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Abstract 21 

Macrophomina phaseolina is the causal agent of charcoal rot disease of melons and causes significant losses 22 

worldwide and causes significant losses worldwide The use of resistant cultivars is a desirable method for 23 

controlling this disease, but there is no information about the influence of temperature on the resistant behavior 24 

found in melon accessions. The purpose of the present study was to assess the effect of temperature on the reaction 25 

of six melon accessions selected previously for their resistant response to M. phaseolina. They were inoculated 26 

with the M. phaseolina isolate CMM-1531 and grown under accurately controlled environmental conditions at 27 

different temperature regimes (25, 28, 31, and 34 ºC) in a replicate experiment. The increase in temperature 28 

increased the severity of symptoms in most genotypes, but this effect was less pronounced in the highly susceptible 29 

control, the cultivar ‘Piel de sapo’, and in the most resistant accession, the wild African agrestis Ag-15591Ghana 30 
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that remained resistant even at 34ºC. The use of several screening temperatures allowed a better characterization 31 

of accessions that behaved similarly as highly resistant at 25ºC (Con-Pat81Ko, Dud-QMPAfg, Can-NYIsr and Ag-32 

C38Nig), but in which resistance breaking was observed with temperature rise. Temperatures of 28ºC and 31ºC 33 

were sufficient to make Dud-QMPAfg, Ag-C38Nig and Can-NYIsr moderately resistant, whereas Con-Pat81Ko 34 

remained highly resistant. All these genotypes were susceptible at 34ºC, which suggest that are not suitable for 35 

hot-climate growing areas. The most promising accession was Ag-15591Ghana, whose resistance was confirmed 36 

in two greenhouse experiments under stressful temperatures (>34ºC). The behavior of these sources should be 37 

confirmed in naturally infested fields, but the controlled screening methods presented here are essential to 38 

characterize new resistance sources and to conduct genetic studies when a high number of plants must be managed 39 

under controlled environmental conditions. 40 

Keywords: soil borne fungus, Cucumis melo germplasm, heat stress, host resistance  41 
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Introduction 73 

Brazil is the main producer and exporter of melons in South America. In 2017, it produced 540,229 tons in a 74 

cultivated area of 23,390 ha (FAO 2019). The Brazilian production is concentrated in the semiarid region (> 95 75 

%), especially in the states of Ceará and Rio Grande do Norte, which have excellent environmental conditions for 76 

crop development such as high temperatures (> 28° C), low rainfall rate (approx. 600 mm per year), and high 77 

luminosity (Nunes et al. 2016). 78 

Melon is usually cultivated all year long, without crop rotation, or rotating with another cucurbit, such as 79 

watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). This intensive use of producing fields increases 80 

problems with soil borne pathogens. The generalist Ascomycete Macrophomina phaseolina (Tassi) Goidanich is 81 

one of the most important soil borne fungus affecting melon crop (Cohen et al. 2016a; Nascimento et al. 2018). 82 

This species presents high variability (Groenewald and Crous 2014), likely due to its heterokaryotic character, and 83 

affects a wide range of hosts species, including more than 500 crops and some weeds that can constitute a problem 84 

as important sources of inoculum (USDA 2019). To date, other three Macrophomina species, M. pseudophaseolina 85 

Crous, Sarr and Ndiaye, M. euphorbiicola A.R. Machado, D.J. Soares and O.L. Pereira, and M. vaccinii Y. Zhang 86 

ter and L. Zhao, sp. nov. have been reported affecting a few non-cucurbit species in specific regions such as Brazil, 87 

Senegal and China (Sarr et al. 2014; Machado et al. 2018; Zhao et al. 2019).  88 
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Macrophomina phaseolina has been detected infecting melons worldwide, in Mediterranean countries like Spain, 89 

Egypt, Israel and Turkey, in American countries like Brazil, Chile, and Honduras, in Near East countries like Iran 90 

and Oman, in African countries like Nigeria, and in islands like Australia (Reuveni et al. 1982; Apablaza 1993; 91 

