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Abstract 

The alarming increase in the average temperature of the planet due to the massive emission 
of greenhouse gases has stimulated the introduction of electric vehicles (EV), given transport sector is 
responsible for more than 25% of the total global CO2 emissions. EV penetration will substantially 
increase electricity demand and, therefore, an optimization of the EV recharging scenario is needed to 
make full use of the existing electricity generation system without upgrading requirements. In this 
paper, a methodology based on the use of the temporal valleys in the daily electricity demand is 
developed for EV recharge, avoiding the peak demand hours to minimize the impact on the grid.  The 
methodology assumes three different strategies for the recharge activities: home, public buildings and 
electrical stations. It has been applied to the case of Spain in the year 2030, assuming three different 
scenarios for the growth of the total fleet: low, medium and high. For each of them, three different 
levels for the EV penetration by the year 2030 are considered: 25%, 50% and 75%, respectively. Only 
light electric vehicles (LEV), cars and motorcycles, are taken into account given the fact that batteries 
are not yet able to provide the full autonomy desired by heavy vehicles. Moreover, heavy vehicles have 
different travel uses that should be separately considered. Results for the fraction of the total recharge 
to be made in each of the different recharge modes are deduced with indication of the time intervals 
to be used in each of them. For the higher penetration scenario, 75% of the total park, an almost flat 
electricity demand curve is obtained. Studies are made for working days and for non-working days.  
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1. Introduction 

During the last years, climate change has become one of the most worrisome problems. The 
huge quantity of greenhouse gases emitted to the atmosphere is leading to a dangerous temperature 
increase, whose negative effects are duly documented (Akitt, 2018).  

Transport sector, with almost a quarter of the total carbon dioxide emissions, is one of the 
most polluting sectors (Bjerkan, Nørbech and Nordtømme, 2016; Teixeira and Sodré, 2018; Hasan et 
al., 2019). Besides, transport depends mostly on fossil fuels whose reserves are finite and could be 
exhausted in a short or medium term. Both phenomena, environmental impact and finite reserves, 
have motivated the electrification of the transport sector (Dijk, Orsato and Kemp, 2013; Adnan et al., 
2017). The balance between the CO2 emissions due to the generation of  a surplus of electricity to 
supply EV and the emissions avoided by the use of these EV could be highly favorable (Canals Casals et 
al., 2016; Morrissey, Weldon and O’Mahony, 2016), making EV an environmental solution for 
transport. Therefore, a high penetration of EV in the transport sector is taking place.  

The electrical behavior of this kind of vehicles lies in both their electrical charge depleting and 
recharging electrical demand, which are hugely affected by the EV driving cycle and the state of the 
battery. Regarding the EV driving cycle, the study (Zhao, Ma, et al., 2018) develops a methodology to 
construct an EV urban driving cycle for analyzing the differences in estimated EV energy consumption. 
It is based on the general topological structure of the studied urban roads and their traffic flow. 
Authors apply the methodology to the city of Xi’an as a case of study. Finally, the application of the 
developed driving cycle together with other international driving cycles to the city revealed that when 
the latter are used, energy consumption errors increase up to 21.17%. The research (Zhao, Yu, et al., 
2018) goes a step further and proposes a methodology based on a k-means and a support vector 
machines hybrid clustering algorithm to select the most representative EV urban driving cycle. The 
application of the methodology to Xi’an EV urban driving cycle effectively matches the speed-time 
driving pattern of the real-world cycle, proving therefore the feasibility of the method. Referring to the 
state of batteries, Zhang et al (Zhang et al., 2019) focus their study on the accurate estimation of the 
State of Charge (SOC) of lithium-ion batteries, which are widely used for energy storage in EV. Their 
novel methodology allows for an optimization of the noise information by means of an “ant-lion” 
optimizer algorithm. Results verify the suitable noise optimization making use of the developed 
algorithm, so that SOC of batteries could be accurately estimated with error ratios lower than 1%. 
Another research (Wang, Wei and Dai, 2019) develops a diagnosis of the state of health of lithium-ion 
batteries based on charge transfer resistance and taking different temperature and SOC parameters 
as inputs. The study leads to a battery state of health estimation method that eliminates the need of 
controlling the temperate and SOC of batteries during the measurement. 

