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Abstract

The development of accurate real-time models of the biomechanical behavior of different organs and tissues still poses a
challenge in the field of biomechanical engineering. In the case of the liver, specifically, this would constitute a great leap
forward for complex applications such as surgical simulators, computed-assisted surgery or guided tumor irradiation.

In this work, a relatively novel approach for developing such a model is presented. It consists in the use of a machine
learning algorithm, which provides real-time inference, trained on tens of thousands simulations of the biomechanical
behavior of the liver carried out by the finite element method on more than 100 different liver geometries.

Four different scenarios were modeled: a single liver with an arbitrary force applied, a single liver with two simultaneous
forces applied, a single liver with different material properties with an arbitrary force applied, and a much more general
model capable of modeling the behavior of any liver with an arbitrary force applied. For the definition of sufficient
accuracy, a 3mm threshold was set for the Mean Euclidean Error (MEE). The results show that the Machine Learning
(ML) models perform extremely well on all the scenarios, managing to keep the MEE under 1mm in all cases.

These results constitute a remarkable improvement in this field and may involve a prompt implementation in clinical

practice.
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1. Introduction

In the last few years, the field of biomechanical engi-
neering has undergone a continued growth as many new
technology-driven applications are being developed and in-
troduced in the clinical practice. However, several specific
applications, such as Computed Assisted Surgery (CAS),
surgical simulators with haptic feedback or directed tumor
irradiation (as in gating), all share a requirement for pre-
cise and real time biomechanical models of the organ they
must interact with, a subject that remains as one of the
biggest challenges in biomechanics.

In the case of CAS, the liver is of special interest,
since it moves significantly during the respiratory cycle.
High precision techniques such as biopsies, tumor ablation,
cryotherapy, brachitherapy, tumor embolization, directed
irradiation (gating), or vector delivery for genetic ther-
apy (1) could all benefit from a biomechanical model of
the liver able to assist clinicians during these procedures.

The first biomechanical models able to work in real time
were based on mass-spring simulations (2; 3). Despite their
speed, these have been progressively abandoned due to
their inability to accurately model the nonlinearities which
characterize biological tissue.

Models based on the Finite Elements Method (FEM),
on the contrary, have a very well established mechanical
and mathematical base, and allow for high accuracy sim-
ulations for any kind of geometry or material. However,
the increased accuracy comes at the cost of prohibitive
computational times, which hinder the application of this
technique for real-time systems.

In order to accelerate these simulations, there are two
main techniques that stand out in the literature, the
first trying to exploit the parallelism of the problem with
Graphic Processing Units (GPUs) or Central Processing
Unit (CPU) clusters (4; 5), and the second attempting di-
mensionality reduction techniques by means of algorithms
like Proper Generalized Decomposition (PGD); this algo-
rithm tries to only solve the few most important deforma-
tion modes, allowing for very accurate real-time results in
many problems (6).

In distributed or GPU models, the price to pay in ex-
change for real-time simulations is the use of very coarse
meshes of less than 500 nodes, which lack the required ac-
curacy for most applications (4). In the PGD-based mod-
els, the main limitation is the requirement of (approxi-
mately) linearly separable deformation modes, which may
limit its application to the hyperelastic materials which
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normally describe the mechanical behavior of the soft bi-
ological tissue (7).

Other radically different approaches are the data-based
strategies, which consist in training a Machine Learning
(ML) model from simulations (as those obtained from
FEM), or directly from sensor data. ML algorithms are
able to automatically learn nonlinear mappings between
several inputs (applied force, application area, node co-
ordinates, etc.), and several outputs (e.g.: displacement,
strain or stress fields). Although the training process is
relatively slow, once trained, these algorithms provide ex-
tremely quick inference times, therefore fulfilling the re-
quirement for real-time simulations. This strategy has
been successfully applied in the literature on several or-
gans (8; 9), being the work presented in (10) the first where
this approach was applied in the case of the liver. In all
instances, however, the employed meshes were of low res-
olution, and also, only one liver geometry was considered.
Thus, in order to apply this procedure to any other liver,
all the FEM simulations should be repeated on any new
geometry, and a new ML model should be trained on the
results, both processes being very time consuming.

As an exception, the work presented in (11) proposed a
ML model that was validated on geometries from different
livers. Here, though, the limitation stemmed from the fact
that only a very reduced displacement set was considered.

In sight of the current state of the art, the main ob-
jective of this work is to develop a data-based model able
to simulate the biomechanical behavior of any liver, sub-
jected to any force, with sufficient accuracy and in real
time.

On one hand, for the definition of sufficient accuracy, a
3mm threshold was set for the Euclidean error (11). On
the other hand, real-time implies that the simulation is
able to run at least at 25Hz, while for haptic feedback
applications, real time is considered only for frequencies
higher than 300Hz (12).

In addition to the main ML model (applicable to any
liver), three more ML models will be developed in or-
der to show that this procedure could also be used for
very high precision scenarios, multiple force interactions,
or even scenarios where the material properties of the liver
are variable.

A remarkable contribution included in this work is the
development of an algorithm able to provide a natural
parametrization of the geometry of any liver in only a few
variables. Moreover, a simple yet powerful modification
to the Coherent Point Drift (CPD) algorithm, which sig-
nificantly improves its performance when the registered
geometries differ substantially, is employed.