Walker 1994; Bruton and Miller 1997; Bankole et al. 1999; García-Jiménez et al. 2000; Edraki and Banihashemi 92 

2010; Cohen et al. 2012; Salari et al. 2012; Al-Mawaali et al. 2013; El-Kolaly and Abdel-Sattar 2013; Jacob et al. 93 

2013; Ambrósio et al. 2015; Tok et al. 2018; Negreiros et al. 2019). However, it is most problematic in hot, arid 94 

regions. In Brazil it is usually isolated from diseased melon plants (Marinho et al. 2002; Andrade et al. 2005; 95 

Dantas et al. 2013) and rotative crops, like watermelon, and their associated weeds (Sales-Júnior et al. 2012; 96 

Negreiros et al. 2019). It causes a disease known as charcoal rot (Salari et al. 2012). Symptoms of charcoal rot 97 

start as depressed dark lesions in the stem. Affected plants show sometimes chlorosis, vine wilt and stem and root 98 

rot (Bianchini et al. 2005). Severely infected plants die early due to the effect of toxins produced by the fungus 99 

and to the interruption of the xylem flow (Islam et al. 2012). 100 

Although several studies have focused on testing different strategies of soil management (Nascimento et al. 101 

2018) and on biocontrol using antagonistic bacteria, such as strains of Bacillus amyloliquefaciens (Bakhshi et al. 102 

2018), to control the incidence of root rot in melon fields, one of the most efficient most efficient method to control 103 

soil borne pathogens is the use of resistant cultivars. However, there are not commercial varieties resistant to M. 104 

phaseolina, and few scientific studies report efforts to identify sources of resistance. Salari et al. (2012) evaluated 105 

the reaction of seven Iranian cultivars and identified two melon sources with partial resistance. More recently, 106 

Ambrósio et al. (2015), studying a collection of melons representing the diversity of the species, found different 107 

levels of resistance in five accessions belonging to different infraspecific taxa (Pitrat 2017) and from different 108 

origins: two African accessions of wild agrestis type, from Ghana and Nigeria, one Korean accession of the Asian 109 

conomon group, one dudaim accession from Afghanistan, and the cantaloupe cultivar ‘Noy Israel’. In this study, 110 

they used the toothpick method to inoculate the pathogen, the experiment was conducted at an average air 111 

temperature of 28 °C and average humidity 65%, and the response was evaluated after 30 days. The response of 112 

all these genotypes was determined later in a similar assay, using the same inoculation method in Mossoró (State 113 

Rio Grande do Norte, Brazil), with temperatures higher than 35 ºC and excellent epidemiological conditions for 114 

the development of M. phaseolina. In this assay, many plants of most accessions died in the first two weeks after 115 

transplanting, except from those of one wild African agrestis. Other studies have focused on the effects and 116 

progress of M. phaseolina infection on cucurbits like melon and watermelon, testing different inoculation methods 117 

such as toothpick or drenching, and growing conditions such as in a naturally infested field or greenhouse (Cohen 118 
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et al. 2016a). Germplasm screening for watermelon has been also carried out searching for resistant accessions 119 

useful as rootstocks for grafting, as an alternative to disease control (Cohen et al. 2016b). 120 

It is well known the environmental factors influence host-pathogen interactions. Temperature stands out as the 121 

one with major effect on resistance of plants to different pathogens, such as fungi, viruses, bacteria and nematodes 122 

(Garrett et al. 2006; Akhtar et al. 2011; Wosula 2017). A classic example that illustrates temperature interference 123 

in resistance-breaking are Mi genes of tomato. These genes confer resistance to Meloidogyne incognita that breaks 124 

down at high temperatures (El-Sappah et al. 2019). Also resistance to tomato spotted wilt virus conferred by the 125 

