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Eliciting policies for cash management systems with multiple assets is by no means straightforward. Both
the particular relationship between alternative assets and time delays from control decisions to availability
of cash introduce additional difficulties. Here we propose a cash management model to derive short-
term finance policies when considering multiple assets with different expected returns and particular
liquidity terms for each alternative asset. In order to deal with the inherent uncertainty about the near
future introduced by cash flows, we use forecasts as a key input to the model. We express uncertainty as
lack of predictive accuracy and we derive a deterministic equivalent problem that depends on forecasting
errors and preferences of cash managers. Since the assessment of the quality of forecasts is recommended,
we describe a method to evaluate the impact of predictive accuracy in cash management policies. We
illustrate this method through several numerical examples.
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1. Introduction

Cash managers have to make daily decisions about the amount of transactions between cash holdings and
short-term investment assets. On the one hand, a certain amount of cash must be kept for operational and
precautionary purposes. On the other hand, idle cash balances may be invested in a number of alternative
assets such as interest-bearing accounts or treasury bills for a profit. Within this context, chances are
that a number of assets with different expected returns are available for cash managers. These assets
may also present particular liquidity terms meaning that the time period from the selling decision to the
availability of cash is not necessarily zero.

Since Miller & Orr (1966), different models have been proposed to address the cash management
problem (CMP) from a stochastic point of view. Gregory (1976), Srinivasan & Kim (1986) and Costa
Moraes et al. (2015) review most of the cash management models proposed in the literature. Typically,
cash management models are based on a set of control limits or bounds. Cash balance is then allowed to
wander around among some bounds, usually a high bound and a low bound. When any of these bounds
is reached, a control action is taken to restore the balance to some target level. For instance, the Miller &
Orr (1966) model is based on three bounds and Eppen & Fama (1969), Penttinen (1991) and Gormley
& Meade (2007) consider four bounds and use cash flow forecasts as an input to the model.

Multidimensional cash management systems were first considered by Baccarin (2009). The author
proposed an impulse control approach restricted to continuous fluctuations of cash balances given by
homogeneous diffusion processes. Gormley & Meade (2007) and Costa Moraes & Nagano (2014)
suggested the use of evolutionary algorithms to derive policies. However, this approach does not
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218 F. SALAS-MOLINA ET AL.

guarantee the optimality of solutions. The Miller & Orr (1966) model was extended by Higson et al.
(2009) to consider non-stationary cash flow processes following an analytic approach. Another cash
management model for banks branches was analytically derived by Cabello (2013) assuming a Poisson
process to describe cash demands. This model was later used by Cabello & Lobillo (2017) to propose an
algorithm to optimize branch holdings. On the other hand, the use of particular liquidity terms has been
recently introduced in the analysis of alternative policies by Costa Moraes & Nagano (2014) within the
framework of the Miller & Orr (1966) model. In this paper, we consider liquidity terms, but we follow
a different approach by considering cash flow forecasts as a key input to a multicriteria optimization
model that can be solved through mathematical programming.

Even though multiple criteria decision-making is a well-established discipline in finance, multiple
but possibly conflicting goals in cash management has been recently proposed by Salas-Molina et al.
(2018b,a). The authors consider both cost and risk of alternative cash policies under a compromise
programming framework. Summarizing, common features of cash management models proposed in the
literature include the following: (i) a two-assets setting with a cash account and an investment account;
(ii) the assumption of some probability distribution for cash flow processes; (iii) control actions take
place instantaneously; and (iv) the minimization of a single goal, namely, cost.

We rely on goal programming (GP) and stochastic goal programming (SGP) to produce cash
management policies. GP (Charnes & Cooper, 1977; Romero, 1991; Aouni et al., 2014) aggregates
goals to obtain a solution that minimizes the sum of deviations between achievement and aspiration
levels. SGP (Charnes & Cooper, 1959; Prekopa, 1995; Aouni et al., 2012) is the natural extension of GP
to a stochastic context. In order to deal with the inherent uncertainty of cash flows in the near future, we
follow the approach of assuming that cash managers can produce forecasts with a given accuracy. Based
on previous knowledge about the distribution of past forecasting errors, cash managers set restrictions
to policies to ensure that cash balances remain within control limits after actual cash flow realizations.
We find applications of SGP in different areas such as portfolio selection, project selection, resource
allocation, health care management, transportation and marketing (Aouni et al., 2012). In this paper,
we extend the previous range of applications to cash management where uncertainty is limited to future
cash flows by means of a model that

1. Generalizes previous approaches by considering particular liquidity terms for each alternative
asset.

2. Includes multiple criteria through SGP.

3. Allows one to estimate the impact of predictive accuracy of cash flow forecasts.

In what follows, we provide useful background on the CMP in Section 2. In Section 3, we introduce
our multiple criteria model for particular liquidity terms. Next, in Section 4, we describe our approach
to dealing with uncertainty in cash management. In Section 5, we illustrate our approach by means of
two numerical examples using real data from an industrial company. Finally, in Section 6, we conclude
and propose future extensions for this work.

