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Learning Alternative Ways of Performing a Task

D. Nieves, MJ. Ramírez-Quintana, C. Monserrat1, C. Ferri, J. Hernández-Orallo
Valencian Research Institute for Artificial Intelligence (VRAIN),

Universitat Politècnica de València, Spain

Abstract

A common way of learning to perform a task is to observe how it is carried out by
experts. However, it is well known that for most tasks there is no unique way to perform
them. This is especially noticeable the more complex the task is because factors such as the
skill or the know-how of the expert may well affect the way she solves the task. In addition,
learning from experts also suffers of having a small set of training examples generally coming
from several experts (since experts are usually a limited and expensive resource), being
all of them positive examples (i.e. examples that represent successful executions of the
task). Traditional machine learning techniques are not useful in such scenarios, as they
require extensive training data. Starting from very few executions of the task presented as
activity sequences, we introduce a novel inductive approach for learning multiple models,
with each one representing an alternative strategy of performing a task. By an iterative
process based on generalisation and specialisation, we learn the underlying patterns that
capture the different styles of performing a task exhibited by the examples. We illustrate
our approach on two common activity recognition tasks: a surgical skills training task and a
cooking domain. We evaluate the inferred models with respect to two metrics that measure
how well the models represent the examples and capture the different forms of executing a
task showed by the examples. We compare our results with the traditional process mining
approach and show that a small set of meaningful examples is enough to obtain patterns
that capture the different strategies that are followed to solve the tasks.

Keywords: task learning, inductive learning, process mining, identifying strategies

1. Introduction

Nowadays, humans learn the execution of a complex task through three steps: study-
ing the description of the task, watching video executions of the task (usually performed
by experts) or real-life demonstrations of it, and, finally, executing the task under expert
supervision several times (Ericsson, 2009). This way of acquiring the skills needed to per-
form a task is expensive in time and resources. Besides, the lack of continuous supervision
may induce mistakes because of the limited experience of the operators or lack of attention
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because of the repetitiveness of the task. In this sense, artificial intelligence (AI), and ma-
chine learning (ML) in particular, is making it possible to help people in their daily lives
by learning models about their tasks. These models can then be integrated into direct as-
sistance systems, such as task training learning environments, supervisory contexts in order
to avoid human mistakes, or machine-human collaboration contexts, where the machine is
used as an assistant for a complex task. Research in this direction can be found in fields
such as Ambient Intelligence (Camacho et al., 2014), Context-aware systems (Hong et al.,
2009), Advanced Driving Assistants (Škrjanc et al., 2018) or Surveillance systems (Kardas
& Cicekli, 2017), to name a few.

However, traditional ML techniques require large volumes of data in order to infer models
of common tasks. In many areas, such as surgery, the access to training examples is very
costly, as these are very complex tasks that very few people know how to perform or require
specific permissions or instrumental. In these cases, the knowledge acquisition has to be done
from a small set of examples, with examples being a series of steps that an expert carried out
to complete the task from beginning to end. Besides, this learning process must consider
that any process can be performed in several ways; experts can present different styles
when executing the task (in many cases, involuntarily) and can contain noise (interpreted
as non-essential activities of the task).

Other approaches (Yang et al., 2017; Blum et al., 2008) can generalise a pattern of
the task from a few positive examples. However, they only can learn one general pattern
from the set of provided examples. The same case occurs with methods such as ‘Fuzzy
Mining’ (Günther & van der Aalst, 2007) or the Alpha-algorithm (Alves de Medeiros et al.,
2004). The previous solutions can lead to incorrect learning of the task and even dangerous
learning. Let us illustrate the case with an example. Imagine a scenario where a system has
to supervise the task of cooking a carrot soup. Table 1 shows the vocabulary of activities
involved in this task. We have two examples of how to cook this dish (expressed as sequences
of activities): “SABCDFGHIMOPT” and “SABCEFGJKLNOPT”. These examples show two
different forms of cooking: using a microwave or a kitchen stove. If we want to learn a
general rule from these two examples, a possible generalisation is the expression “SABC
{D|E}FG{HIM|JKLN}OPT”, where “|” means a disjunction between two activity groups for
the portion of the task delimited by curly brackets. The two given examples are covered
by the model, but there are other valid sequences of activities according to this model
that are not safe. For instance, the sequence “SABCEFGHIMOPT”, where the person takes
a metal pot, put the ingredients in, and, then, put the metal pot into the microwave to
prepare the soup. We need a learning procedure and a representation language that is able
to find the right trade-off between an overgeneralisation covering almost everything and
an overspecialisation that is simply the sequence composed by the disjunction of the two
examples “{SABCDFGHIMOPT|SABCEFGJKLNOPT}”. Additionally, there can be examples
that contain noise, for instance the sequence “SABBCDFGHIMOPT” is wrong, as the person
washes the carrot twice (activity B) before cutting it. To avoid an overgeneralisation, given
that we do not have negative examples, the model should be as close as possible to the
observed examples but, at the same time, avoiding the overspecialisation and the noise as,
for instance, the pattern “SABC{DFGHIM|EFGJKLN}OPT”.
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Activity Code Activity Description
S Start the task
A Peel the carrot
B Wash the carrot
C Cut the carrot into pieces
D Take a glass pot
E Take a metal pot
F Fill the pot with water
G Add salt
H Put the pot into the microwave.
I Turn on the microwave at the maximum level (15 minutes).
J Put the pot on the stove
K Turn on the stove at the maximum level (10 minutes).
L Reduce the stove at the minimum level (30 minutes).
M Turn off the microwave.
N Turn off the stove.
O Take a deep bowl.
P Add two tablespoons of soup in the dish.
T Finish the task

Table 1: Vocabulary of activities for cooking a carrot soup.

In this paper, we propose a new inductive method whose advantages are summarised as
follows:

• The method is able to identify and extract different models of a task from a reduced
set of executions performed by experts. These executions are presented as sequences
of activities.

• Our approach relies on a representation language based on graphs for characterising
both the examples and the models. Examples and models are represented as depen-
dency graphs, a kind of representation that simplifies an activity sequence, by only
considering the consecutive dependencies directly, and representing each activity just
once in the graph. Dependency graphs are hence a more concise non-univocal simpli-
fication of an activity sequence. Similar formalisms based on graphs can be found in
the workflow learning literature (Yang et al., 2017; Günther & van der Aalst, 2007;
Agrawal et al., 1998)(van der Aalst & Van Hee, 2004) with applications in bioinfor-
matics (Yan et al., 2005), social-network analysis (Carrington et al., 2005) or web
navigation (Papadimitriou et al., 2010). However, we take advantage of the properties
derived from the graphs to propose an inductive method that is able to generate more
than one model, each one identifying a different form of performing the task showed
by the examples.

• The method is driven by two main operators: aggregation and refinement. Those
operators perform the generalisation of the examples (by aggregating graphs) and the
refinement of the aggregated graph (by removing some edges according to a certain
threshold). Unlike other process mining methods based on graphs, our method applies
the two operators repeatedly generating one model in each iteration, until all the
training examples are represented by at least one of the inferred models.
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• The learned models are characterised by not having disconnected nodes, so the ending
activity is always reachable from the initial activity following a path in the graph; in
other words, the models represent correct ways to perform the task.

• While other methods for learning tasks from a few executions get black-box models
that are not comprehensible or their decisions are impossible to explain (Duan et al.,
2017), our models are completely understandable by the experts since there is a one-
to-one correspondence between nodes in the model and activities. Hence, the whole
learning process can be audited.