After the analyses of EV electrical behavior, different studies (Ahmadi et al., 2012; Deb et al., 
2018; Galiveeti, Goswami and Dev Choudhury, 2018; Gong et al., 2018) claim that a massive 
introduction of EV would create negative impacts on the grid, leading to new power network 
challenges (Clairand, Rodríguez-García and Álvarez-Bel, 2018). With this problem in mind, several 
studies have lately proposed different solutions to minimize the impact of EV on the grid (Wang and 
Chen, 2019). 
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One study has focused on the reshape of electricity load demand from EV recharge in the case 
of a high expected introduction of EV (López et al., 2015). The study for EV penetration in New Zealand 
(Su, Lie and Zamora, 2019) shows how the EV demand would increase each year with the consumption 
concentrated in peak hours, particularly at the end of the day. Under these circumstances, peak loads 
increase until arriving to a critical point in 2040 when the highest peak demand would exceed 2018 
New Zealand installed generation capacity. Other studies, applied to Brazil (Baran and Legey, 2013) 
and to the European Nordic Region (Liu et al., 2014), reach  the same conclusion: the electricity 
demand due to the introduction of EV would substantially increase peak loads, with the corresponding 
negative impacts on the electricity network and the installed capacity of those regions. 

 EV recharging processes tend to have a random behavior (Ortega-Vazquez, Bouffard and Silva, 
2013; Dang, 2018; Mao, Gao and Wang, 2019) when compared to traditional electricity load profiles, 
but no limitations measures have been yet applied to control  those recharging processes due to the 
recent appearance of EV in transportation. Nowadays, users freely choose the charging time to 
recharge  their batteries, so the process schedule is a self-personalized one (Dang and Huo, 2018). This 
uncontrolled situation is the responsible for an overlapping between EV charging loads with the grid 
peak loads that could increase the requirements at the peak periods. Therefore, scheduling the 
different recharging options is completely necessary to avoid peak demand increases with the 
consequent grid problems (Sundstrom and Binding, 2012). 

 Although several studies have analyzed the impact of EV introduction in the grid, just only a 
few have based their investigation on scheduling the recharge activities. One of this is the above 
mentioned in New Zealand (Su, Lie and Zamora, 2019), based on time restrictions to be applied to 
private and utility EV and electric buses. Following these constraints, The European Nordic Region 
study (Liu et al., 2014) considers also a timed charging strategy based on the spot price, but this 
method is applied only for EV passenger cars. Reschedule of the charging processes based on dynamic 
pricing is studied and applied to a case of study in Germany (Limmer and Rodemann, 2019).  

None of these studies consider real drivers recharging patterns, that should be the basis for 
real recharging strategies, and can be included in three different categories: recharge at home, 
electrical stations or public buildings (IDAE, 2012; Martínez-Lao et al., 2017; REE, 2018; Wang and 
Infield, 2018; Danté et al., 2019). The aim of this paper is to deduce an optimization methodology to 
avoid peak demand hours by the introduction of EV. This methodology is based on the use of electricity 
demand temporal valleys and provides an optimization of the distribution of recharge between the 
three different recharge options.  

The methodology considers only the contribution of light electric vehicles (LEV) by including 
cars and motorcycles. Main reason for this limitation lies in the different recharging behavior and travel 
use of heavy vehicles, like trucks or buses. Furthermore, the currently available batteries are not yet 
able to provide the full autonomy desired for heavy vehicles. 