2. Background: the CMP

The CMP aims to find a balance between cash holdings and short-term investments. The number of
different accounts under consideration, the uncertainty associated to future cash flows for each of the
accounts, the transaction and holding costs are key factors that may influence decision-making. In
this section, we describe a general optimization problem with applications for both individuals and
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MULTIPLE-CRITERIA CASH-MANAGEMENT POLICIES 219

organizations. However, particular cases for the above mentioned factors may lead to optimization
problems with a different degree of complexity.

Traditionally, the CMP has been approached from a control perspective. The cash balance of any
bank account needs to be monitored to keep the balance among some control bounds. To this end,
control actions are taken to increase or decrease the cash balance according to some rules in order to
minimize holding and transaction costs. The set of control actions deployed over a planning horizon is
called a policy, and it is the solution to the CMP.

Formally, the CMP is usually defined (Gormley & Meade, 2007; Salas-Molina et al., 2018b) as
an optimization problem whose goal is to find the best sequence of transactions summarized in vector
x = [

x1, . . . , xt, . . . , xT

]
, with xt ∈ R, t ∈ N and 1 � t � T for a given planning horizon T ∈ N.

Balances at the end of the day are computed as the sum of the previous cash balance bt−1, the actual
cash flow ft and the control action xt, according to the following state transition law

bt = bt−1 + ft + xt, (1)

where bt, ft, xt ∈ R, with stochastic cash flows ft following some probability distribution, either
theoretical or empirical.

Within the common two-assets setting, the CMP is characterized by its particular cost structure. Any
ordering transaction into a cash account may have a cost, which may include a fixed part (γ +

0 ) and a vari-
able part (γ +

1 ). On the other hand, a return transaction from a cash account may also have a cost with a
fixed part (γ −

0 ) and a variable part (γ −
1 ). Furthermore, at the end of the day, a holding cost (h) per money

unit is charged if a positive cash balance occurs, or a penalty cost (u) per money unit is charged if a
negative cash balance occurs. According to this cost structure, a general daily cost function is defined as

c(xt) = Γ (xt) + L(bt), (2)

where xt is the transaction made at day t, bt is the cash balance at the end of day t, Γ (xt) is a transfer
cost function and L(bt) stands for a holding/shortage cost function. The transfer cost function Γ (xt) is
defined as:

Γ (xt) =
⎧⎨
⎩

γ −
0 − γ −

1 · xt if xt < 0,
0 if xt = 0,
γ +

0 + γ +
1 · xt if xt > 0.

(3)

Additionally, the holding/shortage cost function is expressed as

L(bt) =
{ −u · bt if bt < 0,

v · bt if bt > 0,
(4)

where u is the shortage cost and v is the holding cost per money unit held in cash. Under this cost
structure, the ultimate goal of cash managers is typically to find the policy x that minimizes the total
cost over the planning horizon T

C(x) =
T∑

t=1

c(xt) =
T∑

t=1

[Γ (xt) + L(bt)]. (5)
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220 F. SALAS-MOLINA ET AL.

Fig. 1. A cash management system with three bank accounts.

This formulation is restricted to the common assumptions present in the cash management literature.
In this paper, we propose a more general formulation to account for multiple assets with particular
liquidity terms within a multiple criteria decision-making framework.

3. Dealing with particular liquidity terms

In this section, we rely on GP (Charnes & Cooper, 1977; Ballestero & Romero, 1998; Ballestero, 2001;
Abdelaziz et al., 2007; Aouni et al., 2014) to reformulate the CMP for multiple assets with different
returns and particular liquidity terms. More precisely, we use SGP to minimize both the cost and the
risk of alternative cash management policies as recently proposed by Salas-Molina (2017) and Salas-
Molina et al. (2018b). Since cash flows are usually affected by some uncertainty, our model is designed
for a stochastic context.