We have applied our method to two real problems. The first one is a suturing task from the
domain of skill training in minimally invasive surgery (MIS), which we will use as a running
example. This is one of the most complicated routines to perform because of noise (Cao
et al., 1996) and because surgeons can express different suture styles (Ahmidi et al., 2017).
The second real application is related to cooking: the preparation of a brownie (Spriggs
et al., 2009). This allows us to analyse the applicability of the model to very different
domains.

The rest of this paper is organised as follows. Section 2 reviews some related work.
Section 3 presents the notation we use for representing examples and models. We also
define our inductive method for learning multiple models of a task. Section 4 presents the
experimental results of the application of our approach to real examples taken from training
in two domains: laparoscopic surgery and cooking. In Section 5 we discuss the experimental
results and the strengths and limitations of our method. Finally, Section 6 outlines the
conclusions and further research directions.

2. Related Work

Traditionally, the recognition of complex human activities from a set of observed data has
been addressed in the area of Activity Recognition (AR) (Sukthankar et al., 2014). In AR, a
distinction can be made between data-driven approaches and knowledge-driven approaches
(Chen et al., 2012a).

Data-driven approaches (Hoey et al., 2010; Sánchez et al., 2008; Patterson et al., 2005;
Kruger et al., 2014) are characterised by the use of supervised (e.g., Hidden Markov Models
(HMM), Linear Dynamical Systems (LDSs)) and unsupervised (e.g., KNN) machine learning
techniques to address the problem. These are powerful tools when facing uncertainty and
temporal information but they require large datasets for learning the activities. By contrast,
knowledge-driven approaches (Okeyo et al., 2011; Ye et al., 2015; Chen et al., 2012b, 2008;
Bouchard et al., 2006) are characterised by their reusability, semantic clarity and a lower
dependence on the training data. Activity models consist of rules that define the logic of
the task and its constraints. This representation makes it possible to introduce domain
knowledge. This prior knowledge can be easily translated into reusable structures, i.e.,
schemes, logical representation or ontologies, which are then used for reasoning about the
relationships between activities, objects, temporal and spatial context.
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The applicability of both types of approaches inside a real automatic supervision system
has become a hot topic in recent years. Thus, data-based systems have been proposed,
for instance, for assisting persons with dementia during handwashing (Hoey et al., 2010),
for kitchen activities supervision (Kruger et al., 2014; Yordanova et al., 2017; Rohrbach
et al., 2012; Neumann et al., 2017) and for supervision in a whole smart environment us-
ing sensor data (Twomey et al., 2016; Intille et al., 2006; Kröse et al., 2008; Crandall &
Cook, 2011). Additionally, knowledge-based supervision systems try to take full advantage
of other knowledge resources in contexts where accessing training data is complicated. For
instance, in (Okeyo et al., 2011; Ye et al., 2015; Chen et al., 2012b) different knowledge-
driven approaches are proposed to recognise the behaviour of smart home inhabitants by
using ontologies. Chen et al. (2008) present a knowledge-driven framework for Smart Homes
based on the Event Calculus (EC) formalism (Mueller, 2014), and Bouchard et al. (2006)
present a similar idea to prevent home accidents of people that suffer from cognitive im-
pairments (e.g., Alzheimer). The dependence on data makes data-based systems sensitive
to issues such as data scarcity (it is difficult and costly to have enough training data from
different users, specially when data is collected from devices such as sensors) or even the
“cold start” problem: the problem that emerges when a data-driven application does not
have the minimum amount of data to learn the task and operate. In addition, limitations
in scalability and reusability may also arise due to difficulties in applying the learnt models
from one person to another (since humans perform activities differently, they have differ-
ent activity patterns). A way to deal with those problems is to apply multitask learning
(Caruana, 1997) by considering each user as a task (Liu et al., 2015; Sun et al., 2012) or con-
sidering each activity as a task and solving multiple tasks by exploiting the commonalities
and differences across them (Peng et al., 2018). An alternative is to perform transfer-based
activity recognition (Cook et al., 2013) by transferring the knowledge learnt from source
domains (users, body parts, devices, etc.) to a target domain (Van Kasteren et al., 2010;
Chen et al., 2019; Ding et al., 2019). Above all, despite being possible to describe a scene
by recognising the sequence of actions, in many cases, this is meaningless for understanding
the task by itself, so a high-level reasoning expressing the domain knowledge is required to
those effects. On the other hand, knowledge-based systems have limitations when handling
noisy and uncertain data, as well as managing temporal information. In some cases, these
models could be viewed as quite rigid and incomplete (Chen et al., 2012a).

The issue of determining the process behind a human task has been tackled in many
ways. An interesting line of work is to create a completely connected model and then learn
the transitions from a set of training runs. Probabilistic models are often used, such as
Hidden Markov Models (HMMs) (Boger et al., 2005; Kalra et al., 2013; Duong et al., 2009)
or Dynamic and Naïve Bayes networks (Baker et al., 2009; Dai et al., 2008; Oh et al., 2014).
The learnt model is better adapted to the real behaviour of the process since it is based on
evidence. However it suffers from the same drawbacks of data-based approaches since a large
evidence is required to learn the transition probabilities. Additionally, in complex domains
the model can end up in an explosion of possible states increasing the computational cost
of these approaches considerably (Sadilek & Kautz, 2012; Rosen et al., 2002).

Another two areas that address the challenge of inferring a process model directly from
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observing demonstrative examples are imitation learning and process mining. The objective
of imitation learning (Hussein et al., 2017) is that a machine (robots in many cases) can learn
the necessary movements (i.e., policy) to solve a simple task through examples performed
by a human expert while the machine observes it. The current trend in imitation learning
focuses on the use of deep learning techniques (Xu et al., 2018; Duan et al., 2017; Finn et al.,
2017). Although they have given surprising results, the tasks they are able to learn and solve
are still very basic (e.g., stacking boxes). In addition, the fact of using deep learning hinders
the traceability and analysis of the knowledge acquired by the system. On the other hand,
process mining (Agrawal et al., 1998; van der Aalst, 2016) includes a family of techniques
that support the analysis of business processes from some observations on how they are
currently being executed. More concretely, process discovery focuses on learning process
models from traces of activities (i.e., real process executions or event log). The generated
model represents the main flow of activities in the process at hand. Process mining has been
mainly applied to business management (van der Aalst et al., 2007) but also to other fields
such as healthcare (Mans et al., 2008; Yang et al., 2017). Although the previous techniques
are able to explain the processes in an organisation, they cannot be directly applied for the
purpose of supervision: the models may contain non-essential activities for carrying out the
process and they are not able to capture the different ways (if any) of performing a process
since only one model is built.

In this paper we cover two application domains: skill training in minimally invasive
surgery and cooking. We believe these two domains are representative of situations where
there are more than one possible way of performing a task, either because of symmetries
(left and right hands in surgery) or indistinct sequences (ingredient order). Other datasets in
the cooking domain, such as the salad preparation dataset (Stein & McKenna, 2013) or the
sandwich preparation dataset (Spriggs et al., 2009), present a huge variability in executions,
not really displaying a short number of patterns, and applying pattern extraction to them
would not be very meaningful (probably ending up with a pattern per example). Our method
is designed for well-structured high-to-medium level activity sequences. This occurs in tasks
such as those described in the case studies: surgery and recipes.