The work layout is as follows. First, Section 2 introduces
the relevant details regarding the research development, fo-
cusing on data sources, data processing, FEM simulations
and ML models training. Then, in Section 3, the results
are presented and discussed. Finally, Section 4 summarizes
the main conclusions drawn form the work, and suggests
further lines for research.

2. Experimental setup

2.1. Data acquisition

The Computed Tomography (CT) images used in this
project came from two main sources. The first image set
(OWN) was provided by Hospital La Fe, in Valencia, and
consists of a total of 24 abdominal CT images with their
respective segmentation mask (a binary 3D image) for the
liver (Figure 1a).

The second set (LITS) comes from the 2017 Liver Tu-
mor Segmentation Challenge (LiTS)(13). This was a com-
petition organized by MICCAI 2017 in conjunction with
ISBI 2017 whose objectives were the automatic liver seg-
mentation, tumor segmentation, and tumor load estima-
tion. This dataset is publicly available and consists of 130
scans of abdominal CT images from six different medical
centers with their respective segmentation of the liver and
its tumors (Figure 1b).

(b) LITS dataset

Figure 1: Some liver masks of the OWN (a) and the LITS (b)
datasets.

2.2. Data processing

Once all the images were acquired, they were resized,
put in a same frame of reference, cleaned, and meshed.
Matlab 2018a was used for all the image processing steps,
while Simpleware’s ScanlP was used for meshing. All these
steps were completely automated and can, therefore, be
easily applied to new images should they become available.

Firstly, the masks were resized (using cubic interpola-
tion) so that the voxels had a size of 1mm in all three di-
mensions. Secondly, some masks were flipped along some
axis or some axes were swapped, so that they all shared the
same axis configuration. Thirdly, all masks were moved to
a 400 x 400 x 400 image and their centroid set to the posi-
tion (200, 200,200). All this processing was necessary due
to the multiple sources that the images came from. Ad-
ditionally, images with a voxel size coarser than 2.5mm
along any dimension were discarded.

At this point, it was decided to discard some outlying
liver geometries (15 out of 152) which would probably con-
found the model. The discarded livers were chosen by



visual inspection before any further processing was per-
formed.

The next step was to clean the images to avoid mesh-
ing issues or later convergence problems. On one hand,
some segmentations suffered from artifacts (Figure 2 left)
and noise which was not a result of the actual geometry
of the liver, but rather a result of the employed automatic
segmentation method. To solve this issue, an opening fol-
lowed by a closing morphological operation was applied,
using a spherical structuring element with a radius of three
voxels.

200 250 300 200 250 300

(a) Original (b) After cleaning

Figure 2: Cleaning of the binary mask based on an opening-closing
morphological operation. Circles highlight areas where some of the
artifacts appear.

On the other hand, only a few masks had a segmented
hepatic tree. Therefore, in order to homogenize all images,
it was decided to fill in the cavities left by the segmented
ducts, by means of further morphological operations (Fig-
ure 3).

Figure 3: The hepatic tree (in blue) is automatically detected and
filled in.

The final step was meshing all livers. This could be
automated by using ScanlIP scripting capabilities. The
resulting meshes had 11,736 & 3,599 nodes (Figure 4).

2.3. FEM simulations

FEM is a numerical method for finding approximate so-
lutions for a particular field ¢ (such as the deformation
field) on an arbitrarily shaped geometry (such as that of
any liver) given a particular set of boundary conditions
(restrictions on how the liver interacts with its surround-
ings). This is achieved by discretizing this geometry in

a set of finite elements and finding the solutions of the
field only for the nodes that comprise it, thus reducing the
degrees of freedom of the problem (14).

The usual formulation for the elastic problem is based
on variational methods. If an energy balance is applied on
the body of interest, Equation (1) is obtained:

I, =11, = W, (1)

where II, is the total potential energy of the system, Il
stands for the energy stored in the deformed structure and
W, represents the work exerted by the forces acting upon
it.

In virtue of the Minimum Total Potential Energy The-
orem, the total potential energy II, will be minimum at
the equilibrium, namely, for a particular displacement field
{u} (which will be solution) for which all the differential
equations and boundary conditions are simultaneously sat-
isfied. Therefore, if the solution is found when II,, reaches
a minimum, then it must also be true that its derivative
with respect to the system parameters (or degrees of free-
dom) {u} must also be null, as Equation (2) shows:

6({u})
Since the field {u} has been discretized, the solution
must only be found for a finite number of points u;.
——— =0 3
o) (3)
Developing Equation (3), a solution for u; can be found.
When a solid body is subjected to a large deformation
under a comparatively small load, the relationship of po-
sitions in deformed and undeformed configurations is de-
scribed by a deformation gradient tensor F:

3 Fi1 Fi2 Fi3
F= Z Aoy @ Ny := [Fg; Faz Fog (4)
a=1 F31 Fi3 Fgs

Where Ai, A2 and A3 are the stretches in the three prin-
cipal directions; and A = 14+ dL/L with L being the unde-
formed length. N7, N2, N3 and n;, ny, ng are material vec-
tor triads and spatial vector triads, respectively. The left
Cauchy Green deformation tensor, B, describes the strain,
while the Cauchy stress tensor T, describes the stress:

3
B=FF" =) \n,®n, (5)
a=1
B SW W,
Where:
I, =trB (7)
1

I, = 5[(757«3)2 — tr(BB)] (8)
13 = detB (9)



Figure 4: Examples of FE liver meshes.