Cash managers usually have alternative investment options for idle balances. Then, cash manage-
ment systems with multiple assets are very common in practice. In addition, alternative assets may
have both different expected returns and particular liquidity terms. We here define liquidity terms as
the necessary number of time steps from the selling decision to the availability of cash. As an example,
consider the cash management system described in Costa Moraes & Nagano (2014) depicted in Fig. 1.
Circles stand for bank accounts and directed arrows between circles standing for transactions. This
cash management system consists of a main bank account 1, receiving external net cash flows ft, and
two alternative investment assets, namely, assets 2 and 3. Each investment asset i presents a particular
expected return ri, and each transaction j presents a liquidity term dj, usually expressed in days. For
instance, asset 2 may be an interest bearing account returning an r2 = 2% interest rate per year with
full liquidity for increasing and decreasing decisions, i.e. d1, d2 = 0, and asset 3 may be a treasury
bill returning an r3 = 4% interest rate per year with selling liquidity term d3 = 2 days due to market
restrictions, but no delay for buying decisions, i.e. d4 = 0.

Cash managers must find a balance between holding and transaction costs. They also have to include
in the analysis both the expected returns and the liquidity terms of alternative assets since some decisions
imply a delay in the availability of funds. At each time step t, four possible transactions xj,t are available
to control cash balances. As a result, the state transition law in equation (1) can be generalized to any
cash management system with m bank accounts and n possible transactions with, at most, D different
liquidity terms by means of the following system of linear equations:

bt = bt−1 + f t +
D∑

k=0

Akxt−k, (6)

where bt−1 and bt are m × 1 vectors with previous and current balances for each account, respectively,
and f t is an m × 1 vector with external net cash flows for each account. The most right-hand side term
of equation (6) summarizes all possible transactions with possible delays between zero and a maximum
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MULTIPLE-CRITERIA CASH-MANAGEMENT POLICIES 221

value D that depends on the particular liquidity terms of alternative assets. Furthermore, Ak is an m × n
matrix with element aij set to the following: 1 if transaction j adds cash to account i at time t due to
a decision made k time steps ago; −1 if transaction j removes cash from account i at time t due to a
decision made k time steps ago; 0 otherwise. Finally, xt−k is an n × 1 vector with the set of transactions
(control actions) decided at time t − k.

In the example in Fig. 1, if d1, d2, d4 = 0 and d3 = 2 days, then D = 2 and

A0 =
⎡
⎣ 1 −1 0 −1

−1 1 0 0
0 0 0 1

⎤
⎦ ; A1 = 0; A2 =

⎡
⎣ 0 0 1 0

0 0 0 0
0 0 −1 0

⎤
⎦ . (7)

Simple algebra leads to the following system of linear equations equivalent to equation (6):

b1,t = b1,t−1 + f1,t + x1,t − x2,t + x3,t−2 − x4,t (8)

b2,t = b2,t−1 − x1,t + x2,t (9)

b3,t = b3,t−1 − x3,t−2 + x4,t. (10)

Within this framework, when a selling decision x3,t is made, the current cash balance in accounts
1 and 3 is not updated until the amount is finally transferred 2 days later. When the particular law of
motion for a given cash management system is established, we are in a position to linearize the cost
functions described in Section 2 in order to formulate the CMP as a linear program. Following Salas-
Molina (2017), we rewrite the transaction cost function in equation (3) as follows:

Γ (xt) = γ ′
0 · zt + γ ′

1 · xt (11)

subject to

xt � M · zt, (12)

where zt is an n × 1 binary vector with element zj set to one if the j-th element of xt is not null, and 0
otherwise; γ 0 is an n × 1 vector of fixed transaction costs for each transaction; γ 1 is an n × 1 vector of
variable transaction costs and M is a very large number. Note that liquidity terms do not affect transaction
costs since these are charged when the decision is made.

For optimization purposes, we need additional exclusivity constraints that avoid bidirectional
transactions at the same time step. For example, it does not make sense that x1,t and x2,t in Fig. 1 occur at
the same time step. We can exclude this bidirectional transaction by setting an exclusivity constraint such
as z1,t+z2,t � 1. When dealing with different liquidity terms, we have also to consider the corresponding
delays between decisions. For example, avoiding that x3,t−2 and x4,t occur simultaneously. To facilitate
the understanding of the links established between assets, we propose to represent cash management
systems as directed graphs G = (V , E) with a set of accounts V and a set of transactions E such that
each transaction xi,t = (p, q) is defined by a tail account p ∈ V , which is the origin of funds, and a head
account q ∈ V , which is the destination of funds. Then for each pair of accounts p, q ∈ V , if there is a
pair of transactions xi,t, xj,t ∈ E such that xi,t = (p, q) and xj,t = (q, p), we set exclusivity constraints

zi,t + zj,t � 1 ∀t ∈ 1, 2, . . . T . (13)
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222 F. SALAS-MOLINA ET AL.