There are domains that may show one or a small number of patterns, but they are usually
found in the area of activity recognition (van Kasteren et al., 2011; Voulodimos et al., 2012;
Liu et al., 2015). These datasets usually contain low-level data extracted directly from
devices such as sensors or smartphones. Therefore, in order to apply our method to these
domains we would need to add a first phase to extract and determine the events, and then a
second phase (using the proposed algorithm) to learn the sequence of events. The quality of
the final process mining (and the number of patterns found) would be strongly determined
by the framing of the activity recognition stage (and the choice of method there) and not
only by our method, making the comparison of results prone to too many confounding
factors. Nevertheless, beyond the scope of the paper, we see a lot of potential in the future
to explore and apply our method in the best possible combinations with methods for activity
recognition.
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3. A graph-based method for inferring Multiple Models of a Task

In this section, we present a method to learn the different ways of carrying out a task
from several executions of the task performed by experts. We consider a task execution as a
sequence of activities that are realised consecutively with a start and an end. Following that
sequence, the task is successfully completed. Formally, we define A as the set of activities
(vocabulary) that can be used to accomplish the task, being an execution example a finite
sequence of these activities δ = (a1, a2, . . . , an), ai ∈ A. We denote the full set of sequences
provided to the system as ∆.

Working directly with sequences has several limitations in order to learn and express, in
an intuitive and simple way, how a task should be realised. Firstly, if the sequence is too
long, it becomes extremely difficult to understand the flow of activities that is taking place.
Note that the main aim is to obtain a model of the task that could be used for training
and/or supervising non-expert apprentices. Therefore, it is crucial that the learnt model can
be easily interpreted by a human. Secondly, the problem of learning from task executions
(especially when the tasks are complicated to execute because of the skills they require)
is that the sequences may contain infrequent activities or noise. In our case, noise are
those activities that are not really needed to complete the task2. It may be complicated to
detect during the learning process whether the elimination of these noisy activities from the
sequences leads to invalid models that are not able to complete the task, because the same
activity can be essential in one part of the task and unnecessary in another part. Therefore,
the use of a graph-based representation language to compactly simplify the sequences of
activities as dependency graphs helps in this sense (see Section 3.2). In this case, the
possible loss of information due to the change of representation is clearly compensated
because dependency graphs greatly facilitate the process of identifying which activities are
essential to perform a task (and therefore will be part of the models), which activities are
dispensable because they are non-essential, as well as the formal confirmation that a model
really express a correct way to fulfil the task.

The general pipeline of our approach is shown in Figure 1. In the first step, each sequence
of activities is simplify into a dependency graph. The second step is the algorithm that infers
the different models.

3.1. Graph-based formulation: notation and definitions
A dependency graph is a labelled directed graph G = (V,E), where V is a set of labelled

vertices, and E ⊆ V ×V is a set of weighted directed edges, such that each edge has a weight
given by a weight function ω : E → N≥1. The labels of the vertices belong to a finite set
of labels L = {l1, . . . , ln}, where each li, 1 ≤ i ≤ n, denotes an activity ai ∈ A. V contains
two special vertices, vS and vF , that represent two synthetic activities denoting the starting
and ending of the task. The two synthetic activities are implicitly placed at the beginning

2In other approximations, noise is considered any missing activity or any non-executed activity inserted
in a sequence δ. However, the treatment of this kind of noise is out of the scope of the problem discussed in
this paper.
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Figure 1: The pipeline to learn the task models.

and end of each activity sequence, respectively. Analogously, the set of labels L is extended
to include two special labels S and F associated to the vertices vS and vF , respectively. For
the sake of readability, given a graph G, V (G) and E(G) denote the vertex and edge sets of
G, and ωG denotes its weight function. Given an edge e = (vi, vj), vi and vj are the source
and target vertices of e, which can be retrieved using the functions σ and τ , respectively
(i.e., σ(e) = vi and τ(e) = vj). Given a set of graphs D = {G1, G2, . . . , Gn} and an edge e,
we define De as the subset of D that contains e, that is, De = {Gi ∈ D | e ∈ E(Gi)}.

In what follows we introduce the notions of walk and validity, and three types of distinc-
tive graphs that are used by the learning algorithm.

Definition 1. (Walk). Given a dependency graph G = (V,E), and two vertices {vi, vj} ∈
V , a walk w(vi, vj) between vi and vj is any sequence of directed edges (e1, e2 . . . , en) from
E, such that σ(e1) = vi, τ(en) = vj, and for any pair of consecutive edges ek and ek+1,
τ(ek) = σ(ek+1). A walk between vS and vF is called a complete walk, denoted as ŵ.

Definition 2. (Validity).Given a dependency graph G = (V,E), we say that G is valid if
VS = VF , where VS = {vi ∈ V \{vS, vF} | ∃w(vS, vi)} and VF = {vi ∈ V \{vS, vF} | ∃w(vi, vF )}.

Definition 3. (Aggregated graph). Given a set of dependency graphs D = {G1, G2,
. . . , Gn}, the aggregation of D is the graph G+ = (V +, E+), such that V + =

⋃
Gi∈D V (Gi),

E+ =
⋃
Gi∈D E(Gi), and ∀e ∈ E+, ωG+(e) =

∑
Gi∈De

ωGi
(e). We call G+ as the aggregated

graph.

Definition 4. (Intersected graph). Let G1 = (V1, E1) and G2 = (V2, E2) be two
dependency graphs, the intersection of G1 and G2 is defined as G∩ = G1 ∩ G2 = (V1 ∩
V2, E1 ∩ E2), where ∀e ∈ E1 ∩ E2, ωG∩(e) = min(ωG1(e), ωG2(e)).

Definition 5. (Threshold graph). Given a dependency graph G = (V,E) and a thresh-
old θ ∈ N≥1, we define the threshold graph Gθ = (Vθ, Eθ) as the subgraph of G such that
Eθ = {e ∈ E | ωG(e) ≥ θ} and Vθ = {σ(e) | e ∈ Eθ} ∪ {τ(e) | e ∈ Eθ}.

Definition 6. (Overlap).Given two dependency graphs G1 and G2, we say that G1 and
G2 overlap if their intersection G∩ = G1 ∩G2 is valid.
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Figure 2: A sequence of activities (on the top) expressed as a dependency graph (on the bottom). The
vertices corresponding to the synthetic activities (S and F) are highlighted in bold and shadowed, and the
activities that appear more than once are depicted in colour.

Remark. From the above definitions we remark that: (1) there are complete walks in a
valid dependency graph; (2) if an intersected graph G∩ = G1 ∩ G2 is valid then it contains
all the common complete walks of G1 and G2; (3) the application of a threshold does not
preserve the graph validity property.

In what follows we use the labels of the vertices to denote them.

3.2. Data formalisation: from activity sequences to dependency graphs
In this section, we describe how to convert an activity sequence δ = (a1, . . . , an) into a

dependency graph G. Firstly, V (G) is created containing vS, vF and as many vertices vi as
different activities ai are in δ with labels li = ai. E(G) is also initialised by containing the
directed edges (S, a1) and (an, F ) with weights equal to 1. Then, for each pair of consecutive
activities (ai, aj) ∈ δ, if the edge e = (ai, aj) already belongs to E(G), then its weight is
increased ωG(e) = ωG(e) + 1; otherwise, e is added to E(G) with weight ωG(e) = 1. Figure
2 illustrates this conversion process. On the top, it is shown an activity sequence of length
19 composed by 8 different activities (a1 to a8), some of them appearing more than once
(marked in colour). This sequence is expressed as the dependency graph on the bottom of
this figure, which is formed by 10 vertices and 10 edges. The labels on the edges indicate
their weights. For instance, the weight of edge (a4, a5) is 4 because the activity a4 appears
followed by the activity a5 four times in the sequence.

