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ABSTRACT The current environmental challenges require the implementation of environmentally friendly
energy production systems. In this context, proton exchange membrane fuel cell stacks (PEMFC) represent,
due to their high electrical efficiency and their low level of CO2 emissions, a promising alternative
technology. However, there are still many technical aspects that need to be improved before they become a
commercial reality. One of them is the temperature control of the stack, since its electrical efficiency and
its lifetime depend on the performance of this control. In this work, we design a multiloop PID control
of the temperature of a PEMFC stack and validate it experimentally. The stack is the prime mover of a
micro combined heat and power system (micro-CHP). For this task, we use a previously developed nonlinear
model and apply a multiobjective optimization methodology. To assess its performance, the PID control is
compared to a second PID control designed with a linearized model. The results show, on the one hand,
the importance of having a nonlinear model valid in a wide operation range for the correct design of the
temperature control of a PEMFC stack and, on the other hand, the advantages of applying a multiobjective
optimization methodology to this problem.

INDEX TERMS PEMFC, temperature control, electrical efficiency, multiobjective optimization, PID
control.

I. INTRODUCTION
The current environmental problems (global warming, air
pollution, depletion of fossil fuel reserves) signal the need to
turn towards sustainable energy production systems. PEMFC
stacks, due to their high electrical efficiency and their low
level of CO2 emissions, are an efficient and clean alternative
for many power generation applications: micro-CHP, back-
up systems, hybrid electric vehicles (HEV), hybrid renewable
energy systems (HRES) [1]–[3].

In these applications, the temperature control of the stack is
crucial for its optimal operation. This is due to the fact that the
electrical efficiency and the lifetime of the stack depend on
the performance of this control, i.e. a good temperature con-
trol increases the electrical efficiency of the stack and its life-
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time. In effect, at high temperatures the electrical efficiency
of the stack increases (due to the increased conductivity of
the membranes). However, if a certain threshold temperature
is exceeded, the electrical efficiency begins to drop due to the
dehydration of the membranes. This dehydration, in addition,
increases the deterioration of the stack and, consequently,
reduces its lifetime. Therefore, there is an optimum operating
temperature at which the electrical efficiency of the stack is
maximum and its deterioration is minimal [4]–[13].

In order to cool the stack and keep its temperature at its
optimum value, a cooling system is used. This system is sub-
ject to the influence of various disturbances that can move the
stack away from its optimum operating point. Among them,
the most relevant is the electric current demand, because it
causes most of the undesirable transients in the stack tem-
perature (variations with respect to its optimum operating
temperature). A good temperature control should be able to
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react to the electric current demand so that the span and
amplitude of these transients are as small as possible.

But maintaining the stack temperature at its optimum value
is not the only objective of the temperature control. This
should also maintain a uniform temperature gradient in the
stack to avoid thermal stress [4], [36]. Furthermore, the tem-
perature control should take into account the parasitic power
consumption of the actuators, which affects the overall elec-
trical efficiency of the system [1], [6], [9], [14]. Therefore,
in the design of the temperature control of a PEMFC stack
there is not a single objective, but several [15].

In order to design a good temperature control, it is neces-
sary to have a model of the stack cooling system, a control-
oriented model experimentally validated. This model should
be dynamic, nonlinear and valid within a wide operating
range, since the stack is a strongly nonlinear process. In the
literature, there are many theoretical models, but few are
dynamic and experimentally validated [5], [16], [17].

As a consequence of the lack of suitable models, many of
the temperature controls that have been presented to date are
based on linear models which are valid only at an operating
point. For this reason, the validity range of these controllers is
local [5]. Moreover, in the area of temperature control design
we find the same situation as in modeling: very few of these
temperature controllers have been experimentally validated.

For example, Ahn and Choe [9] designed a state-space
control based on a control-oriented model and compared it
to a classic PID control. They took into account the parasitic
power consumption of the actuator, but the controller was not
experimentally validated. Han et al. [14] designed a state-
space controller using a linearized model. They took into
account the parasitic power consumption of the actuators
(radiator and pump), but they did not validate experimentally.
In [18], Chen et al. developed an adaptive thermal control
based on a nonlinear model and they also compared it with a
classic PID control. However, they did not take into account
control efforts nor verified experimentally their results. Rojas
et al. [19] designed a model predictive control (MPC) based
on a linearized model. No experimental validation. Similarly,
Zhao and Pistikopoulos [20] designed a parametric model
predictive control (pMPC) using a linearized model, but they
did not carry out its experimental validation.

In the five articles introduced in the previous paragraph,
the researchers worked with PEMFC stacks. An analogous
situation is found in studies carried out with SOFC (solid
oxide fuel cell) stacks. For example, Cao and Li [31] designed
a multivariable robust proportional-integral derivative (PID)
control system with a multiloop feedforward/feedback con-
trol structure for temperature control of a SOFC stack. In this
work control efforts were not taken into account (para-
sitic power consumption of the actuators was, therefore, not
considered) and the controller designed was tested only in
simulation, without experimental validation. Huo et al. [32]
developed a temperature controller for a SOFC stack, a vari-
able structure controller (VSC). Control design was per-
formed using a linearized model valid around an operating

point. Control efforts were not taken into account and the
controller designed was not experimentally validated. In [33],
Mueller et al. designed an H-infinity output feedback con-
troller for load perturbations (also for a SOFC stack). Here,
again, control designwas performed using a linearizedmodel,
control efforts were not considered, and experimental valida-
tion of the designed controller was not carried out.

