCwhile keeping its valuable QoS prop-
erties. In this section we show how hp-DCFNoC is able to
achieve that goal but also how its peak performance numbers
are very close to the one of wormhole NoCs. Figure 18
compares the network throughput achieved by hp-DCFNoC
with the one of a high-performance wormhole NoC. For the
wormhole NoC we use a conventional NoC implementation
with canonical and pipelined routers, one single virtual chan-
nel, round-robin arbitration, and XY routing. As shown in the
plots, in both cases, the throughput of hp-DCFNoC is very
close to the one that can be achieved with wormhole being
close to 0.45 flits/cycle/node for a 16-node mesh and 0.22
for 64-node mesh. Interestingly, while wormhole NoCs have
been able to provide performance guarantees [11] the latency
bounds provided by these NoCs are much worse than the
ones provided by hp-DCFNoC. Figure 19 shows how average
message latency is kept low until 0.48 flits/cycle/node for a
16-node mesh and 0.22 for 64-node mesh.

D. ANALYZING THE IMPACT ON APPLICATIONS
BEHAVIOUR
In order to evaluate the benefits of using hp-DCFNoC on
applications execution time we have designed several syn-
thetic kernels. The synthetic kernels generated produce a vari-
able amount of instructions and the corresponding network
messages targeting different destinations based on nature of
the message. Instructions labeled as L1hit do not produce
any network message. Instructions labeled as L1miss are
injected into the network to a random destination and no
further instruction is processed until the origin node receives
a response. Messages originated from the L1miss instruction

194844 VOLUME 8, 2020

T. Picornell et al.: hp-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

FIGURE 16. Network throughput (a) and message latency (b) in a 4 × 4 mesh.

FIGURE 17. Network throughput (a) and message latency (b) in a 8 × 8 mesh.

FIGURE 18. Throughput comparison versus standard wormhole in a 4 × 4
and 8 × 8 mesh.

that are labeled as L2hit do not produce additional traffic.
However, messages labeled as L2miss produce an additional
request to the memory controller (MC) and the node orig-
inating the request cannot progress until the response is
received. To model requests processing time L2 requests and
MC requests are also delayed at the destination by 10 and
40 cycles, respectively. L1hit requests are processed in one
cycle. To evaluate the behaviour of this kernel under different
levels of contention this traffic model is only executed at one
node. The rest of the nodes inject random traffic at a specified
load. All modeled scenarios are shown in Table 1.

We executed 5000 instructions in the considered scenarios
when using hp-DCFNoC and wormhole NoCs. For these
experiments we model a 4 × 4 NoC. The application traffic

FIGURE 19. Average message latency comparison versus standard
wormhole in a 4 × 4 and 8 × 8 mesh.

is executed in node 0 and the MC is located at node 15
(see Fig 2). Figure 20 shows the results of this experiment.
As shown in the plot wormhole always provides higher
throughput values. This is explained by the fact that average
latency values of hp-DCFNoC are generally higher since a
notification phase is required before transmitting the data.
However, the performance differences are lower in the con-
text of highly saturated scenarios. For these scenarios the
network throughput provided by hp-DCFNoC is very close to
the one provided by wormhole and zero load latency is less
important. In particular, for scenario 1 hp-DCFNoC through-
put is 20% lower than the one achieved by wormhole while in

VOLUME 8, 2020 194845

T. Picornell et al.: hp-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

TABLE 1. Different scenarios evaluated. We have modeled three main
different scenarios for application traffic with four different levels of
network congestion.

FIGURE 20. Normalized throughput comparison for different scenarios in
a 4 × 4 mesh system when using hp-DCFNoC and wormhole NoCs.
Application is originated traffic in the farthest node w.r.t to the MC.

scenario 12 the difference is only 12%. It is also important to
mention that these differences do actually represent a corner
case since processor architectures usually include mecha-
nisms to hide memory latency like write-buffers, out-of-order
execution, data and instruction prefetchers and the like. In our
experiments for each instruction labeled as L1miss the injec-
tor is stalled until a response is received.