Note that a dependency graph is a representation more concise than the original activity
sequence. That means that different sequences can produce the same dependency graph.
This can happen when there are activities that are performed more than once along the
sequence. This could imply losing some information about the order in that the activities
have been done when the sequence turns into a dependency graph. For instance, the se-
quences δ1 = (a1, a2, a3, a4, a2, a4, a2, a4, a5) and δ2 = (a1, a2, a4, a2, a4, a2, a3, a4, a5) generate
the same dependency graph. Thus, by looking at the graph we can only say that activity
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a3 is performed after activity a2 but not when (after doing a2 for the first, the second or
the third time). This fact is known as “representational bias” in the area of process mining
(van der Aalst (2016)) or “language bias” in the inductive logic programming field (Adé
et al. (1995)), and it refers to the implicit choices that restrict the syntax of examples and
hypothesis. By contrast, one of the main benefits of the language bias is that it reduces the
search space of possible models. In our case, the graph representation allows us to search
the models by systematically applying the graph operations defined in Section 3.1.

3.3. Mining Multiple Models from dependency graphs
In this section we describe a new method for inducing multiple models from a set of

dependency graphs G = {G1, G2, . . . , Gn}. A model M is a dependency graph that satisfies
the following conditions:

• M is valid and, consequently, there exists in M (at least) one walk from S to F . In
terms of the original task, this means that such a walk indicates the activities that are
needed to perform the task.

• M has to overlap at least one dependency graph in G. Newly, in terms of the original
task, this means that there exits at least one expert execution that has performed the
same activities included in M . In other words, M captures one of the ways of solving
the task according to the experts.

Additionally, the presence of noise in M (non-essential activities for the task) should be
minimised as much as possible, in order to obtain the desired trade-off between generality
and specificity.

The MMDG algorithm (Algorithm 1) combines a generalisation operator (graph aggre-
gation) with a refinement operator. After applying both operators, the dependency graphs
that overlap (Definition 6) with the induced model are removed. This process is repeated
using the remaining graphs until all the dependency graphs overlap with one of the models.
In this way, we are able to infer the different styles of solving the task showed by the experts
in their executions. The MMDG algorithm is inspired by sequential covering strategies of
rule learning (Fürnkranz, 1999).

More concretely, the MMDG algorithm works as follows. First, the most general graph
is generated by aggregation (Line 4). This aggregated graph contain all the vertices and
edges included in the dependency graphs Gi ∈ G. Clearly, this aggregated graph is too much
general: (1) it contains not only valid walks but other new walks (not included in any Gi)
by combining partial walks from several Gi (that probably do not represent a correct way
to execute the task), and (2) it is the noisiest graph of all that can be generated from G.
Hence, G+ must be refined below (Line 6). This refinement returns one model M and the
set of dependency graphs Ḡ that overlap with M . Then, the set of dependency graphs Ḡ
that overlap with the refined graph M are removed from G (Line 7) and M is added as
a part of the solution (Line 8). Then, the next iteration of the algorithm starts with the
remaining examples, creating a new aggregated graph and so on. This process is repeated
until complete the solution.
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Algorithm 1 MMDG Algorithm
Require: a set of dependency graph: G = {G1, G2, . . . , Gn}.
Ensure: a set of models: M.
1: M← ∅.
2: // Iterate over the set of graphs until each Gi has a M that overlaps with it.
3: while G 6= ∅ do
4: G+ ← AggregateGraphs(G).
5: // Ḡ is the set of overlapped dependency graphs.
6: {M , Ḡ} ← Refinement(G+, ∞, G).
7: G ← G \ Ḡ.
8: M←M∪ {M}.
9: end while
10: return M

The refinement of the aggregated graph G+ (Algorithm 2) is performed by repeatedly
applying a threshold θ to G+, that is, by removing edges according to their weights. Hence,
we vary the threshold decreasingly starting from a maximum value, so the first graphs G+

θ

that are generated are usually very simple as many edges are removed. The application
of a threshold has the aim to remove the non-essential activities from G+. Progressively,
we reduce the threshold and apply it until get a G+

θ that satisfies the conditions to be a
model: it is valid and overlaps at least with a dependency graph Gi. Figure 3 illustrates the
application of a threshold to an aggregated graph. On the top, we see an aggregated graph
G+ formed by N = 10 dependency graph. When we use a high threshold (i.e., θ = 9), the
resulting threshold graph (shown in the middle of the figure) is not valid. Meanwhile, by
taking a lower threshold (for instance, θ = 7), we obtain a valid threshold graph (shown on
the bottom) that represents a way to completely perform the task. It is worth noting that
some activities that are rarely performed in these examples (denoted by the low weight of
their incoming and outgoing edges in G+), such as a2 or a6, are not included in G+

θ=7.
The input of the Refinement algorithm (Algorithm 2) is G+, an initial threshold θ,

and G (the set of dependency graphs used to generate G+). In the case the initial threshold
is ∞, the algorithm sets the θ value at the minimum weight that guaranties that G+

θ could
be valid (Lines 3-9). The θ value is firstly used on G+ to discard those edges whose weight
is below that value (Line 10). There are two reasons why this θ may be inappropriate to
generate a model: (1) it produces an invalid G+

θ , or (2) G+
θ is valid but does not overlap

with any Gi. In the first case, the θ value is repeatedly decreased3 until a valid G+
θ is found4

(Lines 12-15). For case (2), the next lower θ value is selected as in the first case, and a

3For efficiency reasons, the next value for θ is selected from the weights of the edges in E+, assuming
E+ ordered in decreasing order of their edges weights.

4Observe that selecting the θ values in decreasing order of the weights in E+ assures the termination
of the algorithm 2, since in the worst case the minimum weight in E+ is taken as θ, which means that no
edges are removed from the aggregated graph, and therefore G+

θ is a valid graph that overlaps with all the
dependency graphs used to construct it.
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Figure 3: Effect of applying different thresholds for refining aG+ formed by the aggregation of 10 dependency
graphs (shown on the top). Note that the refinement procedure keeps all the edges of G+ whose weight is
greater than θ.

recursive call is performed (Lines 24-27). According to Definition 6, to check whether a
threshold graph G+

θ overlaps with a dependency graph Gi, we verify the validity of their
intersection Gi ∩G+

θ (Lines 17-22).
Finally, when a valid G+

θ overlaps with one or more examples, the algorithm returns G+
θ

as a model, and the list of Gi that overlap with it (Line 28).
Figure 4 shows an example of how the overlap between graphs is checked. From top

to bottom, we see one threshold graph G+
θ , two dependency graphs G1 and G2, and the

intersected graphs G1 ∩ G+
θ (left) and G2 ∩ G+

θ (right). Note that G1 ∩ G+
θ is not a valid

dependency graph because it does not contain any complete walk, which means that G+
θ does

not capture the way of performing the task showed by the complete walk in G1. However,
the sets VS and VF in G2 ∩ G+

θ are equal, VS = VF = {a1, a3, a5, a8, a7, a4}, and hence G+
θ

overlaps with G2.
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Algorithm 2 Refinement Algorithm
Require: an aggregated graph: G+ = (V +, E+); a threshold value: θ; a set of dependency graph:
G = {G1, G2, . . . , Gn}.

Ensure: a model M : G+
θ ; a set of overlapped examples: Ḡ.

1: Ḡ ← ∅.
2: // Find the minimum weight to begin and end a ŵ.
3: if θ is ∞ then
4: vS ← GetStartVertex(V +).
5: vF ← GetEndVertex(V +).
6: starting_weight← MaxEdgeWeight(E+, vS).
7: ending_weight← MaxEdgeWeight(E+, vF ).
8: θ ← min(starting_weight, ending_weight).
9: end if

10: G+
θ ← ApplyThreshold(G+, θ).

11: // Adjust the θ value in order to get a valid G+
θ .

