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Abstract

A precise calibration in multi-view camera environments allows to perform
accurate 3D object reconstruction, precise tracking of objects and accurate
pose estimation. Those techniques are of high value in the industry today
in fields as quality control or automation. In the present work, an improve-
ment of a simple existing multi-view camera calibration method is presented.
The improved method employs a specially developed reference token to over-
come some issues in the original algorithm. We prove that the new method
overcomes those problems thus attaining a higher accuracy while keeping the
process simple and the implementation costs low. This last aspects makes the
method interesting for the industry but specially suitable for SMEs typical
in traditional sectors.
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1. Introduction

The 3D analysis of scenes is a key aspect in multiple field but it plays
an important role in the digital transformation in industry: products digi-
tization for design, online catalogues for costumers, metrology, quality con-
trol, computer aid manufacturing (CAM), ... Traditional sectors comprise
Small to Medium Enterprises (SMEs) with limited resources to invest in
those technologies, then it is very important to keep those processes simple
(less specialized staff is required) and with a reasonable cost.

Several methods or devices are available to perform those tasks and could
be classified into contact and non-contact devices. Contact methods such
scanning probes are slow and need direct physical contact with the object. On
the other hand non-contact methods [6] can be active, based on ultrasound,
time-of-flight, structured light, ..., or passive, based on the analysis of images
of the object taken from different views (stereoscopy, visual hull, ...).

Passive methods based on the convex hull have several advantages but
need a very precise calibration of the cameras to achieve accurate results.
In [4], a device is presented based on this technique that allows a 3D recon-
struction of an object without occlusions. The calibration of the full camera
set of this kind of devices is a critical aspect because all the camera views
do not overlap, hence is not possible to use planar patterns as in traditional
methods [1, 2, 3]. Calibration cameras by pairs can be considered, but those
methods show in practice precision and stability problems since errors may
accumulate along the computing chain. The use of complex 3D patterns is
possible but those objects are complex to build and to process. In [4, 5] a
simple method is proposed using a sphere without any special pattern on it
as calibration token. This method allows to calibrate simultaneously a set
of cameras, but it presents an scale calibration issue that will be addressed
in this paper. Several approaches are studied, one of them involving a new
reference token that also offers other interesting benefits to the process.

This work is structured as follows. Section 2 studies the calibration
method proposed in [4][5] and its scale issue. Section 3 presents a exten-
sion to the algorithm that overcomes that problem. Section 4 shows exper-
iments performed with virtual and real data. Finally, section 5 exposes the
conclusions.
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2. Multi-view calibration based on a spherical token

The procedure described in [4] uses a sphere as reference token to calibrate
the extrinsic parameters of a set of cameras. The cameras are distributed
on an polyhedral structure pointing to its center. The sphere is presented to
the cameras at different locations by simply letting it fall through the device
several times. Each time, a synchronized set of images is captured.

As an advantage, a sphere offers the same silhouette from different angles
and it can be easily segmented in an image. Furthermore, the center of
mass of the obtained blob can be used as an accurate approximation of
the sphere center projection if the sphere radius is small compared to the
working distance to the camera [8]. Thus, a set of 2D projections (one per
each camera) of the same 3D point (the sphere center) is obtained for each
falling sphere.

Given a set of 2D points, representing the same 3D world point, a set of
camera projection rays (epipolar lines) can be computed. If the cameras are
correctly calibrated and the world coordinate system is consistent, all those
rays should converge to the same 3D world point. On any other case the rays
will not (see Figure 1).
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Figure 1: Camera projection rays (ei) of a set of 2D points (pi) representing the same 3D
world point in a poorly calibrated system. A point p′, that minimizes the distances to all
ei, can be used as an estimation of the real point.
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Algorithm 1 Multi-camera extrinsic parameter calibration

Require: M capture sets
1: repeat
2: for each captured sphere Sm do
3: for each i-th camera do
4: Let pmi be the center of Sm projected to the camera image
5: Compute epipolar line emi

6: end for
7: p′m ← arg min

p
{dist(p, {emi})}

8: Set p′m as the corresponding 3D point of pmi 2D points
9: end for

10: ge ← mean{dist(p′m, {emi})}
11: for each i-th camera do
12: Recalibrate extrinsic parameters using pairs {(pmi, p

′
m) : m =

1...M}.
13: end for
14: until Stop Criterion

Considering a system with c cameras and starting with a rough estimation
of the extrinsic parameters, the calibration process in [4] assign to each set
of 2D projections obtained from the sphere center projections, {pi : i =
1...c}, the 3D world point p′, that minimizes the distance to all the camera
projection rays (see Figure 1). A closed-form solution to compute this point
can be found in [4].