This methodology has been applied to the case of Spain in the year 2030, assuming three 
different scenarios for the growth of the total fleet: low, medium and high. For each of them, three 
different levels for the LEV penetration are considered: 25%, 50% and 75%, respectively. Spain is one 
of the countries where a large-scale introduction of LEV is expected to happen in the near future. This 
is because the recent Climate Change and Energy Transition draft proposed by the Spanish 
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Government (PNIEC, 2019) forbids by 2040 the registration and sale of any light vehicle which emits 
CO2. Some previous studies have addressed the effect of EV on the grid for this country or some of 
their regions. For instance, in (Ceballos Delgado, Caicedo Bravo and Ospina Arango, 2016) the impact 
of EV on the distribution network is analyzed for Spain, Chile and Colombia. The impact of charging EV 
on the distribution grid of a region in Spain (Barcelona) is detailed in (Valsera-Naranjo et al., 2012) with 
emphasis on the importance of mobility variables when studying this impact. Despite the importance 
of all these studies, a scheduling of the EV charging has not been yet studied. This research gap and 
the forecasted high introduction of LEV in Spanish society, make 2030 Spain case study a certainly 
suitable one to prove the feasibility of the suggested methodology. 

This paper is organized as follows: the developed methodology is described in section 2; the 
case of study with the application to Spain in the year 2030 with different degrees of LEV penetration 
including results and discussion is presented in section 3; finally, some general conclusions are 
presented in section 4. 

 

2. Methodology 

In this section, a LEV recharging strategies optimization methodology is presented. This 
methodology is based on the reschedule of LEV recharge using temporal valleys in the electricity 
demand curve and its distribution between the different options for recharging. A brief overview of 
the methodology is shown on the flowchart at the Figure 1. 

 

 

The recharge approach starts with the determination of the expected LEV fleet using data from 
different official sources and its extrapolation to the year under consideration. The electricity demand 
from the calculated LEV fleet is determined and distributed along the optimal recharging periods 
deduced from the valleys in the total electricity daily demand curve. By adding this total electricity 
demand to the LEV demand, a final daily demand curve is obtained and its possible flattening is 

Figure 1. Flowchart of the proposed methodology.  
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analyzed to check how much the initial demand curve has been affected. Once an adequate flattening 
is obtained, the distribution of the total LEV electricity demand between the different recharging 
methods (home, electrical stations and public buildings) is optimized. 

 

2.1. LEV fleet 

During these last years, almost every developed country has experimented a large-scale 
introduction of LEV (Baran and Legey, 2013; Canals Casals et al., 2016; REE, 2018). This trend is ever 
increasing now, so that forecasting LEV fleet in a long term becomes a difficult data to obtain, but 
critical for the determination of the impact on the electrical grid. 

To determine the LEV fleet, the methodology considers four different vehicle types (Al-Alawi 
and Bradley, 2013; Martínez-Lao et al., 2017): pure electric cars (PEC), hybrid electric cars (HEC), pure 
electric motorcycles (PEM) and hybrid electric motorcycles (HEM). From the extrapolation of the 
historical data (DGT, 2017) for light combustion cars (LCC) and motorcycles (LCM), and  the assumption 
of penetration factors for each of the different considered LEV, the total LEV fleet (NT) is deduced for 
the particular year under consideration:  

NT = �Ni

4

i=1

= �fLCC(t0) ·  �pi(t0)
2

i=1

� + �fLCM(t0)  ∙� pi(t0)
4

i=3

� 
(1) 

 

where: Ni represents the fleet for the different types of LEV i (i=1 (PEC); i=2 (HEC); i=3 (PEM) and i=4 
(HEM)); fLCC(t0) and fLCM(t0) are the extrapolated values in the year t0  of the different LCC and LCM, 
respectively, and pi is the penetration factor of the different types of electric vehicles i. 

Hence, the nature (cars/motorcycles) of the introduced LEV matches the nature of the LCV replaced. 
Therefore, the introduction of electric cars (PEV and HEV) would influence LCC, whereas electric 
motorcycles (PEM and HEM) would affect LCM. 

 

2.2. Electricity demand increase  

The electricity demand from the total LEV fleet will be given by:  

∆ED= ∑ �Ca · fh · d�a�i · Ni  4
1  (2) 

where the electrical consumption of each type of electric vehicle is affected by three factors: the 
average certified electrical consumption (Ca); a real increase consumption factor (fh)  over those 
certified values, and the average annual travel distance (d�a).  

