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Abstract

Relationships between environmental factors and oscillations in jellyfish abundance, espe-

cially in the early life stages, could help to interpret past increases and also predict scenarios

in a changing future. For the first time, we present cubozoan spatial and temporal distribu-

tions in the earliest stages and their relationships with different factors. Abundances of Car-

ybdea marsupialis medusae showed high interannual variability from 2008 to 2014 along

the Dénia coast (SE Spain, W Mediterranean). During 2015, samples were collected from

11 beaches along 17 km of coastline, 8 times from January to November in order to deter-

mine the effects of environmental factors on the distribution of juvenile C. marsupialis. Juve-

niles (� 15 mm diagonal bell width) were present from May to July, with more sampled near

shore (0–15 m). Most of them occurred in June when their numbers were unequal among

beaches (average 0.05 ind m-3, maximum 6.71 ind m-3). We tested distributions of juveniles

over time and space versus temperature, salinity, nutrients (N, P and Si), chlorophyll-a (Chl-

a), and zooplankton abundance. Temperature and cladocerans (zooplankton group) were

significantly positively correlated with juvenile distribution, whereas Chl-a concentration was

weakly negative. By contrast, in 2014, high productivity areas (Chl-a and zooplankton) over-

lapped the maximum adult abundance (5.2 ind m-3). The distribution of juveniles during

2015 did not spatially coincide with the areas where ripe adults were located the previous

year, suggesting that juveniles drift with the currents upon release from the cubopolyps. Our

results yield important insights into the complexity of cubozoan distributions.

Introduction

The relationships between environmental variables and spatio-temporal distributions of the

developmental stages of jellyfish are decisive for revealing their dynamic population and
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ecological niches. Despite increasing interest in the ecology of jellyfish in recent years due to

various factors, such as their negative effects on human activities [1,2] and human health [3],

quantitative studies on cubozoan medusae distribution are rare [4]. This is probably because

of the infrequent observation of some species, which generally occur in low numbers and

show great variation in abundance over a short period of time [4]. There are some spatial stud-

ies indicating that polyps and juveniles of Chironex fleckeri may inhabit estuaries influenced by

freshwater, while adults actively swim to the open ocean, but remain very close to the coastline

[5,6]. Between the coastline and the Great Barrier Reef, the abundances of adult cubozoans

(Carybdea xaymacana, Carukia barnesi, Alatina sp., Copula sivickisi and C. fleckeri) changed

across the shelf on scale of kilometres [7].

Carybdea marsupialis (Linneo, 1758), the only box jellyfish species to date described in the

Mediterranean Sea, has been regularly observed in high densities in the Adriatic Sea since the

1980s [8,9]. Recent genetic and morphological studies have shown that records referring to C.

marsupialis in tropical and subtropical regions in the Atlantic Ocean belong to C. xaymacana
in the Caribbean and C. branchi in the South African seas, which suggests that C. marsupialis
is endemic to the Mediterranean Sea [10].

Along the Spanish Mediterranean coast, C. marsupialis adults were first detected in high

abundance (maximum 2.65 ind m-3) in shallow waters (~1 m depth) off Dénia in the province

Alicante during summer 2008 [11]. After 2008, abundances of cubomedusae in this area have

shown high inter-annual variability. For instance, the mean density of C. marsupialis in 2010–

2011 was 0.8 ind m-3 [12], but 0.17 ind m-3 in 2013 [13]. More recently, this species has been

found in Malta [14] and off the east coast of Tunisia, with an average of 1.1 ind m-3 and a max-

imum of 1.8 ind m-3 [15].

The seasonality and lifecycle of C. marsupialis have been studied in the scope of the LIFE

CUBOMED Project on the Spanish Mediterranean coast [12,13,16]. The life cycle of this

cubozoan alternates between a planktonic stage as a sexually-reproductive cubomedusa and

an asexually-reproductive benthic stage as a cubopolyp. Table 1 shows different stages of C.

marsupialis according to size, seasonality in Dénia, Alicante, Spain, and sampling techniques.

The locations of the cubopolyps are still unknown, despite extensive efforts to find them

[16]. Manipulative experiments with other cubozoan species have revealed that factors such as

salinity, temperature and food supply influence the metamorphosis of cubopolyps into cubo-

medusae [7,17–19]. These environmental factors are important in determining the life cycle of

cubozoans and, therefore, their abundances [4].

Previous analyses of the abundance and distribution of C. marsupialis at 0.5–1 m depth off

Dénia showed an inverse relationship between medusa abundance and salinity [16] and occur-

rence of this species in conditions of low salinity, high coastal productivity (Chl-a and phos-

phate) and optimal physical conditions (wind current speed and direction) [12]. Medusa

outbreaks also were linked with anthropogenic nutrient inputs (N, P and Si) and high

Table 1. Different stages of Carybdea marsupialis cubomedusae according to size, their seasonality in Dénia, Ali-

cante, Spain, and sampling technique used for their capture.

Life cycle Period Methods

Recently-detached DBW�<2 mm May-July 500-μm hand-nets and trawling

Small 2� DBW�<5 mm June-July 500-μm hand-nets and trawling

Medium 5� DBW�< 15 mm July-August 500-μm hand-nets and trawling

Adults DBW�� 15 mm August-November 1–4 mm hand-nets

�DBW: Diagonal Bell Width (equivalent to diameter for small and recently-detached box jellyfish).

https://doi.org/10.1371/journal.pone.0230768.t001
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productivity [13]. We built on these earlier works to focus on the distribution of juvenile C.

marsupialis, by use of a more detailed sampling grid that included points at different depths

in the water column and three distances from the coast to overcome the spatial restrictions

pointed out by Canepa et al. [12]. Our main objective in 2015 was to determine the relation-

ships between the abundance of juvenile C. marsupialis and the environmental variables: tem-

perature, salinity, nutrients (N, P and Si), Chl-a and zooplankton. Our null hypothesis was

that the distribution of recently-detached C. marsupialis medusae was not related to any of

those environmental factors, but instead, reflected the spatial distribution of adults in the pre-

vious year (2014).