All of these studies represent significant contributions to
the area of fuel cell temperature control. However, as can
be inferred from the analysis carried out in the two previous
paragraphs, in general the works available to date in the area
of fuel cell temperature control (both with PEMFC and SOFC
stacks) have three shortcomings: 1) control designs are based
on linearizedmodels, so the validity range of these controllers
is local (given the strong non-linearities existing in the real
systems), 2) control efforts are usually not taken into account
in the design, thus ignoring the global electrical efficiency
of the system, and 3) the controllers designed are almost
never experimentally validated, so their performance is not
guaranteed. In this article, we try to overcome these three
shortcomings.

In this work, first, we design a multiloop PID temperature
control of a water-cooled PEMFC stack. This stack is the
prime mover of a real micro-CHP system located in our
laboratory (Predictive Control and Heuristic Optimization
Group, CPOH, http://cpoh.upv.es). The design of
this control is based on a model of the stack cooling system
which was developed in a previous article [17]. This model is
a control-oriented model, dynamic, nonlinear, based on first
principles and it was experimentally validated within a wide
operating range.

For the adjustment of the control parameters we use a mul-
tiobjective optimization methodology. Thanks to it, it is pos-
sible to consider several control objectives simultaneously.
In particular, in this design we take into account the stack
temperature, its temperature gradient and the control efforts.
This methodology also has the advantage that it provides the
designer with more information about the problem, which
leads to a better decision-making and to the choice of a
controller with a better performance.

Multiobjective optimization methodology has been used
by several authors for the design of SOFC-based power
generation systems [26]– [30]. In these works, various
design parameters are optimized by using economic, envi-
ronmental and energy efficiency indicators. Special mention
deserves [34], which, methodologically, is similar to our
research. In this work, multiobjective optimization is applied
to tune the controller parameters of a SOFC stack. The con-
trolled variables are output voltage and fuel utilization. It is
not, therefore, a temperature control. The control design is
based on a linearized model and the study is carried out only
in simulation.

Secondly, in order to demonstrate the goodness of the
designed control and the appropriateness of the methodology
employed, we perform a comparative analysis in simulation.
The performance of the control designed using the nonlinear
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model is compared to that of a second control designed using
a linearized model valid around an operating point.

Third and lastly, the theoretical results obtained in sim-
ulation are experimentally verified in the real micro-CHP
system.

The experimental data corroborate the theoretical results
and the study demonstrates the importance of using a nonlin-
ear model valid within a wide operating range for the design
of the stack temperature control, as well as the relevance
and advantages of employing a multiobjective optimization
methodology to solve this control problem.

The main contributions of this article to the area of temper-
ature control of fuel cell stacks are the followings:

• The design of the temperature control is carried out using
a non-linear model which is valid within a wide oper-
ating range. This represents an improvement over the
use of linearizedmodels valid only around one operating
point.

• Control efforts are taken into account in the design of
the controller and, therefore, the parasitic consumption
of the actuators is incorporated into the design (bymeans
of a multiobjective approach).

• The designed temperature controller is experimentally
validated in a real system, which guarantees the theoret-
ical results previously obtained in simulation.

Note that the choice of the control structure adopted
in this work (multiloop PID) is a secondary issue in this
research. The subject of the article is the control design
methodology, not a particular control structure. The advan-
tages of this methodology remain, regardless of which control
structure is chosen. Thus, a comparison of different control
structures is a task that is beyond the scope of this article.

The rest of the article is structured as follows: In section II,
we describe the micro-CHP system. In section III, we intro-
duce the nonlinear model of the stack cooling system that
serves as the basis for the control design, as well as the mod-
ifications carried out in that model. In section IV, we present
the methodology followed in this article as well as the con-
trol design methodology. In section V, we show the results
achieved, both theoretical and experimental. In section VI,
we discuss these results. Finally, in section VII we conclude.

II. MICRO-CHP SYSTEM
In this section, we briefly describe the micro-CHP system,
paying special attention to the stack cooling system. For a
detailed description of the experimental equipment, see [17].
At the end of the article, in Appendix I, the reader will find
information about the most relevant devices that constitute
the real system, as well as their basic parameters.

Fig. 1 shows the equipment where the experimental tests
were conducted. The basic elements of the micro-CHP sys-
tem are: PEMFC stack, air supply system, hydrogen supply
system, electronic load, radiator, hot water tank, stack cooling
system, control unit and computer. In the latter, a SCADA is
run for plant monitoring and control.

The stack is fed with hydrogen and air, and produces
power and heat. The electrical energy is consumed by the
electronic load, by means of which we emulate domestic
power consumption (lighting and appliances). The thermal
energy is stored in the hot water tank, which serves as a heat
buffer. Water temperature in this tank is around 55 ◦C. The
thermal energy demand (hot water and heating) is emulated
by means of the radiator: when activated it extracts part of the
heat stored in the hot water tank.

For the correct operation of the system and to guaran-
tee the safety of the stack, the stack temperature must be
maintained within limits. This temperature is measured by a
sensor installed in the stack water outlet, whose measurement
(Twout ) is considered as a representative measure of the tem-
perature inside the stack. In addition, according to the stack
manufacturer, to achieve optimum electrical efficiency, this
temperature must be kept at 65 ◦C. This value is, therefore,
its set point.