Generalizing to the case of particular liquidity terms between k = 0 and a maximum of D time steps,
we extend the representation of transactions to consider liquidity terms as a tuple xi,t = (p, q, di), where
d is the required time steps between a decision and the availability of funds in the destination account.
As a result, for each pair of accounts p, q ∈ V , if there is a pair of transactions xi,t, xj,t ∈ E such that
xi,t = (p, q, di) and xj,t = (q, p, dj), then we set the following exclusivity constraints

zi,t−di
+ zj,t−dj

� 1 ∀t ∈ max(di, dj) + 1, . . . , T . (14)

Note that we restrict these exclusivity constraints to the case of positive time index t. For ease of
notation, we summarize all the exclusivity constraints in the following set of linear equations:

H · z � 1, (15)

where H is a T · n × T · n matrix of zero-one coefficients, z is a T · n × 1 vector of binary variables
obtained through vertical concatenation of daily vectors zt and 1 is a T · n × 1 vector of ones.

On the other hand, the holding cost function in equation (4) can be expressed as

L(bt) = v′ · bt · yt + u′ · bt · (1 − yt), (16)

where V is an m × 1 column vector with the i-th element set either to the holding cost vi or the expected
return ri multiplied by −1 since it is a profit instead of a cost for account i; u is an m × 1 column vector
with the i-th element set to the penalty cost for account i; yt is an m×1 binary vector with element yi set
to one if the i-th element of bt is non-negative, and 0 otherwise; and 1 is an m×1 column vector of ones.
Note that equation (16) is still non-linear since we are multiplying two decision variables bt and yt. This
equation can also be linearized by means of additional auxiliary variables as described in Bemporad &
Morari (1999). Nevertheless, since cash managers usually discard policies with negative balances due
to high penalty costs for negative cash balances, in what follows, we assume yt = 1 and L(bt) = v′ · bt.
This assumption is equivalent to the constraint bt ∈ R

m
�0 and implies that policies with negative cash

balances are infeasible.
Within the typical single objective framework, given an initial cash balance b0, and a cash flow f t for

1 � t � T , the solution to the CMP for multiple assets and particular liquidity terms is a T · n × 1 policy
vector x = [

x1, x2, . . . , xT

]′, obtained through vertical concatenation of daily vectors xt that minimizes
cost goal g1(x) as the sum of transaction and holding costs up to time step T:

min g1(x) = min
T∑

t=1

c(xt) = min
T∑

t=1

(
γ ′

0 · zt + γ ′
1 · xt + v′ · bt

)
(17)

subject to

x ∈ ST×n (18)

z ∈ {0, 1}T×n (19)

bt ∈ R
m
�0, (20)

where ST×n is the set of all feasible solutions given by the constraints of the problem for the whole
planning horizon T .
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MULTIPLE-CRITERIA CASH-MANAGEMENT POLICIES 223

On the other hand, cash managers may be interested not only in the cost but also in the risk associated
with alternative polices as suggested by Salas-Molina et al. (2018b). In this work, the authors proposed
the use of the standard deviation and the upper semideviation of daily costs as a measure of risk.
Herrera-Caceres & Ibeas (2016) used a predefined cash balance signal as a way to control balances.
Salas-Molina (2017) proposed the use of cash balance deviations from a given reference as a measure
of risk. Within the typical GP framework, we here follow Salas-Molina (2017) to include an additional
risk goal g2(xt) expressed as the sum of balances of the system

g2(xt) = β ′ · bt, (21)

where β is and m × 1 vector of zero-one coefficients reflecting the interest of cash managers to measure
risk by controlling balances of either all accounts or a subset of accounts. For example, if we want to
control balances only for account 1 in Fig. 1, we set β = [1, 0, 0]′. The rationale behind the choice of
cash balance deviations as a measure of risk is its linearity and the possibility to be straightforwardly
integrated within a GP approach. Alternative risk measures used in finance and cash management such
as value-at-risk and standard deviation are non-linear, hence compromising tractability due to the need
of non-linear optimization algorithms. A further motivation of the use of cash balance deviations as a
measure of risk is the concept of stability. We argue that stable policies, namely, those with balances
that deviate less from a given reference, better capture the notion of risk in cash management.

