Contents

List of Figures	xi
List of Tables	xix
Abstract	xxi
Resumen	xxiii
Resum	xxv
1.1 Background 1.1.1 GPGPU 1.1.2 Main Concerns of Using GPUs 1.1.3 Remote GPU Virtualization 1.1.4 rCUDA 1.2 Objectives of the Thesis 1.3 Main Contributions of the Thesis 1.4 Thesis Outline	
References On the Effect of using rCUDA to Provide CUDA Accele Virtual Machines	
2.1 Introduction	
2.7 Impact of Xen VMs on Real Applications 2.7.1 Applications Using One GPU 2.7.2 Applications Using Multiple GPUs 2.8 Conclusions References	
3 Made-to-Measure GPUs on Virtual Machines with rCU 3.1 Introduction 3.2 Motivation	 54

Contents viii

	3.3	Background on GPU Virtualization	. 60
	3.4	Performance Evaluation	. 62
	3.5	Conclusions	. 67
	Refe	erences	. 68
			_
4		lti-tenant virtual GPUs for optimising performance of a financia	
		application	71
		Introduction	
		Related work	
		rCUDA	
	4.4	• •	
		4.4.1 Input and Output Data	
	14 E	4.4.2 Algorithm and GPU Implementation	
	4.5	Evaluation	
		4.5.1 Platform	
		4.5.2 Application Scalability	
		4.5.3 Reducing Execution Time Using rCUDA	
		4.5.4 Mitigating the Impact of Data Transfers in rCUDA	
		4.5.4.1 Concurrent vs Sequential Data Transfers	
		4.5.4.2 Multi-tenancy Approach	
		4.5.5 Performance Analysis Using Multi-tenancy	
		4.5.6 Modelling Multi-tenancy for Performance and Energy Estimation .	
		4.5.6.1 Performance Model	
		4.5.6.2 Energy Model	
	4.6	Conclusions	
	Refe	erences	. 105
5	Mar	ximizing resource usage in Multi-fold Molecular Dynamics with	n
			111
		Introduction	
	5.2	Background	
	0.2	5.2.1 MD in Drug Discovery	
		5.2.2 rCUDA (remote CUDA)	
	5.3	System Configurations for Drug Discovery	
	5.4	Flavonoids as a Working Example	
	5.5	System Performance and Throughput	
	0.10	5.5.1 Test bed: Hardware and Software Environment	
		5.5.2 Performance Characterization	
		5.5.3 Throughput for Each Case Study	
		5.5.4 Overall System Throughput	
		5.5.5 Analysis of obtained MD results in terms of biological validation .	
	5.6	Conclusions and Future Work	
		erences	
			. 101
6	Tur	ning GPUs into Floating Devices over The Cluster: The Beauty of	f
		U Migration	141
	6.1	Introduction	. 142

Contents

	6.2	About Remote GPU Virtualization	145
	6.3	Implementing GPU Migration	147
	6.4	First results of GPU Migration within rCUDA	149
	6.5	Conclusions	158
	Refe	erences	158
7		U-Job Migration: the rCUDA Case	163
	7.1		
	7.2	About Remote GPU Virtualization	
	7.3	Related Work on GPU Migration	
	7.4	Implementing GPU Migration in rCUDA	
	7.5	Performance Evaluation of GPU Migration with rCUDA	
		7.5.1 Synthetic Application	
		7.5.2 Real Applications	
		7.5.3 Use Cases for GPU-Job Migration with rCUDA	
		7.5.3.1 GPU Server Consolidation	184
		7.5.3.2 GPU Load Balancing	187
		7.5.3.3 Improved Management of User Priorities	189
	7.6	Conclusions	190
	Refe	erences	191
-	~		
8		nclusions	195
		Contributions	
	8.2	Future Work	
		8.2.1 GPU-Job Scheduler	
		8.2.2 Quantification of the Economic Impact of Applying the Mecha-	
		nisms Developed in this Thesis	
	8.3		
		8.3.1 Main Publications	
	- ·	8.3.2 Main Collaborations	
	IRefe	erences	206