On the other hand, the temperature difference between
stack outlet water and stack inlet water (Twout − Twin ) must
also be kept within limits to achieve a uniform and limited
temperature gradient in the stack. This is necessary to avoid
thermal stress in the stack and, consequently, its deterioration.
Ideally, according to the stack manufacturer, this temperature
gradient should be kept at 5 ◦C. Therefore, the set point of
Twin is programmed at 60 ◦C.
In order to maintain Twout and Twin at their corresponding

set points, a cooling system is used (Fig. 2). Changes in
the electrical current demand i (A) will produce undesirable
transient fluctuations in the stack temperature (Twout ) with
respect to its optimum value (65 ◦C), resulting in a loss of
electrical efficiency or in a greater deterioration of the stack.
The same is true for the hot water tank temperature (Tt2):
changes in Tt2 will produce undesirable fluctuations in Twin
and, indirectly, in Twout . However, the effect of Tt2 on the
stack temperature is less than that produced by changes in
the electrical current.

To counteract the effect of the disturbances and keep Twout
at its set point, the water flow rate of the primary circuit
Fw1 (l/min) is varied: if Fw1 increases, more heat is removed
from the stack and Twout decreases, and vice versa. Similarly,
to maintain the stack inlet water temperature (Twin ) at its set
point, the water flow rate of the secondary circuit Fw2 (l/min)
is varied: if Fw2 increases, the amount of heat transferred
from the primary to the secondary circuit through the heat
exchanger increases (since Tt2 < Twout ) and, consequently,
Twin decreases; if Fw2 decreases, the amount of heat trans-
ferred decreases and Twin increases. To vary Fw1 a motorized
valve is used (pump 1 works at steady state). To vary Fw2 a
pump is used (pump 2), which is driven by a variable-speed
drive.

A temperature control (implemented in the control unit,
with a sampling time of 0.1 seconds, and parameterized
through the SCADA) is responsible for maintaining Twout
and Twin to their set points. This controller acts on the
set points of two internal control loops that control the
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FIGURE 1. Experimental equipment [17].

FIGURE 2. Stack cooling system. By means of the water flow rate of the primary circuit Fw1
(l/min) the stack temperature Twout (◦C) is controlled and by means of the water flow rate of the
secondary circuit Fw2 (l/min) the stack inlet water temperature Twin (◦C) is controlled. Changes
in the electrical current demand i (A) will cause undesirable fluctuations in Twout .

water flow rates Fw1 and Fw2 (cascade control configura-
tion). Both internal controllers, the one that controls Fw1

and the one that controls Fw2 , are PI-type. These con-
trollers are not object of study in this work. The control
actions of the temperature control (which are in turn the
set points for the internal control loops) are uTwout (l/min)
and uTwin (l/min).

The temperature control will have to respond to distur-
bances in order to minimize the excursions of Twout and Twin
from their set points, 65 ◦C and 60 ◦C, respectively. This
ensures that the stack works at its optimum operating point
(maximum electrical efficiency and minimum deterioration).
The design of this temperature control is the subject of this
article.
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III. COOLING SYSTEM MODEL
For the design of the stack temperature control, it has been
used a model of the cooling circuit of the micro-CHP system
described in the previous section. This model was developed
and experimentally validated in [17]. Since it is the starting
point for the design of the control that we address here,
we will briefly describe its most relevant characteristics.

The model is built in Matlab R© and has 30 parameters,
all of which represent real physical magnitudes of the plant.
Its inputs are: supply air flow rate (Fa), ambient tempera-
ture (Tamb), supply air temperature (Tain ), stack voltage (v),
electric current supplied by the stack (i), primary circuit
water flow rate (Fw1 ), secondary circuit water flow rate (Fw2 )
and radiator activation signal (R). And its outputs are: stack
water outlet temperature (Twout ), stackwater inlet temperature
(Twin ), water temperature in the hot water tank, i.e. tank 2
(Tt2), stack air outlet temperature (Taout ), water temperature in
the heat exchanger shell inlet (Tsin ) and water temperature in
the heat exchanger shell outlet (Tsout ). The model is based on
first principles, nonlinear, dynamic, and was experimentally
validated within a wide operating range (from 140 to 200 A).
It is accessible at http://hdl.handle.net/10251/
118336.

In order to use the nonlinear model in the design of the
temperature control, we had to make some modifications to
it. These modifications are the following ones.

First, the polarization curve of the stack at Twout equal to
65 ◦Cwas included in the model. This polarization curve was
obtained experimentally and is shown in Fig. 3. The dynamics
of the electrical phenomena are much faster than that of the
thermal phenomena, so there was no need to consider them.

FIGURE 3. Stack polarization curve (experimental data). Stack voltage v
as a function of stack current i at Twout equal to 65 ◦C.

Second, the supply air flow rate (Fa) was calculated
according to the equation recommended by the stack manu-
facturer, which is based on Faraday’s law, but modified for a
stoichiometry factor of 3 (the value set in the system) instead
of 2. In this way: Fa = 0.796·i (l/min). Dynamics between i
and Fa are not considered, since the response of the air supply
control is very fast compared to the thermal phenomena and,
for this reason, their effect is negligible.

Third, the internal control loops of Fw1 and Fw2 were mod-
eled and incorporated to the model. These control loops were
mentioned in [17] but they were not part of the model. Both
control loops have their own dynamics and non-linearities,
including: dead zone, backlash, transport delay, nonlinear
curves, rate limiter and saturations. Their modeling and inclu-
sion in the model were necessary to achieve a satisfactory
experimental validation.

Fourth, a noise with similar characteristics to that of the
plant signals and the filters implemented in the system were
also included in the model. They are two first-order discrete
filters (one for Twout and another for Twin) with unity gain and
a pole at z = 0.95.
Fifth, a slew rate of 20 A/s in the electric current demand

was incorporated in the model to represent the one imple-
mented in the real system.

