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Abstract: The paper presents the results of the Battle of Post-Disaster Response and Restoration 71 

(BPDRR), presented in a special session at the 1
st
 International WDSA/CCWI Joint Conference, held in 72 

Kingston, Ontario, in July 2018. The BPDRR problem focused on how to respond and restore water 73 

service after the occurrence of five earthquake scenarios that cause structural damage in a water 74 

distribution system. Participants were required to propose a prioritization schedule to fix the damages of 75 

each scenario while following restrictions on visibility/non visibility of damages. Each team/approach 76 

was evaluated against six performance criteria that included: 1) Time without supply for 77 

hospital/firefighting, 2) Rapidity of recovery, 3) Resilience loss, 4) Average time of no user service, 5) 78 

Number of users without service for 8 consecutive hours, and 6) Water loss. Three main types of 79 

approaches were identified from the submissions: 1) General purpose metaheuristic algorithms, 2) Greedy 80 

algorithms, and 3) Ranking-based prioritizations. All three approaches showed potential to solve the 81 

challenge efficiently. The results of the participants showed that, for this network, the impact of a large-82 

diameter pipe failure on the network is more significant than several smaller pipes failures. The location 83 

of isolation valves and the size of hydraulic segments influenced the resilience of the system during 84 

emergencies. On average, the interruptions to water supply (hospitals and firefighting) varied 85 

considerably between solutions and emergency scenarios, highlighting the importance of private water 86 

storage for emergencies. The effects of damages and repair work were more noticeable during the peak 87 



demand periods (morning and noontime) than during the low-flow periods; and tank storage helped to 88 

preserve functionality of the network in the first few hours after a simulated event. 89 

 90 

Introduction 91 

A water distribution network (WDN) is one of the critical lifeline systems in a city. Its vulnerability to 92 

earthquakes, and other natural disasters, not only threatens residential, commercial, and industrial 93 

activities, but also can affect the capacity to attend to subsequent emergencies. Two of the most analysed 94 

examples in the literature are the 17 January 1994 Northridge earthquake (Los Angeles, California) and 95 

the 17 January 1995 Kobe earthquake (Japan). The first case resulted in more than 450,000 people losing 96 

water service and at least eight hospitals evacuated due to water and power damages, while for the second 97 

case, the earthquake affected the supply to more than 1.5 million people and required more than 30 hours 98 

to extinguish the fires due to water unavailability in many hydrants (PAHO, 1998).  99 

Considering the potential vulnerability and key role played by WDN during seismic events, researchers 100 

have focused on three main topics: 1) How to assess the reliability of WDNs and other lifelines after 101 

extreme seismic events (e.g., Hwang, et al., 1998; Wang & O'Rourke, 2006; Shi & O'Rourke, 2006, 102 

Fragiadakis, et al., 2013; Liu et al., 2015); 2) How to reinforce the systems to minimize the impact of a 103 

given event (e.g., Cimellaro et al., 2015; Yoo et al., 2016); or 3) How to quickly restore the systems to 104 



normal/acceptable conditions after the event (e.g., Bonneau, & O'Rourke, 2009; Wang et al., 2010; 105 

Mahmoud et al., 2018). From these, the restoration problem has been the least studied, leaving the 106 

prioritization of resources to recover the functionality of the system to the expertise and criteria of utility 107 

operators. Considering that lives of people are at stake due to vitality of the supply for firefighting, or 108 

health care purposes, among other considerations, it is imperative to better characterize this problem and 109 

evaluate if current knowledge of WDNs can be of use in such circumstances.  110 

The Battle of Post-Disaster Response and Restoration (BPDRR) was the eighth call for academic and 111 

non-academic professionals to address a common problem in the water distribution field. Dating back to 112 

the first "Battle" in 1985, this series of competitions have focused on WDNs optimization (1985 and 113 

2012), sensor placement for contaminant intrusion detection in WDNs (2006); WDNs model calibration 114 

(2010); leakage assessment in WDNs (2014); district-metered-area sectorization of WDNs (2016); and 115 

detection of cyber-attacks on WDNs (2017). For this version, the “Battle competition” focused on the 116 

how to respond and restore the service in an existing WDN after the occurrence of five different 117 

earthquake scenarios that damaged part of the distribution network. The results of the BPDRR were 118 

presented in a special session in the 1
st
 WDSA/CCWI Joint Conference, held in Kingston, Ontario, in July 119 

2018. This manuscript summarizes the challenge, the results, and makes recommendations for future 120 

research of the topic.  121 



 122 

Problem formulation 123 

The challenge addressed in the Battle is the one of identifying the best operational response in terms of 124 

restoration interventions to return a water distribution network to fully functioning pre-catastrophic event 125 

condition. 126 

After an earthquake, damages to a WDN can degrade the water service in a city. There can be different 127 

approaches for prioritization of available resources in order to restore the water service. To evaluate the 128 

performance of the different approaches, a set of five post-disaster damage scenarios was generated on a 129 

model of the B-City water distribution network, and participants were invited to propose responses and 130 

restoration methods to return the system to pre-earthquake conditions. These damage scenarios, along 131 

with a calibrated EPANET model of the network, and a description of the performance criteria were 132 

provided to the participants. All data are included in the supplemental files of this manuscript and can be 133 

found with the problem description (Paez et al., 2018a) in the website: https://www.queensu.ca/wdsa-134 

ccwi2018/problem-description-and-files. 135 

B-City 136 

B-City is a water distribution network model of a real system in an undisclosed location. The network 137 

consists of 4,909 junctions, 6,064 pipes, 1 reservoir, 4 pumps divided between two pump stations, and 5 138 



district metered areas (DMA), each with one water tank (Figure 1). A total of 5,963 isolation valves are 139 

also distributed along the pipes of the network, delimiting 2,451 segments as defined by Walski (1993). 140 

The calibrated model also includes 24-hr demand patterns for residential and commercial/industrial 141 

consumers. The daily mean consumption on a typical day is 1,023.8 L/s.  142 

For pre-catastrophic conditions, the minimum pressure during the day, amongst all demand nodes is 24.5 143 

m, which means that the demand is fully supplied (the minimum required pressure is 20.0 m). 144 

Additionally, the tanks do not get emptied at any point, and their minimum levels vary from 0.62 m to 145 