Tsw gene is overcome at high temperatures in pepper (Chung et al. 2018). Previous studies reported an effect of 126 

soil temperature on disease severity in melon plants infected by soil borne melon pathogens associated to 127 

Monosporascus root rot/vine decline (Pivonia et al. 2002). There is no information about the effect of temperature 128 

on the reaction of melon accessions to M. phaseolina, although previous studies reported 30 to 35 º C as the 129 

optimum temperature range for in vitro growing of different M. phaseolina isolates (Manici et al. 1995; Akhtar et 130 

al. 2011; Tok et al. 2018). Under the current global warming scenario, this thermophilic fungal pathogen is 131 

expected to spread to new regions and to cause more severe outbreaks (Bashir 2017). Therefore, there is an urgent 132 

need to evaluate the effect of temperature on the reaction of melon accessions with different resistance levels to 133 

this pathogen. 134 

Material and Methods 135 

Germplasm 136 

Six accessions were evaluated: two wild African accessions belonging to Cucumis melo subspecies agrestis, 137 

PI 185111 (Ag-15591Ghana) and CUM 287 (Ag-C38Nig), two Asian melons belonging to the dudaim, PI 273438 138 

(Dud-QMPAfg), and chinensis, Pat 81 (Con-Pat81Ko), groups of C. melo subspecies agrestis, and two commercial 139 

melons belonging to the two main groups of C. melo subspecies melo, a Piel de sapo type of the ibericus group 140 

(In-PsPiñSp), and the cultivar ‘Noy Israel’ of the cantalupensis group (Can-NYIsr). All these accessions were 141 

reported to have different levels of resistance to M. phaseolina by Ambrósio et al. (2015), except from the ‘Piel 142 

de sapo’ cultivar that was used as susceptible control. PI and CUM accessions were kindly provided by the USDA-143 

NPGS and IPK genebanks, respectively. The other accessions were provided by the COMAV-UPV Genebank. 144 

Inoculum preparation 145 

The CMM-1531 pathogenic isolate (deposited in the Coleção de Culturas de Fungos Fitopatogênicos at the 146 

Universidade Federal Rural de Pernambuco, Brazil) was obtained in 2012 from roots and stems of symptomatic 147 

muskmelon plants grown in Icapuí-RN, Brazil. The confirmation of the identity of this strain was done by partially 148 
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sequencing the translation elongation factor 1-alpha gene (GenBank number  149 

MN136199), that had 98 to 100% sequence identity with several Macrophomina phaseolina isolates from Brazil 150 

and China. This isolate was used due to its aggressiveness (Medeiros et al. 2015). 151 

Tests were made to prove fungi pathogenicity. The isolate was sown in potato dextrose agar (PDA) + antibiotic 152 

(tetracycline 0.05 g/L). Four dishes (5 mm-diameter) of PDA medium with fungal structures were transferred into 153 

Petri dishes containing toothpicks in PDA medium. Plates were stored in BOD (Biochemical Oxygen Demand) 154 

incubators at 28 ± 2°C for seven days. 155 

Assay conditions 156 

Selected seeds were disinfested in NaClO (1.5 %) and placed in Petri dish with filter paper and damped cotton. 157 

Plates were wrapped in aluminum foil and stored in incubator for 24 hours at 37 °C. Pots of 0.4 kg of capacity 158 

were filled with commercial substrate (Tropstrato® HT Hortaliças). Substrate was sterilized in autoclave at 121 159 

°C.  160 

Two successive experiments were carried out consisting each one in four trials that were conducted 161 

simultaneously at the Laboratório de Sementes da UFERSA in Mossoró (State Rio Grande do Norte, Brazil), in 162 

four BOD incubators for ten days at constant temperatures of 25, 28, 31, and 34 °C, and relative humidity of 60 163 