List of Figures

1.1	Architecture of the rCUDA middleware.	4
2.1	Typical architecture used by GPU virtualization solutions	17
2.2	Performance comparison among three different GPU virtualization solu-	
	tions: gVirtuS, DS-CUDA, and rCUDA. The comparison is performed	
	in terms of attained bandwidth. The performance of CUDA is also de-	
	picted. Tests have been carried out in native domains with the hardware	
	and software settings described in Section 2.4	20
2.3	Typical configuration of a Xen-based system showing how the Ethernet	
	adapter and the GPU available in the host are provided to VMs. The	
	GPU is exclusively assigned to a single VM by making use of the PCI	
	passthrough mechanism. Network connectivity among VMs and between	
	VMs and the external network is provided by means of a software bridge	
	that connects the internal virtual network to the real Ethernet adapter	25
2.4	Testbeds used in the experiments presented in this paper, which make use	
	of rCUDA to provide GPU access to VMs. (a) In a single-node testbed,	
	VMs employ the virtual network to access the rCUDA server by means of	
	the TCP/IP protocol stack. (b) When an InfiniBand fabric is available,	
		2.0
	VMs use such interconnect to access a remote rCUDA server	26
2.5	Bandwidth attained by the virtual network among Xen VMs	29
2.6	InfiniBand bandwidth tests using ConnectX-3 network cards executed in	
	the different scenarios under study.	31

List of Figures xii

2.7 Bandwidth tests for copies between host and device memory, using CUDA	
and the rCUDA middleware. Tests have been carried out in the different	
scenarios depicted in Figure 2.4 as well as in native domains	. 32
2.8 Performance of a synthetic application where the percentage of execution	
time devoted to data transfers to/from the GPU and the percentage of	
execution time used for computations in the GPU are set by the user.	
Notice that these percentages are initially established for the executions	
using CUDA with a local GPU (case "a") by defining the amount of data	
to be transferred. For the rest of scenarios, this initial amount of data to	
be transferred is kept constant, thus producing a deviation of the initial	
percentages. Furthermore, for each size interval, the exact size of data	
transfers is randomly set	. 35
ordinates is random, soon	
2.9 Execution time of several applications when executed in different local and	
remote scenarios. Execution time is broken down into three components:	
GPU computation, GPU data transfer, and Other	. 38
or e compared of e deed transfer, and other.	. 00
2.10 Average overhead with respect to executions with CUDA in a native do-	
main for the four applications depicted in Figure 2.9	. 39
2.11 Histograms showing the percentage of transferred data according to mes-	
sage size.	. 41
2.12 Average overhead experienced by applications with respect to executions	
with CUDA using the PCI passthrough from the inside of a VM	. 42
2.13 Configuration of a Xen-based system showing two GPUs assigned to one	
of the VMs. The GPU assignment is carried out by making use of the	
PCI passthrough mechanism. Therefore, both GPUs can only be used by	
the VM owning them.	. 43
1112 01111111	. 10

List of Figures xiii

0.14	T 1 1 1 1 CIID 4 T CIDI 11 1 VM () I	
2.14	Testbeds used with rCUDA. Two GPUs are provided to VMs. (a) In a	
	single-node scenario, VMs use the virtual network (TCP/IP) to access	
	the rCUDA server running in one of the VMs. (b/c) When an InfiniBand	
	fabric is available in the cluster, VMs use such interconnect in order to	
	access the remote GPUs, which can be located either in the same (b) or	
	in different (c) remote nodes.	44
2.15	Performance of two applications when executed in different local and re-	
	mote scenarios involving Xen VMs	45
3.1	Assignment of GPUs to VMs when using the PCI passthrough technique,	
	which causes that GPUs are assigned to VMs in an exclusive way	55
3.2	Assignment of GPUs to VMs when using the remote GPU virtualization	
	mechanism, which allows GPUs to be concurrently shared among VMs	56
3.3	Evolution of GPU utilization and memory occupancy during the execution	
	of the four applications considered in this study.	58
	or the rear appreciations constructed in time state,	
3.4	Evolution of GPU utilization and memory occupancy during the execution	
	of a sequence of instances of the four applications considered in this paper	
	for one hour time interval. Only one application is executed at a time.	
	The order of applications is random. Four different intensities for the	
	system load are considered	60
3.5	Architecture of the rCUDA middleware.	61
3.6	Execution time of the four applications under consideration in this study.	62
3.7	Test beds used in the experiments in this section. Four VMs are used with	
	PCI passthrough (with four GPUs) whereas up to 12 VMs are leveraged	
	with rCUDA (with the same four GPUs).	63
3.8	Average execution time for each of the applications considered in this	
	study when executed in the scenarios depicted in Figure 3.7. 95% confi-	
	· · · · · · · · · · · · · · · · · · ·	
	dence intervals are also shown. Four different intensities for the system	_
	load are considered.	64