So, Algorithm 1 is proposed to calibrate the extrinsic parameters of the
cameras using M capture sets of an sphere.

In [4] the extrinsic parameters are recalibrated using a gradient descent
algorithm. The method stops when a minimum value of the global error
mean, ge, computed in each iteration is found or a maximum number of
iterations is attained. The algorithm requires at least six sets of sphere
captures not laying on the same plane given that the number of parameters
needed is six for each camera (3D position and 3D rotation).

Figure 2 presents the evolution of Algorithm 1 for the camera configura-
tion described on [4] (see Figure 10), In this execution, 10 capture sets were
used. Figure 2 shows the global error mean, the mean distance from the cam-
eras to the centroid computed from their positions, and the mean reciprocal
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error (re). This value is obtained for each i-th camera as the mean quadratic
error between the projections of the p′m points on the camera sensor using
the current calibration parameters and its corresponding pmi points. This
measures how well the extrinsic parameters match for a camera.

From Figure 2, we can see how the global error mean decays fast in the
first iterations and then evolves slowly. Nevertheless, seeing the evolution of
the centroid distance, we can see how the cameras collapse to its centroid,
while the retroprojection error stabilizes. Stopping the algorithm at differ-
ent iterations gives consistent world coordinate systems but with cameras
positioned at different distances from the centroid. Thus, a scale calibration
issue shows up. The later the algorithm stops, the smaller the objects will
be estimated (see Figure 3).

Figure 2: Evolution of the global error mean, to the average centroid distance and the
reciprocal error mean during an execution of Algorithm 1.

We can conclude that the algorithm converges for the camera rotation
parameters, since the cameras point to the right direction, but their positions
collapse to the centroid. This is due to the fact that we are using the sphere
centers as calibration points, they have no dimension, then the scale can
not be induced correctly from them. Errors can be minimized reducing the
distance between the calibration points.

In [4] the authors calibrate the scale reconstructing a sphere of known
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dimension. They use the calibration obtained by the algorithm and apply a
shape-from-silhouette method to perform the reconstruction. The diameter
of the reconstructed sphere is estimated and then the cameras are moved
away from the centroid to match de correct scale. This method has two
drawbacks: 1) a postprocess is required, and 2) the diameter estimation
is not accurate enough because this reconstruction technique is affected by
small segmentation errors and introduces bumps in the model.

Other possibility is to take into account the apparent area of the sphere
in the images while recalibrating the extrinsic parameters using the descent
gradient algorithm, but here the segmentation method applied to compute
this area may not be accurate enough.

In this work we propose the use a bit more sophisticated calibration token,
from which an scale estimation independent of the segmentation process can
be performed. We discuss our proposal in the next section.

Figure 3: The real camera (top) obtains an image of the object (sphere). If the cam-
era position is improperly estimated (bottom), the object dimension will be incorrectly
computed.

3. Multi-view calibration based on a multispherical token

To overcome the scale issue described in the previous section we propose
a new token from which the scale can be inferred. The token (see Figure 4)
is composed by two spheres connected by a rod of fixed length. The spheres
are of different sizes to be clearly identified on the images.

Using this token we have two spheres in each image, then we obtain two
calibration points per image, and the distance in the world coordinate system
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Figure 4: The new token consists on two spheres connected by a rod of fixed length.

between both points is known. Because the blob center used to estimate the
sphere center projection is independent from possible erosions and dilations
due to the segmentation algorithm, the distance of both points in the image
is independent too. This is an advantage not shared by the estimation of the
sphere areas.

With this new information, we propose an extension of Algorithm 1 to
take into account this new info to avoid the scale calibration issue.

We introduce Algorithm 2 to correct the position of a camera in order to
obtain the correct distance between a pair of points that are known to be dr
apart. Figure 5 illustrates the procedure.

With the procedure defined by Algorithm 2, we propose Algorithm 3 as
an extension of the original algorithm. On the one hand the algorithm is
adapted to take into account that there are two reference points per image,
one per sphere of the token. On the other hand a scale adjustment based
on the correction of one of the extrinsic parameters, the camera position, is
added.
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Algorithm 2 Camera position correction.