Where I, Is and I3 are strain invariants. The hydro-
static pressure p is constitutively indeterminate, and hence
it is obtained form the underlying equilibrium and bound-
ary conditions of the particular problem. Based on the
isotropic assumption, the strain energy density function
W is expressed as function of the strain invariants (15; 16):

W =W(l, I, I5) (10)

Alternatively, on the basis of the Valanis and Landel hy-
pothesis (17), W can also be expressed directly as a func-
tion of the three principal stretches, namely A1, Ao and A3.
A rigorous mathematical interpretation is available (18) to
show that both properties are equivalent.

2.8.1. Biomechanical model

The next step was to choose a suitable constitutive
model for the liver. The main tissue found in this organ
is the parenchyma, which in its most general form can be
considered a visco-poro-hiperelastic material. Moreover,
the hepatic tree is comprised of a different material, which
should be independently characterized. Finally, some au-
thors also take into account the presence of a collagen
capsule wrapping the parenchyma, known as Glisson cap-
sule (19).

Concerning the characterization of the parenchyma’s hy-
perelastic behavior, most recent studies have found a first
order Ogden model (20) specially well suited, requiring
only two empirical parameters (21) as elastic constants
for its construction. Regarding viscoelasticity, the bib-
liography on the topic shows that traction tests at dif-
ferent deformation velocities give rise to different Young
moduli (20), thus proving it usefulness. Regarding the
porous properties of the parenchyma (which should be
able to model the capilarization of the liver), its inclu-
sion in a FEM model still remains marginal (21). More-
over, some authors model the hepatic tree as a set of truss
elements (4), or as a different mesh with its own mechan-
ical properties (22). Finally, with respect to the Glisson
capsule, few authors (23) consider its inclusion in FEM
models due to the difficulty of segmenting it in medical
images and/or estimating its material properties.

Following the latest trends, a first order Ogden model
was used to model the mechanical behavior of the liver
parenchyma. Viscoelasticity was not taken into account
based on the hypothesis that the applied forces were slow

enough for such effects not to be of importance. Thus,
the performed simulations were static. Finally, the model
was considered homogeneous and the porosity effects were
embedded into the elastic properties of the Ogden model.
Regarding the hepatic tree or the Glisson capsule, both
were assimilated by the parenchyma due to the lack of
segmentation masks for these elements.

The deformation energy density function W for an Og-
den elastic model is given by Equation (11):

N
— Hk oy ar ag ag 11
w ;ak(kl + A5+ A54) (11)

where N is the order of the model, p and ay are empirical
parameters of the material and Ay, A2, A3 are the principal
stretches.

The values for the material parameters u; and a; were
obtained from a set of 30 material properties described
in (20). A default material was chosen as the median of
all material properties in said paper:

ap = 10.06, u; = 4.1kPa

For the compressibility modulus (Kjy), a value of 100
times the value of p; was selected to ensure a quasi-
incompressible behavior, which is a common choice for soft
tissue modeling.

2.83.2. Boundary conditions

From the perspective of the boundary conditions (BC),
the liver is in contact with multiple organs and structures,
thus rendering the task of finding anatomically correct BCs
extremely challenging.

The most usual solution found in the literature is to
resort to simplified BCs, where some nodes are considered
fixed and the rest are left free. Following this trend, many
authors fix the nodes in contact with the cava vein or with
the falciform ligament (21; 24). Others do not consider
the falciform ligament as a restriction and resort to only
fixing the cava vein (22).

Typically, even more simplified BCs are considered, es-
pecially when the objective is to prove the feasibility of
a new method rather than to make an anatomically cor-
rect simulation of the organ and its interactions within the
body. E.g.: in (25) and (23) palpation was simulated with
the livers laid against a flat surface, hence sufficing to fix
the nodes in contact with this surface.



For this work, the liver was considered attached only to
the cava vein. Therefore, a null displacement boundary
condition was applied to the liver nodes in contact with it
(Figure 5).

x . y

Figure 5: Some livers with BCs applied (in green).

2.8.3. Applied forces

The last step before launching the simulations consisted
in defining the forces to be applied to the liver. In the
literature, cylindrical indenters are typically pressed on to
the surface of the organ, which also allows for a direct
comparison of the simulation results with previous ex vivo
identation tests (23). Other authors consider indenters
with an infinitely small radius, hence the forces becoming
nodal forces (25).

The forces in this work were also considered to be nodal,
and they were applied on a random node of the liver, with
a random orientation, and with a magnitude of 0.4N (a
similar magnitude to the forces applied in (23) or (25)).
The objective was to provide a simple but challenging set
of forces. Nonetheless, for a real-world application, the
simulations could be performed with any kind of forces
originating from any sort of surgical tool deemed necessary.

2.8.4. Performed simulations

Following the proposed objectives, the mechanical be-
havior of the liver was simulated in four different scenar-
ios.

Table 1: Simulated scenarios

Random Two Multiple  Multiple  Simulated
D .
forces forces mater. livers forces
1 Yes No No No 400
2 Yes Yes No No 1,500 (x2)
3 Yes No Yes No 3,000
4  Yes No No Yes 10,200

In Table 1, a summary of the setup for each simulated
scenario is presented. In the first scenario (the simplest
one), only one liver geometry was considered, upon which
400 different forces, each one with a random position and
orientation, were applied, hence adding up to a total of
400 deformed livers, stemming from 400 different FEM
simulations.