12: while not IsValid(G+
θ ) do

13: θ ← NextWeightBelowThreshold(E+, θ).
14: G+

θ ← ApplyThreshold(G+, θ).
15: end while
16: // Check whether the valid G+

θ also overlaps at least one G ∈ G.
17: for each G in G do
18: G∩ ← G ∩G+

θ .
19: if IsValid(G∩) then
20: Ḡ ← Ḡ ∪G.
21: end if
22: end for
23: // Do a recursive call with a lower θ if any G overlaps with the current G+

θ .
24: if Ḡ is ∅ then
25: θ ← NextWeightBelowThreshold(E+, θ).
26: {G+

θ , Ḡ} ← Refinement(G+, θ, G).
27: end if
28: return {G+

θ , Ḡ}

13
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Figure 4: Overlap checking between a threshold graph G+
θ and two dependency graphs G1 and G2. There

is no overlapping between G+
θ and G1 because their intersection G1 ∩ G+

θ (on the left bottom) does not
hold the validity constraint (VS 6= VF ). In contrast, G+

θ overlaps with G2 because their intersected graph
G2 ∩G+

θ (on the right bottom) is valid (VS = VF ).

4. Experimental evaluation

We will analyse the quality of our method through a set of metrics that allow us to
determine how well the models capture the styles of performing a task observed in the ex-
pert executions (expressed as dependency graphs). More concretely, we will consider the
following two quality measures: fitness and simplicity. Given a set of dependency graphs G
and a set of the models {Mi}, the fitness of each model Mi is the number of dependency
graphs of G with which Mi overlaps. Note that if some dependency graphs overlap with a
certain model is because they share a similar way of solving the task. Hence, the fitness
of a model is an indicator of how well the model captures such a way to execute the task.
To compute the fitness of a solution (the set of inferred models), the models are applied in
the order in that are generated. Lastly, the simplicity (or, alternatively, complexity) of a
model is measured in terms of the number of edges and vertices that compose it. Fitness
and simplicity are well-known quality metrics of process discovery algorithms (Buijs et al.,
2012). They are related to other state-of-the-art evaluation metrics in data science (Geng
& Hamilton, 2006): Generality/Coverage and Conciseness measures, respectively. Addi-
tionally, the generality/coverage relation is employed in concept learning, rule-learning and
inductive logic programming to determine the examples that are matched by a hypothesis
(model) (Raedt, 2010).

To experimentally evaluate our approach, we implemented a prototype using the pro-
gramming language R5. The full code and data used for the experiments can be found in

5https://www.r-project.org/
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a github repository6. We chose a challenging test-bed domain as running example: a typ-
ical suturing procedure in advanced surgeries like Laparoscopic Surgery. In laparoscopic
exercises, one can find certain activities that can be considered as support manoeuvres.
Specifically, the surgical tasks that require many regrasping movements entail additional
motions such as positioning or the tool reorientation which are not always really needed
to perform the task. Additionally, the surgeon’s idiosyncrasy and the diversity of surgery
“styles” are another factors to be taken into account if we are interested in learning models
in this domain. Our inductive method is able to account for all these factors during the
learning of the models. Finally, in order to test the versatility of the method, we have also
applied it in a different domain, cooking brownies.

4.1. Case Study 1: Surgical data
There are not many public medical datasets specialised in laparoscopic exercises. Among

the few available, possibly the most popular and complete is the JHU-ISI Gesture and Skill
Assessment Working Set (JIGSAWS) dataset (Gao et al., 2014), which has been registered by
using the surgery system robotics da Vinci. Originally conceived for developing applications
focused on the surgical motion analysis and the automatic skill assessment, this dataset has
become a public benchmark for evaluating the performance of the state-of-the-art methods
in surgical activity recognition (Ahmidi et al., 2017). Comparing with other human tasks,
including surgery domain, the activities involved in suturing entail more complexity and
diversity of movements than other training routines (Cao et al., 1996).

We used the suturing executions provided by JIGSAWS dataset to learn the models
from the different ways in which this task can be conducted. A simple suturing routine is
divided into three phases. Firstly, the surgeon has to reach the needle and move it at the
corresponding dot on the tissue. Then, the main phase of the exercise is performed: the
suturing cycles. Figure 5 shows this phase. For each cycle iteration (loop), the surgeon must
push the needle against the next dot and take it out on the other side of the incision (Frame
1). The extraction of the needle must be carried out with the other hand (Frame 2). Then,
the needle is transferred to the first hand again (Frame 3). Once the suturing cycles are
completed, the last phase consists in laying the needle down at the finishing mark on the
tissue. Concretely, for the experiments we chose a 4-throw suturing procedure, where the
digit denotes the number of loops required to perform the suture.

In this context, an activity represents an atomic surgical gesture with a meaningful out-
come and it is annotated following a specific activity language of this domain (Table 2).
Hence, each activity transcription includes the name of the gesture, and the start and end
frames in the video. Each performance contains from 15 to 20 activities per recording. It is
necessary to mention that the activities of each task performance are annotated in chrono-
logical order of execution and there are not overlapping in time. Therefore, we consider
each execution as a time-ordered sequence of labelled activities that a surgeon performed
to completely fulfil the suturing task. Thus, we have preprocessed the transcription files
to remove the time information and, then we have converted the activity sequences into

6https://github.com/DNC87/MiningMultipleDependencyGraphs
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Figure 5: Example of a suturing cycle represented by frame steps. From left to right, frame (1) shows the
needle insertion in the input dot on the tissue, frame (2) represents the needle grasping on the output dot
from the other side of the tissue, and frame (3) shows the needle transferring from left tool to the right tool.
Captures obtained from JIGSAWS dataset (Gao et al., 2014).

ID Description
G1 Reaching for needle with right hand
G2 Positioning needle
G3 Pushing needle through tissue
G4 Transferring needle from left to right
G5 Moving to center with needle in grip
G6 Pulling suture with left hand
G7 Pulling suture with right hand
G8 Orienting needle
G9 Using right hand to help tighten suture
G10 Loosening more suture
G11 Dropping suture at end and moving to end points
G12 Reaching for needle with left hand
G13 Making C loop around right hand
G14 Reaching for suture with right hand
G15 Pulling suture with both hands

Table 2: Gesture vocabulary from JIGSAWS dataset (Gao et al., 2014). We consider those surgical gestures
as activities throughout our case study.

dependency graphs. Figure 6 shows three trials extracted from the JIGSAWS dataset ex-
pressed as dependency graphs. As can be seen, the three graphs describe the suturing task
composed by the needle preparation phase, the suturing loop, and the ending move where
the needle is released. Notwithstanding the similarities, we can identify several differences
between them. Thus, trials (a) and (b) seem very similar; however, there is an additional
gesture (G9) in (b) that is not in (a). This is the kind of support gesture we were referring
to previously. Specifically, the surgeon has used the right tool to help tighten suture. De-
spite these manoeuvres are perfectly valid in the surgical domain, they may not be really
necessary (as in trial (b)), so they may be considered as noise. A different fact is when these
supporting gestures are embedded inside the cycle as a routine activity as trial (c) shows,
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(a) Suturing example 1

(b) Suturing example 2

(c) Suturing example 3

Figure 6: Three trials from different surgeons expressed as dependency graphs. The differences reside in
how each surgeon has performed the suturing loop. The labels of the vertices are provided in Table 2.

which constitutes a way of performing the suturing task different of that exhibited by trials
(a) and (b).

Finally, Table 3 shows the information about the executions or “trials” (term used in the
dataset to identify a task execution) provided by the dataset. To improve the readability
of this table, the columns represent trials and the rows are their description. A trial is
identified by a code, formed by the surgeon identifier (a letter from B to I) and the order of
her trial (e.g. H003 means that surgeon H has recorded her trial number 003). As can be
seen, eight surgeons performed this task 5 times which makes a total of 40 trials. The rows
in the table show the metadata that JIGSAWS provided for describing each trial: the global
rating score (GRS7) which measures the technical skill over the entire trial; the surgeon’s
level of expertise in robotic surgery measured in hours of practice (i.e., E-expert (>100hrs),
I-intermediate (10-100hrs), N-novice (<10hrs)), and the scoring quartile that we added by
stratifying the scores into quartiles. All of this information will be used to analyse the
performance of our method for different trials selection criteria.