%, with light-period of 12 hours. Temperatures were chosen according to Ambrósio et al. (2015), which reported 164 

the average temperature in Mossoró (Brazil) and Valencia (Spain), throughout the study. The four trials were 165 

conducted in a randomized block design with 14 replicates in the first experiment, and 10 replicates in the second 166 

one. In both cases, the experimental unit was formed by one pot of 0.4 kg of capacity with one plant. 167 

Apart from these assays in BOD incubators, two experiments under greenhouse conditions were also carried 168 

out in Mossoró (Brazil) (average air temperature of 34.5 and 35.7 ºC, and average relative humidity of 55.4 and 169 

50.4% in experiment 1 and 2, respectively). Seeds of the six accessions germinated in commercial substrate 170 

previously autoclaved, and plants were manually irrigated to drainage daily and were not fertilized during the 171 

experiment. The experiment was carried out with a total of 15 plants per accession and a completely randomized 172 

design with the replication corresponding to one plant. 173 

Plant inoculation and disease assessment 174 

Twenty days after transplanting, the inoculation was conducted via direct insertion of a toothpick tip overgrown 175 

with mycelia and microsclerotia of the CMM-1531 isolate (method previously tested with good results in melon 176 

by Cohen et al. 2016a) at the base of the stem, 1 cm above the soil (Ambrósio et al. 2015), and stored in BOD. Ten 177 

days after inoculation, accessions were evaluated for disease severity using a score scale (0 to 5), where 0: 178 
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asymptomatic, 1: less than 3 % of infected stem tissue, 2: 3 to 10 % of infected stem tissue, 3: 11 to 25 % of 179 

infected stem tissue, 4: 26 to 50 % of infected stem tissue, and 5: more than 50 % of infected stem tissue (Ambrósio 180 

et al. 2015). The average disease severity was calculated for each accession and classified in five classes of reaction 181 

0: immune (I); 0.1 to 1.0: highly resistant (HR); 1.1 to 2.0: moderately resistant (MR); 2.1 to 4.0: susceptible (S); 182 

and 4.1 to 5.0: highly susceptible (HS) (Salari et al. 2012). 183 

In the greenhouse experiment, seedlings were inoculated 14 days after planting by the toothpick method 184 

described above. Non infested and autoclaved toothpicks were used as negative controls. Plants were kept in the 185 

greenhouse for 30 days. Disease severity was assessed as previously described. 186 

Statistical analysis 187 

As the variable response considered is not quantitative and the residuals do not present normal distribution, the 188 

original nonparametric values were transformed according to the methodology of the Aligned Rank Transform 189 

(ART) for Nonparametric Factorial Analyses. The aligned rank transformation allows non-parametric testing for 190 

interactions and main effects using standard ANOVA techniques. For the transformation of the original data the 191 

software (ARTool) was used (Wobbrock et al. 2011). The ANOVA to study the effects of genotype (accessions), 192 

temperature and experiment, and their interactions, was performed with the PROC GLM of SAS 9.2 (SAS Institute 193 

Inc., Cary, NC) (Durner 2019). We utilized the methodology described by Scott and Knott (1974) for grouping of 194 

accessions mean ranks. The correlation coefficients of Spearman and Gamma were calculated according to Siegel 195 

and Castellani Jr. (1988).      196 

Results  197 

Results of the statistical joint analyses performed with the data of the two BOD experiments to study the effect 198 

of genotype, temperature and experiment on the response to M. phaseolina are shown in Table 1. Genotype and 199 

temperature effects were significant (p < 0.0001), as well as their interaction (p = 0.003). The effect of the 200 

experiment was no significant (p = 0.1068 > 0.05), so data obtained in both BOD experiments could be pooled 201 

and analyzed together (Table 2). 202 

Despite the significant temperature x genotype interaction, the main effects of the temperature and genotype 203 

were meaningful (Table 2 and Fig. 1). There was a clear effect of genotype. The wild agrestis accession from 204 