1.09 m. 146 

Damage scenarios  147 

One important assumption required to develop the problem was to consider that out of all network 148 

elements, only pipes were damaged during the events. In other words, facilities like pump stations, tanks, 149 

and the source reservoir were assumed to remain operational at all times. This assumption is consistent 150 

with remarks by Tabucchi et al. (2010), and even though PAHO (1998) mentions examples of tanks and 151 

pump stations structurally affected by earthquakes or disconnected temporally from the electric grid, they 152 

are significantly less common than damages in pipelines (Tabucchi et al., 2010). 153 

To stochastically generate pipe damage scenarios, a Poisson process was used (Shi & O'Rourke, 2006). 154 

Therefore, the probability that a pipe was damaged during the earthquake was given by Eq. (1). 155 



 𝑃 𝑥𝑖 = 1 − 𝑒−𝜆𝑖𝐿𝑖  (1) 

Where 𝑥𝑖  is the event that pipe 𝑖 is damaged  𝑖 ∈  1,… ,6064  , 𝐿𝑖  is the length of the pipe 𝑖 in m, and 𝜆𝑖  156 

is the average number of seismic-induced damages per m for that type of pipe. The values of 𝜆𝑖  were 157 

assumed as 0.0003 damages/m for pipes with diameter under 300 mm and as 0.00005 damages/m for 158 

larger diameter pipes, which is a simplification within the ranges presented by American Lifelines 159 

Alliance (2001). This means that the effect of other factors mentioned in the previous studies, like type of 160 

soil, pipe material, pipe age, and type of joints, on the probability of damage was assumed homogeneous 161 

for all pipes.  162 

According to Ballantyne et al. (1990) and Hwang et al. (1998), the damages in pipes can be classified as 163 

leaks, which are minor damages that can be fixed by installing clamps or welding cracks, and breaks, 164 

which are more serious damages that require a replacement of entire pipe sections. The conditional 165 

probability that a damage was a break was taken as 0.20 for all pipes according to the assumption by 166 

HAZUS (NIBS, 1997) for damages generated by propagation of seismic waves:  167 

 𝑃 𝑦𝑖  | 𝑥𝑖 = 0.20 (2) 

where 𝑦𝑖  is the event that pipe 𝑖 is broken. It is worth mentioning that according to HAZUS method, when 168 

the damages are caused by a permanent ground displacement, the probability of a break is considerably 169 

higher. 170 



After an earthquake disaster, fires are also expected and, therefore, firefighting flows must also be 171 

supplied. To include them in the model, two nodes per scenario were randomly selected and assigned a 172 

fire flow demand of 35 L/s that would only stop until the delivered/supplied water reached 756 000 L 173 

(correspondent to a 6 hr-duration fire if the flow was fully supplied). The number of fire flow nodes was 174 

arbitrarily chosen, while the flow rate was suggested by members of the committee. 175 

Using these assumptions, a set of five deterministic post-disaster damage scenarios was generated and 176 

provided to the participants, and a likelihood based on the probability of the state of each pipe was 177 

assigned to each scenario as a weight for the performance evaluation (computed as the logarithm of the 178 

normalized product of individual probabilities for the pipes). Figure 2 shows one of the five post-disaster 179 

damage scenarios as an example. 180 

Damages modelling 181 

To model the hydraulic effect of damages in the network, an emitter was located at the midpoint of the 182 

damaged pipe to simulate its water losses. In order to avoid reverse flows at the emitter (i.e. inflows) 183 

caused by negative pressures, a dummy check valve was also included upstream of the emitter. One 184 

additional assumption was that breaks in pipes with diameters under 150 mm were assumed to produce a 185 

full disconnection between the two ends of the pipe, and, therefore, the two halves of the pipe were 186 

modelled as check valves. 187 



The emitters used to simulate water losses followed Eq. (3), with Eqs. (4) and (5) for the emitter 188 

coefficients (Shi & O‟Rourke, 2006): 189 

 𝑄𝑖 𝑡 = 𝐾𝑖 ⋅  𝑕𝑖 𝑡  
0.5

 (3) 

 𝐾𝑖 = 0.5𝑚 ⋅ 0.1°⋅ 𝐷𝑖 ⋅  2𝑔      for leaks (4) 

 𝐾𝑖 =
𝜋

2
⋅ 0.5°⋅ 𝐷𝑖

2 ⋅  2𝑔              for breaks 
(5) 

where 𝑄𝑖 𝑡  is the outflow from the emitter 𝑖 at time 𝑡, 𝑕𝑖 𝑡  is the pressure head at the midpoint of pipe 𝑖 190 

at time 𝑡, 𝐷𝑖  is the diameter of pipe 𝑖, and 𝐾𝑖  is the emitter coefficient that represents a 0.5 m longitudinal 191 

crack with an angle of 0.1° for leaks, and a 0.5° round crack for breaks (Figure 3).  192 

To consider that not all damages are immediately detected by the water utilities, some of them were 193 

considered non-visible, meaning that they could not be detected, and therefore fixed, only until some time 194 

after the event. Leaks in pipes with a diameter under 300 mm, and breaks in pipes with diameter under 195 

150 mm were assumed non-visible unless they reached an outflow higher than 2.5 L/s (values based on 196 

the experience of some members of the committee). However, 48 hrs after the event it was assumed that 197 

some pressure tests and inspections would be carried out, making all damages visible after that time. 198 

Visibility of damages was important from the network restoration point of view (see next section). 199 

Response and network restoration 200 



After the occurrence of an earthquake, the water utility would require some reaction time (assumed 30 201 

mins here) before the crews can be dispatched to begin the restoration works. There were assumed to be 202 

three crews able to work 24 hours independently of the turns of each worker, and they could perform four 203 

basic tasks: Isolate, Repair, Replace, and Reopen. 204 

Both leaking and broken pipes could be isolated by sending a crew to the damage location (even though it 205 

is strictly necessary for broken pipes only). It was assumed that the water utility knows the location of all 206 

isolation valves in the network and, therefore, isolating a pipe consists of closing all the valves in the 207 

hydraulic segment that contains it. Isolation of pipes serves two main purposes: to stop water leaking 208 

from the network at a certain damage location, and to dry the pipes in the segment so they can be replaced 209 

if required. 210 

Leaking pipes must be repaired. To repair a leaking pipe, a crew must be sent to the pipe location where 211 

they need to locate the leakage, excavate, repair the pipe either with a clamp or by welding, and restore 212 

trench conditions. Broken pipes must be replaced. To replace a broken pipe, it must first be isolated, 213 

excavated, replaced, and trench conditions must be restored (disinfection and pressure tests are assumed 214 

to be omitted in an emergency scenario). Finally, an isolation valve could be reopened to restore supply to 215 

the affected area, once damages were fixed.  216 



The time each crew was assumed to take to isolate, repair and replace a pipe is shown in Table 1, where 217 

some simplified relations have been adjusted to the data presented in Porter (2016). Transportation times 218 

and times for reopening of valves are assumed to be included in the figures and expressions shown in 219 