The obtained results also indicate hp-DCFNoC is very well
suited to applications with high-bandwidth requirements like
the ones found in autonomous driving systems [12]. Note
that performance guarantees of hp-DCFNoC are identical to
the ones provided by DCFNoC while the performance that
can be guaranteed in a 4 × 4 mesh wormhole NoC is much
lower [4], [11].

E. AREA OVERHEAD AND FREQUENCY
Maximum operating frequency and area utilization are
obtained using Cadence RCCompiler and the 45-nmNangate
library [13]. The scheduler implemented is ImpSched for a
4 × 4 and 8 × 8 mesh. The scheduler implements 8 and 16
ways at each node, respectively and data window contains

64 slots (one per node). The wormhole NoC implemented
is 64-bit width and uses 8 slot input buffers with Stop&Go
flow control. For the implementation results we consider
a hp-DCFNoC notification (Noti_sw) and data (Data_sw)
routers for a 4×4 and 8×8mesh. Data network configuration
used includes 96-bit width links to implement amesh network
topology. Notification network implements 38-bit width links
in this particular case. The wormhole router (WH_sw) used
for comparison purposes implements (1, 2, and 4) virtual
channels.

Figure 21 shows area overheads for every component when
targeting high frequency. The 8 × 8 mesh hp-DCFNoC data
router uses 30.42% less area than the WH-based one for a
8 × 8 mesh, when using one virtual channel (1vc), with a
total area of 28, 935 mm2 and 41, 273 mm2, respectively.
Wormhole router requires implementing input buffers, flow
control logic, routing units, output port arbiters and cross-
bar interconnect. On the other hand, the hp-DCFNoC router
implements very simple routing logic in order to compute the
output port, a crossbar interconnect as well as output delay
registers. Due to small bit-width hp-DCFNoC notification
router is the lightest router with a total area of 9, 007 mm2

and 17, 715mm2 for a 4×4 and 8×8 mesh implementations,
respectively.

FIGURE 21. Area overhead at each node.

However, the 8 × 8 mesh scheduler uses more area than
a wormhole for a 8 × 8 mesh with single virtual channel,
although uses roughly the same area compared to WH-based
using 2 virtual channels with a total area of 123, 551 mm2

and 124, 143mm2, respectively. It is important to remark that
in general NoCs found in commercial processor require at
least 2 vcs to avoid request and response messages deadlock
and even more virtual channels when using cache coherence
protocols to prevent protocol-induced deadlocks.

Figure 21 also shows total area of full hp-DCFNoC imple-
mentation including the ImpSched, notification and data
routers. The 8 × 8 mesh hp-DCFNoC implementation uses
27% more area than theWH_sw for a 8× 8 mesh with 2 vcs,
however, is 42% lighter than a wormhole router when using
4 virtual channels.

Figure 22 illustrates how area overhead of hp-DCFNoC
is affected as the number of ways increases. As we can see
the area overhead grows linearly as the ImpSched module
implements more ways.

194846 VOLUME 8, 2020

T. Picornell et al.: hp-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

FIGURE 22. Area overhead for ImpSched implementations with different
number of ways in a 4 × 4 mesh system.

FIGURE 23. Maximum attainable clock frequency for all modules of
hp-DCFNoC. Wormhole is also shown for comparison purposes.

We have also analyzed the maximum attainable clock fre-
quency of the difference routers. Figure 23 show that the
simpler hp-DCFNoC routers design gets a significant boost in
clock frequency by improving wormhole router’s one by 55%
and 50% for notification and data router, respectively. The
critical path of the wormhole router limits clock frequency
to 2.22 GHz. However, the hp-DCFNoC routers exhibits a
critical path of 290 ps and 300 ps leading to a maximum clock
frequency of 3.45 GHz and 3.33 GHz for notification and
data router, respectively. Although wormhole router is more
complex, it is pipelined in 4-stages which allows achieving
high frequencies.

For hp-DCFNoC, in addition to the fast hp-DCFNoC
routers we have a relatively complex scheduler that includes
arbiters and route checkers. For the scheduling process we
use only one cycle simplifying route notifications and con-
trol logic. Even with such critical path, hp-DCFNoC clock
frequency reaches up to 2.74 GHz and 2.60 GHz for a 4× 4
and 8× 8 mesh implementations, respectively.