Ghana (Ag-15591Ghana) was the most resistant, and the cultivar ‘Piel the sapo’ (In-PsPiñSp) the most susceptible 205 

(with significantly different average disease severity scores: 0.45 (highly resistant) versus 4.46 (highly 206 

susceptible), respectively). The other accessions displayed an intermediate response (being moderately resistant 207 

with average scores between 1.30 and 1.76). According to their average scores they can be ranked as follows from 208 
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more to less resistant: Con-Pat81Ko≈Can-NYIsr≈Ag-C38Nig>Dud-QMPAfg. There was also a clear main effect 209 

of temperature. An increase in the severity of the disease was found with temperature rising (significantly different 210 

average scores of 1.09, 1.41, 1.91 and 2.87, at 25, 28, 31 and 34ºC, respectively). This relation observed between 211 

temperature and severity was also estimated with the Spearman’s coefficient (rs = 0.53; p<0.01). The Gamma 212 

coefficient between temperature and the resistance classes was positive as well (γ = 0.79; p < 0.01).  213 

The temperature increase resulted in more severe symptoms in all genotypes. Fig 1 shows this trend with higher 214 

average scores at higher temperatures in both BOD experiments, but the effect was more or less pronounced 215 

depending on the genotype. The susceptible control and the most resistant accession were less affected by the 216 

temperature rise than the genotypes with intermediate responses (Table 2). The average disease severity scores of 217 

‘Piel de sapo’ cultivar, used as susceptible control, increased from 4.00 (susceptible) to 4.42 (highly susceptible) 218 

at 25 and 28ºC, and remained highly susceptible at higher temperatures, whereas the resistant accession from 219 

Ghana was highly resistant till 31ºC (average scores from 0.08 to 0.42) and moderately resistant at 34ºC (1.08).  220 

The effect of temperature on disease severity was more pronounced in the four genotypes with intermediate 221 

resistance (Fig.1), as all started being highly or moderately resistant at 25 and 28ºC and became susceptible at 222 

higher temperatures, with significantly higher average scores (Table 2). Among these four genotypes, the reaction 223 

of Dud-QMPAfg changed from moderately resistant to susceptible at 31ºC, whereas this change occurred at 34ºC 224 

in Can-NYIsr and Ag-C38Nig. Con-Pat81Ko remained highly resistant till 31ºC (0.21 to 0.88), occurring the 225 

resistance break at 34 ºC.  226 

An illustration of the resistant/susceptible response of the six accessions at the different temperatures assayed 227 

is showed in Fig. 2. The susceptible and resistant responses of ‘Piel the sapo’ and the wild agrestis Ag-228 

15591Ghana, respectively, are evident, as well as the effect of temperature on the response of the genotypes with 229 

intermediate resistance. 230 

The experiments conducted under greenhouse conditions confirmed the response at the highest temperature 231 

(Table 3). Greenhouse experiments were performed at an average temperature of 34.5 and 35.7ºC respectively and 232 

results show that plants of most accessions died or had disease severity scores higher than 4 (average scores from 233 

4.1-5.0). All genotypes behaved as highly susceptible except Ag-15591Ghana that remained moderately resistant 234 

30 days after inoculation (average disease score of 1.1) in both assays. 235 

Discussion 236 

This study evaluated for the first time the response of melon accessions with different resistance levels against 237 

the charcoal rot under different temperature regimes. The use of several BOD incubators made it possible to set 238 
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different temperature regimes, with an accurate temperature control maintaining constant relative humidity and 239 

photoperiod, and to replicate the assays to obtain reliable results.  240 

The resistance response to M. phaseolina found in the genotypes studied was the expected, as the accessions 241 

evaluated here and the susceptible control were selected for their differential response to this pathogen in a previous 242 

study (Ambrósio et al. 2015). The significant influence of temperature on the reaction of these accessions to this 243 

fungus is here described for the first time and is consistent with what was suggested for this pathogen in other 244 