Values for all these parameters are summarized in Table 1. Ca can be obtained from the review 
of the certified consumption for a large quantity of existing and planned LEV models (Luca de Tena and 
Pregger, 2018). However, different studies (Tietge, Díaz, et al., 2016; Tietge, Mock, et al., 2016; Zhao, 
Ma, et al., 2018) claim that those average certified consumption values differ from the real ones, since 
values obtained under the tested conditions are lower than those obtained under real road conditions 
due to the low demanding conditions of the former tests. Factor fh is deduced by using extrapolated 
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data from (Tietge, Mock, et al., 2016). Averaged annual traveling distances, d�a , could be deduced from 
(INE, 2018). 

Table 1. LEV electrical consumption parameters 

 Ca 

(kWh/100 km) 
fh 

 
d�a 

(km/year) 
PEC 13.7                       1.67 12563 
HEC 4.6 1.67 12563 
PEM 6.3 1.67 6302 
HEM 2.1 1.67 6302 

 
2.3. Total daily electricity demand curve 

To deduce the total daily electricity demand curve, we should add to the demand from the 
different sectors (industry, residential, commercial and services, agriculture and fishing), the demand 
due to the LEV recharge.  This sectorial demand curve can be calculated by assuming that its shape is 
unchanged in the future and only a multiplying factor for the entire profile, due to the increase in 
demand, should be applied. This factor (Mf) is given by eq. 3 

Mf =
Ey
Ey0

 
                     (3) 

where Ey corresponds to the total forecasted electricity demand for the year into 
consideration and Ey0  to the electricity demand for the current year. 

 Historical data from official sources contain information about the electricity consumed in 
each country along the years. For instance, in the case of Spain, (REE, 2017b) contains national 
electricity consumption data from 1990 to our days, with the possibility of different period 
visualizations (diary, monthly, yearly) or locations selection (regions, peninsula, national). Therefore, 
Ey0  is directly obtained from the historical data of the country in question, whereas Ey corresponds to 
a lineal extrapolation of them to the year under study.  

Besides, load users’ patterns present considerable differences between working and non-
working days (REE, 2017a), so two different predicted daily demand curves should be determined in 
the methodology application.  

Once the sectorial demand profiles are deduced, the distribution along the day of the 
electricity demanded by the LEV is made in accordance with a distribution function deduced from 
those profiles. This distribution function (P(t)) is given by: 

P (t) = (D0(t) − D0�)/∫ (D0(t) − D�0) · dt24
0  (4) 

where D0(t) is the sectorial daily demand profile for the considered year and D�0 is the maximum value 
on that profile. 
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Typical total sectorial electricity demand profiles for working and non-working days are 
presented in figure 2, together with the corresponding distribution function for the LEV electricity 
demand deduced using eq.4. 

  (a) (b) 

Figure 2. Sectorial demand profile and deduced LEV recharge distribution functions for working (a) and non-working (b) days 

 

The distribution of the LEV electricity demand along the day is deduced by using this 
distribution function. 

DLEV(t) = ∆ED · P(t)  (5) 

 

Therefore, the total electricity demand profile will be given by: 

DT(t) = DLEV(t) + D0(t)  (6) 

 

Using this approach, the total daily electricity demand curve is expected to be a flatter one.  To 
verify this effect, a flat factor Ff is calculated as:  

Ff = 1
24
∙ ∫ DT(t)

D�T
· dt24

0   (7) 

 

Figure 3 displays the application of this methodology to the distribution of the demand of 
electricity from LEV, assuming this demand as a 50% of the total one. There is a clear improvement in 
the flattening of the profile, without any increase in the peak demand value, by displacing the LEV 
charge to the valleys in the demand curve. 
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Figure 3. Demand curve flattening 

 
2.4. LEV recharging strategies 

An optimal distribution of the LEV electricity demand could be obtained using the above-
described methodology. However, another barrier needs to be considered regarding the different 
recharging strategies for LEV (Liu et al., 2014; Dang, 2018; Desai, Chen and Armington, 2018; Su, Lie 
and Zamora, 2019). These strategies would consider the recharging behavior of the users, which 
basically are: recharging at home, electrical stations  or public buildings (IDAE, 2012; Martínez-Lao et 
al., 2017; REE, 2018; Wang and Infield, 2018; Danté et al., 2019) and should optimize the distribution 
of the required demand between these options.  