Sixth, ambient temperature (Tamb) was set at 30 ◦C, which
is approximately the temperature in the laboratory when the
stack has been working at steady state for a while.

Seventh, supply air temperature (Tain) was set at 48 ◦C,
also an approximate value of that temperature when the stack
works in steady state.

Eighth and last, the model was simplified as follows. In the
original model, Tt2 was a state variable that was provided
as an output. Now Tt2 is considered as constant, with a
value of 54.45 ◦C (middle point of the validity range of the
model for this variable). This simplification was made for
the following reason: It was assumed that the influence of
this signal on the temperatures Twout and Twin was much less
than the effect produced by the electric current i, since Tt2
affects Twout indirectly, through Twin , whereas i affects Twout
directly. Moreover, there can be abrupt changes (i.e. more
disturbing) in the electric current demand but there cannot
be such changes in the temperature of the hot water tank. For
these reasons, we decided to focus on the control response
to changes in the electric current demand and to assume that
the temperature Tt2 remains constant. When Tt2 is set to
a constant value, several elements of the secondary circuit
become unnecessary as they no longer have any effect on the
operation of the stack. More specifically: the radiator, the hot
water tank and pipes 2 and 3. Consequently, these elements
were removed from the model.

After making the described modifications, the model is
left with two inputs, two outputs and one disturbance. Fig. 4
shows a black box diagram of the model, indicating its inputs
and outputs. Remember that uTwout and uTwin are the set points
of Fw1 and Fw2 , respectively (and will be the control actions
of the temperature control). This nonlinear model, as noted
before, is the starting point for the design of the temperature
control.

IV. TEMPERATURE CONTROL DESIGN
A. METHODOLOGY
The methodology followed in this article consists of five
stages:
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FIGURE 4. Black box diagram of the nonlinear model of the micro-CHP
system cooling circuit. After the modifications performed, the model is
left with two inputs, two outputs and one disturbance.

1) Obtaining a linear model from the nonlinear model.
2) Design of a temperature control using the linear model

obtained.
3) Design of a temperature control using the nonlinear

model.
4) Analysis and comparison of the performance of the two

designed controls.
5) Experimental verification of the theoretical results.

Before describing each of these stages it is important to
clarify one point. The five stages listed are the stages fol-
lowed in this article, not the stages necessary to design a
PEMFC stack temperature controller. Certainly, these five
stages include the necessary tasks to design a temperature
controller from a nonlinear model using multiobjective opti-
mization, but they also include other stages that are not neces-
sary for that design. Properly speaking, the methodology for
the design of the temperature control that we propose is the
one shown in Fig. 5. This methodology corresponds to stages
3 and 5. The rest of the stages of the methodology followed
in this article are auxiliary (stages 1, 2 and 4). The aims of
these auxiliary stages are 1) to demonstrate the inadequacy
of using a linear model in the design of a PEMFC stack
temperature control, and 2) to show, by comparison, that the
results achieved using a nonlinear model are superior to those
achieved using a linear model.

In stage 1, a linear model is obtained from the nonlinear
model described in the previous section. For this purpose,
a virtual test (in simulation, using the nonlinear model) was
carried out. This procedure is for all purposes equivalent to a
test on the real plant, by which the linear model could also
have been obtained. In this test, step signals were applied
(independently and sequentially) to the inputs uTwout and
uTwin , and to the disturbance i. The test was carried out at
an operating point, namely, Twout = 65 ◦C, Twin = 60 ◦C,
i = 170 A, uTwout = 4.43 l/min and uTwin = 4.99 l/min.
These values for the control actions are the ones that keep
both temperatures stable at their set points when i = 170 A.
This operating point corresponds to the middle point of the

FIGURE 5. Control flow diagram of the methodology for the design of the
PEMFC stack temperature controller. This control flow diagram
corresponds to the stages 3 and 5 (partially) of the methodology followed
in this article.

validity ranges of the nonlinear model. The amplitudes of the
steps were set so that the discrepancy between the response of
the linearized model and that of the nonlinear model (for each
excitation) was less than 10%. This resulted in amplitudes
for the step signals of: ±0.1 l/min for uTwout , ±0.1 l/min for
uTwin ,±1A for i. Finally, with the signals from this virtual test
and using the System Identification ToolboxTM of Matlab R©,
we obtained the transfer functions of the linearized model,
which is a 2 × 3 MIMO model, valid around the specified
operating point:[
Twout
Twin

]
=

[
G11 G12 G13
G21 G22 G23

]uTwoutuTwin
i

 (1)

G11(s) =
−0.942
1+ 24.0s

e−41.6s (2)

G12(s) =
−0.741(1+ 354.0s)

(1+ 438.7s)(1+ 72.7s)(1+ 13.2s)
e−7.7s (3)

G13(s) =
0.092(1+ 258.9s)

(1+ 336.1s)(1+ 47.3s)
(4)

G21(s) =
0.196(1+ 104.6s)

1+ 2·0.934·34.1s+ (34.1s)2
e−41.1s (5)

G22(s) =
−0.772(1+ 358.9s)

(1+ 409.8s)(1+ 68.9s)(1+ 3.1s)
e−3.8s (6)

G23(s) =
0.050

1+ 133.6s
(7)

VOLUME 8, 2020 183329



S. Navarro Giménez et al.: Design and Experimental Validation of the Temperature Control of a PEMFC Stack

Stages 2 and 3 will be discussed together. In each of
these stages, a control is designed. Both designs are identical,
except that in the first the linear model is used and in the sec-
ond the nonlinear model is used. We will call the control
designed in stage 2 CL and the one designed in stage 3 CNL .
The subscripts L and NL refer to the model used in the design
of each control (linear model or nonlinear model).