Materials and methods

Study area

The study area comprised the coastal waters off Dénia (38˚ 50’ 33.57” N, 0˚ 6’ 24.83” E) in the

Western Mediterranean, Spain (Fig 1). Dénia is a coastal tourist town surrounded by intensive

irrigated agriculture. It presents a typical Mediterranean climate: rainy springs, mild winters

and warm, dry summers, occasionally with storms. Three rivers discharge into the sea along

this stretch of coast: the Racons, Almadrava and Alberca rivers. The Racons River is the largest

in volume and fed by runoff from citrus and rice croplands and the wastewater treatment

plants (WWTP) from the towns of Pego and El Verger North. The wastewaters from the El

Verger-Els Poblets WWTP feed into the Almadrava River, while the Dénia-Ondara-Pedreguer

WWTP discharges directly into the sea via a marine outfall located some 1300 m off Raset

beach [16]. Additionally, some areas along this stretch of coast have aquifers that discharge

Fig 1. Sampling area for Carybdea marsupialis cubomedusae off Spain in the western Mediterranean. Sampling

stations (white lines): RR: Racons River, DEV: Deveses, AN: Almadrava Norte, ACN: Almadrava Centro-Norte, ACS:

Almadrava Centro-Sur, AS: Almadrava Sur, MO: Molins, BB: Blay Beach, RA: Raset, MA: Marineta, RO: Rotas.

WWTP: Waste water treatment plant discharge point (triangles). Base image from the Instituto Geográfico Nacional

CC BY 4.0 http://www.ign.es/web/resources/docs/IGNCnig/FOOT-Condiciones_Uso_eng.pdf.

https://doi.org/10.1371/journal.pone.0230768.g001
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high-nitrate (~25–100 mg l-1) groundwaters into the sea along a narrow strip (tens of metres)

close to shore [16].

Samples were taken along 17 km of coastline at 11 beaches (from North to South): Rı́o

Racons (RR), Deveses (DEV), Almadrava Norte (AN), Almadrava Centro Norte (ACN), Alma-

drava Centro Sur (ACS), Almadrava Sur (AS), Molins (MO), Blay Beach (BB), Raset (RA),

Marineta Casiana (MA) and Rotas (RO) (Fig 1). All the sampling locations to the north of

Dénia harbour (from RR to RA) are long sandy beaches, gently sloping with patchy Posidonia
oceanica meadows. Specific features characterise certain locations: the waters around RR and

DEV are influenced by discharge from the Racons river [16]; AN, ACN, ACS and AS are sepa-

rated by stone breakwaters built in 2005; both MO and BB are very shallow sandy beaches with

rocky patches and P. oceanica meadows; RA and MA are on opposite sides of the harbour and

somewhat protected, combining sand, mud, and areas of Caulerpa prolifera; RO to the south

has a rocky shoreline with boulders and pebbles. Both MA and RO are located within the

Marine Reserve of Cabo San Antonio.

We obtained permission for sampling from the Dirección General de Sostenibilidad de la

Costa y el Mar (Ministerio de Agricultura, Alimentación y Medio Ambiente, Spain) and from

the Conselleria de Medio Ambiente of Generalitat Valenciana (regional competent authority).

Cubomedusae and zooplankton sampling and analysis

The cubomedusae were captured using plankton nets dragged parallel to the coastline. In

order to detect the first appearance of new cubomedusae, coastal sampling started in January

and used a 500-μm-mesh net to collect them, as suggested by Canepa [20].

In 2015, we took samples from each location in January, March, May, June, July, August,

October and November. We sampled at three distances from the coast: within 15 m from the

shoreline (hereinafter referred to as “0 m”) walking for 15 min at ~0.4 m s-1 and using hand

nets (length 1.5 m, mouth area 0.15 m2, mesh size 500 μm); at ~250 m and ~500 m using nets

with the same dimensions as the hand nets, but towed by a boat moving at ~0.7 m s-1 for 5

min.

The nets were equipped with flow meters (KC Denmark Digital and General Oceanics,

2030R) for the subsequent estimation of filtered water volume. At locations where the water

was more than 3 m deep, we took two samples, one from the surface and the other from close to

the seabed. Densities of adults from the previous year were obtained by the same methodology

walking on the shoreline of the beaches with hand nets in September and October 2014 (Fig 2).

The same procedures were followed for zooplankton as for cubomedusae, except nets with

200-μm mesh size instead of 500-μm were used. The zooplankton and cubozoan nets were

towed simultaneously.

Cubomedusa and zooplankton samples were preserved in the laboratory in 4% formalin

buffered with sodium tetraborate. The distance between opposite pedalia (diagonal bell width,

DBW) was measured for each C. marsupialis medusa captured [12,13,16]. An aliquot of each

zooplankton sample was taken using a box-type plankton splitter. We counted and measured

(total length) a minimum of 150 individuals per sample with the aid of a stereomicroscope

(Leica S8APO). Specimens were classified into the following groups: amphipods, cladocerans,

copepods, fish eggs and larvae, mollusc larvae, and polychaetes. Counts were standardized to

numbers m-3.

Environmental data

At each sampling location, temperature and salinity were measured using a conductivity and

temperature logger (CT, JFE Advantech) at 0 m and a conductivity, temperature and depth
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logger (CTD, Seabird Electronics 19–10) at 250 m and 500 m from the coast. Additionally, two

litres of surface and near-bottom water samples were taken at each location for subsequent

nutrient (N, P and Si) and Chl-a analysis. Water samples were collected by hand with a plastic

bottle at the surface and with a Niskin bottle (KC Denmark) at depth. Seawater samples were

kept in the dark in an isothermal cooler box with ice packs and transported immediately to the

Research Institute for Integrated Management of Coastal Areas of the Polytechnic University

of Valencia for analysis. Temperature, salinity, and Chl-a were analysed for all the sampling

months.