crops (Akhtar et al. 2011). Akhtar et al. (2011) carried out a screening for resistance to M. phaseolina in sesame 245 

germplasm and observed differences in the severity of symptoms likely related to different temperature and rain 246 

conditions. The influence of the temperature in the in vitro growth rate has been reported in some works using 247 

isolates of M. phaseolina from different crops, and the optimum temperature for this pathogen has been established 248 

between 30-35 ºC (Manici et al. 1995; Akhtar et al. 2011). However, to date no study had been focused on the 249 

effect of temperature in M. phaseolina resistant melon germplasm.  250 

Our results show the general effect of the temperature increase on the severity of symptoms caused by M. 251 

phaseolina in seedlings of both susceptible and resistant genotypes, but the occurrence of a significant temperature 252 

x genotype interaction evidences the differential effect of the temperature increase on the different genotypes. In 253 

fact this effect was less pronounced in the most susceptible and the most resistant genotypes. The high 254 

susceptibility of the “Piel de sapo’ cultivar was evident at all the temperatures, indicating that all the inoculation 255 

assays successfully resulted in a severe M. phaseolina infection, and suggesting that this pathogen can be damaging 256 

for this type of susceptible melon cultivars even at moderate temperatures. Under these infection conditions that 257 

caused severe damage to the susceptible control, Ag-15591Ghana behaved as resistant at all the temperatures, 258 

although its response change from highly to moderately resistant at 34 ºC. Resistance breaking due to the 259 

temperature rise was observed in all the genotypes with intermediate resistance, with Dud-QMPAfg and Pat81Ko 260 

showing the resistance breaking at the lowest and at the highest temperature, respectively. 261 

According to their response to M. phaseolina at different temperature regimes, accessions ranked as follows 262 

from more to less resistant: Ag-15591Ghana>Con-Pat81Ko>Can-NYIsr≈Ag-C38Nig>Dud-QMPAfg>In-263 

PsPiñSp. These results partially agree with those reported by Ambrósio et al. (2015) who conducted the screening 264 

assay at an average temperature of 28 °C and relative humidity of 65%. In this study, ‘Piel de sapo’ behaved as a 265 

susceptible cultivar and the other genotypes displayed all a highly resistant response. Ambrósio et al. (2015) results 266 

are similar to those obtained in the two assays of our study performed at 25 and 28 ºC, although disease severity 267 

was higher in the present study, and Dud-QMPAfg and Ag-C38Nig were classified as moderately resistant at 28 268 
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°C, and Can-NYIsr, was moderately resistant at 31ºC. The use of a wide range of temperatures allowed a much 269 

better characterization of the resistant sources, suggesting that these moderately resistant accessions could not be 270 

a good option under high temperature conditions. We detected differences among these genotypes with 271 

intermediate resistance, and, for example, the chinensis genotype Con-Pat81Ko, which behaved as the three 272 

previous accessions under moderate temperature, was highly resistant even at 31 ºC.  273 

The six accessions were also checked in two replicate assays under greenhouse conditions in Mossoró. These 274 

greenhouse conditions (with average temperatures > 34°) are similar to those of the open field cultivation of melons 275 

in this semiarid region, where temperatures often are over 40ºC. The behavior in both greenhouse assays agree 276 

with BOD results, being Ag-15591Ghana the only accession that remained moderately resistant under these 277 

stressful conditions. The symptoms of the remaining accessions where more severe in the greenhouse, where most 278 

of the plants died few days after inoculation. In BOD incubators at 34ºC these accessions were susceptible, but 279 

plant death was not observed. The higher severity in the greenhouse can be due to differences in relative humidity, 280 

greater in BOD incubators than in the greenhouse, and to differences in the thermal amplitude, higher in 281 

greenhouses, that make plants more prone to pathogen attacks. Cohen et al. (2016a) reported more severe charcoal 282 

rot symptoms in melon and watermelon in their experiment carried out in an infested field than in their greenhouse 283 

experiment, probably due to the less controlled growing conditions in field compared to the greenhouse.  284 