4.1.1. Experimental Setup
The input dependency graphs have been divided in two groups: the training and the test

sets. Given that we have few examples, we prepared three exploratory scenarios applying
different criteria to select the training graphs and analysed the impact of the training data

7More information about this measure in (Gao et al., 2014)
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Trial B001 B002 B003 B004 B005 C001 C002 C003 C004 C005 D001 D002 D003 D004 D005 E001 E002 E003 E004 E005
Global Rating Score

(GRS) 13 17 14 10 12 26 20 26 30 17 14 18 14 8 15 17 20 19 19 19

Surgeon expertise
(in robotic surgery) N N N N N I I I I I E E E E E E E E E E

Scoring Quartile Q4 Q3 Q4 Q4 Q4 Q1 Q2 Q1 Q1 Q3 Q4 Q3 Q4 Q4 Q3 Q3 Q2 Q2 Q2 Q2

Trial F001 F002 F003 F004 F005 G001 G002 G003 G004 G005 H001 H003 H004 H005 I001 I002 I003 I004 I005
Global Rating Score

(GRS) 24 26 29 24 29 13 18 13 21 23 14 25 19 21 17 23 17 23 19

Surgeon expertise
(in robotic surgery) I I I I I N N N N N N N N N N N N N N

Scoring Quartile Q1 Q1 Q1 Q1 Q1 Q4 Q3 Q4 Q2 Q1 Q4 Q1 Q2 Q2 Q3 Q2 Q3 Q2 Q3

Table 3: Trial information for suturing task in JIGSAWS dataset Gao et al. (2014). The rows represent:
the surgeon’s experience in robotic surgery (measured in hours): E-expert (>100hrs), I-intermediate (10–
100hrs), N-novice (<10hrs); the GRS score reported by the expert reviewers, and the GRS score in quartile
partitions. The columns correspond to the trials, where the letter identifies the surgeon who performed the
trial and the number denotes the trial order.

selection in the learning process. For the first scenario (Experiment 1), we split the data
according the surgeon’s expertise level using the trials where surgeon’s tag is “E” (Expert)
as training graphs. For the second and third scenarios (Experiments 2 and 3, respectively),
we used the GRS score as a criterion for splitting the data. Specifically, as training data
we used the dependency graphs belonging to the Q1 quartile for Experiment 2, and the
dependency graphs belonging to the Q1 and Q2 quartiles for Experiment 3. Experiments 2
and 3 were carried out to analyse the impact of the size of the training data on the inferred
models. Thereby, the number of training dependency graphs used for each experiment was
n = 10 (Experiment 1), n = 9 (Experiment 2) and n = 16 (Experiment 3). In each of these
scenarios, those dependency graphs not used for training were used as test set.

In what follows, we denote the models using Roman alphabet upper-case letters in as-
cending order (e.g., Ai, Bi, Ci, . . . ), according to the order in that they are generated, and
where the subindex i identifies the experiment (i ∈ {1, 2, 3}).

4.1.2. Experimental results
Before reporting the performance obtained by our method in the experimental evaluation,

we show in Figure 7 the models learnt in Experiment 1.
As can be seen, we can clearly identify the phases of a suturing exercise in models A1

and B1: the needle reaching, the suture cycle and the needle releasing at the finishing mark.
Although both models are very similar, we detect two important differences: B1 incorporates
the activityG8 (i.e., reorienting the needle) before the suturing cycle and the activityG9 (i.e.,
using the right hand to tighten the suture) just before releasing the needle. In contrast, in
the third iteration, no edges were removed from G+ to generate model C1. As a consequence
C1 is a large and complex model that captures more specific ways of performing the suturing
exercise.

Table 4 shows the results of the learning process and the fitness analysis with respect to
the training data for the three experiments. Firstly, we observe that, by chance, 3 models
were inferred in each experiment. Regarding the effect of the size of the training data
set, although Experiment 3 used a number of training graphs greater than the other two
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Figure 7: Models inferred from the Expert’s dependency graphs (Experiment 1). Rows contain the corre-
sponding G+ and model generated at each iteration of the MMDG algorithm. We have coloured in green
those edges in G+ that remain in the model. By contrast, the edges coloured in red are those that are
removed by the algorithm when refining G+.

experiments, no more models were obtained. Comparing Experiments 2 and 3 (which were
conceived using a selection criteria of the training data based on the score quartiles) we can
conclude that the size of the training data set per se does not seem to have a direct influence
on the size of the solution (number of models), but the similarity among the training data.
It can be assumed that this similarity depends to a large extent on the suturing skills of the
surgeon which is measured by the GRS value. Thus, the dependency graphs belonging to
quartiles Q1 and Q2 should be similar in the sense that they not show any new popular way
of performing the task apart from those expressed by the examples used in Experiment 2.

If we compare Experiment 1 and Experiment 2, we observe similar results between them,
regarding the fitness of the models. Perhaps the most remarkable fact is that the fitness of
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Experiment 1
(Experts)

ID Model
E001 A1
E002 A1
E003 A1
E005 A1
D003 B1
D005 B1
D001 C1
D002 C1
D004 C1
E004 C1

Summary
(n=10)

A: 4
B: 2
C: 4

Experiment 2
(GRS (Q1))

ID Model
C001 A2
C003 A2
C004 A2
F005 A2
H003 A2
F003 B2
F004 B2
F001 C2
F002 C2

Summary
(n=9)

A: 5
B: 2
C: 2

Experiment 3
(GRS(Q1+Q2))

ID Model
C001 A3
C003 A3
C004 A3
F005 A3
H003 A3
I002 A3
I004 A3
C002 B3
F003 B3
F004 B3
G004 B3
G005 B3
H005 B3
E002 C3
F001 C3
F002 C3

Summary
(n=16)

A: 7
B: 6
C: 3

Table 4: For each experiment, the table contains the training dependency graphs (column ID) and the model
which overlaps with them (column category). In Experiment 1, the training data corresponds to the trials
performed by the experts (a total of n = 10 instances). In Experiments 2 and 3 the training data were
selected according to their GRS score quartiles: the first quartile (Q1) in Experiment 2 (a total of n = 9
instances), and the first and the second quartiles (Q1 + Q2) in Experiment 3 (n = 16 instances in total).
At the bottom of each table it is shown the fitness summary per experiment.

model C1, the last model generated from the experts executions (Experiment 1) is higher
than the fitness of its counterpart model C2 from Experiment 2. This means that the training
data is more uniform in Experiment 2 than in Experiment 1 (that is, there are more training
graphs in Experiment 2 that follow the same styles of solving the suturing task which are
captured by models A2 and B2).

The analysis of the simplicity of the models is depicted in Figure 8. Specifically, we
show the number of vertices (top) and edges (bottom) of each induced model. The smaller
the number of vertices and edges, the simpler the model is. In all the experiments, we
observe that, as expected, some vertices (i.e., activities) and edges (i.e., transitions between
activities) were removed during the process of refining the aggregated graphs G+

i to produce
the models (Ai/Bi/Ci).