The control structure of CL and CNL is the same: two PI-
type controllers with anti-windup, one for the control of Twout
and the other for the control of Twin (see Fig. 6). The equation
of the PI-type controllers is formulated in the standard form
(see equation 8). The derivative actions were switched off to
avoid amplifying the measurement noise and thus protecting
the actuators (on this point see also IV-B). Therefore, each
control (CL and CNL) has four parameters to adjust (two
for each PI), namely Kc1 ((l/min)/◦C), Kc2 ((l/min)/◦C), Ti1
(s) and Ti2 (s). These parameters are adjusted by solving a
multiobjective optimization problem (MOP).

u(t) = Kc

[
e(t)+

1
Ti

∫
e(t)dt

]
(8)

FIGURE 6. Control structure adopted in the design of controls CL and CNL.

The process of solving a multiobjective optimization prob-
lem (a posteriori) consists of three basic stages [24]: 1) prob-
lem definition (objectives, decision variables, constraints),
2) optimization (optimal solutions search) and 3) multicri-
teria decision-making (choice of the final solution by the
designer). It is important to note that for each control (CL
and CNL) the optimization will not provide a single optimal
solution, but a set of optimal solutions called Pareto set.
We will call the solutions of CL xL and the solutions of
CNL xNL . All the solutions in a Pareto set are optimal. This
means that none of the solutions in a Pareto set is better than
another in the same set for all the objectives. Note that each of
these optimal solutions is properly a controller, i.e. a certain
adjustment of the parameters of the two PI controllers that
constitute the control structure. Thus, from now on we will
refer to ‘‘solutions’’ as well as ‘‘controllers’’.

The a posteriori multiobjective optimization methodology
has the following advantage: in the final decision-making
stage, the designer knows all the optimal solutions and can
therefore compare them directly. This allows them to analyze

the trade-off between the different solutions of the Pareto
set and, in this way, to choose one of them knowing all the
relevant information, which increases the designer’s confi-
dence that the final chosen solution is the correct one. The
formulation of the multiobjective optimization problem, i.e.
objectives and constraints, as well as the optimization algo-
rithm used, will be described in section IV-B.

The adjustment of the parameters of both PI controllers is
carried out simultaneously. This is important, because due
to the very nature of the process there is a strong coupling
between the control actions and the outputs: uTwout affects
both Twout and Twin , and uTwin affects both Twin and Twout .
By simultaneously adjusting both PI controllers, these cou-
pling effects are taken into account implicitly in the design of
the control.

As indicated above, the temperature control should be able
to respond to changes in the electric current demand i. The
electric current demand signal used for the design of the
controls (CL and CNL) is shown in Fig. 7. The choice of this
signal is important. It has to represent the worst case (abrupt
steps) and travel throughout the entire validity range of the
nonlinear model (from 140 to 200 A).

FIGURE 7. Electric current demand signal used in the design of the
controls. The first step is applied at t=100 s and the span of each step is
600 s, so changes occur in 100, 700, 1300 and 1900 seconds.

In stage 4 (analysis and comparison of the performances of
CL and CNL), two comparisons are carried out, namely:

A) Performance of the solutions of CL when simulated
using the linear model versus performance of the same
solutions when simulated using the nonlinear model
(see Fig. 8).

B) Performance of the solutions of CL when simulated
using the nonlinear model versus performance of the
solutions of CNL when simulated using the nonlinear
model (see Fig. 9).

Finally, in stage 5, the experimental verification of the
theoretical results is conducted. In this stage, the theoretical
results (the simulations with the nonlinear model carried out
in stage 4) are compared with the experimental results (tests
on the real process). We call this third comparison ‘‘compar-
ison C’’ (see Fig. 9).
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FIGURE 8. Control flow diagram of the auxiliary tasks undertaken to
assess the performance degradation of the control CL. This control flow
diagram corresponds to the stages 1, 2 and 4 (partially) of the
methodology followed in this article.

Therefore, three types of fundamental comparisons are per-
formed (comparisons A, B and C). These three comparisons
will be presented in section V, each of them in a separate
subsection.

B. MOP. DESIGN OBJECTIVES, CONSTRAINTS AND
FORMULATION
In section II, two important design objectives were already
mentioned, namely, maintaining Twout and Twin at their set
points (65 ◦C and 60 ◦C, respectively). The aim of these two
objectives is to achieve an optimal electrical efficiency and a
minimal deterioration of the stack.

Apart from minimizing the errors of the outputs with
respect to their set points, there is another fundamental aspect
that must be taken into account in the design of the con-
trol, namely: control efforts. This is so for two reasons.
First, because the power consumption of the actuators (which
depends on the control efforts) reduces the global electrical
efficiency of the system. Second, because the lifetime of the
actuators (valves, pumps) can be significantly reduced if they
are exposed to very aggressive control actions. Consequently,
control efforts will be incorporated into the MOP by means
of two additional objectives.

Note that the problem of designing the temperature control
of a PEMFC stack includes several conflicting objectives. For
this reason, the multiobjective optimization methodology is
especially appropriate for this task.

