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1 | INTRODUCTION

The admissible level of complexity of neural network architectures was constrained until the computational capacity provided
by GPU’s was unlocked. This new capacity has permitted Deep Neural Networks (DNN) to become one of the best tools for
classification and regression tasks using data from different science fields"'?. Under this new paradigm, DNN’s can learn from
data represented into subsequent levels of abstraction, which permits to increase its predictive performance’.

A DNN is composed of several hidden layers which, in turn, are divided into neurons. A neuron is composed of a matrix of
weights which produces a value after applying an activation function to the entries of the neuron. In general, the design of the

network layers structure, the activation function, and the use of bias in the model are human choices, that are usually based on
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the researcher’s knowledge in the problem under consideration. However, sometimes the best architecture that fits a problem
can be obtained after a trial-and-error process.

Several attempts of automatic design of DNN architectures have been already considered*29789 with successful results.
Their methods are mainly based on genetic algorithms, hyper-parameter optimization, and reinforcement learning. In all these
cases, lots of computational resources are required because of the exponential increment of steps at the training stage.

The study of the network representations of complex processes arisen in physics, biology, and sociology can be represented
in terms of interconnected nodes of graphs combining organization and randomness!!, This field is known as Network Sci-
ence. Some well-known examples include the world-wide-web'l2, citation networks'? the interactome'® | diseasome'™, or P2P
networks'%, For further information, we refer the reader to Barabasi’s book'. We will refer to these networks as graphs to avoid
confusion with neural networks.

Community detection algorithms permit to decompose graphs into highly inter-connected sub-units'®. Unlike partitioning, in
community detection procedures the number and size of communities cannot be determined in advance. There is a wide variety
of community detection algorithms, covering heuristic'?, divisive?, and agglomerative algorithmsZ!22,

The current research on graph community detection has many branches. On one side, although almost all community detec-
tion algorithms require the global information of the graph, a local approach based on fuzzy relations has been proposed?3.
Furthermore, other approaches based on the trend paradigm of deep learning have emerged, this is known as Graph Neural Net-
works and has many applications, in particular, community detection. From a Deep Graph Kernels framework that can learn
latent representations inside a graph”* or a variant of a convolutional network that encodes the local graph structure and the fea-
tures of nodes”®. Up to adversarial networks that make perturbations on the graph to generate constrained ones which are then
classified into communities? or the extraction of temporal features using local long short-term memory networks to be used to
learn spatio-temporal patterns to infer the communities“Z. Finally, the Graph Attention Networks provide a methodology based
on convolutional networks, without depending or knowing the graph structure upfront28,

In this work, we propose a methodology to design DNN architectures for conceptual-structured data of the answers to items
of Likert-type scales. It will rely on the use of community detection algorithms for determining the aggregation of items by
similarity in the answers, that is if some items are answered in a similar way (positive or negative) we assume that they will work
fine if we consider them in the same layer. To define a DNN with several layers we will apply community detection algorithms at
different resolutions. The graph modularity will be a figure of merit of the resulting distribution of the graph into communities.
Modularity optimization algorithms belong to the class of agglomerative methods that provide a hierarchical clustering fitting
the problem nature. Thereby, methods based on modularity optimization will be our starting point.

The rest of the paper is organized as follows: First, the proposed methodology is presented in Section[2] To test the performance
of this new method, we apply it to a psychological dataset that has been recently used for predicting happiness??. The new
proposed DNN architectures enhance the prediction given by the DNN based on the inner structure of psychological scales
shown in??, as it is drawn in Section E] Discussion of the results, including the limitations of the methodology and a proposal
for future research lines, are shown in Section [5] Finally, some brief conclusions are presented in Section [f]

2 | PROPOSED METHODOLOGY

Our study aims to present a framework to fully automate the development of DNN architectures for solving supervised
regression-type problems based on conceptual-structured data. Our approach that we will call Community Detection based Deep
Neural Networks (CD-DNN), consists of:

o Construction of a graph which quantifies the similarity in the answers to items from different scales.

e Application of a community detection method based on modularity optimization at different resolutions.
e Proposal of a DNN architecture automatically inferred from the community hierarchy of the scales items.
e Implementation, training, and validation of the new proposed architecture.