 

2.4.1      Recharge at home 

This type of recharging mode corresponds to the users who would recharge LEV in their 
garages while they are at home. Hence, recharging hours are related to working schedules of citizens. 
During working days, most of the citizens using this option would connect their LEV as soon as they 
arrive home from their work and would disconnect them next morning before going back to work. 
During non-working days, the most remarkable period of recharging would still be night hours. 
However, daily hours would experiment an increase, since some people stay at home on these days.  

According to (IDAE, 2012; Martínez-Lao et al., 2017; REE, 2018), given the high number of  
available hours for recharge, this strategy corresponds to a slow mode of recharging. Hence, the 
recharger unit to supply a complete charge in about 8 hours could be based in a system with a 
maximum intensity of 16 A at 230 V. 

 

2.4.2     Recharge at electrical stations 

Recharging at electrical stations involves users who would specifically stop in a public point 
because they want the LEV batteries quickly be recharged, so that they can continue with the trip. 
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Electrical stations would be equivalent to current petrol stations (Alhazmi, Mostafa and Salama, 2017; 
Bagher Sadati et al., 2019) with a quick recharging mode  (IDAE, 2012; Martínez-Lao et al., 2017; REE, 
2018). Hence, the charge duration should be about 30-45 minutes, and the recharger should be able 
to supply around 400 A at 400 V. 

 

2.4.3     Recharge in public buildings 

Refilling LEV batteries in public buildings like parking, supermarkets, shopping centers, etc., 
during the periods owners are developing other activities corresponds to this type of recharge. This 
strategy corresponds to an semi-quick mode of recharging (IDAE, 2012; Martínez-Lao et al., 2017; REE, 
2018) with a standard charge duration of about 2 hours, and the recharger  should supply 64 A at 400 
V. 

 

 

 

An adequate splitting between these three recharging options should cover the obtained 
distribution of the total LEV electricity demand, as eq. 8 indicates.  

DLEV(t) = H(t) + E(t) + P(t) (8) 

 

Being H(t), E(t) and P(t) the contributions to the demand from home, electrical stations and 
public buildings, respectively. Each of these contributions depend on their daily recharging probability 
profiles, as eq. 9 to 11 indicate.   

H(t) = DLEV(t) · ph(t) (9) 

 E(t) = DLEV(t) · pe(t) (10) 

 P(t) = DLEV(t) · pp(t) (11) 

 

where ph(t), pe(t) and pp(t) are the daily recharging probability profiles for home, electrical 
stations and public buildings, respectively.  

For each case, these parameters arise as proportional contributions to the daily pattern for 
each recharging option, as eq. 12 to 14 show.  

 ph(t) = h(t)
h(t)+e(t)+p(t)

 (12) 

 pe(t) = e(t)
h(t)+e(t)+p(t)

 (13) 

 pp(t) = p(t)
h(t)+e(t)+p(t)

 (14) 
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where h(t), e(t) and p(t) represent the daily patterns for home, electrical stations and public 
buildings strategies, respectively. These patterns would match not only the typical recharging schedule 
from each strategy (section 2.4.1, 2.4.2 and 2.4.3) but also the way of life of users for the specific region 
under consideration, to deduce from each country official data.  

 

3. Case of study: Spain in 2030 
As an application of the developed methodology for the optimization of the impact on the grid 

due to the penetration of the LEV, this study has been addressed for the case of Spain in the year 2030.  
In 2018, there were 25.500 electric cars and 12.350 electric motorcycles (REE, 2018), which represented 
just a 1% of the total Spanish light transport fleet. Despite this small presence, the introduction of LEV 
in Spain has experimented a big growth in the last few years and even a bigger increase is forecasted for 
the medium term. In this study, we are assuming three different scenarios for the growth of the total 
LCV fleet: low, medium and high, as detailed at figure 4. For each of them, three different levels for the 
LEV penetration by the year 2030 are considered: 25%, 50% and 75%, respectively. 