In the design we also included a constraint regarding the
settling times of Twout and Twin , namely, all the responses that
did not reach stabilization at t=600 s (since the change in i)
were discarded. For this we defined a threshold.

Once objectives and constraints have been chosen, it is
possible to formulate the control design as a multiobjective
optimization problem, as follows:

min
x
f (x) (9)

where:

f (x) =
[
f1(x) f2(x) f3(x) f4(x)

]
(10)

and

x =
[
Kc1 Kc2 Ti1 Ti2

]
(11)

subject to:

x ≤ x ≤ x (12)

x =
[
−5 −5 1 1

]
(13)

x =
[
−0.1 −0.1 100 100

]
(14)

The mathematical formulation of the four objectives is:

f1(x) =
1
Tsim

∫ Tsim

0

∣∣eTwout (t)∣∣ dt (15)

f2(x) =
1
Tsim

∫ Tsim

0

∣∣∣eTwin (t)∣∣∣ dt (16)

f3(x) =
1
Tsim

∫ Tsim

0

∣∣∣∣duTwout (t)dt

∣∣∣∣ dt (17)

f4(x) =
1
Tsim

∫ Tsim

0

∣∣∣∣duTwin (t)dt

∣∣∣∣ dt (18)

The objective f1 is the average absolute error in the stack
temperature Twout , in

◦C. The objective f2 is the average
absolute error in stack inlet water temperature Twin , in

◦C. The
objective f3 is the average absolute value of the rate of change
of the control action uTwout , in (l/min)/s. The objective f4 is
the average absolute value of the rate of change of the control
action uTwin , in (l/min)/s. Tsim is the simulation time (2500 s).

The settling time requirement is formulated as:∣∣eTwout (100+ 600n− ε)
∣∣ < 0.033 ◦C (19)∣∣∣eTwin (100+ 600n− ε)
∣∣∣ < 0.033 ◦C (20)

For n = 1, 2, 3, 4 and ε = [0 10] s, i.e. for the four
ten-second time intervals preceding the steps in the electric
current demand (except for the first step at 100 s).

Note that in theMOP formulation, the objectives have been
defined and quantified independently, i.e. we avoid aggregat-
ing objectives to simplify the problem (for example, globally
quantifying control effort as the sum of f3 and f4). This
prevents the optimization algorithm from ruling out relevant
solutions that are nearly optimal solutions in the aggregate
formulation. For this question see [21].

In order to prevent the noises in the control actions from
distorting the calculation of the control efforts (f3 and f4),
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the optimization was run without noise. The noise level in
the control actions, on the other hand, was indirectly limited
by the maximum values ofKc1 andKc2,−5 (l/min)/◦C, which
are the gains of the PI controllers at high frequency.

The optimization algorithm used for the search of
the optimal solutions is evMOGA [25], available at
https://www.mathworks.com/matlabcentral/fileexchange/
31080-ev-moga-multiobjective-evolutionary-algorithm.

The algorithm is run in Matlab R©. The values for the
parameterization of the algorithm are: NindP = 400 (number
of individuals in the main population), NG = 1000 (number
of generations), ndiv = 50 (number of divisions for each
dimension). With this configuration, the algorithm evaluates
the objective functions 4400 times.

The same objectives, constraints and evMOGA parameter-
ization were used for all optimization runs.

V. RESULTS
Table 1 lists the parameter optimization results obtained
using the linear model, i.e. the optimal solutions of CL
(10 solutions). Table 2 lists the parameter optimization results
obtained using the nonlinear model, i.e. the optimal solutions
of CNL (21 solutions).

TABLE 1. Parameter optimization results obtained using the linear
model, i.e. solutions of CL.

TABLE 2. Parameter optimization results obtained using the nonlinear
model, i.e. solutions of CNL.

A first observation, before even looking at the values of
the objective functions for the solutions of CL and CNL , is the
following. If we consider (as an approximation) the static
gains of the controllers as indicators of how aggressive they
are (which can be done, since there is no derivative action),
it turns out that, on average, the controllers of CNL are more
aggressive than those of CL . In particular, the PI controller of
Twout (PI1) is 2.17 times more aggressive and the PI controller
of Twin 1.15 times. This means that the controllers of CL are
unnecessarily conservative and, for this reason (as we will see
in this section), they will not achieve a superior performance,
which the controllers of CNL do achieve.
For the graphic representation of the solutions, a mul-

tidimensional visualization tool called level diagrams
has been used [22], [23]. This tool is available at:
https://www.mathworks.com/matlabcentral/fileexchange/62-
224-interactive-tool-for-decision-making-in-multiobjective-
opti-mization-with-level-diagrams. In level diagrams, each
objective and each parameter is represented in a separate
diagram. The diagrams of the objectives will be placed to
the left of the figures and those of the parameters to the right.
In the diagrams of the objectives the x-axis represents the
value of each objective function, whereas in the diagrams
of the parameters the x-axis represents the value of each
parameter. In all diagrams (objectives and parameters), the y-
axis represents the value of a norm.

There are different norms (1-norm, 2-norm, ∞-norm).
We have chosen 2-norm. 2-norm measures the Euclidean
distance (in the space of the objectives rescaled between 0 and
1) of a solution to the ideal or utopian point (in this case,
[0 0 0 0]). That is to say, the value of the 2-norm for a solution
xi is:

‖f (xi)‖2 =

√√√√ 4∑
k=1

f ′k (xi)
2 (21)

where f ′k is fk rescaled between 0 and 1, for k = 1 . . . 4.
The diagrams are synchronized: when a solution is selected

in any of them, that same solution is selected in the rest of
the diagrams. Fig. 10 represents in level diagrams: 1) the set
of solutions of CL (green), 2) these same solutions simulated
using the nonlinear model (red) and 3) the set of solutions of
CNL (purple). This color coding will be used also to represent
the dynamic responses of the controlled system.