Concretely, regarding the results with respect to the vertices, it is observed a slight
reduction in their number. Thus, in all the models generated in iterations 1 and 2, one
vertex was filtered except in B1. This means that one unnecessary activity to perform the
task was discarded, with the subsequent positive effect on model compactness. On the other
hand, the results regarding the edges show a noticeable reduction of them in models Ai and
Bi (comparing them with their respective aggregated graphs). Specifically, the number of
edges of A1 decreases by 47.62% with respect to its aggregated graph. Similar decreases are
observed in other models, such as A3 (47.37%), B3 (43.75%), A2 (37.50%), B1 (40.00%) and
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Figure 8: Number of vertices (top) and edges (bottom) of the aggregate graphs and the models generated
during their refinement for Experiments 1, 2 and 3. The algorithm iterations have been distinguished using
colours (iteration 1 - red, iteration 2 - blue and iteration 3 - green) and the results have been grouped by
experiment.

B2 (30.77%). All this has a positive effect on the compactness of the inferred models.
Additionally, if we compare the three experiments, we observe that using the trials exe-

cuted by the experts (Experiment 1), the model G+
1 is the aggregated graph with more edges

which means that this is the graph that contains more non-essential transitions between ac-
tivities. These dependency graphs are depicted in Figure 7. Analogously, the models learned
in Experiment 1 were those that had the most activities and transitions, if we compare them
with the respective models obtained in the other two experiments. This is further supported
by the difference in the number of edges between model C1 and models C2 and C3. The
last models generated by the MMDG algorithm usually gather the non-essential transitions
filtered in previous iterations. In this case, we observe that more edges were gathered in
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the case of the experts. Similar conclusions are derived from the analysis of the number of
vertices in Experiment 1. Based on these results, we can conclude that the trials recorded by
the experts are more noisy (they contain many actions that are non-essential for performing
the task). However, our approach is able to infer models that filter that noise in all the
experiments.

We also analysed how the size of the training data set affects the simplicity of the models.
As mentioned above, to this end we compared Experiments 2 and 3. Thus, in the two first
iterations of the MMDG algorithm the aggregated graphs had more edges in Experiment 3
than in Experiment 2. Nevertheless, the generated models had the same number of edges
and vertices in both experiments. That means that the Q2 training graphs only contribute
with transitions between activities that indeed are non-essential for the task since they were
not included in the models.

Finally, to study the generalisation capacity of our models we calculated their fitness
over a set of unseen dependency graphs (the test set). Table 5 shows the fitness results for
the test data.

Experiment n Ai % Bi % Ci % -i %
1 29 2 6,90% 0 0,00% 16 55,17% 11 37,93%
2 30 11 36,67% 6 20,00% 1 3,33% 12 40,00%
3 23 9 39,13% 2 8,70% 5 21,74% 7 30,43%

Table 5: Fitness of the inferred models over the test data. The columns 1 and 2 show the experiment
identifiers and the size of the test set, respectively. The next three column blocks correspond to the absolute
(denoted as Ai, Bi and Ci) and relative (denoted as %) fitness value per model. The last block of columns
(-i and %) shows the absolute and relative number of test graphs that do not overlap with any model.

In general terms, we observe that the global fitness rate (adding the fitness of all the mod-
els induced in an experiment) is in the range between 60% and 70% for all the experiments.
If we observe the fitness achieved by the models induced from the experts (Experiment 1),
the fitness rate of A1 and B1 is very low. Despite that around 62% of test graphs overlap
with the models in this experiment, only 6.90% of the test data overlap with a different
model to C1. The high fitness rate of C1 may be motivated by the fact that the last gen-
erated model usually gather more edges and activities, so it can overlap with many more
examples. However, C1 is the poorest model in terms of simplicity. By contrast, Experiment
2 shows a greater fitness rate in models A2 and B2, but not C2, compared to Experiment 1.
Although Experiment 2 used a smaller training set than Experiment 1, we do not observe
any effect on the rate of test data that do not overlap with any model. Specifically, the rise
is only about 2% over the rate reached in the Experiment 1 (-1 = 37.93% and -2 = 40%).

On the other hand, the shift of the fitness rate towards models A and B in Experiment
2 is an interesting outcome. Models A2 and B2 have been more suitable to generalise the
task, since they overlap with a noticeable portion of the examples not seen during the model
training (A2 = 36.67% and B2 = 20%). The fitness rates reached by models A2 and B2 are
significantly larger than those obtained by models A1 and B1 (Experiment 1). However, the
fitness results of Experiment 3 show a different picture. Firstly, we can see how the number of

22



ID Description
A_4 crack-egg
A_12 pour-big-bowl-into-baking-pan
A_13 pour-brownie-bag-into-big-bowl
A_14 pour-oil-into-big-bowl
A_16 pour-water-into-big-bowl
A_26 spray-pam
A_27 stir-big-bowl
A_28 stir-egg
A_29 switch-on-the-oven
A_31 take-big-bowl
A_33 take-egg

Table 6: Vocabulary of the brownie cooking dataset.

test graphs that do not overlap with any model decreases from 40 % (obtained in Experiment
2) to 30.43 %, whereas most of the test graphs overlap with models A3 and C3. Although
the fitness rate of A3 is higher than that of A2, the difference is only of 2.46%. Conversely,
the increment in the fitness of C3 with respect to C2 is of 18.41%. All this corroborates
the fact observed with the training data that by adding the Q2 dependency graphs to the
training set, only contributes with graphs with more non-needed activities/transitions (that
is, noise), which in turn help model C3 to fitness more graphs. Nonetheless, even in the
best case of fitness (obtained by Experiment 3), almost 30% of the test graphs show way of
performing the suturing task that are not gathered by the models.

4.2. Case Study 2: brownie cooking
We have applied the MMDG algorithm to another challenging problem in a different

domain: cooking. This domain is especially challenging for different reasons: the examples
have high variability among them and they do not contain extra information about the
quality of the execution. The brownie cooking dataset (Spriggs et al., 2009) consists of
16 executions from different users and, at most, 11 different activities per execution. The
scarcity of data comes not only from the number but also the length of the examples. Table
6 shows the vocabulary of the brownie cooking dataset.

Our algorithm obtains four models. Figure 9 shows the aggregated graph and the first
three models. The fourth model (not shown) includes all the variability not contemplated by
the three previous models, as has been described previously. With only these 16 examples,
MMDG can extract three ways of cooking the brownie that allows for the understanding
and supervising new executions of the task. As can be seen in Figure 9, as the threshold
decreases, the variability of the model increases, giving rise to increasingly complex graphs.
The model obtained in the first iteration and corresponding to a threshold of 7 (Figure 9.b)
practically represents a sequence of activities and would correspond to a strict monitoring
of the recipe. In the second model obtained with a threshold of 4 (Figure 9.c), once the
egg has been introduced into the bowl (which coincides with the first steps of the simplest
model), the model has presented some variations with respect to strict monitoring of the
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recipe. Finally, the third model obtained with a threshold of 2 (Figure 9.d) is the most
complex and presents execution variability from the very first moment.

Figure 9: Brownie example. (a) aggregated graph with all examples, (b) model generated on iteration 1 and
threshold 7, (c) model generated on iteration 2 and threshold 4, and (d) model generated on iteration 3 and
threshold 2.

The analysis of the simplicity of the models of the brownie example is depicted in Figure
10. In this example, the induced models show a quite pronounced reduction of the number
of edges in the first (marked as A) and second (marked as B) induced models. These show a
reduction of 70% (14 out of 47) and 67% (20 out of 47) respectively. In the case of the third
model (marked as C) the reduction is 45% (30 out of 46). The fourth model, as expected, has
no edge reduction. Regarding the results with respect to the vertices, there is no reduction
in any of the obtained models. This is because in these examples all the activities are present
in the 16 examples and only the transition between executions (the edges) are different.