     

(a)                                                                                                         (b) 

Figure 4. Scenarios for the growth of LCV in Spain. (a) LCC. (b) LCM. 

 
3.1. LEV fleet 

Following the methodology proposed in this paper, we can deduce the total number of electric 
cars and motorcycles by applying an increasing factor to the values deduced from the extrapolation to 
the year 2030 of the historical data available for LCV in Spain (DGT, 2017). Table 2 shows the LEV fleet 
composition for the different penetration levels in each of the assumed scenarios with the assumption 
of an equal distribution between pure electric and hybrid vehicles. 

 

 

 

 



 

11 

 

Table 2. LEV fleet composition for the different scenarios 

                                 Number of vehicles (millions)  
Scenario LEV fraction 

(%) 
PEC HEC PEM HEM 

 25 2,8 2,8 0,4 0,4 
Low 50 5,6 5,6 0,8 0,8 

 75 8,4 8,4 1,2 1,2 
 25 3,7 3,7 0,6 0,6 

Medium 50 7,4 7,4 1,2 1,2 
 75 11,2 11,2 1,7 1,7 
 25 5,9 5,9 0,9 0,9 

High 50 11,8 11,8 1,9 1,9 
 75 17,7 17,7 2,8 2,8 

 
 

3.2. Electricity demand increase 

If no LEV were introduced in Spain, the total sectorial electricity demand in the year 2030 
would be around 279 TWh, deduced from a lineal extrapolation to that year of the electricity 
consumption in Spain during the period 2013-2017 (REE, 2017b). This represents an increase of 10,3% 
in relation to the last available data for 2017. 

The increases in electricity demand due to the LEV introduction are calculated by using eq.2 
with values from the table 1. Results for the different penetration levels in each of the assumed fleet 
scenario are summarized in table 3 and figure 5.  

 

Table 3. LEV Electricity demand 

            LEV electricity demand 
Scenario LEV fraction 

(%) 
Annual      
(TWh) 

Daily       
(GWh) 

Increase 
(%) 

 25 11,1 30,5 4,0 
Low 50 22,2 60,9 8,0 

 75 33,4 91,4 12,0 
 25 14,7 40,3 5,3 

Medium 50 29,4 80,7 10,6 
 75 44,2 121,0 15,8 
 25 23,5 64,3 8,4 

High 50 46,9 128,5 16,8 
 75 70,4 192,8 25,2 
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Figure 5. Total electricity demand  

A maximum increase of 25,2% is obtained for the most demanding scenario: 75% LEV 
penetration for a high growth of the total light vehicle fleet. 

 

3.3. Total daily electricity demand curves 

Nowadays, current load patterns for electricity users present considerable differences 
between working and non-working days (REE, 2017a). Therefore, two different predicted 2030 Spanish 
daily demand curves have been used in this study. If these demand profiles are the same all along the 
year, we can distribute the total electricity LEV consumptions between working and non-working days, 
by considering the total number of days for each type along the entire year. The profile for the deduced 
daily electricity demand in each case is deduced by applying the probability distribution function of 
eq.4. 

Assuming for the year 2030 the conservation of the sectorial electricity demand curve shape 
existing at 2017 (REE, 2017a), we can upgraded it by application of the multiplication factor  of the 
total demand deduced in paragraph 3.2.  By adding the two demand profiles: sectorial and LEV demand 
ones, we obtain the total daily demand profile, both for working and non-working days. Figures 6 to 8 
display those demand curves for the three scenarios under consideration. 
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(a)                        (b) 

Figure 6. Total demand profiles in the low growth scenario. (a) Working day. (b) Non-working day. 
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(a)                         (b) 

Figure 7. Total demand profiles in the medium growth scenario. (a) Working day. (b) Non-working day. 
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  (a)  (b) 

Figure 8. Total demand profiles in the high growth scenario. (a) Working day. (b) Non-working day. 