The second and third scenarios also employed only one
liver. However, in the second scenario two random simul-
taneous forces were considered in each simulation (instead

of just one), while in the third scenario multiple material
properties were contemplated. In contrast to the first sce-
nario, more simulations were needed to account for the
growing casuistry.

Finally, the fourth scenario posed the biggest challenge,
as it was designed to work on any liver geometry.

All the simulations were performed with FEBio (26) and
automated with Matlab. The analysis type was static
(since no viscoelasticity was finally considered), and the
force was applied in ten steps to help the FEM converge
when large deformations are present. Consequently, for
each simulation ten results were obtained, with every vari-
able being identical except for the magnitude of the force,
thus allowing for a tenfold growth in the number of simu-
lations at no additional cost.

2.4. Training of the ML models

2.4.1. Feature selection for the ML models

Before being able to use the simulation data to train a
ML model, it should be expressed in terms of an input
matrix X and an output matrix Y. Then, a ML algo-
rithm would be trained to learn the mapping X — Y as
accurately as possible.

The input matrix X was of dimensions: (S* N *T) x F'
where S stands for the number of simulations (e.g., 400 for
the first scenario), N stands for the number of nodes (~
12,000), T stands for the number of successfully simulated
time steps (usually ten), and F' is the number of features.
Thereby, every row (each sample) corresponded to a node
of the mesh, and each column contained several features,
which are described as follows:

e z,y,z: Coordinates of the considered node

£, fY, f#: Force vector

e n% nY n*: Coordinates of the considered node to the
node where force was applied.

T Y z euc. . 1 1
o ins Gorins Qonims Aot Distance from the considered

node to the closest fixed node in z,y, z and total Eu-
clidean distance.

o Al ans A cans ean, Aos- .« Distance from the con-
sidered node to the centroid of all the fixed nodes in

x,y, z and total Euclidean distance.

o di v lonas Woadr Ueny: Distance from the considered
node to the node where the force was applied.

® ai1,as,...,a07: Additional features that parametrize
the liver geometry (to be explained in Section 2.4.2).

In addition to the previous features, for the second
scenario (where two simultaneous forces were applied)
further features related to the second force, with the
exact same meaning as for the first force, were included:
( fnin)Q’ (d')l’lnzn)27 ( 1Znin)2’ ( fr?icrl)?? (dfnean)% (dynean)%
(dfnean)% (d%ecdn)za (dfoad)% (d?oad)27 (dlzoad)Q’ (dfg;d)g.



Moreover, this allowed for the number of simulations to
be artificially doubled just by swapping the values of the
features associated to the first force with those associated
to the second one.

Finally, the output matrix Y contained as many rows as
X, as well as the following three columns:

e d* dY,d*: Node displacement in z,y, z.

2.4.2. Liver geometry parametrization

For the ML algorithm to be able to generalize to dif-
ferent livers, the whole liver geometry should somehow be
introduced into each sample of X. To address this chal-
lenge, two consecutive subproblems must be solved:

a) Express each liver geometry as a vector of N features,
such that each feature has the same meaning for all
livers.

b) Apply dimensionality reduction techniques that re-
duce the vector from N to n features such that
n << N.

Regarding the first subproblem, a typical approach con-
sists in directly using the binary mask flattened into a
vector. However, this method assumes that two voxels in
the same location from two different livers have the same
meaning or, in other words, represent the same feature,
which is often not true.

Here, a novel and effective approach is proposed. Firstly,
the nodes of a model liver M (which was chosen before-
hand for subjectively being the most regular), were regis-
tered by a soft registration algorithm to the nodes of each
liver m to obtain M, (M registered). Secondly, the dis-
placement field that the nodes of M underwent to become
M, was obtained. Namely: field = M, — M.

Then, M, could be flattened to express it as vector,
where each element has the same meaning for all livers:
how much each node of M must be displaced in x, y or z
in order to become M, (where M, is an approximation of
the original geometry m).

The bottom right plot of Figure 6 shows that this regis-
tration process was successful, since M, approximates m
satisfactorily. A slightly coarser mesh was used to speed
up the registration process.

For the non-rigid registration, a modified version of CPD
was employed. CPD is a point set registration algorithm
that finds the spatial transformation that best aligns two
point sets and/or finds the correspondence between the
points of both sets (27). CPD can perform both rigid
registration (the transformation is limited to some combi-
nation of translation, rotation and scaling, amounting to a
total of six parameters), and non rigid registration (a non
linear transformation of any number of parameters).

The proposed modification consists in applying sched-
uled changes to the regularization parameters 8 (related
to the width of a Gaussian smoothing filter) and A (trade-
off between fit and regularization), which are gradually

; - -50
y 100 50 y

(a) Model liver M

(¢) M registered to m: M,  (d) m and M, superimposed

Figure 6: An example of liver registration

reduced as the algorithm converges, thus refining the reg-
istration by going from low to high spatial frequencies.
This change, although relatively trivial, allows the algo-
rithm to significantly outperform its unmodified counter-
part, specially for problems where the input and output
shapes differ substantially.

The values used for these two regularization parameters
can be found in Table 2, and a visualization of the conver-
gence process in two different cases can be checked in in
Figure 7.