List of Figures xiv

3.9	Total amount of jobs executed (system throughput) for each of the appli-	
	cations considered in this study when executed in the scenarios depicted	_
	in Figure 3.7. Four different intensities for the system load are considered.	65
3.10	Average overhead depending on system load for the different test beds	_
	depicted in Figure 3.7. Baseline for the overhead calculation is the per-	_
	formance for the PCI passthrough scenario (Figure 3.7(a))	65
3.11	Average system throughput depending on system load for the different	_
	test beds depicted in Figure [3.7]. Baseline for the throughput calculation	_
	is the performance for the PCI passthrough scenario (Figure [3.7(a)])	66
3.12	Energy consumption for each of the scenarios depicted in Figure [3.7]. La-	
	bels "A", "B", "C" and "D" refer, respectively, to low, medium, high and	
	maximum intensities of the system load	66
4.1	Execution time of the financial application on multiple local GPUs	72
4.2	Distributed acceleration architecture facilitated by rCUDA	76
4.3	rCUDA client and server software/hardware stack	77
4.4	Communication sequence between a client and the rCUDA server daemon	79
4.5	Comparison of bandwidth for pinned memory and pageable memory of	
	rCUDA, DS-CUDA and gVirtuS using CUDA as a baseline reference (DS-	
	CUDA does not support pinned memory)	80
4.6	Computation and data transfer times for the financial risk application	_
	when executed on single and multiple GPUs with CUDA	88
4.7	Amount of data transferred during the execution of the financial risk	
	application	89
4.8	Attained bandwidth when concurrent data transfers to GPUs are per-	_
	formed. Source data is located in the same memory bank.	90
4.9	Scalability of the financial risk application when executed with rCUDA	91

List of Figures xv

4.10 Bandwidth attained for multiple data transfers concurrently to different
remote GPUs using rCUDA
4.11 Communication approaches for transferring data to GPUs 92
4.12 GPU utilisation, power and energy consumption of concurrent and se-
quential data transfers to GPUs considered in Figure 4.11 94
4.13 Sequential data copies with several vGPUs per GPU
4.14 GPU utilisation, power and energy consumption of the multi-tenancy
approach considered in Figure 4.13,
4.15 Application performance for different combinations of pGPUs and vGPUs
using QDR InfiniBand
4.16 Application performance for different combinations of pGPUs and vGPUs
using FDR InfiniBand
4.17 Results from performance model for QDR InfiniBand
4.18 Results from performance model for FDR InfiniBand
4.19 Results from energy model for QDR InfiniBand
4.20 Results from energy model for FDR InfiniBand
4.21 Combined space of energy and execution time using QDR InfiniBand 104
4.22 Combined space of energy and execution time using FDR InfiniBand 105
5.1 Architecture of the rCUDA middleware
5.2 Hardware configurations for each of the baseline case studies considered
in this paper
5.3 Performance of the MD simulations when 3, 5, 10 and 20 threads are
leveraged. The three basic case studies are considered
5.4 Energy per simulated ns required by the MD simulations when 3, 5, 10
and 20 threads are leveraged. The three basic case studies are considered. 123

List of Figures xvi

5.5 Average power required by the GPU and by the rest of the system	m in
the CUDA scenario. Peak power required by the entire node also sho	own.
Simulator configurations using either 3, 5, 10 or 20 threads are considerable.	dered. 124
5.6 Throughput of the CPU-only MD simulations when several instances	s are
concurrently executed in the same node. Simulator configurations were	
either 3, 5, 10 or 20 threads are considered	
either 5, 5, 10 or 20 timeads are considered.	120
5.7 Energy per simulated ns required by GROMACS when several CPU-	only
instances are concurrently executed in the same node. Simulator co	nfig-
urations using either 3, 5, 10 or 20 threads are considered	126
5.8 GPU memory and GPU utilization along the execution time of the G	IRO-
MACS simulator configured to use 10 threads with the molecules u	
study. Simulation was configured to last 200 ns of simulated time.	121
5.9 Instant power and accumulated energy along the execution time of	f the
GROMACS simulator configured to use 10 threads with the molecular configuration	cules
under study. Simulation was configured to last 200 ns of simulated t	ime.
Instant power is split into GPU power and system power	128
5.10 Throughput and GPU utilization when several instance of GROM.	ACS
share the GPU in the rCUDA server by leveraging the rCUDA mid	
ware. Simulator configurations using either 20, 10, 5 or 3 threads	
considered.	129
5.11 Energy per simulated ns required by GROMACS when several simulated	lator
instances share the GPU in the rCUDA server by leveraging the rCU	JDA
middleware. Simulator configurations using either 20, 10, 5 or 3 thr	eads
are considered.	130
5.12 Aggregated throughput projection for a hybrid cluster composed	
nodes where half of the nodes own a GPU whereas the other half of	
nodes do not leverage any accelerator	133
5.13 Aggregated throughput projection for a homogeneous cluster comp	osed
of n nodes where all the nodes own one GPU	133