With respect to fit analysis, this dataset contains only sixteen examples, thus it is not
convenient to separate between training and testing examples. Therefore, the results corre-
spond to the whole dataset. The algorithm has been able to identify 3 different ways (with
increasing level of complexity/variability) having only 16 examples. The results indicate that
only one of the examples fits the first model, three examples fit the second model and three
fit the third model. The fourth and most complex model, which collects all the variability
of the executions, includes the rest of examples (9 out of 16).
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Figure 10: Brownie example. Comparison of the number of edges between the aggregate graph (pale green)
and the model (dark green) that was obtained as a result for each iteration of our algorithm.

5. Discussion

Given the existence of process mining tools (van der Aalst et al., 2017), a first question
is how this compare to them. In the case of learning a workflow model, the main goal of
process mining is to model the process that underlies in the event logs, but not to extract a
set of models with the different forms of the task and the essential activities and transitions
in them. In principle, they do not assume that there may be noise, non-essential or missing
activities in the process logs. Then, the whole processes are modelled. This way of doing
process modelling often leads to spaghetti-like models (Günther & van der Aalst, 2007).
Therefore, the commercial tools like Fluxicon DISCO8 includes options that allow for the
simplification of the obtained model based on the “popularity” of the edges. However, the
final result is only one process model and it is not able to extract all the ways of performing a
task. In addition, tools like DISCO do not check that the simple model obtained is supported
by one example at least.

We can see some of these issues after applying DISCO to the data for the surgical and
cooking domains. Figure 11 shows that DISCO only obtains one model from the aggregated
graph and it is obtained by collapsing edges and nodes depending on the chosen threshold
(manually determined). According to the algorithm description, the DISCO model obtained
from the brownie examples has two disjoint paths in the middle of the model. In one path
the user must put water (A_16) and oil (A_14) in the bowl but not the brownie bag
(A_13). In the other path the user must put the brownie bag but not the water and the
oil. These execution options, which are clearly wrong, were not possible with the MMDG
algorithm because we check that the execution can be completed correctly following the
model. Besides, we can extract not only one but all the model executions that have a
minimum number of examples.

8https://fluxicon.com/disco/
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Figure 11 also shows the model for the suture example (see Section 4.1) obtained using
DISCO. In this case, the result is very similar to the model A1 inferred from iteration 1
of MMDG applied on expert executions. However, some differences can be observed. First
of all, it obtains only one model, discarding, in this way, the differences among expert
executions. Second, the activity G9 does not appear, although it is executed by most of the
experts in some iterations to assist in the tightening of the thread. Finally, the threshold
to obtain the model must be set manually. However, this parameter is automatically set in
MMDG.

Figure 11: Models obtained by DISCO. (a) Brownie executions model, (b) Suture executions model.

Different process mining algorithms have been also analysed, such as the Alpha-algorithm
(Alves de Medeiros et al., 2004) or fuzzy models (Günther & van der Aalst, 2007). But unlike
the model that can be obtained by these other methods, our ability to extract and manage
several representations for the same task could be particularly beneficial for supervision.
In this way, we can provide more accurate supervision to the user if we can identify their
particular way of carrying out the task. To supervise a fresh example of task execution
using our models, it is only necessary to replay (van der Aalst, 2016) it in any of the models
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obtained. Figure 12 shows a dependency graph of a fresh execution of the suture exercise.
If we replay this execution in the first model obtained for the suture task, we will obtain the
results shown in Figure 13. As this figure shows, by replaying the example in the model,
you can detect erroneous transitions (marked in red) between the activities and those that
are missing (marked in blue) and that should be carried out in order to be successful in the
execution of the exercise.

Figure 12: Fresh example of execution of the suture exercise.

Figure 13: Result of replaying the new exercise (Figure 12) in the first model obtained from the suture
examples (see Section 4.1.2). The wrong transitions are marked in red (from G6 to G2), while the missing
ones are marked in blue (from G6 to G4 and from G6 to G2).

Our major aim with this paper was to build a system capable to learn the task models
in contexts with very few demonstrations and having only positive examples. This is why
it is required that these examples be as meaningful and rich as possible. This is supported
by the results of experiments 1 and 2 set out in Section 4.1.1 and analysed in Section 4.1.2.
As these experiments demonstrates, the better the GRS score of the exercises used during
learning, the better the models obtained that is shown by the quality measures analysed.
Thus, we have to be very careful in selecting the correct examples for the training set.
The third experiment set out in Section 4.1.1 answered the question of how many examples
are needed for learning the process models. In this case, we applied the algorithm to one
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training set that consists of the examples of the first and the second quartile based on the
GRS score. What we have observed is that the resulting models do not improve the quality
measures analysed in experiment 2 (that only uses examples of the first quartile). Moreover,
the obtained models in experiment 3 are very similar to the ones obtained in experiment 2.

Finally, one may wonder if the use of dependency graphs could introduce a bias to the
solution that limits its expressiveness. As we have mentioned, dependency graphs are an
easy representation of process models that facilitate their simplification. Besides, there are
tools that ease the further transformation of those models into a high-level representation
such as Petri nets or BPMN (i.e., Business Process Model and Notation), or into a logic
program with interesting features such as reasoning about scenarios as Event Calculus does
(Cicekli & Yildirim, 2000) but that require quite more complex simplification/abstraction
tools.

To close the discussion, we clarify the limitations of our approximation. First of all, we
lose important information regarding the task during our mining method (e.g., the number
of times the suturing cycle must be done) when we perform the aggregation of the exam-
ples. However, this meaningful information could be recovered by replaying the covered
demonstrations on the corresponding obtained model. On the other hand, the semantics of
an activity that is repeated several times in a sequence can vary throughout a task. This
is part of representational bias that we assume by using dependency graphs. This type of
representation is potentially limited to represent concurrency, duplicate actions, hierarchi-
cal activities, or model OR-splits/joins in a mined model. For instance, Yang et al. (2017)
proposed a method to split duplicate activities in the final model in order to gain expressive-
ness. This approximation could be introduced in future versions of our algorithm. Finally,
we have observed that many examples did not overlap with any model in the experiments
(30% and 40% of examples). We think our criterion to determine when an example conforms
to a model may be very strict. Therefore, other less restrictive conformance checking will
be analysed in the future to reduce these cases.

6. Conclusions and Future Work

In this paper, we have presented a new approach to learn the different strategies for
performing a task based on a few examples. Our proposal starts from an event log with the
set of executions of a task in the form of sequences of activities. After converting them into
dependency graphs, we apply our novel inductive method for learning models from these
dependency graphs. As a result, we can generate the multiple models with the essence of
the task, eliminating the noise (i.e., unnecessary transitions between activities). We have
applied our approach to two challenging task: suture in minimally invasive surgery and
cooking a brownie. Having in mind that we only have positive examples, we have evaluated
the results with quality dimensions that are usually applied in process mining: fitness and
simplicity, which is a common combination (e.g., MML/MDL principles, (Wallace & Dowe,
1999)) in situations with scarcity of data, where other regularisation terms cannot be used.

According to this balance in performance metrics, the results are quite good, showing that
our approach was effective in noise reduction independently of the quality of the examples.
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However, the procedure is very sensitive to the quality in the training set: increasing the
quality of the examples during this phase could be translated into a significant reduction
of the training set size. Thereby, if the examples are rich enough, the algorithm is able to
learn good quality models with fewer examples.

In order to explore and analyse the MMDG method to other tasks provided by JIGSAWS
dataset, we have developed a Shiny application9. On this web application, users can select
a task, apply the learning models and replay the different examples (trials) on the obtained
models. It also possible to watch all the steps performed by the algorithm until obtaining
the final models.

In the future we will concentrate on extending our approach to also consider short
descriptions in natural language of the task (performed by an expert) in order to provide
the system with an automatic or semiautomatic verification step after the learning process.
Finally, we will apply our developments to the automatic learning and supervision system
of skilled tasks that is one of the most relevant application areas of our method.
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