These results agree with the general knowledge the M. phaseolina is more adapted and aggressive in hot and 285 

dry climates, with high temperatures and reduced humidity (Bruton and Wann 1996; Akhtar et al. 2011). In this 286 

sense, the water stress has also been reported to affect the development of many soil borne diseases (Blanco-López 287 

and Jiménez-Díaz 1983). In general, diseases caused by soil borne pathogens, like M. phaseolina, are said to be 288 

highly influenced by environmental conditions (Miyasaka 2008). For instance, Pivonia et al. (2002) associated the 289 

highest rates of Melon root rot and vine decline disease caused by M. cannonballus with the hottest season when 290 

studying the response of the melon plants grown in a field infested with this pathogen. However, Sales-Júnior et 291 

al. (2019) recently reported that high temperature is not the main factor affecting the severity of symptoms caused 292 

by M. cannonballus, suggesting other factors such as the level of inoculum in soil as more important for the 293 

infection, maybe due to the relatively similar high temperatures in the seasons tested.  294 

Therefore, our results indicate that the use of different assay temperatures may result in a better 295 

characterization of the resistance levels, allowing the selection the sources most appropriated for different climatic 296 

conditions. For example, some of the sources with intermediate levels of resistance could be useful in countries 297 

with less stressful growing conditions for melon crop, such as Spain or other European countries, but more stressful 298 
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countries as Brazil, Israel, African or Asian regions would need the use of resistant sources with stable resistance 299 

at higher temperatures. This kind of screening assays are very necessary as they allow an accurate control of 300 

environmental conditions, highly variable in field, and of the source of inoculum, avoiding the occurrence of 301 

different isolates and/or fungal species frequently mixed in naturally infested soils, and allow working with high 302 

plant numbers and replicates. The variability of field conditions make impossible to use it for routine screenings 303 

and genetic studies, although the behavior of the selected accession should be finally confirmed in in naturally 304 

infested fields. 305 

 The Ag-15592Ghana accession was one of the first melon accessions reported with high level of resistance 306 

to M. phaseolina (Ambrósio et al. 2015). The present study confirms the high level of resistance in this accession, 307 

stable even at high temperature conditions and confirm its potential use as source of resistance in genetic breeding 308 

programs with M. phaseolina. In order to include this source in breeding programs, the genetics of this resistance 309 

should be studied. The effect of the temperature on disease severity should be taken into account during the genetic 310 

studies. Also differences in the genetic background should be considered to recover the quality of commercial 311 

melon and select against the wild traits of the agrestis background during the development of new resistant 312 

varieties.  313 
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Tables 442 

Table 1. Mean square, F values and associated probability obtained in joint variance analysis after data alignment 443 

and ranking (Aligned Rank Transform, ART) for the response (score of disease severity) of six melon accessions 444 

inoculated with M. phaseolina and grown at four temperature regimes in the two BOD experiments.  445 

 446 
Source of variation dfa MSb F Prob  

Experiment (E) 1 5.610973 2.61 0.1068 

Genotype (G) 5 173.8963 80.86 <.0001 

Temperature (T) 3 83.28676 38.73 <.0001 

T x G 15 5.035124 2.34 0.003 

E x G 5 0.112624 0.05 0.9983 

E x T  3 0.183041 0.09 0.9682 

E x T x G 15 0.285888 0.13 1 

Error  528 2.150527   

dfa = numerator degrees of freedom  447 

MSb: Mean Square.  448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 
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Table 2. Average and standard deviation for the response (score of disease severity) of six melon accessions 465 

inoculated with Macrophomina phaseolina and grown at four temperature regimes in the two BOD experiments. 466 