Let us develop each one of these steps.
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2.1 | Construction of a similarity graph from the dataset

Likert scales, or summated rating scales“?, are one of the most commonly used research tools in behavioral sciences. They
consist of a list of items that present a finite ordered list of possible answers. The subject who is evaluated answers showing his
agreement or disagreement degree with the statement of the item*!. A value is assigned to each answer, and later all of them
are summed. Depending on that value the individual is classified into a group.

Let us suppose that each subject answers to n Likert-type questionnaires, denoted by S; with 1 < i < n, where each

questionnaire S is composed of n; items. Let us sequentially rename all the items as {v; : 1 <i <m}, wherem =} m,.
Before defining our similarity graph, we recall that a weighted graph is given by 3-tuple G = (V, E, w), where V is the set
of nodes, E = {(v;, vj) Do, € V'} is the set of edges, and w : E — R is a function that assign weights to the edges.
Let us considered a dataset in which we have the answers of s, subjects to all the scales. Our similarity graph will be a

weighted graph G = (V, E, w) defined as follows:

1. We consider V' = {v; : 1 <i < mj} as the set of nodes.

2. A pair of nodes is connected by an edge (v;,v;) € E if there exists at least two people answering in the same sense
(agreeing or disagreeing) to both items.

3. The weight associated to the edge (v;, v;), denoted by w,
both items v; and v;.

;j» Will be the number of subjects answering in the same sense

2.2 | Communities detection and architecture construction

Now, we will apply to the similarity graph G community detection algorithms at different resolutions to automatically infer the
conceptual hierarchy that will provide us the conceptual hierarchy of the DNN to be trained.

Let us suppose that we have split the graph G into k different communities. The notion of modularity of a weighted graph G,
denoted by Q(G), was introduced by Newman and Girvan®2 as follows:

0(6) = LW Z <

WW,
>5(c Cc) 1

where w;; is the weight between nodes i and j, W, = ZT:] w;; is the sum of the weights associated to edges adjacent to v;,
C; € {1, ..., k} is the identifier of the community to which the node v; belongs to, ¢ is the Kronecker delta function such that
o(u,v) is equal to 1 if u = v and O otherwise, and W = ZZj:l w;;. The value of Q is defined between -1 and 1, and it measures
the density of edges inside communities compared to the density of edges between communities.

According to Clauset et al®%, modularity is a property of a graph and a specific proposed division of that graph into com-
munities. The modularity optimization algorithm"2 belongs to the set of agglomerative hierarchical clustering methods>*20, It
iterates until a non-null value of modularity is reached. As a reference O indicates a random division and 1 the best possible
division into communities.

It has been demonstrated that a value above 0.3 is a good indicator of significant community structure in a network?. One of
the most widespread algorithms for modularity optimization is the Louvain algorithm“?, and it was our choice due to its balance
between community detection capability and computation time. Louvain®” is a 2-phases iterative algorithm which optimizes
-in terms of computational time- those proposed by Newman et al.** and Clauset et al.®?. The aim of the algorithm is to find
the graph communities which outperform a predefined value of increment of modularity, namely resolution (AQ, see Eq. [2).
This value may vary between O and 1. Let us briefly outline how it works: Starting with a weighted graph G = (V, E, w),
the first step is to assign a different community to each node v € V. The set of neighbors of a node v; can be defined as
N, = {vj : (Ui,Uj) € E}.

Let us now consider the gain of modularity (resolution) by moving a vertex v, into a community C proposed by=2, which in
terms of graph can be denoted by:

| WetWie We + W, \? We We \’ W\’
A0(G. v *l W ‘( W >]‘lﬁ‘<ﬁ) ‘(ﬁ) @
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where W, W; are already defined, and

We = Z Wi, W= Z w;;, and We = Z Wi 3)
v;, U, €C v,eC vjeC,uk$C

First, for each node v; e compute the gains of modularity AQ(v;), that is assessed by removing v; from its community and
placing it in the community of each one of its neighbours v; € N(v;). Then, we will place v; in the community for which the
gain is positive and maximum. If all the gains are negative, v; will stay in its original community.