Table 2: Regularization values 8 and X\ for CPD depending on the
relative tolerance of the algorithm; when the minimum relative tol-
erance is surpassed, the next stage is activated

Minimum relative tolerance

Stage to switch to next stage B A
1 - 8 6
2 5x 1073 2 1.5
3 1x 1073 1.2 09
4 1x107% 0.6 0.45
5 1x107° 0.3 0.225

Concerning the second subproblem, PCA was used to
reduce the dimensionality of this set of geometry charac-
terizing vectors to only a few parameters. PCA makes
a transformation of a possibly correlated data set into a
non correlated orthogonal base, whose variables are called
principal components (PCs), and are ordered by amount
of variance explained. If the N variables in the original
space are highly redundant, then it is possible to compress
high dimensional data to only a few variables n (such that
n < N) by applying PCA and taking the first n PCs as
the new variables.

Figure 8 shows the reconstruction of the original liver
geometry given the first 27 PCs.

Figure 9 shows (for all the livers aggregated) the Inter-
section over Union (IoU) and the DICE scores (which are



Figure 7: Convergence of the modified CPD algorithm for two different livers. First image to the left represents the initial state, while the
rest were captured at the end of each stage, right before switching to the next. As it can be seen, the registration is extremely successful even
when the geometries differ significantly. The blue point cloud corresponds to the nodes of the model liver M, as they mutate to become M,
an approximation of the arbitrary-shaped liver m, whose nodes are given by the red point cloud.

40
20

-60

0 50

y ) X
Figure 8: Reconstruction (in red) of the original geometry (in blue)
given only the first 27 PCs for two different livers

both intersection scores), as well as the accumulated rel-
ative variance given the first n PCs (the rest were set to
zero).

0.4 n
loU score
0.2 DICE score 1
Accumulated relative variance
0 I I I I I
0 20 40 60 80 100 120

Number of considered Principal Components

Figure 9: IoU score, DICE score and accumulated relative variance
depending on the number of PCs used to reconstruct the geometry

Therefore, these 27 PCs will be the 27 features
(a1,as,...,a27), that will appear in matrix X to help
parametrize the liver geometry. If the ML algorithm is
powerful enough, it should be able to learn the meaning of
each parameter and use it to internally reconstruct an ap-
proximation of the shape of each liver. The precise number
of PCs to include in X was set to 27 by means of hyper-
parameter optimization (view Section 2.4.3).

Finally, the proposed approach was compared to the few
similar approaches found in the literature. Some works
on the problem of liver geometry parametrization can be
found in (28) or in (29). In the first paper, the authors
use Locally Linear Embedding (LLE) on meshes gener-
ated by applying a rigid transformation (six parameters)

to a single initial mesh. LLE successfully compresses this
transformation into four parameters, while keeping most
of the variance of the geometry. In the second paper, a
similar experiment is conducted, but this time using Ker-
nel PCA (kPCA) instead of LLE, and applying an affine
transformation (twelve parameters) to the initial mesh, in-
stead of a rigid transformation. Although the results were
very promising in both papers, the first subproblem is not
directly addressed in any of the them, thus rendering both
approaches ineffective for arbitrary liver meshes.

The method here proposed can be thought as a gener-
alization of the previous methods, in the sense that the
proposed transformation is not limited to being rigid or
affine; instead, it is a general nonlinear transformation.
This approach can therefore be applied to any geometry,
not only to simple transformations of a single model mesh.

2.4.3. ML model and hyper-parameter optimization

Once the input and output matrices (X and Y, respec-
tively) were built, the next step was to train a ML al-
gorithm able to approximate Y given X with sufficient
accuracy, and in real time.

Regarding the kind of ML algorithm to use, two main
contenders were tested: a Feedforward NN for regression
and a Random Forest (RF) regressor (which is an ensemble
of Regression Trees) (30). Even though the second algo-
rithm was successfully employed in (11), for this particular
problem the NNs showed a vastly superior performance in
the preliminary tests, and were therefore finally chosen to
conduct all the experiments.

The feedforward NNs used in this work are super-
vised learning algorithms able to learn nonlinear mappings
(models) between certain inputs (such as the coordinates
of the node, the force orientation, the distance to the force,
etc.) and certain outputs (such as the displacement in
x,y, z of a node).

Figure 10 offers a visual representation of the algorithm
(for a single hidden layer, and ignoring biases) and in-
troduces some notation. To compute the output of the
network Y given the input X, Equations (12) and (13) are
used:

Z=XxW (12)



Figure 10: A feedforward neural network comprised of an input layer
X, a hidden layer Z, an output layer Y and the weights (W7, Wa)

Y = f(Z) x W, (13)

where f is a nonlinear activation function, Wi and W5 are
the weights of the network, or in other words, the parame-
ters that the NN must learn, and X, Y contain the inputs
and the actual outputs in matrix form, respectively. Thus,
a NN can be seen as stack of linear transformations with
nonlinear activation functions in between. The NN could
have as many hidden layers as needed, but only one has
been considered in Figure 10 for the sake of simplicity.

To train the NN to approximate a certain function, some
parameters (or weights) 6 = {W7, Wa} must be found in
order to minimize a certain cost function J(6) such as the
Mean Squared Error (MSE):

J(0) = grandmean((Y (9) — Y)?) (14)

where grandmean represents the mean across all elements
of the squared errors matrix (Y (0) — Y)2, and the expo-
nentiation is applied element-wise.