List of Figures xvii

5.14 RMSD over time for the DNA structure	. 135
5.15 Average DNA(center of mass) to DEPHBC distance over time	. 135
5.16 Superposition of first and last frame of the DNA-DEPHBC MD simulation	n. <mark>135</mark>
6.1 Comparison, from a logical point of view, of two cluster configurations:	
(a) remote GPU virtualization is not leveraged; (b) remote GPU virtual-	
ization is used.	. 143
6.2 Usage of GPU migration in a cluster in order to consolidate GPU jobs	
and reduce energy. In (a) all the nodes in the cluster are switched on	
whereas in (b) seven nodes have been switched off thanks to GPU server	
consolidation after having migrated GPU jobs	. 144
6.3 General organization of remote GPU virtualization frameworks	. 146
6.4 Execution time using CUDA and rCUDA without migration	. 150
6.5 Overhead introduced in executions of Figure 6.4 because of executing the	
applications with rCUDA using a remote GPU instead of using a local	
one with CUDA. No migration has been performed.	. 152
6.6 Execution time using CUDA and rCUDA. Executions with rCUDA have	
suffered one live migration process in order to move the GPU-part of the	
application to another GPU.	. 153
6.7 Overhead introduced because of carrying out one live migration while	
executing the applications with rCUDA using a remote GPU	. 154
6.8 Estimated average time required to perform one live migration while ap-	
plications are in execution.	. 156
6.9 Overhead with respect to CUDA when applications are live migrated up	
to five times during their execution.	. 157
7.1 General organization of remote GPU virtualization frameworks	. 166
7.2 Migration modules inside rCUDA client and server	. 168

List of Tables xviii

7.3	Complete operation of the migration module implemented within the	
	rCUDA middleware.	170
7.4	Bandwidth attained for several network configurations using different	
	transfer sizes.	174
7.5	Time required to migrate a job among two P100 GPUs located in different	
	nodes. A synthetic application is leveraged. Several configurations of the	
	FDR and EDR InfiniBand network adapters are used. Performance for	
	the 1 Gbps Ethernet network is also displayed	176
7.6	Memory configuration, in terms of total memory allocated and number	
	of memory regions, for each of the applications considered	179
7.7	Service downtime for each of the applications considered. Migration was	
	triggered at 25% execution time for each of the applications	180
7.8	Evolution of memory occupancy and GPU utilization during execution	
	time of two of the applications considered in this study. Average GPU	
		100
	utilization for each of the applications is also shown	182
7.9	Total migration time for the five applications considered in this study.	
1.3		
	Time is measured since the arrival of the external signal triggering mi-	
	gration until the application resumes execution in the destination GPU.	183
7.10	GPU migration used to consolidate servers. Two instances of the CUDA-	
	MEME application are being executed in two servers and, at some point	
	in time, the job scheduler decides to migrate one of the jobs to the other	
	server. The emptied server can be later switched off if required	186
-		
7.11	Example of applying the GPU-job migration mechanism within rCUDA	
	in order to balance the load among GPUs in the cluster	188

List of Tables

2.1	Data transfers in the applications under analysis
4.1	Scalability of the financial risk application when executed using CUDA 87
4.2	Time in seconds for GPU memory allocation and data transfer tasks of
	the financial risk application
5.1	Performance achieved by several GROMACS configurations
7.1	Amount of seconds required for management tasks in Figure 7.5(b) 177
7.2	Characterization of the real applications used to analyze the migration
	mechanism
7.3	Execution time of the CloverLeaf application in different GPUs 190