Table 1. 220 

Participants were required to propose a prioritization schedule for the three crews, for each scenario, 221 

indicating in which order to isolate, repair or replace damages in the network while following two 222 

restrictions: 1) Only visible damages could be fixed (details on visible/non-visible damages in the 223 

previous section), and 2) Only pipes whose hydraulic segment had been previously isolated could be 224 

replaced. Table 2 shows an example of the schedules given by participant teams.  225 

 226 

Performance criteria 227 

Since the system is working under low pressure conditions, the pressure driven method by Paez et al. 228 

(2018b) was used to compute nodal supplied flows  𝑄𝑖  and compare them with demand  𝑄𝐷𝑖  as follows: 229 

 𝑄𝑖 𝑝𝑖 =

 
 
 

 
 

0 𝑖𝑓 𝑝𝑖 ≤ 0 → enforced by a Check Valve                   

𝑄𝐷𝑖  
𝑝𝑖
𝑝𝑟𝑒𝑞

 

𝑛

 0 < 𝑝𝑖 ≤ 𝑝𝑟𝑒𝑞  → enforced by a Throttle Control Valve

𝑄𝐷𝑖 𝑝𝑖 > 𝑝𝑟𝑒𝑞 → enforced by a Flow Control Valve      

  (6) 

 230 



where 𝑝𝑖  is the actual pressure head at node 𝑖, and 𝑝𝑟𝑒𝑞  is the minimum required pressure head to ensure 231 

full supply (assumed 20 m here).  232 

The functionality of the system, at a certain time 𝑡, is then defined as the percentage of the total demand 233 

that is supplied by the network according to the pressure driven model (based on the serviceability index 234 

discussed in Shi & O‟Rourke, 2006): 235 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝑡 = 100% ⋅   𝑄𝑖 𝑡 
𝐷𝑒𝑚𝑎𝑛𝑑
𝑛𝑜𝑑𝑒𝑠

 𝐷𝑄𝑖 𝑡 
𝐷𝑒𝑚𝑎𝑛𝑑
𝑛𝑜𝑑𝑒𝑠

  (7) 

Figure 4 shows the expected behaviour of the functionality as the network gets gradually fixed. Since the 236 

demand varies in time, it is likely that the system can fulfill a higher percentage of the demand during 237 

nights, while during mornings, when demand increases, the supplied percentage decreases, producing 238 

these peaks and troughs in the functionality trend.  239 

For each scenario, the schedules proposed by the participants were evaluated according to six main 240 

criteria: 241 

1) Time that the hospitals and the firefighting flows are without supply (Fire & Hosp.), calculated as 242 

the time-step of the simulation times the number of time steps in which the supply/demand ratio 243 

for the hospitals and firefighting flows was less than 0.5: 244 



 
𝐹𝑖𝑟𝑒 & 𝐻𝑜𝑠𝑝. = Δ 𝑡 ∙  count 

𝑡∈𝑇
  𝑡 |  𝑄𝑖 𝑡 𝐷𝑄𝑖 𝑡 ≤ 0.5  

𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑠  𝑎𝑛𝑑  
𝐹𝑖𝑟𝑒𝑓𝑖𝑔 𝑕𝑡 𝑛𝑜𝑑𝑒𝑠

      [𝑚𝑖𝑛] 
(8) 

where 𝑇 is the set of all 15-minute time steps starting on Day 01 at 6:00am and ending at Day 07 245 

at 6:00am and Δ 𝑡 is 15 minutes. 246 

2) Time until the system recovers permanently 95% of its functionality (Rapidity of recovery – t95), 247 

calculated as the last (maximum) time-step in which the functionality is lower than 95% (see 248 

Figure 4): 249 

 𝑡95  = max 
𝑡∈𝑇

  𝑡 | 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝑡 ≤ 95%       [𝑚𝑖𝑛] (9) 

3) Accumulated loss of functionality from the occurrence of the disaster until full recovery 250 

(Resilience Loss), calculated as the area between the 100% line and the functionality time series 251 

(see Figure 4) 252 

 𝑅𝑒𝑠. 𝐿𝑜𝑠𝑠 = Δ 𝑡 ∙  100% − 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝑡  

𝑡∈𝑇

      [% ∗ 𝑚𝑖𝑛] (10) 

4) Average time, across demand nodes, each consumer (network node) is without service (Time no 253 

serv.), calculated by multiplying the time-step and the number of time steps in which the 254 

supply/demand ratio was less than 0.5 for each node, and then dividing by the total number of 255 

demand nodes (𝐷𝑁 = 4201): 256 



 
𝑇𝑖𝑚𝑒 𝑛𝑜 𝑠𝑒𝑟𝑣. =

Δ 𝑡

𝐷𝑁
∙  count 

𝑡∈𝑇
  𝑡 | 𝑄𝑖 𝑡 𝐷𝑄𝑖 𝑡 ≤ 0.5  

𝐷𝑒𝑚𝑎𝑛𝑑
𝑛𝑜𝑑𝑒𝑠

      [𝑚𝑖𝑛] 
(11) 

5) Number of consumers (network nodes) without service for more than 8 consecutive hours (Nodes 257 

no serv.), calculated by counting the number of nodes with more than one time-step in which the 258 

next 8 hours had always a supply/demand ratio lower than 0.5: 259 

𝑁𝑜𝑑𝑒𝑠 𝑛𝑜 𝑠𝑒𝑟𝑣. = count
𝐷𝑒𝑚𝑎𝑛𝑑
𝑛𝑜𝑑𝑒𝑠

  𝑖 | count 
𝑡∈𝑇

  𝑡 |  
𝑄𝑖 𝑡 − Δ𝑡 

𝐷𝑄𝑖 𝑡 − Δ𝑡 
 ≤ 0.5  ∀Δ𝑡 ∈ (0 , 8𝑕𝑟𝑠) ≥ 1    [𝑛𝑜𝑑𝑒𝑠] (12) 