The nutrients from each location were analysed for January, May, July and October. Nutri-

ents (ammonium (NH4
+), nitrite plus nitrate (NO2

-+ NO3
-), phosphate (PO4

3) and silicate

(Si(OH)4) were analysed according to Aminot & Chaussepied [21]. The precision of these

methods was 5% for NH4
+, NO2

- + NO3
- and PO4

3-, but 3% for Si(OH)4. Dissolved inorganic

nitrogen (DIN) was calculated as the sum of NH4
+ and NO2

- + NO3
-. Chlorophyll a was mea-

sured using the trichromatic method, based on spectrophotometry following the methodology

described in APHA [22].

Surface current vectors were obtained at all sampling locations at 0 m. Surface current vec-

tors also were obtained at RR, ACS, RA and RO at 250 m and 500 m from the shoreline using

two drifting buoys at each station and recording their initial and final (5 min after release)

waypoints with a GPS device (Garmin 72H) [12,16].

Statistical analysis

We used the non-parametric Kruskal-Wallis test to examine significant differences in juvenile

C. marsupialis distributions among months, beaches, distances to the coast and depths in the

water column. In addition, a Tukey test (post-hoc pairwise multiple comparisons test) was

conducted when Kruskal-Wallis test results were significantly different and more than two

groups were present.

To evaluate the effects of environmental variables on the abundances of juvenile C. marsu-
pialis, we first used the Pearson correlation test to inspect the association between response

variables (i.e. avoid collinearity) [12,23]. Pairs of parameters with a coefficient > 0.5 were

Fig 2. Spatio-temporal distribution of adult cubomedusae in 2014 (September-October) and juvenile abundance

in 2015 (May-July). Data (ind m-3) in both years are from the same sampling locations (abbreviations as in Fig 1) off

Spain in the western Mediterranean. Source: own elaboration.

https://doi.org/10.1371/journal.pone.0230768.g002
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dropped from the model. The explanatory variables were explored to identify outliers. A trans-

formation (Log10) was then applied to Chl-a, DIN, phosphate (P), silicate (Si), salinity and

temperature (T) variables, because excluding the outliers would result in deficient data. The

copepod and cladoceran variables, as well as the response variable C. marsupialis, were not log

transformed.

Then, generalized linear models (GLM) with Poisson and negative binomial distributions

were fitted to the data to explore the association between C. marsupialis and environmental

parameters for all sampling locations and distances from the coastline [12,23]. The models

used a logistic-link function to assess positive fitted values and because of the high variability

of the filtered volume (15 to 75 m3), this variable was used as an offset in the GLMs [12].

The optimal models were selected using a backward strategy based on the significance of

each explanatory variable and the Akaike Information Criterion (AIC). The AIC measures

goodness of fit, evaluates the model’s complexity and penalizes an excess of parameters. The

lower the AIC, the better the model [23]. Finally, all of the optimal models selected were vali-

dated via residual analysis [24].

Statistical analyses were done using the statistical platform R version 3.3.0. Maps showing

the surface spatio-temporal distribution of each parameter were generated using SURFER

8.00, using the “triangulation with linear interpolation” method [25].

Results

Distribution and abundance of Carybdea marsupialis
Abundances of juvenile cubomedusae differed significantly among months (Table 2), with the

highest mean density in June (0.26 ind m-3; Table 3, Fig 3A). Abundances of C. marsupialis
juveniles were higher at 0 m (0.18 ind m-3) than at 250 m or 500 m (both 0.01 ind m-3)

(Table 4, Fig 3C). Juvenile abundances were higher at the surface than near the seabed (0.01 vs

0.003 ind m-3) (Table 4, Fig 3D). The large number of zero captures in autumn and winter

may have caused the lack of significant difference among locations (p-value = 0.06) (Table 2),

even though many more juveniles were captured at two sampling stations (MO and BB) than

other stations in May and June (Table 3, Fig 3B).

Juvenile abundances differed markedly among months. The first recently-detached (< 2

mm DBW) C. marsupialis appeared in May (all stations mean 0.07 ind m-3), with their peak at

station BB at 0 m (2.01 ind m-3). Their maximum abundance (6.71 ind m-3) was observed in

June at station MO at 0 m. Abundances overall were considerably lower in July, a 85% less

(0.26 vs. 0.04 ind m-3, all stations mean). C. marsupialis juveniles were practically non-existent

Table 2. Kruskal-Wallis and Tukey post hoc test results of the variability of juvenile Carybdea marsupialis distri-

bution among months, beaches, distances from shore (0, 250, 500 m) and water column (surface, depth).

C. marsupialis (ind m-3) χ2 p-value Post hoc

Month 77.18 < 0.001 �June

Beach 17.68 0.06 N.S.

Distance 47.13 < 0.001 �� 0 m

Water column 45.62 < 0.001

‘χ2’: Chi-square. Significance codes “p-value”:

‘��’ 0.01;

‘�’ 0.05;

‘N.S.’ not significant

https://doi.org/10.1371/journal.pone.0230768.t002
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in August 2015, with only two captures (all stations mean 0.001 ind m-3) and finally, no juve-

niles or adults were captured in autumn or winter (Table 3, Figs 3 and 4).

Of the 804 juveniles captured at the shoreline, recently-detached cubomedusae (756 indi-

viduals, DBW� 2 mm) were the most numerous of all sizes in May, June and July, (Fig 5).

In May, all 153 cubomedusae measured less than 2.2 mm (mean size 1.2 mm). In June, 559

cubomedusae were captured, with a mean DBW of 2.0 mm; the largest one measured 6.2 mm

detected at station MA. The widest size distribution was in July (92 individuals with a mean of

2.3 mm), when two of measured 9 and 10 mm at station MA.