Cash managers aim to minimize the sum of positive and negative deviations from a given balance
reference bref ∈ R subject to the typical GP constraint

g2(x) − δ+
2t + δ−

2t = bref . (22)

This risk goal can be easily accommodated in the classical GP approach. As a result, we propose the
following model to solve the CMP for multiple assets with particular liquidity terms within a cost-risk
minimization framework

min
w1

Cmax

T∑
t=1

δ+
1t + w2

Rmax

T∑
t=1

(
δ+

2t + δ−
2t

)
(23)

subject to

bt = bt−1 + f t +
D∑

k=0

Akxt−k (24)

xt � M · zt (25)

H · z � 1 (26)

γ ′
0 · zt + γ ′

1 · xt + v′ · bt − δ+
1t � 0 (27)

β ′ · bt − δ+
2t + δ−

2t = bref (28)

xt ∈ R
n
�0 (29)

z ∈ {0, 1}T×n (30)

bt ∈ R
m
�0 (31)

δ+
1t , δ

+
2t , δ

−
2t � 0 (32)
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224 F. SALAS-MOLINA ET AL.

1 � t � T; (33)

t, n, T , D ∈ N, (34)

where δ+
1t are auxiliary deviation variables for daily cost measured by the sum of transaction and holding

costs, and δ−
2t , δ

+
2t are auxiliary deviation variables for daily risk measured by the sum of total balance

deviations from reference bref . Note that the target in constraint (27) is zero since we want to minimize

daily costs. Then negative deviation variables are also zero, i.e. δ−
1t = 0. Similarly, bluethe goal in

equation (28) ensures that aggregated balances of the system and daily deviations result in target bref .
Weights w1 and w2 reflect preferences for cost and risk of cash managers and Cmax and Rmax are used
to avoid numerical bias for one of the goals (Ballestero & Romero, 1998). In our context, it is likely
that cash balances in goal 2 are much higher than daily costs in goal 1. To avoid biased results towards
the goal that can achieve higher values, namely, cash balances, objective function (23) is normalized by
measuring goal achievement as a percentage of Cmax and Rmax. These values can also be considered as
budget limits for both cost and risk by setting additional constraints of the type

T∑
t=1

δ+
1t � Cmax (35)

T∑
t=1

δ−
2t + δ+

2t � Rmax (36)

discarding solutions exceeding budget limits Cmax and Rmax.

4. Dealing with uncertainty through SGP

Note that the GP model described in Section 3 implies that cash flow f t is known with certainty for
the whole planning horizon T . When dealing with stochastic (but possibly predictable) cash flows, a
variation of this model can be considered to account for the inherent uncertainty of cash flows through
SGP (Prekopa, 1995; Abdelaziz et al., 2007; Aouni et al., 2012). The cash management model described
in Section 3 can be extended to a stochastic context by means of the following program:

min g(x) (37)

subject to

n∑
j=1

aijxj � h̃i (38)

i = 1, 2, . . . , s, (39)

where uncertainty is limited to random variable h̃i for each one of the s constraints of the problem. This
structure fits well in the CMP where random variable h̃i maps each one of the predicted cash flows f̃i
that are affected by some prediction error. Let us assume that cash managers can produce cash flow
forecasts subject to some prediction error. By considering the probability distribution of the uncertainty
produced by prediction errors, the cash management model can be reformulated as a Chance Constrained
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MULTIPLE-CRITERIA CASH-MANAGEMENT POLICIES 225

Program (CCP) as proposed by Charnes & Cooper (1959). A CCP can be converted into its deterministic
counterpart as follows (Prekopa, 1995):

min E [g(x)] (40)

subject to

P

⎛
⎝ n∑

j=1

aijxj � f̃i

⎞
⎠ � ξi, (41)

where ξi are probability parameters for each of the constraints that are specified by cash managers. In
our context, equation (41) is the stochastic equivalent of equation (24):

P

(
b̃t � b̃t−1 +

D∑
k=0

Akxt−k + f̃ t

)
� ξ (42)

and it should be read as follows: the probability that cash balances are greater or equal to initial balances,
control actions xt−k and random cash flows f̃ t is at least ξ , which we assume to be constant without loss
of generality. Based on previous knowledge about past forecasting errors, cash managers set parameter
ξ to build a deterministic equivalent problem ensuring that cash balances after control actions and cash
flow realizations remain within some control limits with probability ξ . The higher the value of ξ , the
more conservative the cash management policy since higher cash balances would be required to ensure
that random cash flows do not produce undesired deviations.