6) Volume of water lost during the 7 days after the event (Water loss), calculated as the sum of the 260 

outflows across all damages in the network times the time-step: 261 

 𝑊𝑎𝑡𝑒𝑟 𝑙𝑜𝑠𝑠 = Δ 𝑡 ∙   𝑄𝑖 𝑡 

𝑡∈𝑇𝑖∈𝐷𝑎𝑚𝑎𝑔𝑒𝑠   

      [𝐿] (13) 

Since there were five scenarios, a total of 30 values had to be reported by each team. To assess an 262 

approach, each of the six criteria was averaged amongst the five scenarios using the likelihoods 263 

previously described in the section Damage Scenarios as weights, giving as a result one average 264 

performance per criteria per team. 265 

For this version of the Battle, it was a deliberate decision not to provide a unified metric to rank the 266 

solutions. Instead, it was left to the participants‟ engineering judgment to prioritize the six criteria as they 267 

considered appropriate for the city. This decision was taken by the committee (Franchini, Galelli, Kim, 268 



Iglesias-Rey, Kapelan, Saldarriaga, Savic, and Walski) as a way to allow different approaches including 269 

non-optimization frameworks in the competition. 270 

 271 

Post-disaster response and restoration algorithms 272 

Ten teams participated in the BPDRR and submitted their approaches, prioritization schedules, results, 273 

and recommendations. This section briefly describes each approach: 274 

• Castro-Gama et al. (2018) proposed an implementation based on a preliminary graph theory analysis of 275 

the network required to identify neighboring pipes. Second, an ε-MOEA algorithm (Deb et al., 2005) 276 

from an optimization library for Python: Platypus was used to obtain the Pareto front for the 6 criteria. 277 

Decision variables were set as a permutation of the possible interventions. The procedure took into 278 

account a constant time of displacement between locations (30 min), which increased the operation time 279 

of each crew from the values in Table 1. From the 6D Pareto front, a single solution per scenario was 280 

selected based on a Visual Analytics approach (Castro-Gama et al., 2017). The ε-MOEA solution was 281 

also compared with the one obtained using a greedy algorithm. Both methods showed similar outcomes 282 

with different prioritization of interventions, although the latter had the advantage of requiring only 30% 283 

of the computational time of the former. Finally, four engineering interventions (to increase/decrease the 284 

storage capacity or the pump flow) were evaluated for each selected solution and damage scenario. 285 



• Sweetapple et al. (2018) developed an approach based upon graph theory and heuristic methodologies. 286 

First, graph theory was used to enable identification of hydraulic segments (Meng et al., 2018) and, 287 

subsequently, valve operations required to isolate each pipe break. Next, a single performance indicator 288 

incorporating all six objectives was developed to enable the problem to be reformulated as a single 289 

objective (assuming equal weights). Lastly, actions (i.e., isolations, replacements and repairs) were 290 

allocated to each crew using an adaptation of the „nearest neighbour‟ algorithm (Cover and Hart, 1967), a 291 

„greedy optimization heuristic. In this approach, performance was evaluated starting with no actions, and 292 

adding subsequent actions. Each new action was assigned to the first crew that finished the previously 293 

assigned actions. At each stage, the next action selected was the one that provided the greatest 294 

performance benefit (represented by the single objective value), given the specified prior actions and not 295 

accounting for future actions. 296 

• Zhang et al. (2018) proposed a dynamic optimization framework with the objective function consisting 297 

of six different metrics summed by introducing weights. To identify an optimal sequencing of recovery 298 

actions for each post-earthquake scenario, a tailored Genetic Algorithms-based optimization algorithm 299 

was used, where the algorithm operators were modified to identify the optimal sequencing of recovery 300 

actions for post-disaster WDNs. The most important feature of the proposed method was that the total 301 

number of the decision variables (damaged segments) and the decision variables themselves (e.g., the 302 

pipes that need to be repaired) could both vary when the hydraulic status of the WDN was updated. That 303 



updating process was carried out at the completion of each intervention to the post-disaster WDN, and the 304 

final sequencing of recovery actions for each crew was identified. The results provided some insights on 305 

how to propose an optimal recovery plan. For instance, certain broken pipes were fixed between 306 

particular time stamps to avoid negative effects on the service level at some critical locations.  307 

• Deuerlein et al. (2018) proposed greedy heuristics to schedule isolation, repairs and replacement by 308 

minimizing a weighted sum of the objectives. In the disaster response, the trade-off between water loss 309 

and the other criteria was explored. The method used graph decomposition techniques to identify the 310 

valves that isolated a hydraulic segment for replacement (Deuerlein 2008). The authors also analysed the 311 

network hydraulics and how the depletion of tanks affected service levels. Using these and systematic 312 

engineering judgement (Gilbert et al., 2017), recommendations were made for improving the capacity of 313 

the system and its absorptive and restorative resilience by design. This included the improvement of 314 

pumping stations, installation of control valves and some pipe reinforcement. The same greedy task 315 

scheduling algorithm was then used under these alternative network improvements, to evaluate the 316 

improvements with respect to all criteria. 317 

• Balut et al. (2018) proposed a ranking-based approach where water network pipes‟ „importance‟ was 318 

prioritized and applied in a pipe repair schedule. Several approaches to define the importance and create 319 

the rankings were proposed, based on hydraulic analyzes (using model under normal operating 320 



conditions). Expert knowledge was used, collected via conducted surveys, to define the „rankings‟. 321 

Authors surveyed 46 managers, consultants, IT specialists and water distribution modellers from utilities, 322 

asking them to list the main criteria that influenced the sequence of repair scheduling, in their opinion. 323 

For each disaster scenario, all types of „rankings‟ developed (diameter, diameter and distance from the 324 

source, diameter and velocity, flow with and without strategic points, impact of pipes‟ closure on 325 

network‟s hydraulics) were applied to schedule tasks for all repair teams. Additionally, experts were also 326 

asked in the surveys to assign weights to four criteria that addressed the rapidity of recovery, number of 327 

nodes without service and volume of water lost. Results from the rankings were evaluated with use of 328 

Visual Promethee – a multicriteria decision aid software, and weights based on the recommendation by 329 

the experts. Calculation of hydraulic parameters and evaluation of the final solution based on the six 330 

predefined criteria were performed using the Epanet-Matlab toolkit (Eliades et al., 2016). 331 