Spatio-temporal variation of environmental variables

The environmental variables followed a typical Mediterranean seasonal pattern. Water tem-

perature was highest in summer (31.3˚C at MA at 0 m, where we did not differentiate between

surface and deep samples due to the shallowness (~1 m) of this area) and lowest in winter

(13.1˚C at RO at 500 m, deep sample). The first small cubomedusae appeared in May in all sta-

tions at 0 m (except DEV, AS and RO), coinciding with the spring increase in temperature; the

highest temperature recorded that month was at RA (24.2˚C) with the second highest cubome-

dusa abundance (0.47 ind m-3) (S1 Table, S1 Fig). It was in June, however, when C. marsupialis
abundance peaked with a mean temperature of 23.8˚C (all stations); abundances did not

increase even though the temperature was higher during the next two months (July 27.9˚C

and August 27.1˚C).

Average salinity for all surface and deep samples was 37.2, with the lowest values found in

the northern-most location (RR) in July (17.8) and November (28.1) at 0 m and in January

(24.5) at 250 m surface sample, probably due to the Racons River discharge (S2 Table, S2 Fig).

Nutrients and Chl-a concentrations had similar seasonal patterns in the sampling area.

DIN had low values in January, May and July (3.20, 2.22 and 3.06 μM, respectively), but peaked

in October (4.80 μM) (S3 Table, S3 Fig). The P concentrations were low in January and May

(mean 0.03 μM), but high in July and October (0.10 and 0.09, respectively) (S4 Table, S4 Fig).

May and October had the maximum mean Chl-a values of 0.7 and 1.6 μg l-1, respectively (S5

Table, S5 Fig).

Table 3. Juvenile Carybdea marsupialis abundance (ind m-3) (Mean and SD) by month at 11 beaches of Dénia (Alicante, Spain).

January March May June July August October November

MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD

1-RR 0 0 0 0 0.004 0.009 0.030 0.067 0.010 0.022 0 0 0 0 0 0

2-DEV 0 0 0 0 0 0 0.264 0.590 0 0 0 0 0 0 0 0

3-AN 0 0 0 0 0.004 0.009 0.030 0.067 0 0 0 0 0 0 0 0

4-ACN 0 0 0 0 0.016 0.036 0.008 0.018 0.014 0.031 0 0 0 0 0 0

5-ACS 0 0 0 0 0.062 0.139 0.030 0.067 0.018 0.025 0.004 0.009 0 0 0 0

6-AS 0 0 0 0 0 0 0.088 0.088 0 0 0 0 0 0 0 0

7-MO 0 0 0 0 0.068 0.135 1.426 2.956 0.052 0.116 0 0 0 0 0 0

8-BB 0 0 0 0 0.673 1.166 0.793 0.612 0.260 0.442 0 0 0 0 0 0

9-RA 0 0 0 0 0.157 0.271 0.100 0.130 0.187 0.323 0.007 0.012 0 0 0 0

10-MA 0 0 0 0 0.070 0.121 0.145 0.290 0.053 0.086 0 0 0 0 0 0

11-RO 0 0 0 0 0 0 0.046 0.082 0 0 0 0 0 0 0 0

ALL SITES 0 0 0 0 0.07 0.30 0.26 0.98 0.04 0.014 0.001 0.004 0 0 0 0

Station abbreviations as in Fig 1.

https://doi.org/10.1371/journal.pone.0230768.t003
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Concentrations of nutrients and Chl-a generally were highest in the north (RR) and second

highest near Dénia harbour. Maximum mean values of DIN, ranging from 6.83 to 13.39 μM,

were at the northern beach (RR) (S3 Fig). Northern beaches, especially RR, had the highest

mean P values, reaching 0.72 μM in July (S4 Fig). The spatial pattern of Chl-a was less marked

Fig 3. Juvenile Carybdea marsupialis abundance in 2015. Mean ± SD of all samples (A) over time, (B) by sampling

locations (abbreviations as in Fig 1), (C) by distance from shore (0, 250, 500 m), and (D) by depth in the water column

(only stations at 250 and 500 m).

https://doi.org/10.1371/journal.pone.0230768.g003
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than for DIN and P; the northern half of the sampling area generally had higher than average

Chl-a values. Maximum Chl-a were at RR (6.0 μg l-1), with the minimum (0.1 μg l-1) occurring

in many locations in the southern half of the sampling area (S5 Fig).

When juvenile cubomedusae were present in May, June and July, current speeds ranged from

0.5 cm s-1 to 22.9 cm s-1, averaging 4.1 cm s-1 at 0 m, 9.3 cm s-1 at 250 m and 11.0 cm s-1 at 500 m

from the coast. The lowest mean current speed was recorded in May (4.8 cm s-1) and similar data

were obtained for June (7.0 cm s-1) and July (7.5 cm s-1). The lowest current speed (0.5 cm s-1)

recorded for any station was at AS at 0 m, and the highest (22.9 cm s-1) was at RO at 500 m.

Zooplankton community

Zooplankton average abundance was highest during June (3469 ind m-3). The northern

beaches had the highest abundances, as with Chl-a, but zooplankton abundances were lower

close to shore than 250 and 500 m off shore. The samples collected in May and October had

the fewest zooplankton (479 and 423 ind m-3, respectively) (S6 Table, S6 Fig). Zooplankton

abundances were similar in surface and deep samples. Copepods, cladocerans and mollusc lar-

vae were most numerous at 250 m from the coastline and were considerably fewer at 0 m.

Copepods were the predominant zooplankton group throughout the study period, repre-

senting 67% of the zooplankton total abundance, with an annual average of 733 ind m-3. Their

maximum density was in June at the northern sampling location RR (20486 ind m-3) (S7 Fig).