Note that balances b̃t and cash flows f̃ t are now random variables. In this paper, we assume that cash
managers can produce cash flow forecasts with a given prediction error. Then random variable f̃ t can be
expressed in terms of a time series forecast f̂ t, and an m-dimensional error term εt

f̃ t = f̂ t + εt. (43)

Since actual cash balances are also affected by the same forecasting errors according to bt = b̂t +εt,
random balances b̃t and random cash flows f̃ t are replaced with predicted balances b̂t and cash flow
forecasts f̂ t to build the deterministic equivalent CMP through the following constraint:

P

(
b̂t � b̂t−1 +

D∑
k=0

Akxt−k + f̂ t

)
� ξ . (44)

The higher the uncertainty about the near future, the higher the forecasting error. With perfect
information about the near future, the probability that predicted cash balances b̂t are greater or equal to a
given minimum balance threshold determined by initial balances b̂t−1, control actions xt−k and predicted

cash flows f̂ t is one. When some prediction error εt is assumed, this balance threshold should be higher
to ensure that equation evaluated in (44) holds with probability ξ . In other words, cash managers aim to
ensure that actual balances after cash flow error realization are above balances computed with perfect
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information. This strategy is equivalent to add minimum cash balance constraints of the type

b̂t � bmin, (45)

where bmin is an m-dimensional vector of minimum cash balances for each account that ultimately
depends on parameter ξ . For instance, starting from an initial balance of zero monetary units and
assuming daily Gaussian forecasting errors expressed as N(0, 1), with zero mean and unit standard
deviation, if we set parameter ξ = 99%, the cash balance constraint of an account should be greater
than bmin = 3 to avoid that an unexpected negative swift brings the balance below the starting balance.
If we set parameter ξ = 95%, the cash balance constraint should be greater than bmin = 2 according to
the normal probability distribution.

However, note that constraints of the type of equation (45) are hard constraints, i.e. those that have
to be satisfied whatever the realization of the underlying uncertainty. This fact may lead to unfeasible
policies even in the case that expected balances are below the established minimums but very close to
them. GP allows us to overcome this problem by transforming hard constraints such as equation (45)
into an additional risk goal g2(x) from equation (22) measuring cash balance variability from a given
reference.

An additional advantage of our model in comparison to the approach followed by Gormley &
Meade (2007) and Costa Moraes & Nagano (2014), based on evolutionary algorithms to solve the
CMP, is the optimality of solutions. It is known that heuristics such as evolutionary algorithms do not
guarantee optimal solutions. On the contrary, the deterministic equivalent of our SGP model can be
solved by means of commercial mathematical programming solvers such as Gurobi or CPLEX ensuring
optimality. The presence of binary variables may lead to computationally expensive problems in the
case of large instances. However, in the context of cash management with short-term planning horizons,
the size of optimization problems is likely to be computationally tractable. Indeed, Salas-Molina et al.
(2018c) report run times below tenths of a second for integer linear programs for CMPs with planning
horizons between 5 and 20 days. In addition, they report run times several orders of magnitude faster
than an evolutionary algorithm. Summarizing, our SGP approach combined with common mathematical
programming solvers represents an advantage in terms of tractability of problems and optimality of
solutions.

5. The impact of cash flow predictive accuracy

In this section, we provide several numerical examples to illustrate the utility of our multiple criteria
cash management model for particular liquidity terms. We consider two likely scenarios: one in which
cash flows are known with certainty and another one in which cash flows can be predicted with some
accuracy. In order to allow comparisons with recent related work such as Costa Moraes & Nagano
(2014), we experiment on the cash management system described in Fig. 1 in which temporary idle
cash balances in account 1 can be invested in two alternative assets 2 and 3. Expected returns and
transaction costs are selected from those proposed in Costa Moraes & Nagano (2014) summarized in
the cost structure in Table 1.

Note that the expected return for each alternative asset is indeed a negative cost within the context
of a minimization problem such as the one encoded from equations 2334. Finally, we consider variable
transaction costs for buying decisions lower than variable costs for selling decisions in order to guarantee
that the unitary cost of transferring money to any of the investments is lower than the profit obtained
(Constantinides & Richard, 1978).
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Table 1 Cost structure data for the examples

Transaction γ0 (\euro) γ1 (%) d (days) Account r (%)

1 50 0.01 0 1 0
2 50 0.001 0 2 0.003
3 50 0.01 2 3 0.005
4 50 0.001 0

Fig. 2. Balances derived for the optimal policy with perfect information.