To minimize J with respect to the parameters 6, Gradi-
ent Descent (GD) is typically used (31):

0=060—puVeJ(0) (15)

GD is an iterative algorithm that at each step pushes
the parameters 6 a small amount p in the direction oppo-
site to gradient Vy of J(0) with respect to 6, thus finally
converging to a minimum for J (31).

NNs are extremely powerful nonlinear approximators
that tend to overfit the training set, therefore jeopardiz-
ing the generality of the model to new samples that the
network has not trained with. To prevent this problem,
multiple techniques can be used, such as: adding L2 regu-
larization to the parameters, adding gaussian noise to the
inputs, or by using dropout (32). For all the tasks related
to NN training, the Python library Keras (33) running on
top of Tensorflow (34) was employed.

The objective at this point was to optimize the hyper-
parameters of the NN model (such as the NN architecture,

the learning rate, the batch size, etc., as well as other
variables that affect performance such as the number of
PCs to use) in order to reduce the error in the validation
set.

For the first three scenarios, the validation set contained
a randomly chosen ~ 10% of all simulations, with a dif-
ferent applied force each. Thus, the performance of these
models was evaluated on forces that the NN had not been
trained with.

For the last scenario, where multiple liver geometries
were considered, the validation set contained all the sim-
ulations corresponding to a randomly chosen ~ 12.5% of
all livers. Hereby, it is possible to assess the behavior of
the model for livers that it has never seen before.

To obtain the final results (view Section 3), k-fold cross
validation was employed, where k = 10 for the first three
scenarios and k = 8 for the last scenario.

The hyper-parameter optimization was manually con-
ducted, until the optimal values shown in Table 3 were
reached. Rectified Linear Unit (ReLU) activation func-
tions and MSE cost function were always employed, and
noise injection (which consists in adding a random normal
noise to the inputs as a way of regularizing the network)
was applied on the last scenario only.

Regarding the training, the learning rate was reduced
tenfold after the second epoch without improvement on
validation loss for the first three scenarios, while for the
last one, the learning rate was reduced by a factor of 1.5
after each epoch. For all scenarios, training was stopped
if the loss in the validation set stopped improving.

Finally, it must be noted that all the data coming from
the simulations was randomly sampled before being used
to train the NN. The percentage of data remaining after
the sampling is also shown in Table 3. This processing was
performed to speed up the training process at practically
no cost in performance. In fact, the simulation data is
very redundant due to two main reasons. First, for nodes
positioned away from the node of application of the force,
the field is very similar between neighboring nodes. Sec-
ond, each force was applied in ten steps (at an increasing
magnitude), thus providing very similar results between
consecutive steps.

3. Results and discussion

In this section, the results for each of the four models
will be presented and it will be discussed if both sufficient
accuracy and real-time inference were achieved. All final
metrics have been computed using all the samples from all
k validations sets concatenated.

3.1. Scenario 1: Base model

The first scenario is the simplest one, since only one
liver, one material and one arbitrary force is considered
(although the force may have any orientation, any magni-
tude, and be applied to any node). Only 360 simulations



Table 3: Optimal values found for the hyper-paramaters of the model in each scenario.

. . Batch Noise L2 Learning Number %
Scenario Architecture Dropout . . .
size variance  requlariz. rate of PCs  sampled
1 (base case)  (500,300,100,50) (0.3,0.5,0.6,0.7) 512 0 0 2.5 x 10~ 0 50%
2 (two forces) (500,) x 5 (0.5,) x5 256 0 3x107° 1.25x107* 0 50%
3 (30 materials) (500,) x 5 (0.5,) x 5 512 0 0 2.5 x 107* 0 25%
4 (102 livers) (500,) x 5 (0.5,) x 5 4096 0.1 2x107*  1x1073 27 12%
were employed to train this model, while the remaining 40
made up the validation set.
The numerical results for all scenarios have been com- 06 I
piled in Table 4. A naive model (which always outputs a
constant value calculated as the average of all the training 27
outputs) was included for comparison as well. Z0a
Analyzing the first row of Table 4 (which corresponds £
to this scenario), the first column shows the mean ab- éoa_
solute error (MAE) for each output coordinate (z,y, z), g
followed by the mean euclidean error (MEE), which rep- 02
resents the mean distance between the predicted and the
real displacement fields. All these errors are extremely 0.1
low, staying around 0.12mm for all three coordinates, and
below 0.25mm for the MEE. For reference, both the dis- 0.0 . . . .
cretization error of the original mask as well as the maxi- AEinx(mm)  AEiny(mm)  AEinz(mm) EE (mm)

mum ScanlP’s mesh error are around 0.5mm (% the voxel
size). Also, the maximum displacements for this particular
scenario are above 20mm, as it can be seen in Figure 12,
which will later be discussed.

Continuing with Table 4, the following two columns
show the percentage of samples with an Euclidean error
(EE) below lmm and 3mm (which was set as the objec-
tive threshold). As it can be observed, the results are also
very good in this regard, since 99.96% of the samples man-
age to stay below the 3mm error limit, while 98.26% stay
below 1mm. Finally, the last three columns show the cor-
relation coefficients for all three output coordinates, which
for this scenario are almost unitary, proving the notable
performance of the proposed model.