Mollusc larvae were second most abundant (24% of the total abundance), peaking in June

(8357 ind m-3) and averaging 267 ind m-3 among all stations over the year. Cladocerans were

third largest group (8% of total abundance), with the highest abundances between May and

August (S8 Fig). Conversely, few cladocerans were sampled in January (0.13 ind m-3), as com-

pared with the mean density among all months (90.20 ind m-3). Cladoceran abundances were

highest at all stations in May. Amphipoda, fish eggs and larvae and Polychaeta each repre-

sented less than 1% of the total zooplankton density and were not considered further in our

analysis. The abundances of copepods, mollusc larvae and cladocerans were higher at the

northern stations in the sampling area (DEV and RR) than at other sampling locations. RA

had the lowest abundances of these groups.

Relationships between C. marsupialis and environmental factors

The Pearson’s test showed collinearity coefficients > 0.5 between Si concentration and salinity

and between total zooplankton and copepods (S7 Table). Consequently, Si and zooplankton

Table 4. Average abundances of juvenile Carybdea marsupialis cubomedusae at all sampling locations off Spain

in the western Mediterranean at different distances from shore (0, 250, 500 m) and depth (surface, deep).

C. marsupialis (ind m-3)

Distance from coastline Mean SD

0 m 0.182 0.772

250 m 0.009 0.040

250 m surface 0.011 0.048

250 m deep 0.007 0.026

500 m 0.008 0.091

500 m surface 0.013 0.116

500 m deep 0.000 0.000

Surface 0.012 0.089

Deep 0.003 0.019

Global 0.048 0.380

https://doi.org/10.1371/journal.pone.0230768.t004
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were excluded from the model because we considered them less relevant than salinity and

copepods as possible explanatory variables for C. marsupialis development [12].

The optimal model (GLM Poisson distribution; AIC = 234.08 and dispersion parame-

ter = 0.66) included the interaction between sampling location and distance and the variables

selected were salinity, temperature, copepod and cladoceran abundances and concentrations

of Chl-a and DIN. We used the backward strategy and dropped the P concentration from the

model to obtain the lowest AIC value. The model showed a positive significant relationship

between temperature and cladoceran abundance and an inverse relationship between Chl-a

Fig 4. Spatio-temporal distribution of juvenile Carybdea marsupialis (ind m-3) at all sampling locations for May,

June and July 2015. Station abbreviations as in Fig 1. Small crosses show sampling points. Source: own elaboration.

https://doi.org/10.1371/journal.pone.0230768.g004
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concentration and juvenile C. marsupialis abundance. DIN concentration, salinity and cope-

pod abundance did not show significant relationships with juvenile C. marsupialis distribution

(p> 0.05). Stations MO, BB and RA at 0 m distance (p< 0.05) were positively related with juve-

nile C. marsupialis distribution, which was negatively related with the distance 250 m from the

coastline (Table 5). The explanatory variables Chl-a, DIN concentration, copepod and cladoc-

eran density, salinity, temperature, and the interaction between sampling location and distance

accounted for 94% of the observed variability.

Discussion

Temperature and cladoceran abundance were the most influential explanatory variables for

the distribution of C. marsupialis juveniles, which agrees with earlier reports. Temperature

was the main environmental factor affecting the spatio-temporal abundance of all sizes of C.

marsupialis along the SW Mediterranean coast as found by Canepa et al. [12] and the interan-

nual variability of cladoceran abundance was strongly correlated with the distribution of cubo-

medusae as described by Acevedo [13].

In 2015, the water temperature increased dramatically from March to May from 14.5˚C to

20.3˚C (S1 Fig), as typical for the seasonal pattern of the Mediterranean climate. This increase

in temperature could be crucial in the life cycle of the species and may have triggered cubopo-

lyp metamorphosis, as found for other species of Cubozoa [4], and led to the first occurrence

of small cubomedusae in May. This temporal pattern, with the first recently-detached C. mar-
supialis appearing in May (Fig 4), matched the results for the same area in previous years

[12,13,16]. Therefore, we believe that this seasonality is characteristic for the species.

One-day-old Carybdea morandinii cubomedusae ~0.5 mm in bell diameter with pedalia

appeared only at 15–20 days after liberation from the polyps in the laboratory [26]. Therefore,

the small size of the first cubomedusae (mean 1.2 mm diameter) we detected in May indicated

they were recently detached medusae. If both species develop similarly, the first cubomedusae

collected in Dénia, most of them (78 individuals of a total of 153) with DBW< 1 mm and

visible small tentacles could be about two weeks after liberation. Furthermore, we also found

recently-detached cubomedusae (DBW < 2 mm) in June and July, which suggests that meta-

morphosis could be a semi-continuous event [12,13] with high interannual variation, e.g. for

2009, recently-detached juveniles were five times more abundant in July than in June (~0.2 vs.

~1.0 ind m-3)[16].

This temporal pattern in C. marsupialis juvenile abundance could reflect an optimal tem-

perature for metamorphosis in June. Further temperature increase coincided with fewer

Fig 5. Size frequency distribution of Carybdea marsupialis cubomedusae captured at all sampling locations in

May, June and July 2015. Size of individuals is the diagonal bell width, DBW.

https://doi.org/10.1371/journal.pone.0230768.g005

PLOS ONE Distribution of juvenile Carybdea marsupialis (Cubozoa) in W Mediterranean

PLOS ONE | https://doi.org/10.1371/journal.pone.0230768 June 17, 2020 11 / 20

https://doi.org/10.1371/journal.pone.0230768.g005
https://doi.org/10.1371/journal.pone.0230768


Table 5. GLM results: Relationships between juvenile Carybdea marsupialis and environmental variables and the interaction between beach and distance from the

coast.