V. RELATED WORK
Our proposal relies on the utilization of TDM to pro-
vide real-time guarantees. In particular, we build on top of
DCFNoC [5] a distributed TDM implementation to solve
the difficulties that previous TDM approaches have to find
optimal schedules for medium/large NoC sizes. Traditionally,
TDM schedules are statically [8], [9], [14]–[19], or dynami-
cally computed [20]. In [8], [18] perform offline scheduling

(with a perfect a-priori knowledge of the applications to
be running on the system). On the contrary, DCFNoC [5]
removes the need for using a computationally expensive
off-line process to find optimal scheduling periods.

Other works [21], [11] analyse the real-time properties
of safety-critical real-time systems NoCs (e.g wormhole
NoCs). These works show that performance guarantees can
be achieved with certain design configuration, however when
considering time composability aspects, the achieved guaran-
tees are in general very poor [11]. Many NoC proposals rely
on the utilization of virtual channels to ensure non-interfering
operations across communication flows [10], [22], [23].
These proposals use virtual channels to build domains that
isolate traffic flows and result in an improvement in the per-
formance guarantees with respect to conventional wormhole
NoC designs. Other approaches use virtual channel prioriti-
zation with flit-level preemption [24], [25]. These approaches
achieve tight latency bounds for the highest priority flows and
fit well with response time analysis methodologies. In gen-
eral, approaches based on using VCs suffer from limited
scalability since achieving the desired levels of isolation or
performance guarantees for a high number of traffic flows
requires implementing a non negligible amount of virtual
channels. For on-chip networks the amount of virtual chan-
nels that can be included is very limited and the available ones
are usually required to avoid protocol deadlocks in coherence
protocols.

hp-DCFNoC significantly improves peak performance
capabilities of DCFNoC using a dynamic scheduler. Dynamic
TDM slot management is also implemented in [26] and [27].
However, unlike these approaches our proposal relies on
a distributed slot management mechanism which makes
our solution more scalable. AEthereal NoC also proposes
a distributed and dynamic time-slot reservation proce-
dure [14], [28]. However, for this NoC slot reservation is
done at source node and the procedure fails in case one of
the requested slots are not available.

A dynamic and centralized scheduler was proposed in [20].
As in our approach the work in [20] employs two indepen-
dent and parallel networks. It uses credit-based end-to-end
flow control to avoid data network overflow via best-effort
network. The main differences with our work are the NoC
architecture and the slot reservation procedure. In [20] credits
travel with no deterministic latency and therefore, perfor-
mance cannot be completely guaranteed. In hp-DCFNoC per-
formance is guaranteed and a simpler negotiation mechanism
leads to more efficient NoC implementation.

VI. CONCLUSION
Future safety-critical real-time systems will need proces-
sor designs able to provide performance guarantees without
renouncing to peak throughput numbers. In this paper we
propose hp-DCFNoC, a new NoC design that satisfies this
requirement by providing throughput numbers that are very
close to the ones that can be achievedwith standard best-effort
wormhole NoCs. At the same performance level hp-DCFNoC

VOLUME 8, 2020 194847

T. Picornell et al.: hp-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

is able to guarantee performance to applications with much
less resources (area and power) than an standard wormhole
implementation. To achieve the aforementioned demanding
features hp-DCFNoC relies on a distributed scheduler built
on top of DCFNoC that maximizes the number of packets
that can be scheduled.

REFERENCES
[1] J. Flich and D. Bertozzi, Designing Network On-Chip Architectures in the

Nanoscale Era. Boca Raton, FL, USA: CRC Press, 2010.
[2] A. Burns and R. I. Davis, ‘‘A survey of research into mixed criticality

systems,’’ ACM Comput. Surv., vol. 50, no. 6, pp. 82:1–82:37, Nov. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3131347

[3] S. Hesham, J. Rettkowski, D. Goehringer, and M. A. A. El Ghany,
‘‘Survey on real-time networks-on-chip,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 5, pp. 1500–1517, May 2017, doi: 10.1109/TPDS.2016.
2623619.