Secondly, we construct a new graph G whose nodes represent the communities found in the previous step. Two nodes of G
will be connected as long as there was a node in each community that was already connected in G. The weights between two
nodes of G will be given by the sum of the weights of edges between the corresponding two communities. This second step has
been shown to preserve modularity of G for G2,

Finally, the modularity Q((~}) is assessed, and the process is repeated until the resolution reached.

3 | PROPOSAL OF DNN ARCHITECTURE

The next step is to define the DNN architecture. We propose optimizing the modularity at different resolutions ranging between
0.6 and 1 to ensure deviations from randomness.

By optimizing the modularity at different resolutions ranging between 0.6 and 1, we were capable of inferring a hierarchy to
develop the DNN architecture automatically. Low-resolution levels produce a higher number of communities while the highest
resolution, 1, produces the smallest possible number of them.

To create a DNN architecture we first fix the number of hierarchical levels A, in which the layers will be included. We express
the range of resolutions, [0.6, 1], in terms of the number of levels according to the next formula, that assigns 0.6 to the first level
and 1 to the last one.

h—1
hy—1

The set of layers that belong to the hierarchical level 4 will be denoted as H,,. Note that the number of layers in each level is,
by definition, the number of communities at resolution 7.

Let H; L; be a layer of the first hierarchical level with 1 < j </}, and g(s) be one of the inputs of the model with 1 < s < s,
L.e. an answer to the question g by one of the subjects. Then, H, L, receives each ¢(s) as input if, and only if, g belongs to
community j at resolution r,.

Now, let H,L; be a layer of the hierarchical level i with 1 < j <[, and H; L, with 1 < j' <1, be alayer of the following
level. Then, the outputs of H;L ; will act as entries for the layer H;, | L i if, and only if, there exists at least one item in the scale
whose community at resolution r; is j and whose community at resolution r, ., is j’.

Finally, the last hierarchical level only contains one fully connected layer with one neuron, which provides a one-dimensional
result which is that optimized using the gold-standard in a supervised learning process.

Now, we have explored the performance of this architecture with different subconfigurations in every layer. We have consid-
ered the cases of one neuron per layer, and as many neurons as the number of incoming inputs, that is: for the first hierarchical
level it corresponds to the number of incoming items, and for the rest levels it corresponds to the number of incoming layers
from the previous one. We have also tested the outcome with and without bias in the hidden layers in both cases.

r,=0.6+

04, with 1 < h < hy,. “

3.1 | CD-DNN: Training, validation and test stages

Common practices in machine learning suggest to split the corpus into Training, Test, and Validation sets, to monitor the training
process and to avoid over-fitting problems. In this sense, we split the corpus by taking the 70% as the training set, and the
remaining 30% as the test set. Half of the test set was extracted as a validation set to monitor the performance between training
and validation at each epoch of the training process. So, the training set was composed of the data provided by 578 individuals
to the questionnaires. The remaining data was split into the text set (123) and the validation one (122).

We define a heuristic stop rule to avoid over-fitting. This rule is taken as follows:if during five training epochs the training
error was reduced and the validation error was incremented then the training process stops. Sigmoid function was selected as
activation function.
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The Adam optimizer-’

the maximum training epoch set to 100. Finally, the results were assessed taking into account the whole test set (the 30% of the
original corpus).

was chosen as the training algorithm and the performance test the Mean Squared Error (MSE) with

3.2 | Algorithm

The proposed methodology may be summarized in four key points as presented in Section [2} Following the notation on this
Section, each participant answered m questions.

Firstly, a way to quantify how two questions related was used to define a graph G that represents the similarity between the
m questions. Once the graph is built, the number of hierarchical levels needs to be fixed (R). This number lets us choose R
thresholds from the resolutions space and apply R times the Blondel’s community detection algorithm.

For each resolution, each community defines a layer of the final deep neural network, and two layers of different hierarchical
levels are connected if and only if the communities that they represent contain at least one question. The layers of the first
hierarchical level receive as input the questions that belong to the communities it represents. By adding the last layer (fully
connected) that receives as inputs the outputs of the layers of the last hierarchical level, the deep neural network is ready to be
trained.