Figure 11 shows the absolute error (AE) distributions
in x, y and z, as well as the Euclidean error (EE) distri-
bution. As it can be noted, coordinate errors manage to
stay under 0.25mm, while Euclidean errors remain below
0.6mm, excluding outliers. These errors are well below the
maximum systematic error of 1mm.

Finally, Figure 12 shows how the predicted Euclidean
displacements (in red) follow very closely the actual eu-
clidean displacements (in blue), even when large displace-
ments are present.

3.2. Scenario 2: Two simultaneous forces

For the second scenario, two simultaneous random forces
were applied in each of the 1,500 simulations. This is a
rather complex situation, since the non-linearities prevent
the resulting deformation field from being a simple addi-
tion of the independent effects of each force.

Figure 11: Scenario 1: Box plot of the absolute errors (AE) in z, y, z,
as well as the euclidean error (EE). Outliers are excluded.

As it can be seen from the second row of Table 4, the re-
sults are still accurate, achieving a 99.84% of the samples
within the error threshold of 3mm. It is worth mentioning
that the naive model performs much worse in this scenario
as it did on the previous one, suggesting that the deforma-
tion magnitudes are significantly larger, which makes them
more difficult to predict. The box plots in Figure 13 show
that the euclidean error distribution mostly stays below
1mm.

Finally, form the scatter plot (??), it can be checked
that, in fact, the deformations are larger as compared to
the previous case. Nevertheless, the model still achieves a
very low dispersion in the predictions.

3.8. Scenario 3: 30 materials

The third scenario was designed to test the learning abil-
ities of the model against the change in material proper-
ties. For each of the 3,000 simulations, one of 30 different
parameter sets was randomly sampled, thus amounting to
a total of ~ 100 simulations per material.

Once again, the third row of Table 4 shows that very
good results were achieved. The percentage of samples
below the 3mm mark falls slightly to 98.46% due to the
presence of many more outliers. Indeed, a few very elastic
materials give rise to extreme deformations when the force
acts upon certain parts of the liver. Figures 14 and 15 con-
firm these conclusions; in fact, the box plot of Euclidean



Table 4: Results for all scenarios: Mean Absolute Error (MAE); Mean Euclidean Error (MEE); percentage of predictions with a Euclidean
Error (EE) below 1mm and 3mm; and correlation coefficient between predicted and actual values.

MAE (mm) % of samples Correlation coefficient
4 . MEE
Scenario Algorithm (mm)
" y ; EE EE - y B
< lmm < 3mm
1 NN 0.1173 0.1176 0.1224 0.2389 98.2615%  99.9551% 0.9973  0.9974  0.9959
(base case) Naive  1.5828 1.5777 1.4020 3.0661 32.5021%  64.2548% - - -
2 NN 0.1862 0.1825 0.1977 0.3816 93.0551%  99.8382% 0.9967 0.9967  0.9949
(two forces) Naive  2.3247 22804 2.0247  4.4828 20.9003%  50.1540% . . .
3 NN 0.1621 0.1616 0.1548 0.3299 94.7381%  98.4644% 0.9911 0.9904  0.9900
(30 materials)  Naive 21622 2.1178  1.7933 4.2052 35.0012%  63.7634% . . .
4: Mean NN 0.4130 0.4732 0.4119 0.8643 72.4243%  95.5784% 0.9790 0.9814  0.9702
(102 livers) Naive 1.4444  1.6767 1.2993 2.9534 35.3185%  66.6061% - - -
4: Median NN 0.3377 0.3360 0.3315 0.6619 79.0198%  99.0115% 0.9828 0.9874 0.9731
(102 livers) Naive  1.6341 1.8307 1.2278 3.1332 33.7861%  63.3039% . § .
50
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Figure 12: Scenario 1: Actual euclidean displacement (in blue) and
predicted euclidean displacement (in red) for all samples, sorted by
ascending actual euclidean displacement.

errors verifies that the performance is even better than in
the first scenario (if outliers are excluded).

3.4. Scenario 4: 102 livers

The fourth scenario constitutes the main outcome of this
paper. The objective was to train a model able to model
the biomechanical behavior of any liver presenting any ge-
ometry. To this end, the validation sets were composed
of all the simulations belonging to a ~ 12.5% of all livers.
Hence, the results show how the model performs when
tested on new livers.

For this scenario, the results were aggregated differently.
On one hand, for each of the 102 livers in the validation
set, the same metrics as in all the previous cases were com-
puted. In fact, the last row of Table 4 shows these metrics
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Figure 13: Scenario 2: Box plot of the absolute errors (AE) in z, y, 2,
as well as the euclidean error (EE). Outliers are excluded.

for a median liver (chosen as the liver with a z correla-
tion in the median). Figures 16 and 17 were obtained
for this median liver. Even though the results have wors-
ened, 99.01% of the samples still manage to stay below
the allowed error threshold of 3mm, which is an excel-
lent finding, considering that the liver under consideration
represents the median behavior of a model which was not
trained with that particular geometry.