5.1 Planning with perfect information about future cash flows

In a cash management context, the assumption of perfectly known cash flows is by no means as
restrictive as it may seem at first glance. On the contrary, cash flows for short-term planning horizons,
e.g. the next five working days, can be known with certainty in many cases. The existence of the so-
called major cash flows (Stone & Miller, 1987) such as loan payments, taxes, dividends or the monthly
payroll makes near-to-perfect predictions a suitable option.

As a first illustrative example, assume that the cash flow for the next five days in account 1 from
Fig. 1 is f 1 = [10, −57, 27, −60, 26]′, all figures in thousands of Euros. We set Cmax to the opportunity
cost of cash holdings in account 1, which we estimate as the returns that could be obtained by allocating
all expected balances in account 3 that yields the maximum return within the system. In this example,
we are interested in measuring risk as the cash balance variation in account 1 since it is the main cash
account in the system. Then we set β = [1, 0, 0]′. Assume that from the analysis of past observations
of the underlying cash flow process, we set cash balance reference bref = 123 as an acceptable cash
balance for operational purposes. From that reference, we set Rmax = bref · T proportional to both cash
balance reference and planning horizon T . Note that this procedure to set bref and Rmax is a practical
rule and that many other rules would also be possible.

Consider a hypothetical cash manager without preference for cost and risk (w1, w2 = 0.5). The
solution for the deterministic model of this numerical example under the cost structure defined in Table 1
for cash flow f 1 and an stable initial condition b0 = [200, 20, 60]′ is shown in Fig. 2 and the set of
transactions in Fig. 3.

From Fig. 2, one can observe that idle cash balances in account 1 are invested in account 3 instead
of account 2 due to the higher return until is again required at time 4 because of the high negative cash
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Fig. 3. Example of the optimal policy for a given cash flow.

flow at that time. From Fig. 3, further insights on the issue of liquidity terms for alternative investment
accounts addressed in this paper can be obtained. Indeed, selling decisions x3,1 = 30 and x3,2 = 60 are
made at time 1 and 2 in order to face the high negative cash flow at time 2 and 4. Since the liquidity term
for investment account 3 is 2 days, the decision is made in advance in order to guarantee the feasibility
of the policy for the whole planning horizon. Even though the decision is made at times 1 and 2, cash
balance in both accounts 1 and 3 is updated 2 days later as shown in Fig. 2.

5.2 Planning using cash flow forecasts with a given predictive accuracy

In the previous example, we assumed that perfect short-term cash flow predictions can be procured. If
this is not the case, our model formulation can also be applied by replacing cash flow and balances by
their respective forecasts. Several works have demonstrated the utility of cash flow forecasting in cash
management (Stone, 1972; Miller & Stone, 1985; Gormley & Meade, 2007; Salas-Molina et al., 2017).
These results must encourage cash managers to drive their efforts to achieve better forecasts.

In order to deal with the inherent uncertainty of future cash flows, we rely on SGP to solve the
CMP. Within a context affected by forecasting errors, deploying a policy obtained using our model
implies that actual cash balances are random variables of the form b̃t = b̂t + εt, which are affected by
some prediction error. The deterministic equivalent of the SGP described in Sections 3 and 4 requires
replacing actual balances and cash flows with their respective forecasts b̂t and f̂ t, and setting a balance
reference bref

min
w1

Cmax

T∑
t=1

δ+
1t + w2

Rmax

T∑
t=1

(
δ+

2t + δ−
2t

)
(46)

subject to

b̂t = b̂t−1 + f̂ t +
D∑

k=0

Akxt−k (47)

xt � M · zt (48)

H · z � 1 (49)

γ ′
0 · zt + γ ′

1 · xt + v′ · b̂t − δ+
1t � 0 (50)

β ′ · b̂t − δ+
2t + δ−

2t = bref . (51)
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Table 2 Impact of forecasting error results

Error distribution N (0, 10) N (0, 80)

Number of replicates 1000 1000
Planning horizon (T) 5 5
Difference in average objective function (%) 4 36
Difference in standard deviation 0.02 0.05
Difference in average cost (%) 8 59
Difference in average risk (%) 0 13

The solution of the previous cash management model is a policy based on forecasts affected by
some prediction error that ultimately results in a cash balance deviation of magnitude equal to the error
for each time step. Given a probability distribution for error process εt (for instance, Gaussian), we can
evaluate its impact on actual costs by randomly drawing a number of realizations of this error distribution
that we later use to compute both actual balances and model performance. The following experimental
procedure evaluates the impact of predictive accuracy in the performance of policies by measuring cost
and risk but with actual cash balances:

1. Randomly sample T cash flows from the data set to obtain f t.

2. Obtain policies and balances by solving the deterministic equivalent problem in (46)–(51).

3. Sample T errors from N (0, σe) for account affected by forecasting uncertainty to obtain εt for
1 � t � T .

4. Compute actual cash balances as b̃t = b̂t + εt and actual performance through objective function
(46).

For the sole purpose of the following example, let us consider that policies for a planning horizon of
5 days cannot be modified. In practice, cash managers would compute a new policy on a daily basis to
achieve the desired feedback as recommended in Bemporad & Morari (1999). However, the assumption
of a fixed policy allows us to evaluate the impact of forecasting errors on actual performance. To this
end, we experiment on a real cash flow data set from an industrial company with 1000 observations
with mean 8.3 and standard deviation 123, figures in thousands of Euros. Assume that we can produce
forecasts for account 1 with errors described by a Gaussian distribution N (0, σe). A value of σe = 10
can be considered a good prediction since actual observations present a remarkably higher standard
deviation. On the contrary, a value of σe = 80 can be considered a bad prediction for similar reasons.

Consider again the cash management system depicted in Fig. 1 and the cost structure in Table 1. In
both cases, we consider planning horizon T = 5 days and the same procedure described in Section 5.1
to select parameters Cmax, Rmax and bref . For comparative purposes, we start both experiments with the
same initial balance for account 1 of three times the standard deviation of the cumulative cash flow for
planning horizon T . For accounts 2 and 3, initial cash balances are set to zero. After 1000 replicates of
the previous procedure for σe = 10 and 80 produced the results summarized in Table 2. After computing
actual costs, we obtained differences in average costs and standard deviation of costs with respect to a
benchmark using perfect predictions, i.e. with no errors.

As expected, the lack of knowledge about the future reduces the possibility of making good decisions
in advance. The results show that lower forecasting errors lead to lower variations with respect to the
perfect information case described in Section 5.1. Specific results for both cost and risk show that an
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increase in predictive accuracy (expressed as a reduction in the standard deviation of errors from 80
to 10) leads to a reduction in the cost of policies (from 59 to 8) but removes all risk (from 13 to 0)
with respect to the case with perfect information. Beyond the expected results of better performance for
better predictive accuracy, cash managers can rely on the procedure described in this section to evaluate
the impact of an increase in predictive accuracy in both cost and risk of cash management policies. This
analysis guides cash managers in answering critical questions about the use of forecasting techniques in
cash management. An example of these questions is if efforts dedicated to improve predictive accuracy
by using new forecasting techniques match increased performance of policies. Summarizing, the results
presented in this section must encourage cash managers to produce better forecasts to be used as a key
input to our model for multiple assets and particular liquidity terms.

6. Concluding remarks

Motivated by the idea of providing better policies within the context of cash management systems with
multiple assets and particular liquidity terms, this paper presents a multiple criteria GP model to solve
the CMP subject to these common features. In addition, we provide cash managers with the possibility
to consider cash flow forecasts to reduce the uncertainty about the near future. As a result, we include
both time delays derived from liquidity terms and cash flow forecasts as key inputs to derive satisficing
solutions within a GP framework.

To consider not only the cost of alternative policies but also the risk, we propose a multiple criteria
GP model with both cost and risk as goals to minimize. We use cash balance deviations as a measure
of risk and a GP approach by transforming hard constraints in soft ones by means of SGP. As a result,
we provide a more flexible method to overcome the drawback of considering hard minimum balance
constraints that have to be satisfied whatever the realization of the underlying uncertainty.

The critical step in the deployment of our model is the procurement of reliable short-term cash
flow forecasts. In order to analyse the impact of forecasting errors in the cost of policies, we report an
experimental procedure that can be used to estimate actual performance within a stochastic context. As
expected, the higher the predictive accuracy of forecasts, the higher the benefits that derive from our
model. This fact must encourage researchers to produce better time-series forecasting techniques since
accuracy is highly rewarded.

Further research may consider alternative approaches to consider both totally random cash flows
and multiple assets with particular liquidity terms along the lines discussed in Section 3. In practice,
this could help integrate the management of both cash flows known with certainty and random cash
flows. Finally, exploring formal methods to specify the parameters of the model such as goal weights
according to the preferences of cash managers rather than relying on subjective judgments is also an
interesting future line of work.
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