The complexity of the graph building is @(m?). Due to the definition of the relationship between questions, every pair of
nodes have an edge between them. This implies that the complexity of the community detection for each resolution is @(m?) but
it could be optimized until O(mlog(k)) where k is the average degree~5. Then, the complexity of the construction of the model
is O(R - m?) and could become O(R - mlog(k)) where R is the number of hierarchical levels we want to use.

The stages of the procedure may be found in the Algorithm[I] The experimentation for this work was made using python 3.7
language and the extended libraries Networkx=? and Tensorflow™".

Algorithm 1 The algorithm of the CD-DNN model construction and training.

procedure CD-DNN(d, R) > Building the CD-DNN for the database d with R hierarchical levels
d_train,d_test = split_corpus_train_and_test()
d_validation = random_hal f (d_test)
for 0 < row < rows(d_train) do
for row < column < rows(d_train) do
G « obtain_weight(row, column) > Definition of the graph edges.
end for
end for
m = empty_model()
while i < R do
re0.6+-—04

C « comm_detection(G,r) > comm_detection(G, r) obtain the Blondel’s communities of G at resolution r.
inf « create_layers(C) > Creates layers for current hierarchical level and its associations with previous level.
m.update(inf)

end while

create_last_layer() > Creates the last layer. It is dense.

while j < 100 or not(stop_criterion) do
model.train(d_train)
stop_criterion < is_converging(d_validation)
end while
return m > m is the trained model
end procedure
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4 | EXPERIMENTAL RESULTS

We will compare the performance of our new automatically designed architectures with the ones in??, that were applied to the
dataset described below.

4.1 | Dataset

A cross-sectional survey targeting the non-institutionalized adult population residing in Spain was completed by 823 cases. The
total of 111 elements of the survey is grouped by socio-demographic data and by five psychometric scales. The psychometric
scales measure latent variables describing psychological factors through empirical behavioral indicators. Socio-demographic
data covers an identifier of the person who recorded the survey, and the age, gender, marital status and level of education for
each individual. The psychometric scales enclosed in the study were:

1. Short-Depression-Happiness Scale (SDHS)*is a 4-point Likert-scale with a total of 6 items. The total score is a measure-
ment of the happiness degree of the patient (ranging from O -Depression- to 18 -Happiness-) and was the gold standard
of the model.

2. Brief COPE Inventory**'is a 4-point Likert-scale with a total of 28 items regrouped in 14 sub-scales. The total scale mea-
sures coping strategies which are different mental mechanisms regarding manage demands and conflicts and to regulate
emotional responses and stress. The 14 sub-scales represent self-distraction, active coping, denial, substance abuse, use of
emotional support, use of instrumental support, behavioral disengagement, venting, positive reframing, planning, humor,
religion, and self-blame.

3. Eysenck Personality Questionnaire Revised-Abbreviated (EPQR-A)* consists of 4 sub-scales of 6 dichotomous items,
each that assess neuroticism, extraversion, psychoticism, and sincerity. The total scale measures the personality.

4. General Health Questionnaire of 28-items (GHQ-28)* is a 5-point Likert-scale assessing the emotional distress which
is defined as a feeling that a person or situation is triggering psychological suffering and could be expressed in different
degrees not only cognitive or verbally but through mental or physical symptoms. Emotional distress is composed of 4
sub-scales to evaluate somatic symptoms, anxiety/insomnia, social dysfunction, and severe depression.

5. Medical Outcomes Study Social Support Survey (MOS-SSS)* measures social support. It is composed of 20 items consist-
ing of a first question asking for the number of close people that the person has, plus a total of 19 5-point Likert-scale items
that covers 4 functional support sub-scales: emotional/informational, tangible, affectionate, and positive social interaction.

4.2 | Previous architecture

We will compare the proposed architecture with the one based on the conceptual two-level structure of the scales of the (DS-
DNN). We recall that each scale is composed of items. These items are firstly grouped to measure different psychological
sub-factors or sub-scales. At the same time, psychological sub-factors are considered altogether to quantify a more general
psychological factor. So that, we can consider that the conceptual structure of each scale is composed of two hierarchical levels:
the first one to describe psychological sub-scales and the second one to describe the global psychological factor measured by
the scale.