On the other hand, the results were aggregated for all
livers by computing the the mean, which can be seen in
the fourth row of Table 4. Here, the values are not as ideal
due to the influence of some outlying liver geometries for
which the model did not perform as well. To further prove
this point, Figure 18 shows the distribution of MEE over
all the livers of all validation sets. As it can be observed,
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Figure 14: Scenario 2: Actual euclidean displacement (in blue) and
predicted Euclidean displacement (in red) for all samples, sorted by
ascending actual euclidean displacement.
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Figure 15: Scenario 3: Box plot of the absolute errors (AE) in z, y, 2,
as well as the euclidean error (EE). Outliers are excluded.

the distribution peaks at a MEE of around 0.6 to 0.7mm
(precisely where the median liver lied), but some outlying
livers with poorer performance drag the mean of the MEEs
distribution towards higher values.

3.5. Real time performance

Next, the ability of the model to work in real time will be
assessed. To make an inference (get the predicted output
Y) with a feedforward NN, two steps are required: build
the matrix X, and propagate it through the network.

Building X is extremely quick, since most of its features
can be computed offline, except for the distance to the
node where the force was applied, as well as the force itself.
Nonetheless, calculating these features can be considered
immediate.

Propagating X through the NN consists of a series of
matrix multiplications followed by non-linear activations.
Matrix multiplication can be done very efliciently using
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Figure 16: Scenario 3: Actual euclidean displacement (in blue) and
predicted euclidean displacement (in red) for all samples, sorted by
ascending actual euclidean displacement.
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Figure 17: Scenario 4: Box plot of the absolute errors (AE) in z, y, z,
as well as the euclidean error (EE). Outliers are excluded.

GPUs, allowing for an improvement in speed of several
orders of magnitude with respect to a CPU. The ReLU
non-linearities used in this paper are also extremely simple,
and have a negligible impact on the final cost.

Oddly enough, the highest computational burden would
be the cost of transferring the X matrix from computer
memory to the GPU memory, but for such small X ma-
trices, this is is not a problem either.

Finally, for a real application, it would not be necessary
to compute the displacement field for all nodes, but rather
for those which are of interest, such as the visible surface
of the liver.

In a 2013 laptop equipped with a two core i5 proces-
sor and a low end GT 840M GPU, the time required for
building X and propagating it through the NN to get the
displacement of a liver is around 2ms for the simpler first
scenario, and around 5ms for the last scenario (for which
the network architecture is more complex). Using slightly
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Figure 18: Scenario 4: Actual euclidean displacement (in blue) and
predicted euclidean displacement (in red) for all samples, sorted by
ascending actual euclidean displacement.
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Figure 19: Scenario 4: Distribution of MEEs for all the 102 livers in
the eight validation sets.

better hardware and a more polished implementation, it
would be trivial to achieve inference times in the order
of hundreds or even tenths of microseconds, thus enabling
the model for its use in haptic feedback systems, which
require working frequencies above 500H z.

3.6. Interactive liver manipulator

To conclude the results section, an interactive liver ma-
nipulator will be presented. It has been developed to vi-
sually assess the correct behavior of the model, as well as
to prove its real time capabilities.

Figure 19 shows a video of this software being used
on the last scenario, on the median liver. It must be
emphasized that this is a liver that the model was not
trained with. Watching the simulation, it is evident that
the displacement field that the liver undergoes given ar-
bitrary forces corresponds with the intuitive expectations,
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thus proving that the behavior is (at least visually) cor-
rect. Furthermore, it can be seen form the video that the
time required for inference is usually around the previously
stated 5ms.
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Figure  20: (Online version: VIDEO FILE:
figures/results/video.mp4) Video showing the interactive
manipulator simulating the mechanical behavior of the liver of
median validation performance given an arbitrary force.

(Print version) Capture of the interactive manipulator simu-
lating the mechanical behavior of the liver of median validation
performance given an arbitrary force.

4. Conclusion

Summarizing, the main objective of building a general
model able to simulate the mechanical behavior of any
liver, given an arbitrary force with sufficient accuracy and
in real time has been achieved. However, other options
exist too. For instance, the model in the first scenario
achieves higher levels of accuracy, as compared to any liver
in the last scenario. In practice, for applications requiring
such precision, it would be sensible to simulate a partic-
ular liver geometry under a few hundred forces and train
a NN on top of it, as part of the pre-operative process.
For instance, simulating the mechanical behavior of a liver
under 200 different forces (which would be almost as ac-
curate as with 360 forces), and training a NN model on
these simulations, takes around two hours in a server with
an eight-core Intel Xeon E5-2620v4 CPU and a mid tier
Nvidia Maxwell GPU.

Furthermore, the capability of the method to generalize
from situations where multiple forces or different material
properties are at play has been shown.

Finally, a novel geometry parametrization algorithm was
developed, which allows the NN model to generalize to un-
known geometries. Moreover, a simple but effective mod-
ification to the CPD has been suggested, which enables
this algorithm to achieve excellent registration results even
when the registered geometries are drastically different.



5. Further work

Although the proposed methods proved successful, some
areas of improvement can be detected.

First, the geometry parametrization technique, despite
effectively allowing the NN to generalize to any liver geom-
etry, is still approximate. A possible further research line
would be to use convolutional layers to input the original
segmentation mask directly into the NN.

Regarding convolutional NNs, a topic of active research
is the development of automatic segmentation algorithms,
which take the CT or Magnetic Resonance (MR) image
and directly compute a segmentation mask.

Finally, finding accurate boundary conditions and con-
stitutive models is still a challenge in biomechanics. Par-
ticularly, the improvement of techniques for in-vivo iden-
tification of elastic parameters is fundamental for the de-
velopment of high-accuracy patient-specific models.
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