Estimate Error Std. Error z value Pr(>|z|)

(Intercept) -1.37E+02 9.12E+01 -1.502 0.1329

l.Chla -5.12E+00 5.99E-01 -8.549 < 2e-16���

l.din 8.29E-01 4.74E-01 1.747 0.0805

l.sal 7.43E+01 5.90E+01 1.26 0.2075

l.temp 1.23E+01 1.85E+00 6.637 3.20E-11���

Copep 1.09E-03 7.40E-04 1.466 0.1427

Clado 1.44E-02 2.47E-03 5.839 5.25E-09���

beach2-DEV -2.59E+01 8.78E+03 -0.003 0.9976

beach3-AN -4.07E+00 1.62E+00 -2.514 0.0119�

beach4-ACN -6.46E-02 1.19E+00 -0.054 0.9565

beach5-ACS 7.90E-01 1.08E+00 0.730 0.4651

beach6-AS -1.97E+01 1.19E+04 -0.002 0.9986

beach7-MO 2.68E+00 1.22E+00 2.200 0.0278�

beach8-BB 3.85E+00 1.19E+00 3.250 0.0011��

beach9-RA 2.63E+00 1.19E+00 2.211 0.0270�

beach10-MA -5.95E-01 1.36E+00 -0.436 0.6627

beach11-RO -2.13E+01 1.32E+04 -0.002 0.9987

dist250 -6.19E+00 1.83E+00 -3.384 0.0007���

dist500 -3.06E+01 5.71E+03 -0.005 0.9957

beach2-DEV:dist250 5.26E+00 1.12E+04 0.000 0.9996

beach3-AN:dist250 -1.86E+01 7.79E+03 -0.002 0.9981

beach4-ACN:dist250 -3.27E+01 4.13E+03 -0.008 0.9936

beach5-ACS:dist250 3.15E+00 2.03E+00 1.556 0.1196

beach6-AS:dist250 5.66E+00 1.48E+04 0.000 0.9996

beach7-MO:dist250 -1.88E+01 8.10E+03 -0.002 0.9981

beach8-BB:dist250 -1.87E+01 1.21E+04 -0.002 0.9987

beach9-RA:dist250 -1.91E+01 1.08E+04 -0.002 0.9985

beach10-MA:dist250 5.42E+00 2.00E+00 2.716 0.0065��

beach11-RO:dist250 4.87E+00 1.61E+04 0.000 0.9997

beach2-DEV:dist500 2.03E+01 1.16E+04 0.002 0.9986

beach3-AN:dist500 2.12E+00 8.16E+03 0.000 0.9997

beach4-ACN:dist500 6.42E+00 9.52E+03 0.001 0.9994

beach5-ACS:dist500 8.23E+00 1.07E+04 0.001 0.9993

beach6-AS:dist500 2.58E+01 1.53E+04 0.002 0.9986

beach7-MO:dist500 3.95E+00 9.63E+03 0.000 0.9996

beach8-BB:dist500 2.57E+01 5.71E+03 0.004 0.9964

beach9-RA:dist500 6.46E+00 1.32E+04 0.000 0.9996

beach10-MA:dist500 8.88E+00 1.35E+04 0.001 0.9994

beach11-RO:dist500 2.88E+01 1.75E+04 0.002 0.9986

Chla, chlorophyll-a; DIN, dissolved inorganic nitrogen; sal, salinity; temp, temperature; copepod, copepod density; clado, cladoceran densities; dist250, 250 m from the

coast; dist500, 500 m from the coast. Station abbreviations as in Fig 1. Null deviance: 1600.69 on 173 degrees of freedom. Residual deviance: 90.23 on 135 degrees of

freedom. “z- value”:

‘���’ 0.001;

‘��’ 0.01;

‘�’ 0.05;

‘N.S.’ not significant.

https://doi.org/10.1371/journal.pone.0230768.t005
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juveniles, as also observed by Canepa et al. [12]). Experimental evidence connecting the rate

of metamorphosis and juvenile mortality at high temperatures remains to be gathered. In

addition, three months of metamorphosis may have exhausted the supply of polyps, because

Carybdea spp. polyps are formed from planulae from adult sexual reproduction the previous

summer, which then metamorphose into juveniles the following spring [17]. This suggests that

the low abundance of juveniles in 2015 could be related not only to different environmental

conditions, but also to fewer new polyps generated at the end of 2014.

Bordehore 2014 stated that the differences in salinity among the sampling locations were

due to the presence of the rivers (mainly at RR) and the discharge of groundwater into the

sea (quantified in ~126 106 m3 y-1 and detected at RR and secondarily at DEV, AS, MO and

MA, S2 Fig). Bordehore [16] and Canepa et al. [12] found that abundances of adults and of

juveniles plus adults, respectively, were negatively related to salinity. We found, however, that

the abundance of juvenile cubomedusae in 2015 was not significantly correlated with salinity

(p-value > 0.1) (Table 5). This spatial distribution of juveniles might be due to a combination

of active swimming, polyp location and current advection, with the latter two being the most

important factors, as we discuss later.

The rate of metamorphosis of Carybdea sp. cubopolyps from the Caribbean was higher at

the lowest tested salinity (32) than at 35 or 38 in laboratory experiments [19]; those low salinity

conditions probably would occur in sheltered bays or estuaries with freshwater inflow. In our

field study, all salinities for May and June measured from 36.6–38.2 (surface and deep samples

included), with the exception of sampling location RR (min. of 34.7), which is affected by the

Racons River (S2 Fig), but where the abundance of C. marsupialis juveniles was low (Fig 4).

The lowest salinity value in this location was registered at 0 m in July (17.8) when a single

small cubomedusae was captured, and also in November (28.7) without captures. The distribu-

tion of C. marsupialis juveniles was not centred at the low-salinity station (RR). Experiments

similar to those by Canepa et al. [19] should be conducted for C. marsupialis to test its meta-

morphosis rate versus salinity.

Therefore, the distribution of C. marsupialis seems to be influenced by a combination of

environmental factors, with different responses depending on the stage of the life cycle. In this

study, we focused on the juvenile stage of cubomedusae. The GLM results did not indicate that

nutrients affected their distribution. Phosphorous and DIN concentration were not signifi-

cantly correlated with C. marsupialis abundances (Table 5) in the earliest medusa stages,

which could be more affected by dispersion related variables (i.e. wind and current speed and

direction), as indicated by Canepa et al. [12].