[4] T. Picornell, J. Flich, C. Hernandez, and J. Duato, ‘‘Enforcing predictabil-
ity of many-cores with DCFNoC,’’ IEEE Trans. Comput., early access,
Apr. 15, 2020, doi: 10.1109/TC.2020.2987797.

[5] T. Picornell, J. Flich, C. Hernández, and J. Duato, ‘‘DCFNoC: A delayed
conflict-free time division multiplexing network on chip,’’ in Proc. 56th
Annu. Design Autom. Conf. New York, NY, USA: ACM, Jun. 2019,
pp. 95:1–95:6, doi: 10.1145/3316781.3317794.

[6] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An Engi-
neering Approach, 1st ed. Los Alamitos, CA, USA: IEEE Computer Soci-
ety Press, 1997.

[7] (2016). Vivado Design Suite 2016.2. [Online]. Available: https://www.
xilinx.com/products/design-tools/vivado.html

[8] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki, ‘‘A statically sched-
uled time-division-multiplexed network-on-chip for real-time systems,’’ in
Proc. IEEE/ACM 6th Int. Symp. Netw.-Chip, May 2012, pp. 152–160.

[9] F. Brandner and M. Schoeberl, ‘‘Static routing in symmetric real-
time network-on-chips,’’ in Proc. 20th Int. Conf. Real-Time Netw. Syst.
(RTNS). New York, NY, USA: ACM, 2012, pp. 61–70, doi: 10.1145/
2392987.2392995.

[10] A. Psarras, I. Seitanidis, C. Nicopoulos, and G. Dimitrakopoulos,
‘‘PhaseNoC: TDM scheduling at the virtual-channel level for efficient
network traffic isolation,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), 2015, pp. 1090–1095.

[11] M. Panic, C. Hernandez, E. Quinones, J. Abella, and F. J. Cazorla, ‘‘Mod-
eling high-performance wormhole NoCs for critical real-time embedded
systems,’’ in Proc. IEEE Real-Time Embedded Technol. Appl. Symp.
(RTAS), Vienna, Austria, Apr. 2016, pp. 267–278, doi: 10.1109/RTAS.
2016.7461342.

[12] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, ‘‘The architectural implications of autonomous driving:
Constraints and acceleration,’’ ACM SIGPLAN Notices, vol. 53, no. 2,
pp. 751–766, Nov. 2018, doi: 10.1145/3296957.3173191.

[13] (2010). The Nangate Open Cell Library, 45 nm Freepdk. [Online]. Avail-
able: https://projects.si2.org/openeda.si2.org/projects/nangatelib/

[14] K. Goossens, J. Dielissen, and A. Radulescu, ‘‘Æthereal network on
chip:Concepts, architectures, and implementations,’’ IEEE Design Test
Comput., vol. 22, no. 5, pp. 414–421, May 2005.

[15] A. Hansson, M. Subburaman, and K. Goossens, ‘‘Aelite: A flit-
synchronous network on chip with composable and predictable services,’’
in Proc. Design, Autom. Test Eur. Conf. Exhib., Apr. 2009, pp. 250–255.

[16] R. Andrei Stefan, A. Molnos, and K. Goossens, ‘‘DAElite: A TDM NoC
supporting QoS, multicast, and fast connection set-up,’’ IEEE Trans. Com-
put., vol. 63, no. 3, pp. 583–594, Mar. 2014.

[17] Z. Lu and A. Jantsch, ‘‘TDM virtual-circuit configuration for network-on-
chip,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 8,
pp. 1021–1034, Aug. 2008.

[18] E. Kasapaki, M. Schoeberl, R. B. Sorensen, C. Müller, K. Goossens,
and J. Sparso, ‘‘Argo: A real-time network-on-chip architecture with an
efficient GALS implementation,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 24, no. 2, pp. 479–492, Feb. 2016.