In Fig. 10, the representation in level diagrams provides,
for each solution: 1) the value of the parameters of that solu-
tion (in the four diagrams on the right, x-axis) and 2) the value
of the objectives for that solution (in the four diagrams on
the left, x-axis). As well as the value of its 2-norm (y-axis in
all diagrams). This means that each solution xi is represented
by eight points. Each of these points is plotted on a different
diagram (there are eight diagrams). If we call Ni to ‖f (xi)‖2
(see equation 21), then the eight points are:

(f1(xi),Ni) (f2(xi),Ni) (Kc1,Ni) (Kc2,Ni)
(f3(xi),Ni) (f4(xi),Ni) (Ti1,Ni) (Ti2,Ni)

(22)
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FIGURE 9. Control flow diagram of the auxiliary tasks undertaken 1) to compare the performances of CL and CNL and 2) to
verify experimentally the theoretical results obtained in simulation. This control flow diagram corresponds to the stages 4
(partially) and 5 of the methodology followed in this article.

FIGURE 10. Representation in level diagrams of the 10 solutions of CL, simulated using the linear model (green) and simulated using the nonlinear
model (red), and of the 21 solutions of CNL simulated using the nonlinear model (purple). The four diagrams on the left show the four objectives of
the MOP and the four diagrams on the right show the four decision variables (parameters).

where Kc1, Kc2, Ti1 and Ti2 are the values of the parameters
of solution xi (see equation 11). Note that the value of the
y-axis is the same at all points, namely Ni (the value of
2-norm). Thus, the eight points corresponding to solution xi
are plotted at the same height in the eight diagrams. For a
more detailed description of this tool (level diagrams), please
see [22], [23] and the online tutorials provided at the above-
mentioned URL.

In the following three subsections, the results of stages
4 and 5 are presented. Each of them corresponds to one of
the three comparisons mentioned in subsection IV-A (com-
parisons A, B and C).

A. PERFORMANCE DEGRADATION OF THE SOLUTIONS OF
CL
Table 3 shows the values of the four objectives for each of the
ten solutions of CL , in two scenarios: 1) when these solutions
are simulated using the linear model (columns 2-5) and 2)
when they are simulated using the nonlinear model (columns
6-9). It also shows the percentage change in the objectives
(columns 10-13) and the average percentage change (col-
umn 14).

5 out of the 10 solutions (xL1 , x
L
6 , x

L
7 , x

L
8 , x

L
10) degrade for

all the objectives. This represents 50% of the solutions. The
global average degradation of the solutions of CL is 30.14%.
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TABLE 3. Values of the objective functions for the solutions of CL in two scenarios: simulated using the linear model (columns 2-5) and simulated using
the nonlinear model (columns 6-9). Columns 10-13 contain the percentage change for each objective and column 14 the average percentage change. If a
controller performance degrades when simulated using the nonlinear model, it is indicated in red, and if it improves in green.

FIGURE 11. Dynamic response of the system controlled by xL
6, in two scenarios: 1) simulated using the linear model (green) and 2) simulated using the

nonlinear model (red).

Moreover, 7 out of the 10 solutions (70%) suffer an average
degradation in their performance greater than 17%. It can be
stated (in this case), therefore, that the performance of the
controllers generally worsens when the solutions obtained
using the linear model are tested against the nonlinear model
(which represents the real plant).

The solution that degrades the most is xL6 , with an aver-
age degradation of 140.35%. The performance degradation
suffered by the solution xL6 is such that the real response of
the system controlled by it does not stabilize. This means
that solution xL6 (optimal solution when designing the control
using the linearmodel and, consequently, a solution that could

have been chosen by the designer) is, in fact, completely
unacceptable, since when it is simulated using the nonlinear
model (which represents the real plant), it produces a dynamic
response that never stabilizes. It also turns out that solution
xL6 , which was the one that provided the best performance
for objective f2 (0.030 ◦C), is the solution that degrades the
most for that same objective (261.52%). Fig. 11 shows the
response of the system controlled by xL6 and Fig. 12 shows
the degradation of its performance in level diagrams.

Solution xL10, which is the most balanced solution of CL
(lowest value of 2-norm) and, therefore, a compromise solu-
tion highly susceptible of being chosen by the designer,
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FIGURE 12. Level diagrams representation of the values of the objective
functions for the solution xL

6, in two scenarios: 1) when controlling the
linear model (green) and 2) when controlling the nonlinear model (red).
The performance achieved by the controller xL

6 degrades for all four
design objectives.

degrades for the four objectives, with an average degradation
of 35.19%. In particular, the objective f1 (on which the stack
electrical efficiency depends) degrades 12.26%. This can be
seen in Fig. 13, which shows the dynamic response (Twout ) of
the system controlled by xL10.

FIGURE 13. Dynamic response (Twout ) of the system controlled by xL
10,

in two scenarios: 1) simulated using the linear model (green) and 2)
simulated using the nonlinear model (red). The performance of controller
xL
10 degrades 12.26% for f1 (average absolute error in stack temperature).

As can be seen in Fig. 13, solution xL10 produces (when
simulated using the nonlinear model) a lower peak value
in Twout than when it is simulated using the linear model.
Note, however, that the relevant design objective is not the

peak value, but f1, since the stack electrical efficiency is
determined by f1, not by the peak value.