1: Being P and Q two 3D points that are seen by a camera with optical
center located in position C

2: Compute PQ as the segment joining P and Q
3: Compute MP as the midpoint of PQ
4: Compute epipolar lines eP and eQ as the lines passing respectively

through the points P and Q and the optical center C
5: Compute P ′Q′ as a segment satisfying: 1) being on the same line defined

by PQ, 2) having a size of dr units, and 3) sharing the midpoint with
segment PQ (MP )

6: Compute e′P as a line parallel to eP passing through point P ′, and e′Q as
a line parallel to eQ passing through point Q′

7: Compute point C ′ as the corrected optical center as the intersection of
lines e′P and e′Q
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Figure 5: Scale correction applied by Algorithm 2. Camera center is moved to correct the
size of segment PQ in world coordinates.

The algorithm starts adjusting the extrinsic parameters as in the original
one. After convergence, a step of scale correction is added and the camera
positions are modified to match the correct scale. The algorithm repeats
this procedure until convergence of the scale corrections. In the original
algorithm, the extrinsic parameter convergence was determined by the global
error mean, ge, but analyzing the results, we consider that the convergence
of the reciprocal error mean, re, is more appropriate since it converges faster
(see Figure 2).
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Algorithm 3 Multi-camera extrinsic parameter calibration with scale cor-
rection
Require: M capture sets

1: repeat
2: # Extrinsic parameters #
3: repeat
4: for each captured token with spheres Sm1 and Sm2 do
5: for each i-th camera do
6: Let pm1i and pm2i be the centers of the spheres projected to the

camera image
7: Compute epipolar lines em1i and em2i

8: end for
9: p′m1

← arg min
p
{dist(p, {em1i})}

10: p′m2
← arg min

p
{dist(p, {em2i})}

11: Set p′m1
as the corresponding 3D point of {pm1i} 2D points

12: Set p′m2
as the corresponding 3D point of {pm2i} 2D points

13: end for
14: ge ← mean{dist(p′ms

, {emsi})}
15: for each i-th camera do
16: Recalibrate extrinsic parameters using pairs {(pmsi, p

′
ms

)}.
17: Compute reciprocal error, rei
18: end for
19: re ← mean{rei}
20: until re convergence
21: # Scale correction #
22: for each i-th camera with optical center Ci do
23: Set ei to 0
24: for each (p, q) ∈ {(p′m1

, p′m2
)} do

25: Compute C ′i by means of Algorithm 2
26: ei ← ei + (C ′i − Ci)
27: end for
28: Ci ← Ci + ei

M

29: end for
30: e← mean{ei}
31: until e convergence

A disadvantage of using the new token is that the estimation of the pro-
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jection of sphere centers is more complex. With a sphere, it is straightforward
to obtain an estimation of its center projection just by computing the cen-
ter of mass of the blob obtained in the image. In the case of the double
sphere token, its segmented blob contains both spheres, thus the estimation
of its center projection have to be done differently. Moreover, possible occlu-
sions have to be taken into account. In section 3.1, we present a method to
compute accurately the sphere center projections and to deal properly with
occlusions.

Finally, besides giving a scale reference, the new token provides additional
advantages. On the one hand it provides more reference points per capture
set, and on the other hand it offers more variate sights in the captures because
it tends to rotate while falling. This reduces the probability that the reference
points lay on the same plane, hence allowing a more accurate calibration.

3.1. Sphere center projection

As stated before, the computation of sphere center projections with the
new token is not as straightforward as with spherical tokens. Besides spheres
can be occluded in some of the captures (see Figure 6), thus the sphere
center projection may not be computable and the corresponding images have
to be discarded. In this section we present an algorithm to perform those
computations.

Figure 6: Possible views of a double sphere token: full view of both spheres (left), partial
occlusion (middle), total occlusion (right).

First, each image is binarized using a thresholding technique [10] and a
set of points containing the contour of the token is created. Next, the major
axis is computed applying principal component analysis (PCA, [11]) to the
point set. The more significative PCA projection is used as the main axis
(Figure 7). After that, the mean profile is computed using profile points from
both sides of the major axis (Figure 7). The maxima (m0, m1) in this profile
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are roughly the sphere centers, that are calculated locating the zero crossings
on the smoothed derivative profile. The minimum (m) between the maxima
is computed too.

Figure 7: Left: token blob contour and major axis. Right: profile graph (black line) and
derivative profile graph (gray line). Points mo and m1 are the profile maxima, point m is
the minimal point between them.

This first center estimation is refined by a procedure that splits the con-
tour set into two subset of points that initially contain points from each side
of the minimum (m). Then an ellipse fitting algorithm [9] is applied to each
subset and points outside the fitted ellipses are removed (Figure 8a). This
process is repeated until no new points are removed and the ellipse centers
(in this case, circles) are provided as center estimations. This procedure of-
fers an more robust estimation that just the maxima computed in the first
step.