Nevertheless, earlier studies in this sampling area indicated positive relationships between

nutrient concentrations and abundances of all stages of C. marsupialis [13], which suggested

that as well as contributing to eutrophication in coastal waters [16], nutrient inputs also may

lead to a positive bottom-up effect on C. marsupialis abundance. Previously, Bordehore [16]

estimated percentages of nutrients consisting mainly of nitrates and phosphates from anthro-

pogenic activities and discharged by the Racons River and the wastewater treatment plants in

the sampling area. In addition, Acevedo [13] found a negative relationship between nitrate

concentration and salinity, as also shown in our results (S7 Table). The stations with elevated

DIN and P (S3 and S4 Figs) show the effects of human activities, such as agriculture and waste-

water, on eutrophication. Canepa et al. [12] also determined that high abundances of C. marsu-
pialis medusae (all sizes) were associated with variables indicating high local productivity

along the coast of Dénia. Although our results from 2015 did not show a positive relationship

between small C. marsupialis and Chl-a concentration, it is noteworthy that Chl-a, as a proxy

for primary production, registered peaks in stations with low salinity and high nutrient con-

centrations, mainly station RR (S5 Fig).
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The spatial pattern of C. marsupialis juveniles across the shelf showed that their abundance

diminished rapidly as distance from the shoreline increased over a few hundred meters. Simi-

larly, in NE Australia, Kingsford et al. [7] showed that abundances of adult cubomedusae of

different species were much lower on the outer coral reef than in the inner and mid reef, a dis-

tance of ~80 km.

Conversely, zooplankton was more abundant at 250 and 500 m than at 0 m from the shore

(S6 Fig). High abundances of C. marsupialis juveniles were found at 0 m for beaches with rela-

tively low zooplankton levels; however, considering the ingestion capacity of this species [13]

and the great difference in abundance between C. marsupialis and zooplankton (~1:10000, Fig

3 and S7 Fig), we doubt the possibility of top-down control by the cubomedusae.

Our GLM analysis showed a positive relationship between cladoceran abundance and small

C. marsupialis (Table 4); however, copepod abundance was not significantly correlated with

small cubomedusae. Cladocerans peaked in May (S8 Fig), coinciding with the first captured

juvenile cubomedusae. As shown by Acevedo [13], release of juveniles and the peak of cladoc-

erans could be linked. In laboratory experiments, C. marsupialis revealed an ontogenetic shift

in preferred prey, with younger stages depending more on cladocerans than did adults; there-

fore, she concluded that survival of smaller stages was related to the abundance of cladocerans

[13].

It has been widely demonstrated that primary production plays a significant role in the

abundance of zooplankton [27], which could affect cubozoan and scyphozoan distributions.

For example, numbers of Alatina moseri cubomedusae were positively correlated with both

factors in Hawaii [28], and Hamner et al. [29] found that vertical migrations of Aurelia aurita
tracked their copepod prey.

Optimal development of C. marsupialis depends on zooplankton availability, complex

interrelations between environmental parameters, and on a combination of physical factors

including currents, morphology of the coast, type of substrate and the presence of artificial

breakwaters, which could act in retention. Therefore, C. marsupialis distribution relies a great

deal on the littoral dynamics of the sampling area as well as on the swimming behaviour of the

species in different stages.

Within the framework of the LIFE CUBOMED project, experiments on swimming behav-

iour were conducted in controlled conditions to investigate which sizes of C. marsupialis could

overcome currents. The average swimming speed of C. marsupialis juveniles we recorded in

the laboratory ranged between 0.5 and 2.7 cm s-1 (average 1.3 cm s-1) (S9 Fig), which were sim-

ilar to those obtained in studies with cubomedusae Chiropsella bronzie and Chironex fleckeri
[30,31]. Current speeds measured in our study area at 0 m averaged 5.8 cm s-1 in May, 3.9 cm

s-1 in June, and 4.9 cm s-1 in July (Fonfrı́a et al. unpublished data). Because the swimming

speeds of juveniles were lower than the current speeds, marine currents probably would repre-

sent the most important influence on small cubomedusa dispersion. Considering the seasonal-

ity of C. marsupialis in our sampling area and the data obtained from drifting buoys (in 2015

and also 2013–2014, which include several specific factors such as hourly and weather condi-

tions), we calculated that 19.3% of juveniles and 64.0% of adults could overcome currents at 0

m. Previous studies on currents suggest that small juveniles passively drift with the currents,

which would play an essential role in dispersion of the species [12]. Conversely, adult C. mar-
supialis medusae would be able to overcome local currents and they exhibit complex swim-

ming behaviour with the development of their rhopalia [32–34].

We found the maximum abundances of juvenile cubomedusae in the central stations of

the study area, far from the maximum values of Chl-a and zooplankton and marine con-

struction. Although the small juveniles have weak swimming capacity, the strong swimming

ability of adults lets them select their habitat [35]. Currently, a modelling study is being
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conducted by the authors in order to understand the movements of C. marsupialis juveniles

in the study area.

Some authors point out that the increase of artificial constructions along the Mediterranean

coast (harbours, breakwaters) may have increased the available habitat for C. marsupialis since

that could have encouraged the settlement of cubomedusa polyps [11,15,36]. Despite our

efforts to locate polyps of C. marsupialis by inspection of hard substrates and by using inverse

traps, we were unable to find any in our study area. Therefore, the environmental conditions

required for polyp development remain unknown.