We can transfer this structure into a DNN as follows: In the first level of hidden layers, we represent the sub-scales. The
items of each sub-scale will be their inputs. For the second hierarchical level the scales as the hidden layers. Here, the outputs
of the sub-scales are the inputs of the corresponding scale layers. We also add in this second level a new layer where the socio-
demographic data is considered. Its output is directly was included as input in the last layer. This DNN architecture is the same
as the one exposed in Section 3]

Finally, it is worth to mention that for facilitating the validation of our methodology and to obtain comparable results, the
exception of the socio-demographic layer is also considered in the construction of the proposed automatic architecture.



F.J. Pérez-Benito ET AL 7
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FIGURE 1 Detected communities after applying the Louvain algorithm at different resolutions. Each node represents an item
of psychometric scales. Each node is depicted by the acronym of the scale which belongs to and the number of the item. The
stronger the relationships are, the thicker the line between nodes is depicted. In A) we show communities at resolution 0.6 and
in B) we present communities at resolution 1.

4.3 | Experimentation

For testing our method with the results obtained with the DNN described in Section[4.2] we have automatically generated DNN
with 2 hierarchical levels including the socio-demographic layer in the second one. According to Equation[d} the resolutions for
community detection were 0.6 and 1. The detected communities at these resolutions can be found in Figure[T ]

The inferred architecture is summarized in Figure 2] with a total of 22 layers in the first hierarchical level and 4 layers in
the second one, apart from the layer related to socio-demographic information. All the CD-DNN models were trained using the
Adam optimizer®? with random initialization and a learning rate of 0.001 to minimize the MSE. All the layers used the sigmoid
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function as activation and the last hidden layer, is a dense one which receives as inputs the outputs of all of the layers of the last
hierarchical level, in this case, all the outputs of the layers from the second hierarchical level.

1st hierarchical 2nd hierarchical
level level

Socio-
demographic [~
layer
SR
> H2-L1 [
Brief COPE N
[ y
)
> H2-L2 [—
——
H1-L9 Happiness
oo (o] LastLayer
)
» H2-L3 [—
[ Hi-Li2 | )
H1-L13 .
‘ | H1-L15 -

FIGURE 2 CD-DNN architecture. This architecture is automatically inferred by using the similarity in the responses to the
scale items, observed from the responses gathered in the dataset.

Results show that the automatic approach, CD-DNN, outperforms the results obtained by the DNN created using the precon-
ceived survey structure (DS-DNN). The comparison between the results obtained using both methods can be found in Figure
[3] We highlight that the new proposed methodology tends to be more accurate to predict the less frequent degrees of happiness.
This suggests that this methodology has a higher power of abstraction. It is also worth to mention that both approaches reach
the best performance using the same layers configuration, namely multi-neuron layers without using bias.

Finally, a short description of each trained model architecture with some training features are drawn in Table[I | The elapsed
time per training epoch barely suffers when neurons are added, meanwhile the needed number of epochs, until the stop criterion
is reached, significantly decreases with multi-neuron configurations. Multi-neuron biased network (CD-DNN_N_B) gives a
training error of 9- 1073 while the validation error is 1.8 - 1072 when the training process ends. This undesirable behavior is only
observed in this configuration. It may imply that this network “learns” so quickly that the stop criterion is not enough to avoid
over-fitting problems“,

Although out of the scope of this work, it is worth to mention that we have noticed latent relationships between the psycho-
metric scales. This can be observed at the inputs of the H,L,; and H,L,. We observe that the corresponding communities at
resolution 1 have grouped altogether layers of different scales in contrast to what can be seen at resolution 0.6 when there were
no intersections between scales. It is also highlighted that all the items that belong to the MOS-SSS survey formed one unique
community at both resolutions. This suggests that the sub-scales of the MOS-SSS had similar responses in our dataset and the
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A) DSDNN vs CDDNN (one neuron without bias) B) DSDNN vs CDDNN (one neuron with bias)
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FIGURE 3 Comparison performance results for DS-DNN and CD-DNN of the tested network configurations. A) presents the
comparison of the results of "one-neuron without adding bias" configuration, B) shows the results considering the case of "one-
neuron with bias" configuration, C) compares the "multi-neuron without bias" results, and finally D) displays the results for
"multi-neuron with bias" configuration.