• Li et al. (2018) proposed a two-stage WDN restoration method based on Epanet-Matlab toolkit (Eliades 332 

et al., 2016). In the first stage, a shortest path algorithm and greedy algorithm were used to gain the top 333 

priority recovery action for a quick response to the disaster. Firstly, Dijkstra algorithm was used to 334 

calculate the shortest path from water source to hospital and fire point. The flow could be guaranteed to 335 

these locations by repairing the damaged point on the path and closing the valves of the damaged pipeline 336 

closest to the path. Then the greedy algorithm was used to obtain the restoration order of the remaining 337 



pipes. In the second stage, Particle Swarm Optimization algorithm was used to minimize the total amount 338 

of water loss during the restoration process. 339 

• Sophocleous et al. (2018) developed a simulation-based response and restoration framework divided 340 

into three stages: 1) Pre-Processing, where the possible interventions for each crew were defined together 341 

with the time required to complete each intervention, 2) Optimisation, where an optimised schedule for 342 

fixing each damage was established using NSGA-II algorithm and a simplified version of weighting 343 

objectives, and 3) Restoration Planning, where an action plan (i.e., table of interventions ranked by 344 

priority) for each crew was identified using the optimum solution from stage 2. The proposed framework 345 

developed a methodology to identify the minimum number of links required to isolate a damaged pipe 346 

and enabled simplifying the complexity of the optimisation problem by: 1) solving two sub-problems in 347 

sequence (i.e., two-day and seven-day sub-problems, based on the visibility of the damages); and 2) 348 

allocating to each crew a particular part of the WDN and a specific number of interventions. This was 349 

done through the use of a K-means clustering-based approach (MacQueen, 1967) and engineering 350 

judgement (allowing the assumption that in real-life a crew would not be asked to deal with damages 351 

spread across the whole network). Simulations were run using the EPANET Programmer‟s Toolkit linked 352 

with the MATLAB optimisation tool. 353 



• Santonastaso et al. (2018) adopted a strategy to restore the water service after an earthquake following 354 

two phases: 1) identification of hydraulic segments, that provided which valves had to be closed to isolate 355 

the pipe that needed to be repaired (Creaco et al., 2010); 2) prioritization of the broken pipes according to 356 

a topological metric, based on the idea of primary network (Di Nardo et al., 2017) in order to organize the 357 

maintenance interventions after the earthquake. The proposed procedure to rank the pipes to be 358 

maintained was stated as follows: 1) compute the betweenness for all pipes in the network; 2) repair or 359 

replace leaking or broken pipes with high values of edge betweenness; 3) repeat step 2 until no pipes 360 

remain to be replaced or repaired. 361 

• Bibok (2018) proposed a two-stage approach to the problem. A criticality analysis of network segments 362 

was carried out using Bentley System‟s WaterGEMS. It highlighted critical segments, of which size could 363 

be reduced by installing additional isolation valves. The visible leaks were determined by an initial 364 

hydraulic simulation considering the first 30 minutes. In the second stage, the optimization problem was 365 

reduced to a sorting task, which was carried out by a sorting genetic algorithm. The algorithm‟s genome 366 

was the ordered list of sequentially executed repair events. A swapping operator during mutation was 367 

utilized to preserve the consistency of the visible and non-visible leaks' list.  368 

• Salcedo et al. (2018) proposed a decision support model based upon a prioritization methodology 369 

described as follows. Initially, a diagnosis of the network was done, including the assessment of the 370 



impact of each pipe within the network based on its reliability (Luong & Nagarur, 2005). Then, a 371 

prioritization list was developed considering the weighted sum of seven alternative criteria to assign the 372 

maintenance activities to each crew. These alternative criteria included the pressure head at hospitals and 373 

fire flow nodes, the functionality of the network after rehabilitating a pipe, water losses, and the time 374 

needed to rehabilitate each damaged pipe. The weighted list was evaluated at the end of each time step of 375 

the simulation using MATLAB and EPANET Programmer‟s toolkit. Finally, the final weights of the 376 

decision model were determined using a sensitivity analysis. 377 

 378 

Results and discussion 379 

Algorithm performance 380 

Three main types of approaches can be identified from the submissions. The first type of approach was 381 

based on using general-purpose optimization methods, like Multi Objective Evolutionary Algorithm 382 

(MOEA), Non-Dominated Sorting Genetic Algorithms (NSGA-II) and Genetic Algorithms (Castro-Gama 383 

et al., 2018; Zhang et al., 2018; Sophocleous et al., 2018; Bibok, 2018). In these approaches, the problem 384 

was expressed as an optimal sorting task in which the decision variables were the order in which each 385 

damage on the network was fixed. The solution space was all possible permutations of the damages, and 386 

the objective functions were either the six criteria from Eqs.(8) to (13), a normalized sum of the six 387 



criteria (i.e., a single-objective optimization problem), or a combination of normalization and weighting 388 

of the six criteria. The normalization references were the computed range of each criterion (defined by the 389 

maximum and minimum values found), or a reference value based on an initial solution. The weights, on 390 

the other hand, were mostly based on engineering judgment and sense of importance of each criterion 391 

after a natural disaster. 392 

The second type of approaches was ranking-based prioritizations, in which different metrics were used to 393 

define which pipes should be fixed first according to their “importance” (Balut et al., 2018; Santonastaso 394 

et al., 2018; Salcedo et al., 2018). In these approaches, one or various metrics to measure how important 395 

is a pipe with respect to the criteria were proposed and tested (the number of metrics tested is shown 396 

between square brackets in the second column of Table 3). The nature of proposed metrics included 397 

hydraulic properties of the pipes, hydraulic consequences of individual damages, and graph theory 398 

metrics. The objective functions used to evaluate a metric were: weighted and normalized sum of the six 399 

criteria for Balut et al. (2018); a weighted and normalized sum of scores, developed to simplify 400 

computation of the six criteria, for Salcedo et al. (2018); and the six given criteria for Santonastaso et al. 401 

