El término “Economía del Hidrógeno” responde a una visión de futuro donde este gas, generado de forma limpia y económica, serviría para alimentar el grueso de las necesidades energéticas de la sociedad. Esta propuesta reduciría la dependencia actual sobre los combustibles fósiles, ya que el hidrógeno podría ser producido a partir de otras fuentes primarias como las renovables o la nuclear. Igualmente se disminuiría la contaminación atmosférica y la emisión de gases de efecto invernadero, puesto que el único residuo generado en la combustión del hidrógeno en una pila de combustible es agua. En este contexto, la presente Tesis Doctoral pretende contribuir a la mejora de la eficiencia energética y el abaratamiento de costes (tanto de instalación como de operación) de la electrólisis alcalina del agua como vía para la producción de hidrógeno. Este objetivo se ha alcanzado mediante el desarrollo de nuevos materiales de electrodo (cátodos), componentes clave de los electrolizadores. Las principales características que debe poseer un material de electrodo son: alta superficie específica (porosidad), buenas propiedades catalíticas intrínsecas, y durabilidad/estabilidad en las condiciones de operación, todo esto a un bajo coste de producción. Con la finalidad de lograr un material que reúna todas las propiedades enunciadas, en la Tesis Doctoral se han sintetizado materiales porosos de base Níquel por electrodeposición sobre sustratos de acero inoxidable. Para este propósito ha sido necesario el desarrollo de un pre-tratamiento de los sustratos, que ha garantizado la correcta adherencia de las capas depositadas. Los materiales electródicos se han fabricado de acuerdo a distintas estrategias de electrodeposición: por un lado, materiales tipo Raney, caracterizados por grietas superficiales; por otro lado, materiales macroporosos obtenidos sobre plantillas dinámicas gaseosas (generadas mediante aplicación de densidades de corriente elevadas). Siguiendo estos procedimientos, se han realizado codeposiciones Níquel-Cobalto que, a determinados rangos de composición, mejoran la actividad catalítica intrínseca de los electrodos porosos debido al sinergismo entre las propiedades del Níquel y del Cobalto. Los electrodos desarrollados han sido caracterizados de forma preliminar mediante curvas de polarización de estado estacionario y espectroscopía de impedancia electroquímica (EIS). La técnica EIS ha permitido la determinación de la rugosidad superficial de los cátodos fabricados, parámetro fundamental en electrocatálisis. A partir del estudio de los resultados obtenidos con ambas técnicas ha sido posible evaluar la actividad catalítica intrínseca y aparente de los materiales, así como el mecanismo de reacción. Sobre todos los materiales, la reacción de evolución de hidrógeno (REH) ha tenido lugar mediante el mecanismo de Volmer-Heyrovsky, siendo la desorción electroquímica la etapa determinante de la velocidad del proceso. Los mejores materiales de electrodo han sido caracterizados a partir de curvas de descarga de hidrógeno y tests galvanostáticos. El uso de electrodos Níquel Raney y Ni-Co obtenido a alta densidad de corriente (con un 42.5% atómico de Co superficial) como cátodos permite reducir el coste energético de la producción de hidrógeno en más de un 25%, en las condiciones en que tiene lugar la electrólisis alcalina industrial (80°C y a los sobrepotenciales catódicos más altos), en comparación con los cátodos de Níquel liso comerciales.