Figure 8: From a) to d): iterative sphere location adjustment.

In the case of captures with occlusions (Figure 9) the initial subset par-
tition will provide directly the center estimation, no iteration is performed.
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Figure 9: Left: profile graph of a token with occlusion. Right: direct sphere center
location.

4. Experiments and results

A rendering software tool has been developed to simulate a device with 16
cameras distributed as in Figure 10. This software matchs the configuration
of a device in our laboratory [4]. Each camera has a focal length of 25 mm and
a sensor size of 2448x2048 pixels. The cameras are distributed inside a 550
mm radius sphere. A virtual calibration token was also designed matching
our existing calibrated token (two spheres 65.25 mm apart with radius 43.5
and 26.1 mm)

Figure 10: Camera configuration. A set of 16 cameras distributed over a spherical surface,
all them pointing to its center.

Several experiments have been performed with the real and the virtual
devices to test the developed algorithms. On the one hand, five synthetic
calibration sets composed each by 20 capture sets have been created. In each

12



capture set the token has been positioned randomly near the device center
and 16 synthetics views (one for each camera) have been obtained. A total of
5× 20× 16 = 1600 images have been generated. On the other hand, five real
calibration sets composed by 20 capture sets have been obtained capturing
the calibration token with the physical device. This device synchronizes the
capture of the 16 cameras to obtain 16 views of an object as it is falling (more
details in [4]).

To test the sphere center projection algorithm in the virtual sets, since
the 3D position of the token on each simulation is known, a ground truth is
generated computing the exact position of the sphere center projections on
the images according to the virtual camera model. With this information, the
accuracy of the algorithm in ideal conditions is tested giving an upper bound
of its performance. From the original 1600 captures, a total of 1482 valid
images have been obtained, of which 118 present light occlusions. The rest
have been discarded because too large occlusions were found. The occlusion
threshold can be set arbitrary. In our case, the light occlusion limit is defined
as an occlusion where the center of the little sphere lays at the edge of the
big sphere.

As can be seen in Figure 11 and Table 1, the error estimation is below
one image pixel. Predictably, in the case of the small sphere the estimation
is more accurate. This is because the sphere center projection is estimated
as the center of mass of the blob generated by the sphere on the image, and
those values are known to deviate more as the sphere radius increases [8].

Figure 11: Distribution of the estimation errors of center projection for both token spheres.
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Table 1: Estimation error statistics of center projections for both spheres.

Sphere Mean Std. deviation Maximum

big 0.505 0.202 1.045
little 0.235 0.085 0.479

To test the convergence of the new calibration algorithm, the virtual
and the real calibration sets have been employed. The algorithm uses the
estimated sphere center projections to proceed. Nevertheless, in the case of
the virtual sets, the exact sphere center projections, computed for the ground
truth of the previous experiment, can be used to establish the influence of
the accuracy of this estimation in the convergence. Considering this, three
experiment setups have been designed,

• Convergence with virtual sets using exact sphere center projections

• Convergence with virtual sets using estimated sphere center projections

• Convergence with real sets using estimated sphere center projections

As stated in section 2, a rough estimation of the external parameters is
needed to run the algorithm. For the virtual sets, these are extracted from
a modified version of the cameras model employed to generate the captures.
In this version, the camera models are randomly moved and rotated.

For the real sets they are initialized from an approximate model based
on the CAD of the device. Intrinsic camera parameters, including radial dis-
tortion parameters, have been estimated for each camera using the methods
described in [12].

To analyze the results, the final global error mean, ge, or the final re-
ciprocal error mean, re, can be considered. Nevertheless those metrics are
directly optimized by the algorithm, thus more independent metrics are more
appropriate to test the accuracy of the process.

For the virtual calibration sets, the calibration model is known. Hence, a
metric comparing geometrically the camera positions of this model and the
model obtained by the algorithm can be calculated. In this work, the mean
of the error distances between the camera positions is employed.

Another interesting metric is the dispersion of the sphere center distance
of each captured token of a calibration set. This value is straightforward to
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compute because the algorithm in each iteration estimates the 3D position
of the sphere centers of each captured token. In this work, the dispersion
is computed as the difference between the minimum and the maximum of
this value for a calibration set. Ideally, the sphere center distance average
of the captured tokens of a calibration set should match the token reference
distance with null dispersion.