(2018). 402 

Finally, the third type of approaches was based on algorithms that made local optimum choices aiming to 403 

find near-optimal solutions (Sweetapple et al., 2018; Deuerlein et al., 2018; Li et al., 2018). In these 404 



approaches, that could be viewed as greedy algorithms, an objective function was defined either as a 405 

weighted and normalized sum of the six criteria, or as one of the six criteria depending on the stage of the 406 

optimization. Then, starting at the initial time of the simulation, all possible actions (damage fixing) were 407 

evaluated, and the one(s) that produced the highest marginal gain in the objective function were selected 408 

to be carried out. That process was repeated every time an action was completed until no more actions 409 

remained. It is worth noting that Li et al. (2018) used this third type of approach in a first stage of their 410 

optimization, followed by an application of a metaheuristic (Particle Swarm Optimization - PSO). 411 

Table 3 summarizes the reported results for the six criteria, averaged amongst the five damage scenarios 412 

(using the likelihoods as weights), for each team. The top three performance values for each criterion are 413 

underlined, with the best performance highlighted with a double underline.  414 

Figure 5 presents graphically the results of each team in each criterion compared with the average 415 

amongst all teams. Values outside the black dotted line (average), outperformed the average of the ten 416 

teams. It is important to note that three teams (Zhang et al., 2018; Deuerlein et al., 2018; Salcedo et al., 417 

2018), one from each type of approach, had all six criteria outperforming against the average (all their 418 

areas are outside the average circle), showing that all three approaches have potential in solving the 419 

response and restoration challenge.  420 

Participants’ remarks 421 



Participants were also encouraged to suggest some mitigation measures that the city could take in order to 422 

improve the response and restoration process for other possible scenarios. One factor that almost all 423 

participants seemed to agree, was that installing more isolation valves would reduce the size of the 424 

hydraulic segments, and therefore reduce the impact on the supply of the isolations required to replace a 425 

broken pipe. 426 

Castro-Gama et al. (2018) also evaluated the effect of increasing or decreasing the storage and pumping 427 

capacity in the network, and found that increasing the storage and pumping capacity reduces the initial 428 

impact of the event (before the interventions), but once the fixing schedule is optimized, there is little 429 

improvement in the performance criteria. Sweetapple et al. (2018) evaluated the effect of the 430 

disconnection of all hydraulic segments in the network and suggested the separation of the most upstream 431 

segment to avoid having both the tank T1 and the reservoir isolated simultaneously in case pipe damage 432 

or a contaminant intrusion occurred in that segment. Li et al. (2018) used pipe damage statistics of the real 433 

Wenchuan earthquake in 2008 to suggest pipeline renewals to avoid concrete and gray iron pipes which 434 

seemed to be more vulnerable to this kind of events, while increasing the pipe burial depths to reduce pipe 435 

displacement. Finally, Bibok (2018) suggested running in advance combinations of simultaneous 436 

hydraulic segments isolation to reduce in advance search space and ease the computation of 437 

recommended schedules once the event occurs. 438 



General observations 439 

After analysing the results and recommendations of all participants, the main insights are summarized as 440 

follows: 441 

• All six criteria used to evaluate performance of solutions (Eqs.(8) to (13)) were defined as desirable 442 

objectives of a response and restoration method, and as metrics that would contribute to better understand 443 

the consequences of extreme seismic events. However, the fact that only one out of ten teams used a 444 

multi-objective optimization approach using the six criteria, would suggest that it is necessary to prioritize 445 

some of them, with engineering judgment, according to the perspective and policies of the city, in order to 446 

make it a mathematically tractable problem that actually provides suitable solutions. 447 

• Different types of approaches presented in this Battle have all potential to find satisfactory solutions to 448 

the problem. The use of metaheuristics requires in general more computational effort and, therefore, are 449 

useful to develop, in advance, plans to react in the moment a disaster occurs. Greedy algorithms are, in 450 

general, fast enough to be run at the moment a disaster occurs, making use of that reaction time 451 

mentioned before and adapting to new information on damages easily. Finally, ranking-based approaches 452 

are straightforward and quick to use, allowing an almost immediate reaction and an instantaneous 453 

reordering when given updated information but, unlike optimization-based approaches, rely on subjective, 454 

expert generated list of intervention options to consider. 455 



•The run times for the participants‟ solutions were not reported as it was not a requirement for the 456 

submission (in order to allow the use of any available resource and technique), but the computational 457 

requirements of metaheuristic algorithms were mentioned by some participants as a drawback for this 458 

type of approach. As explained by Castro-Gama et al. (2018), the use of alternatives like greedy 459 

algorithms can reduce the computational time to a 30% of the time required by metaheuristics. However, 460 

the potential use of parallelization is expected to make the use of this type of optimization algorithms 461 

more suited and faster in future. 462 

• Figure 6 shows the average Res. Loss among all participants versus the range of diameters of broken 463 

pipes in each scenario. It also shows how, for this particular network, the WDN gets more affected in its 464 

functionality by the size of the largest broken pipe, rather than by the number of breaks in the scenario. 465 

For example, Scenario 05 has ten more pipe breaks than Scenario 03, but since Scenario 03 has a 250mm 466 

pipe broken, it has on average higher resilience loss than Scenario 05 which has all its breaks in pipes 467 

with diameters under 200mm. 468 

• One important factor that drives the resilience of the WDN to these emergency scenarios is the location 469 

of isolation valves and the size of hydraulic segments relative to affected areas. All participants agree that 470 

having more isolation valves would reduce the impact of repairs and replacement works in the supply. 471 



• On average, the interruptions in the supply to emergencies (hospitals and firefighters) was 17.5 hrs, 472 

although considerable variability was seen between participants and scenarios (in some scenarios, some 473 

participants were able to maintain continuous water supply to the emergency nodes, while in other cases 474 

the interruption accumulated nearly 72 hrs). Since most of that demand occurred in hospitals, this 475 

suggests the need to install or increase their private storage to autonomously cope with their demand for 476 

longer periods of time.  477 

• The Functionality time series follows a peaks-and- troughs shape driven by the highs and lows of 478 

diurnal water demand in the system. Figure 7 shows an example of a functionality time series (Scenario 479 

01 by Zhang et al., 2018) as well as the demand time series. During evenings, the supplied water was 480 

more closely matched to the demands, while during mornings and noontime, the effects of the damages 481 

and the ongoing repair work were more noticeable. Additionally, water stored in the tanks offered an 482 

initial cushion on the functionality, which allowed full supply of the demand during the first few hours 483 

after the event. 484 

• Regarding the criteria used to evaluate the performance of each team, a correlation analysis allowed to 485 

identify that only the pair t95 – Res. Loss has a strong positive correlation (0.92), suggesting that 486 

algorithms that minimize one, would indirectly minimize the other. This was difficult to know in advance, 487 

but it would indicate that in an optimization framework, only five objective functions were necessary to 488 



solve the challenge. All other computed correlations were below 0.55, with negative values for the four 489 

pairs between Nodes no serv. or Water Loss, and t95 or Res. Loss.  490 

• A Pareto ranking of the ten teams showed that six solutions were non-dominated (Castro-Gama et al., 491 