TABLE 1 The four DNN configurations applied to test the performance of our CD-DNN.

Net Bias (T/F) Neurons per layer Epochs i Time per epoch LI
CDDNN_1 F 1 42 1.32
CDDNN_I1_B T 1 26 1.32
CDDNN_N F multi 19 1.34
CDDNN_N_B T multi 10 1.35

tUse of bias in layers. T = True, F = False.
F#Number of training epochs until the stop criterion is reached.
[IMean elapsed time during one training and validation epoch (in sec).

use of two hierarchical levels may be unnecessary for these items. Finally, 12 of 28 GHQ-28 items were grouped at resolution
1, while these items were grouped into 6 communities at resolution 0.6.

S | DISCUSSION

5.1 | Impact and contributions

The aim of the present study has been the definition of a new methodology to automatically construct the architecture of a deep
learning-based model to be used with regression purposes. We focused our efforts on the case Likert-scale datasets. The nature
of these measurement artifacts provides a simple way to define similarity relationships between items of different scales.
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By definition, the proposed methodology is a contribution in the sense that it automates the construction of the model archi-
tecture. Besides, the results showed in Section[d]demonstrate that the CD-DNN provides better experimental results on real data
when compared with a data-structure architecture drawn using the preconceived sub-scale structure of the scales.

Congruent with our previous work, CD-DNN with unbiased multiple-neuron layers gives the best results. This may indicate
that multiple-neuron configurations provide enough adaptability to changes within hierarchical levels, and the learning rate is
controllable enough to avoid falling into over-fitting problems.

Although the interpretation of the results shown in this paper is out its scope, the presented approach also opens a debate
about the possibility of finding latent relationships between items of different psychological scales. Furthermore, the architecture
based on these relationships increases the predictive ability of DNN models when compared to those whose architecture is based
on the structure of the scales.

Finally, it would be easy to generalize to classification problems by only modifying the behavior of the last layer, which is
independent of the community detection based architecture, and the way of codifying the ground truth for supervised learning.

5.2 | Limitations and future work

Problems based on predictions (either in regression or classification problems) from Likert scales have a very particular field
of application. In this sense, the most critical limitation, which is aligned with the most important line for future work, is the
capability of extending the automatic construction of the architecture for the DNN for other types of datasets.

If we distinguish between the graph construction and the implementation of the DNN, our efforts should focus on generalizing
the graph definition. That is because the DNN is automatically generated when the communities are known, and the communities
are automatically detected if the graph is known. So it is enough to find a way to generalize the construction of the graph or
to find a set of ways that covered a wide range of data. The use of deep learning in the search of communities could lead to a
community detection generalization independent of the data type. It would be necessary to explore how to mimic the hierarchy
for these questionnaires. Although the methodology proposed in the present paper uses agglomerative hierarchical algorithms
to match the conceptual structure of the questionnaires, it would also be interesting to try other community detection algorithms
where an element could belong to two communities.

The experimental results presented in this work are good for the dataset considered, but the validation of the proposed
methodology, considering larger datasets, would also be desirable.

6 | CONCLUSION

Deep learning-based models are a trending paradigm in research fields using data science techniques. This technology is increas-
ingly being used for all kinds of tasks and is outperforming results obtained with previous approaches. The main problem of
using models based on deep learning is to know the most accurate way of designing them, and many times this process is carried
out as trial and error until a quality criterion is reached.

Several studies are based on the analysis of structured data, as is the case with Likert-scales based studies, for which we
propose a framework to construct a deep learning model with regression purposes automatically. The methodology consists of
the definition theoretic graph quantifying the relationships between different items of the scales, applying a community detection
algorithm to infer the architecture for the deep neural network (CD-DNN) and the training of the model.

The first experiments using real data have demonstrated better performance when compared to a previous work in which the
architecture was drawn by using the conceptual structure of the Likert scales. The natural next step is to get the graph definition
abstracted to apply the same methodology to other types of data.

Future steps must explore other approaches for community detection to make the model independent of the data type.
Algorithms based on deep learning could deal with community detection generalization.
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