Joint analysis.  467 

 468 

Accession Temperature Average 

 25ºC 28ºC 31ºC 34ºC  

Ag-15591Ghana 0.08±0.28 

(139.63) cA 

0.21±0.40 

(160.06) cA 

0.42±0.71 

(185.33) cA 

1.10±0.65 

(282.58) cA 

0.45±0.66 

(191.90) d 

Con-Pat81Ko 0.21±0.65 

(151.27) cB 

0.67±1.23 

(197.35) cB 

0.88±1.48 

(211.08) cB 

3.46±2.14 

(403.88) bA 

1.30±1.94 

(240.89) c 

Can-NYIsr 0.63±1.37 

(183.88) bB 

0.88±1.65 

(205.73) bB 

2.00±1.96 

(315.23) bA 

2.21±1.50 

(353.19) bA 

1.44±1.76 

(264.51) c 

Ag-C38Nig 0.75±1.42 

(208.58) bB 

1.13±1.62 

(232.25) bB 

1.54±1.89 

(268.65) bB 

2.67±1.81 

(361.92) bA 

1.52±1.84 

(267.85) c 

Dud-QMPAfg 0.83±1.40 

(222.21) bB 

1.17±1.44 

(257.13) bA 

2.13±1.98 

(319.10) bA 

2.92±1.89(375.4

4 bA 

1.76±1.86 

(293.47) b 

In-PsPiñSp 4.00±1.57 

(443.85) aA 

4.42±1.31 

(470.71) aA 

4.57±1.08 

(476.35) aA 

4.80±0.65 

(497.72) aA 

4.46±1.21 

(472.38) a 

Average 1.09±1.80 

(224.90) D 

1.41±1.93 

(253.87) C 

1.91±2.05 

(294.70) B 

2.87±1.91 

(379.94) A 

 

 469 

Averages in a row followed by the same uppercase letter and in a column by the same lowercase letter do not differ 470 

(p<0.05) according by the Scott-Knott cluster (1974). Data in parentheses correspond to the average ranks. Each 471 

number is the average of 24 plants. The effect of the experiment was no significant (Table 1), so data obtained in 472 

both BOD experiments could be pooled and analyzed together. 473 

 474 

 475 

 476 

 477 
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Table 3. Average for the response (disease of disease severity) and reaction of melon accessions inoculated with 478 

Macrophomina phaseolina in two replicate greenhouse experiments conducted in Mossoró-RN (Brazil).  479 

 480 
 

Accession 

 Mossoró (Brazil)  

(34.5 ºC, 55.4% RH)a 

Mossoró (Brazil)  

(35.7 ºC, 50.4% RH)a 

  Disease score Reactionb Disease score Reactionb 

Ag-15591Ghana 

 

 1.10 MR 1.10 MR 

Con-Pat81Ko 

 

 5.00 HS 4.80 HS 

Can-NYIsr 

 

 5.00 HS 5.00 HS 

Ag-C38Nig 

 

 5.00 HS 4.60 HS 

Dud-QMPAfg 

 

 4.60 HS 4.10 HS 

In-PsPiñSp 

 

 5.00 HS 5.00 HS 

a RH: average relative humidity 481 

b 0: immune (I); 0.1-1.0: highly resistant (HR); 1.1-2.0: moderately resistant (MR); 2.1-4.0: susceptible (S) and 482 

4.1-5.0: highly susceptible (HS). 483 

 484 

 485 

Figures 486 

Fig. 1 Severity of charcoal rot as a function of temperature for the six accessions assayed in BOD incubators 487 

(experiments 1 and 2). Average scores of disease severity and genotype reaction: 0: immune (I); 0.1-1.0: highly 488 

resistant (HR); 1.1-2.0: moderately resistant (MR); 2.1-4.0: susceptible (S) and 4.1-5.0: highly susceptible (HS), 489 

are represented  490 

Fig. 2 Effect of toothpick inoculation of M. phaseolina in plants of six accessions of melon assayed at four 491 

temperatures in BOD incubators 492 

 493 

 494 

 495 
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