We assume that polyps were present in the study area because of the detection of recently-

detached cubomedusae (DBW� 2 mm). The size structure of the population showed that

specimens 0.5–1 mm DBW continually appeared throughout May, June and July, with 1 mm

DBW being the most frequent size. This suggests that metamorphosis of cubopolyps is not a

single event, but that cubomedusae are released at different times, in agreement with Acevedo

[13]. We hypothesized that cubopolyps might be located where the adults mated the previous

year. The negative buoyancy of the planulae generated after mating (Bordehore pers. obs.)

means that they must sink and settle on the surrounding substratum, as Hartwick [5] described

for C. fleckeri; however, we found no spatial correlation between areas with maximum abun-

dances of adults and juveniles the following year. We hypothesize this may reflect the current

advection of small juveniles (Fig 4).

As explained by the supply-side ecology [37], the sustainability of marine species with

benthic and planktonic stages depends upon recruitment success generation after generation,

which is affected by propagule production by mature adults coming from any population (local

or upstream), current advection and swimming capabilities of new planktonic individuals. Our

understanding of this benthic and planktonic coupling is crucial [38] to understand phenomena

such as a cubozoan outbreak [11] and changing abundances among generations. The studied

local population of C. marsupialis seems to be maintained by recruitment year after year, proba-

bly due to a favourable current pattern that retains the recently-detached juveniles. The next

step would be to model the advection of juveniles, while considering their swimming capabili-

ties, to ascertain whether this population is maintained in the area due to physical retention by

external factors or through the swimming behaviour of individuals that reduces exportation.

C. marsupialis suddenly disappeared from the area in August 2015, when we captured just

two individuals (1.5 and 3.2 mm DBW), as compared to other years when adults (>15 mm

DBW) were present during August to October (Fig 2). Growth to adult sizes (15� DBW� 35

mm) was obvious each year from 2008 to 2014 [12,13,16,39], with abundances diminishing as

size increased [16]. The authors interpreted that their disappearance could constitute an adult

recruitment failure, whose possible causes were not obvious, mainly because year 2015 had

similar environmental conditions as in previous years. Higher juvenile mortality, current

advection, or a combination of both are possible explanations. Severe storms decreased the

adult C. marsupialis population from 0.2 ind m-3 to 0.007 ind m-3 in less than one week in

2009 [16]; however, no significant storms occurred in the sampling area during August 2015.

Conclusion

Temperature, cladoceran abundance, and distance to the coast had positive relationships with

juvenile Carybdea marsupialis distribution, while Chl-a had a negative relationship (Table 5).

The negative relationship between Chl-a and small cubomedusae was opposite that for the

adults observed in previous years, which would indicate ontogenetic differences in the rela-

tionships with environmental variables. Areas of high productivity (Chl-a and zooplankton)

did not overlap with areas of maximum abundance of small cubomedusae probably because
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currents were important for juvenile dispersion. The distribution of C. marsupialis juveniles

during 2015 did not spatially coincide with the areas where ripe adults were located the previ-

ous year, supposedly mated and released planulae. Our results suggest that juveniles drift with

the currents upon release from the cubopolyps. More studies are needed to establish the loca-

tion of the polyps and the environmental conditions needed for their development.

Supporting information

S1 Fig. Spatio-temporal distribution of temperature in sampling area during 2015. From

north to south: Rı́o Racons (RR), Deveses (DEV), Almadrava Norte (AN), Almadrava Centro

Norte (ACN), Almadrava Centro Sur (ACS), Almadrava Sur (AS), Molins (MO), Blay Beach

(BB), Raset (RA), Marineta Casiana (MA) and Rotas (RO). Source: own elaboration.

(TIF)

S2 Fig. Spatio-temporal distribution of salinity in sampling area during 2015. From north

to south: Rı́o Racons (RR), Deveses (DEV), Almadrava Norte (AN), Almadrava Centro Norte

(ACN), Almadrava Centro Sur (ACS), Almadrava Sur (AS), Molins (MO), Blay Beach (BB),

Raset (RA), Marineta Casiana (MA) and Rotas (RO). Source: own elaboration.

(TIF)

S3 Fig. Spatio-temporal distribution of DIN concentration in sampling area during 2015.

From north to south: Rı́o Racons (RR), Deveses (DEV), Almadrava Norte (AN), Almadrava

Centro Norte (ACN), Almadrava Centro Sur (ACS), Almadrava Sur (AS), Molins (MO), Blay

Beach (BB), Raset (RA), Marineta Casiana (MA) and Rotas (RO). Source: own elaboration.

(TIF)

S4 Fig. Spatio-temporal distribution of P concentration in sampling area during 2015.

From north to south: Rı́o Racons (RR), Deveses (DEV), Almadrava Norte (AN), Almadrava

Centro Norte (ACN), Almadrava Centro Sur (ACS), Almadrava Sur (AS), Molins (MO), Blay

Beach (BB), Raset (RA), Marineta Casiana (MA) and Rotas (RO). Source: own elaboration.

(TIF)

S5 Fig. Spatio-temporal distribution of Chl-a concentration in sampling area during 2015.

From north to south: Rı́o Racons (RR), Deveses (DEV), Almadrava Norte (AN), Almadrava

Centro Norte (ACN), Almadrava Centro Sur (ACS), Almadrava Sur (AS), Molins (MO), Blay

Beach (BB), Raset (RA), Marineta Casiana (MA) and Rotas (RO). Source: own elaboration.

(TIF)

S6 Fig. Spatio-temporal distribution of zooplankton density in sampling area during 2015.

From north to south: Rı́o Racons (RR), Deveses (DEV), Almadrava Norte (AN), Almadrava

Centro Norte (ACN), Almadrava Centro Sur (ACS), Almadrava Sur (AS), Molins (MO), Blay

Beach (BB), Raset (RA), Marineta Casiana (MA) and Rotas (RO). Source: own elaboration.

(TIF)

S7 Fig. Variability of copepod density (Mean ± SD) among months and beaches.

(TIF)

S8 Fig. Variability of cladoceran density (Mean ± SD) among months and beaches.

(TIF)

S9 Fig. Average swimming speed of Carybdea marsupialis juveniles according to size
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(TIF)
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