2018; Zhang et al., 2018; Deuerlein et al., 2018; Li et al., 2018; Bibok, 2018; and Salcedo et al., 2018), 492 

with Salcedo et al. (2018) dominating three of the four other solutions, followed by Zheng et al. (2018) 493 

dominating two, and Deuerlein et al. (2018) and Castro-Gama et al. (2018) dominating one.  494 

• To evaluate the robustness of the approaches, the standard deviation across the five scenarios was 495 

computed for each criterion and each team. Figure 8 compares the standard deviations with the averages 496 

(an ideal approach would be closer to the bottom-left corner indicating good average performance and 497 

low variability in its results). It can be seen that generally, teams with good performance in a criterion 498 

(small average value) also had a small standard deviation in that criterion, indicating that their approaches 499 

are also robust (with consistently good results for all five scenarios). Exceptions to this remark are mostly 500 

in the Resilience Loss criteria, where teams a), f) and c) (Castro-Gama et al., 2018; Li et al., 2018; and 501 

Zhang et al., 2018), in that order, had comparatively good average performances, but with high variation 502 

between scenarios. 503 



• The coefficients of variation for the six criteria were computed (across the ten teams). The Nodes no 504 

serv., the Fire & Hosp., and the Time no serv. were, in that order, the criteria with highest variability, 505 

which would suggest that these might be criteria more difficult to attain.  506 

 507 

Conclusions 508 

The paper summarizes the competition challenge and the results of the Battle of Post-Disaster Response 509 

and Restoration (BPDRR) held in Kingston, Ontario in July 2018, as part of the 1
st
 International 510 

WDSA/CCWI Joint Conference. Participants in the BPDRR were tasked with identifying the best 511 

strategies to respond and restore water service following five hypothetical earthquake scenarios. A total of 512 

ten teams developed approaches that fell into three broad categories of metaheuristic methods, ranking-513 

based prioritization methods, and near-optimal optimization methods. Six performance criteria were used 514 

to evaluate the solutions of the ten teams and they included: 1) Time without supply for 515 

hospital/firefighting, 2) Rapidity of recovery, 3) Resilience loss, 4) Average time of no user service, 5) 516 

Number of users without service for 8 consecutive hours, and 6) Water loss.  517 

The key findings from the Battle are summarized as follows: 518 



• Even though, the six performance measures taken together were used to characterize the appropriateness 519 

of the response and restoration solutions, the positive correlation found between some of the criteria 520 

suggests that in an optimization framework it might not be necessary to include all of them. 521 

• All three categories of approaches proved to be appropriate to find satisfactory response and restoration 522 

solutions despite important differences in computational requirements between approaches. 523 

Metaheuristics, on one hand, seem to be suitable to develop plans beforehand the occurrence of the event, 524 

as their computational cost limits their application during reaction times. Greedy algorithms, on the other 525 

hand, are faster to compute and can also adapt easily to new available information, making them more 526 

applicable in the case of an emergency. Finally, ranking-based approaches condense expert knowledge 527 

and intuitive criteria to suggest swiftly the recommended interventions to follow. 528 

• The location of isolation valves and the size of hydraulic segments relative to areas affected was found 529 

to drive the operational resilience of the system. This highlights the importance of having an adequate 530 

location and mapping of isolation valves, as well as a regular maintenance to keep them operational in 531 

this disaster scenarios. 532 

• The average period of interruption to water supply for hospitals and firefighting flows was 17.5 hrs and 533 

varied considerably between participants and emergency scenarios. This highlights the importance of 534 

private water storage for emergency response entities. 535 



• Tank storage helped to preserve functionality in the network but only in the first few hours after an 536 

emergency event. This may be specific for the system analysed, i.e. other WDN may be able to provide 537 

water for longer periods of time. 538 

One important point to mention is that extending the results and conclusions of this Battle to practise 539 

requires that the list of assumptions remains valid in the specific systems. This implies that utilities need 540 

to have updated models of their networks, with good mapping of their isolation valves, and with trained 541 

crews that can perform the required tasks in periods close to the assumed. Moreover, they need to keep 542 

sufficient resources and parts to fix the damages and communicate efficiently with their crews. Only then, 543 

a risk assessment and evaluation of alternatives based on the methods presented in this competition 544 

should be performed. 545 

 546 

Future research 547 

• One aspect that was not explored further was the demand variation that can occur after an earthquake. 548 

Depending on the magnitude of the event, commercial and industrial demands can be affected since some 549 

businesses would close temporarily while normal conditions are re-established. 550 

• Similarly to the previous point, other important simplification for the problem was not to consider 551 

damages to other network elements (e.g., pumps, tanks). Power grids energizing the pumping stations and 552 



generators may also be damaged during an earthquake. Communication networks that might be used for 553 

monitoring and control operations can also be affected in such scenarios. The effect of this type of 554 

damages, as well as their probability of occurrence, and the times to fix them, are worth further 555 

investigation. 556 

• The relationship between demand and functionality (Figure 7) suggests that there can be better and 557 

worst times to fix damages, specially breaks that require isolation, and therefore might be good to explore 558 

idle times for crews where they do not fix anything and wait until a low demand time, as noted by Bibok 559 

(2018). 560 

• The impact of catastrophic events such as an earthquake may have a more profound impact on the water 561 

quality which needs to be explored further. If this is the case, then partial water supply during the 562 

restoration may be of use for specific water uses only (e.g. toilet flushing) and additional measures may 563 

have to be considered (e.g. supply of bottled water).  564 

• Usually, important earthquakes produce collapse of buildings and roads, making some streets unfit due 565 

to rubbles. These aspects affect mobility and possibility of working of the crews activated for repairing 566 

water pipes. These aspects were not considered in the current Battle but might have a significant impact 567 

on actual restoring and repairing actions. 568 



• The simplification of transportation times in Table 1 can not apply in many real cases, specially large 569 

cities, as fixing two close damages can be less time consuming than fixing two very separate damages. 570 