[19] R. B. Sorensen, J. Sparso, M. R. Pedersen, and J. Hojgaard, ‘‘A meta-
heuristic scheduler for time division multiplexed networks-on-chip,’’ in
Proc. IEEE 17th Int. Symp. Object/Component/Service-Oriented Real-
Time Distrib. Comput., Jun. 2014, pp. 309–316.

[20] N. Concer, A. Vesco, R. Scopigno, and L. P. Carloni, ‘‘A dynamic and
distributed TDM slot-scheduling protocol for QoS-oriented networks-on-
chip,’’ in Proc. IEEE 29th Int. Conf. Comput. Design (ICCD), Oct. 2011,
pp. 31–38.

[21] D. Rahmati, S. Murali, L. Benini, F. Angiolini, G. De Micheli, and
H. Sarbazi-Azad, ‘‘Computing accurate performance bounds for best effort
networks-on-chip,’’ IEEE Trans. Comput., vol. 62, no. 3, pp. 452–467,
Mar. 2013. [Online]. Available: http://infoscience.epfl.ch/record/170499

[22] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner,
F. T. Chong, and T. Sherwood, ‘‘SurfNoC: A low latency and prov-
ably non-interfering approach to secure networks-on-chip,’’ in Proc. 40th
Annu. Int. Symp. Comput. Archit. (ISCA), 2013, pp. 583–594, doi: 10.
1145/2485922.2485972.

[23] A. Psarras, J. Lee, I. Seitanidis, C. Nicopoulos, and G. Dimitrakopoulos,
‘‘PhaseNoC: Versatile network traffic isolation through TDM-scheduled
virtual channels,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 35, no. 5, pp. 844–857, May 2016.

[24] B. Nikolić, S. Tobuschat, L. S. Indrusiak, R. Ernst, and A. Burns, ‘‘Real-
time analysis of priority-preemptive NoCs with arbitrary buffer sizes and
router delays,’’ Real-Time Syst., vol. 55, no. 1, pp. 63–105, Jan. 2019,
doi: 10.1007/s11241-018-9312-0.

[25] L. S. Indrusiak, A. Burns, and B. Nikolic, ‘‘Buffer-aware bounds to multi-
point progressive blocking in priority-preemptive NoCs,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Dresden, Germany, Mar. 2018,
pp. 219–224, doi: 10.23919/DATE.2018.8342006.

[26] O. Moreira, J. J.-D. Mol, and M. Bekooij, ‘‘Online resource management
in a multiprocessor with a network-on-chip,’’ in Proc. ACM Symp. Appl.
Comput. (SAC). NewYork, NY,USA:ACM, 2007, pp. 1557–1564, doi: 10.
1145/1244002.1244335.

[27] T. Marescaux, B. Bricke, P. Debacker, V. Nollet, and H. Corporaal,
‘‘Dynamic time-slot allocation for QoS enabled networks on chip,’’ in
Proc. 3rd Workshop Embedded Syst. Real-Time Multimedia, Sep. 2005,
pp. 47–52.

[28] B. Gebremichael, F. Vaandrager,M. Zhang, K. Goossens, E. Rijpkema, and
A. Rădulescu, ‘‘Deadlock prevention in the æthereal protocol,’’ in Correct
Hardware Design and VerificationMethods, D. Borrione andW. Paul, Eds.
Berlin, Germany: Springer, 2005, pp. 345–348.

TOMÁS PICORNELL received the M.S. degree in
computer and network engineering from the Tech-
nical University of Valencia [Universitat Politèc-
nica de València (UPV)], Spain, in 2016. He is
currently pursuing the Ph.D. degree with the UPV.
His research interests include network-on-chip
architectures with support for time predictability
and performance isolation as well as system level
solutions to minimize the effects of variability on
NoC performance.