 

To quantify the effect of the LEV penetration with this controlled recharging method, the flat 
parameter for each profile is calculated by using eq. 7 and, together with the maximum demand power, 
the obtained values are compared with the corresponding ones for the initial profile. Results are 
presented in Table 4 for working days where it can be deduced that in all the scenarios a flatter profile 
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than the initial one is obtained. The maximum value of the electricity demand is preserved for most of 
the cases and only in the higher penetration for the medium growth and in the intermediate and high 
penetration for the high growth scenario is necessary an increase of power in the electricity system. 
Similar behavior is obtained for the case of non-working days as table 5 shows. 

Table 4. Profile flattening of the demand profile for working days.  

 Initial demand curve  Total demand curve 
Scenario Maximum 

(GW) 
Flat factor LEV fraction (%) Maximum 

(GW) 
Flat factor 

   25 37,8 0,917 
Low 37,8 0,883 50 37,8 0,950 

   75 37,8 0,984 
   25 37,8 0,928 

Medium 37,8 0,883 50 37,8 0,972 
   75 39,5 0,973 
   25 37,8 0,954 

High 37,8 0,883 50 40,4 0,960 
   75 42,1 0,985 

 

Table 5. Profile flattening of the demand profile for non-working days  

 Initial demand curve  Total demand curve 
Scenario Maximum 

(GW) 
Flat factor LEV fraction (%) Maximum 

(GW) 
Flat factor 

   25 31,8 0,900 
Low 31,8 0,860 50 31,8 0,940 

   75 31,8 0,980 
   25 31,8 0,913 

Medium 31,8 0,860 50 31,8 0,966 
   75 32,9 0,983 
   25 31,8 0,944 

High 31,8 0,860 50 33,5 0,975 
   75 36,0 0,983 

 

3.4. LEV recharging strategies 

Different studies boosted by the Spanish Government have been carried out in relation to LEV 
recharging strategies (home, electrical stations and public buildings). Based on these studies (AECC., 
2018; Eurostat, 2018; DGT, 2019), the daily recharging probability profiles for each of them are 
deduced (Figure 9), as well as the contribution of each option to the total LEV demand (Figures 10 to 
12). 

    

 

 

 



 

17 

 

                                                      (a)                                                                                                              (b) 

Figure 9. Daily recharging probability profiles. (a) Working day. (b) Non-working day. 
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      (a)                                                                                                              (b)     

Figure 10. Electricity contributions to LEV demand for low growth scenario. (a) Working day. (b) Non-working day. 
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     (a)                                                                                                        (b)     

Figure 11. Electricity contributions to LEV demand for medium growth scenario. (a) Working day. (b) Non-working day. 
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(a)                                                                                                                   (b)     

  Figure 12. Electricity contributions to LEV demand for high growth scenario. (a) Working day. (b) Non-working day. 

 

For the low and medium growth of LEV, the recharge is mainly concentrated in the night hours 
by using the home option and no increase in the peak value of the total electricity demand is required. 
When this growth increases, it is also possible to obtain a flat profile after several iterations of the 
method, where an increase in the peak value is given. Moreover, the contribution of every recharge 
option remains constant compared to the other scenarios. Numerical results for the different 
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contributions are detailed in table 6 and relative contributions to the total recharge from the different 
options are presented in figure 13. 

 

Table 6. Power and energy requirements for the different recharge options in working/non-working days 

  Home 
(Working/Non working day ) 

Electrical stations 
(Working/Non working day ) 

Public buildings 
(Working/Non working day ) 

Scenario LEV fraction 
 (%) 

Max Power 
(GW) 

Total Energy 
(GWh)      

Max Power 
(GW) 

Total Energy 
(GWh)      

Max Power 
(GW) 

Total Energy 
(GWh)      