Future studies could attempt to discard this simplification. 571 

• Other practical assumptions made in the competition included the full availability of spare parts and 572 

resources to conduct the interventions to all damages. However, this might not be the case in many cities, 573 

and therefore, the impact of limited/unavailable resources on the problem could be explored in future.  574 

• Smart water technologies, such as pressure sensors, hydrophones and flow meters (Hill et al., 2014), 575 

provide a large amount of information on the state of a WDN. Going forward, it would be interesting to 576 

understand how these data could aid water utilities in the design of response solutions to earthquakes as 577 

well as other catastrophic events.  578 

• Recent Battles have focussed on various events that strongly threaten the performance of a WDN, such 579 

as contamination events (Ostfeld et al., 2008), cyber-physical attacks (Taormina et al., 2018), or 580 

earthquakes (BPDRR). While these Battles provide enhanced understanding on the performance of 581 

engineering solutions to specific events, there seems to be a lack of knowledge on how these solutions 582 

should be merged and implemented into joint contingency plans. 583 

• Due to organizational limitations, this Battle used a disclosed/open set of five scenarios used by the 584 

participant teams to develop, adjust and evaluate their approaches, instead of a bigger, concealed set of 585 



predefined scenarios to be tested after the submission of their methods/algorithms. This implies that some 586 

methodologies might not have been oriented to a generic solution of the problem, but to the specific 587 

solution of these five scenarios. Future research in the topic could benefit from using training scenarios to 588 

feedback and adjust the approaches, and test scenarios to evaluate the approaches‟ actual performance. 589 

 590 

Data Availability Statement 591 

Some or all data, models, or code generated or used during the study, including the EPANET models and 592 

the results for each team, are available from the corresponding author by request 593 

(da.paez270@gmail.com). Additionally, requests regarding code used by the participants to solve the 594 

problem will be directed by the corresponding author to the developers of the code. 595 
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 1 

Table 1. Tasks duration times per pipe 2 

Task Duration time per pipe 

Isolate 15 min/valve 

Repair* 0.223 ⋅ 𝐷𝑖
0.577 

Replace* 0.156 ⋅ 𝐷𝑖
0.719 

*𝐷𝑖 in mm and resulting times in hours (rounded to the lowest hour) 

 3 

  4 



 5 

Table 2. Example of prioritization schedule 6 

Crew List of tasks  

(ordered chronologically) 

Crew 01 Isolate P136 

Isolate P283 

Repair P206 

Replace P152 

Repair P242 

⋮ 
Crew 02 Isolate P367 

Isolate P152 

Replace P367 

Replace P136 

Repair P154 

⋮ 
Crew 03 Isolate P105 

Replace P105 

Repair P254 

Repair P221 

Isolate P133 

⋮ 

 7 

  8 



 9 

Table 3. Performance of participant teams in the six defined criteria 10 

Team Algorithm 
Optimization / 

Ranking criteria 

Fire & 

Hosp. 

(min) 

t95 

(min) 

Res. 

Loss 

(%*min) 

Time 

no 

serv. 

(min) 

Nodes 

no serv. 

(nodes) 

Water 

Loss. 

(ML) 

Castro-Gama et 

al. (2018) 

Platypus ε-MOEA  6 (Original criteria) 
1411 4094 13271 38.8 17.9 67 760  

Sweetapple et 

al. (2018) 

Nearest Neighbor 

Search 

1 (Weighted and 

normalized original 

criteria) 

365 5154 15472 49.6 90.0 79 982  

Zhang et al. 

(2018) 

Improved Genetic 

Algorithm 

1 (Weighted and 

normalized original 

criteria) 

147 3106 10195 64.1 28.6 60 380  

Deuerlein et al. 

(2018) 

Greedy Alg.  1 (Weighted relative 

increase of 5 original 

criteria) 

301 3918 13250 54.4 140.3 57 278  

Balut et al. 

(2018) 

Pipe/Damage 

rankings [x 6]  

+ Expert survey 

1 (Weighted and 

normalized original 

criteria) 

3396 5184 25988 79.4 212.1 66 580  

Li et al. (2018) Greedy Alg.  

+ PSO 

1 (Fire & Hosp. for 

stage 1 and Res. Loss 

for stage 2) 

1532 3902 13574 364.7 818.0 56 624  

Sophocleous et 

al. (2018) 

NSGA-II 1 (Normalized original 

criteria) 
2528 9510 42129 86.5 37.6 94 116  

Santonastaso et 

al. (2018) 

Pipe/Damage 

ranking [x 1] 

6 (Original criteria) 
315 4845 16958 50.0 104.9 77 881  

Bibok (2018) Genetic Algorithm 1 (Normalized original 

criteria) 
234 4638 15944 216.6 8.4 73 923  

Salcedo et al. 

(2018) 

Pipe/Damage 

rankings [x 5+] 

1 (Weighted and 

normalized modified 

criteria) 

270 4471 14235 46.0 35.6 66 799  

AVERAGE 1050 4882 18102 105.0 149.3 70 132 
Note: Entries underlined represent the top three values for each criterion. MOEA: Multi Objective Evolutionary Algorithm. PSO: Particle Swarm Optimization. NSGA-II: Non-Sorted Genetic Algorithm. 
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Figure 1. B-City water distribution network. Dotted lines delimit DMAs and “H” represents the hospitals. 

 

Figure 2. Damage scenario 01. Breaks highlighted in red, leaks highlighted in yellow, and fire-flows 

marked with an “F”. 

 

Figure 3. Schematic representation of breaks and leaks. 

 

Figure 4. Time variation of Functionality as the system is gradually fixed. 

 

Figure 5. Performance comparison of each team with respect to the average (black dotted line). Better 

performance indicated by larger green areas. a) Results from Castro-Gama et al. (2018); b) Results from 

Sweetapple et al. (2018); c) Results from Zhang et al. (2018); d) Results from Deuerlein et al. (2018); e) 

Results from Balut et al. (2018); f) Results from Li et al. (2018); g) Results from Sophocleous et al. 

(2018); h) Results from Santonastaso et al. (2018); i) Results from Bibok (2018); j) Results from Salcedo 

et al. (2018). 



 

Figure 6. Average Resilience Loss vs. Pipe breaks range per damage scenario 

 

Figure 7. Functionality time series for Scenario 01 by Zhang et al. (2018) 

 

Figure 8. Average and Standard Deviation per criteria per team.  
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