Figures 12, 13 and 14 shown an example of evolution of the algorithm in
each case. The line labeled as Reference in the figures represents the evolution
of the average of the sphere center distances in the calibration set. As can be
seen in Figure 12, using the exact sphere center projections, the algorithm
attains null global error mean, null reciprocal error mean and exact scale
with only a scale correction. On the other hand, using the estimated sphere
center projections, the global and reciprocal error means cannot attain a null
value, and several scale corrections are performed until convergence (Figure
13). Each gap in the reciprocal error mean represents a scale correction step
in the algorithm. Finally, for real calibration sets, the convergence becomes
more difficult (Figure 14).

Figure 12: Calibration evolution: virtual calibration set and exact sphere center pro-
jections. The global and reciprocal error mean, and the sphere center distance mean
(Reference) are shown. The dotted line represents the goal reference distance.
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Figure 13: Calibration evolution: virtual calibration set and estimated sphere center pro-
jections.

In the real sets, several noise sources appear, hence the algorithm needs
more iterations to converge. Among the noise sources, the following can be
considered: inaccuracies in the intrinsic parameters (radial distortion, ...),
tiny delays between the cameras during the synchronized capture because the
token is freefalling, additional errors in sphere center projection estimation
due to digital noise on images or uneven illumination, ...

Tables 2 and 3 present statistics summarizing the results obtained for the
different calibration sets. Table 2 shows the dispersion of the token sphere
distances. For each experimental setup, five runs of the algorithm have been
executed, one with each calibration set. The mean, the standard deviation
and the minimum and maximum values are presented. As expected, there is
no dispersion for the virtual sets using exact center projections. Nevertheless
while using the estimated center projections in both the virtual and real
setups a minimal dispersion appears. The real setup obtains a slightly higher
dispersion due to other noise sources as previously commented.

On the other hand, Table 3 provides the statistics of the geometrical
comparison between the original and the obtained calibration. Again, the
algorithm with the virtual setup and the exact center projections attains the
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Figure 14: Calibration evolution: real calibration set.

exact calibration, while the setup using the estimations gets a really good
approximation.

Table 2: Sphere center distance dispersion statistics for the different experiments. Units
are in millimeters.

Sets Centers Mean Std. Dev. Min. Max.

Virtual
exact 0.0000 0.0000 0.0000 0.0000
estimated 0.0284 0.0029 0.0240 0.0330

Real estimated 0.0358 0.0070 0.0270 0.0470
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Table 3: Geometric calibration error statistics for the different experiments. Units are in
millimeters.

Sets Centers Mean Desv. Minimum Maximum

Virtual
exact 0.00009 0.00004 0.00006 0.00017
estimated 0.39017 0.01245 0.37285 0.40776

Finally, using the methodology in [4] a 3D reconstruction of the token
can be made using a calibration and a capture set. Figure 15 shows a pair of
reconstructions using an accurate and a inaccurate calibration. In the case
of the inaccurate calibration the reconstruction is poor.

Figure 15: Token reconstruction using a accurate (left) and a inaccurate (right) calibration.

5. Conclusion

The aim of this work was to present a method to simplify the calibration
of the extrinsic parameters of a device in an environment using multiple
cameras, with a high precision requirements. The method proposes the use
of a simple calibration token composed of two spheres of different sizes that
are connected by a slim rod. The token is made of a solid color, and hence is
simple to build. Only an exact knowledge of the distance between the sphere
centers is required.

The presented method modifies an existing calibration algorithm that
used single spheres as calibration tokens, avoiding the scale calibration prob-
lem inherent to that algorithm. The result is a more precise estimation of the
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extrinsic parameters that increases the performance results of the techniques
using this calibration.

Additionally, the use of the new token can reduce the number of captures
needed for the algorithm to converge adequately. On the one hand the new
token is composed of two spheres, hence the double of calibration points are
available per capture if occlusions are not taken into account. And on the
other hand, if the token is presented to the system in motion, the token flies
worse than a single sphere presenting more variate views to the cameras.
This behavior accelerates the algorithm convergence.

Although the experiments were performed with a specific camera setup
(in this case to obtain 3D representation of objects) the method can be
employed in other multi-camera scenarios. For example, in a production
line where robots or other automations have to insert or install a part in a
product (assembling a toy, placing the windshield in a car, crimping a gem
in a jewel, ...) a set of few cameras can be installed around the assembling
area and can be calibrated using the method. An good calibration allows to
locate the product and to determine its orientation accurately, thereby the
assembly can be controlled on real time.
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