 25 2,56/1,74 16,91/13,79   0,85/0,69 6,73/7,88 0,8/0,88 6,84/8,80 

Low 50 5,11/3,48 33,82/27,59   1,71/1,39  13,45/15,76 1,60/1,75 13,68/17,60 

 75 7,67/5,22 50,73/41,38   2,56/2,08  20,18/23,64 2,41/2,63 20,51/26,40 

 25 3,39/2,30 22,40/18,27    1,13/0,92  8,91/10,44 1,06/1,16 9,06/11,66 

Medium 50 6,77/4,61 44,80/36,54    2,26/1,84  17,82/20,88 2,13/2,32 18,12/23,31 

 75 10,16/6,91 67,20/54,81    3,39/2,76  26,73/31,32 3,19/3,48 27,18/34,97 

 25 5,39/3,67 35,66/29,09   1,80/1,47  14,19/16,62 1,69/1,85 14,42/18,56 

High 50 10,78/7,34 71,33/58,18    3,60/2,93  28,37/33,24 3,38/3,70 28,85/37,12 

 75 16,17/11,01 106,99/87,27     5,40/4,40 42,56/49,87 5,08/5,54 43,27/55,68 

 

 

            (a)                                                                                                          (b)     

Figure 13. Relative contributions of each recharging mode. (a) Working day. (b) Non-working day. 

 

4. Conclusions  

The foreseeable high penetration of light electric vehicles (LEV) in the transport fleet of any 
country generates an increase in electricity demand, whose daily distribution should be optimized to 
avoid a substantial increment of the peak value in the existing electricity demand curve prior to the 
LEV penetration. This optimization would help to avoid the requirement for uploading of the actual 
installed power in the country. A methodology to optimize the daily distribution of this LEV electricity 
demand has been developed in this work. This methodology is based on the distribution of the LEV 
recharge by following an inverse trend when compared with the initial electricity consumption from 
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the other demand sectors, apart from transport.  The electricity consumption for LEV recharging is 
assigned to each time interval by the application to this recharge process of a distribution function, 
deduced from the initial demand curve by giving high priority to the valleys and maintaining as much 
as possible its peak value. Flattening of the total electricity demand curve is analyzed and the 
methodology iterates until a fixed improved value is obtained with the minimum impact of the initial 
peak value. The obtained LEV demand distribution is later divided among the different recharging 
options, such as: home, electrical stations and public buildings. The distribution probability along the 
day for the use of these different recharge options is deduced from reliable studies about driving 
patterns. In this way, an optimal scenario for recharge is deduced and its application should be 
addressed from the development of tariff structures and social campaigns. 

This methodology has been applied to the case of Spain by the year 2030 assuming three 
different scenarios for the growth of the light vehicle fleet, that to say: cars and motorcycles, with a 
low, medium and high growth, respectively. For each of these scenarios, three different levels of 
penetration for the electric vehicles were considered: 25%, 50% and 75% of the total fleet. Considering 
the different driving behavior and electricity consumption for working and non-working days, two 
different initial electricity demand profiles were used, deduced from the database of official 
organizations, and extrapolated to 2030.  Results from the methodology indicate an improvement in 
the profile flattening up to reach 0,972, maintaining the peak value in the initial value of 37,8 GW. Only 
in the case of the medium growth scenario with 75% penetration and the high growth with 50% and 
75% LEV penetrations was necessary to increase the peak value in a 5%,7% and 11.4%, respectively, 
but with high flattening in all of them, higher than 0,95, so the peak value was maintained almost all 
the time along the day. The allocation of the recharge between the different systems: home, electrical 
stations and public buildings, is dominated by the home option in all the scenarios, with a share in the 
order of 50% of the total demand, concentrated in the night hours. 

This study has verified that it is possible a high penetration of LEV in the fleet of Spain by 2030 
without increasing peak load, making use of the temporal valleys and optimally rescheduling the 
electricity demand increase among the different recharging options. Governments should play a key 
role when applying this methodology. Adequate policies should be carried out in order to ensure the 
installation of the required recharging points of any of the options, different taxes of recharging 
depending on the hour, subsidies for recharging during nights at home, etc. Future research will 
explore how these incentives would affect the expected recharging contributions. Moreover, future 
works will also study how the electricity demand increase could be covered with renewable energy 
sources, with the support of the grid or just in island configuration. Additionally, the methodology has 
been oriented to the search for flat profiles, but it could be applied to other requirements on the profile 
shape, such as to obtain the maximum exploitation of the generation profiles coming from renewable 
sources, such as solar photovoltaic.  
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