JOSE FLICH (Senior Member, IEEE) received the
Ph.D. degree in computer engineering in 2001.
He is a Full Professor with the Universitat Politèc-
nica de València (UPV), where he leads the
research activities related to NoCs. He has pub-
lished over 150 conference papers and journal
articles, and has served on different confer-
ence program committees, such as ISCA, PACT,
HPCA, NOCS, ICPP, IPDPS, HiPC, CAC, CASS,
ICPADS, and ISCC, as the Program Chair

(INA-OCMC and CAC) and Track Co-Chair (EUROPAR). He has collab-
orated with different institutions, such as Ferrara, Naples, Catania, Jonkop-
ing, and the USC, and companies such as AMD, Intel, and Sun. He has
co-invented different routing strategies, and reconfiguration and conges-
tion control mechanisms, some of them with high recognition (RECN and
LBDR for on-chip networks). His current research interests include routing,
coherency protocols, and congestion management within NoCs. He is a
member of the Hipeac-2 NoE. He is the Coeditor of the book Designing
Network-on-Chip Architectures in the Nanoscale Era, has Coordinated the
FP7 NaNoC Project, and leads the H2020 MANGO Project.

194848 VOLUME 8, 2020

http://dx.doi.org/10.1109/TPDS.2016.2623619
http://dx.doi.org/10.1109/TPDS.2016.2623619
http://dx.doi.org/10.1109/TC.2020.2987797
http://dx.doi.org/10.1145/3316781.3317794
http://dx.doi.org/10.1145/2392987.2392995
http://dx.doi.org/10.1145/2392987.2392995
http://dx.doi.org/10.1109/RTAS.2016.7461342
http://dx.doi.org/10.1109/RTAS.2016.7461342
http://dx.doi.org/10.1145/3296957.3173191
http://dx.doi.org/10.1145/2485922.2485972
http://dx.doi.org/10.1145/2485922.2485972
http://dx.doi.org/10.1007/s11241-018-9312-0
http://dx.doi.org/10.23919/DATE.2018.8342006
http://dx.doi.org/10.1145/1244002.1244335
http://dx.doi.org/10.1145/1244002.1244335

T. Picornell et al.: hp-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

DUATO JOSE (Senior Member, IEEE) is a Profes-
sor with the Department of Computer Engineering
(DISCA), Technical University of Valencia (Uni-
versitat Politècnica de València). He has pub-
lished over 500 refereed articles. According to
Google Scholar, his publications received more
than 15 000 citations. He proposed the theory of
deadlock-free adaptive routing that has been used
in the design of the routing algorithms for the
Cray T3E supercomputer, the on-chip router of

the Alpha 21364 microprocessor, and the IBM BlueGene/L supercomputer.
He also developed RECN, a scalable congestion management technique, and
a very efficient routing algorithm for fat trees that has been incorporated
into Sun Microsystem’s 3456-port InfiniBand Magnum switch. He led the
Advanced Technology Group, HyperTransport Consortium, and was the
main contributor of the High Node Count HyperTransport Specification 1.0.
He also led the development of rCUDA, which enables remote virtualized
access to GP-GPU accelerators using a CUDA interface. He is the first
author of the book Interconnection Networks: An Engineering Approach.
His current research interests include interconnection networks, multicore
and multiprocessor architectures, and accelerators for deep learning.

Prof. Jose was awarded the National Research Prize in 2009 and the ‘‘Rey
Jaime I’’ Prize in 2006. He is a member of the Spanish Royal Academy of
Sciences. He also served as a member of the editorial boards of the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON

COMPUTERS, and IEEE COMPUTER ARCHITECTURE LETTERS.

CARLES HERNÁNDEZ was a Senior Researcher
at the Barcelona Supercomputing Center, CAOS
Group, from 2012 to 2018. In 2012, he worked
as an Intern at the IP Verification Group, Intel
Mobile Communications Munich. He is currently
co-advising five Ph.D. degree students. He is a
Senior Researcher with the Universitat Politècnica
de València. In 2015, he was granted a Young
Researcher Grant by the Spanish ministry to con-
duct research on high-performance and reliable

processor design. He is the Project Coordinator of the H2020 SELENE
Project on high-performance computing for safety-related applications and
participates in RECIPE, DEEPHEALTH H2020, and FRACTAL ECSEL
Projects. His research interests include on-chip interconnects, processor
design, and real-time aware hardware design and reliability.

VOLUME 8, 2020 194849