Moreover, solution xL10 fails to meet the design requirement
regarding the settling time (see equations 19 and 20). Apart
from solution xL10, also x

L
1 , x

L
4 , x

L
6 , x

L
8 and xL9 fail to meet that

same design requirement. The solution in which this fact is
most appreciable is xL1 (see Fig. 14).

FIGURE 14. Solution xL
1, which met the settling time requirement when

simulated using the linear model (green), fails to meet it when simulated
using the nonlinear model (which represents the real plant) (red).

B. COMPARISON OF THE SOLUTIONS OF CL WITH THOSE
OF CNL
Table 4 lists the values of the four objectives for the 21 solu-
tions obtained using the nonlinear model, i.e. for the 21 solu-
tions of CNL .

TABLE 4. Values of the 4 objective functions for the 21 solutions of CNL.

A comparison of the Tables 3 (columns 6-9) and 4 shows
that the vast majority of the solutions of CNL (17 out of 21,
81%) surpass in f1 the best solution of CL for that same
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objective (xL9 ). This can also be seen in Fig. 16 (in the diagram
of f1).

Solution xL9 is the one that has the best f1 when it is
simulated using the linear model (0.274 ◦C) and it is also the
one that provides the better f1 (0.232 ◦C) when the control of
the nonlinear model is simulated (in fact it does not degrade,
but improves for that objective). Even so, the value of f1 at
xNL12 (0.066 ◦C), which is the best solution of CNL for that
objective, is less than the value of f1 at xL9 by 71.65%. Fig. 15
shows the dynamic responses (Twout ) of the system controlled
by xL9 and by xNL12 when simulated using the nonlinear model.
Fig. 16 shows this same result in level diagrams.
Here it is interesting (and can be useful for other

researchers) to specify the performance achieved by the solu-
tion xNL12 (temperature overshoot and settling time). These can
be taken as conformance values for a continuously improved
benchmark for future control scheme developments of fuel
cell stacks. Thus, for the third step in the electric current (from
140 A to 200 A, worst case), the solution xNL12 achieves a
maximum overshoot of 1.05 ◦C and a settling time (for an
error band of 0.1 ◦C) of 80 seconds.

FIGURE 15. Comparison of the dynamic response (Twout ) of the
nonlinear model controlled by the best controller of CL for f1 (xL

9, red)
and by the best controller of CNL for that same objective (xNL

12 , purple).
The controller xNL

12 surpasses xL
9 in f1 by 71.65%.

Note that some of the solutions obtained as optimal using
the linear model are not really optimal solutions (xL2 , x

L
5 , x

L
9 ).

This means that there are solutions among those obtained
using the nonlinear model that dominate (they are better for
all the objectives) these three solutions. To be exact, solutions
xNL1 , xNL4 , xNL6 , xNL7 , xNL9 , xNL14 , x

NL
17 , x

NL
19 . Each of these solu-

tions of CNL dominates one or more of the three solutions of
CL mentioned. Here are three examples (see numerical values
in Table 5):

1) xNL1 is better than xL9 for all the objectives.
2) xNL9 is better than xL5 and xL2 for all the objectives.
3) xNL7 , which is the one of the set considered that has the

best f1, is better than xL9 for all the objectives.

FIGURE 16. Representation of the values of the objective functions in
level diagrams. In green, solutions of CL simulated using the linear
model; in red, solutions of CL simulated using the nonlinear model; and
in purple, solutions of CNL simulated using the nonlinear model. The vast
majority of the solutions of CNL (17 out of 21, 81%) surpass in f1 the best
solution of CL for that same objective (xL

9). The best solution of CNL for f1
(xNL

12 ) surpasses the best solution of CL for that same objective (xL
9) by

71.65%.

TABLE 5. The solutions xL
2, xL

5 and xL
9 of CL are not optimal solutions,

because they are dominated by one or more solutions of CNL.

C. EXPERIMENTAL VERIFICATION
Next, we present the experimental verification of some of
the theoretical results that have been described in the two
previous subsections. In the experimental tests, it was used
an electric current demand i identical to that employed for
the design of the controllers (see Fig. 7). The tests were per-
formed on the real micro-CHP plant by means of the SCADA
system programmed in LabView R©. All signals were acquired
by this system and then processed in Matlab R©. In the next
figures, all the experimental signals are represented in blue.

Let us start with the controller xL6 of CL . This controller
produced an oscillating response when simulated using the
nonlinear model (see Fig. 11). Fig. 17 shows the dynamic
response of the real system controlled by xL6 . As can be seen,
the oscillations present in the simulation also appear in the
real system.
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FIGURE 17. Dynamic response of the real system controlled by xL
6. This

controller fails to stabilize the system.

Now let us look at controller xL10, which was the most
balanced (lowest value of 2-norm). The performance of this
controller suffered a global degradation of 35.19%, the degra-
dation for f1 being 12.26% (see Fig. 13). Fig. 18 shows the
experimental validation of the controller xL10. As can be seen,
the experimental response presents a level of degradation
similar to that predicted by the theoretical results obtained
in simulation.

FIGURE 18. Dynamic response of the system controlled by xL
10, in three

scenarios: 1) using the linear model (green), 2) using the nonlinear model
(red) and 3) using the real plant (blue). The experimental response (blue)
corroborates the theoretical response obtained in simulation (red).

It is observed, however, that in the experimental response
of the plant controlled by xL10 there appear oscillations which
did not exist in the theoretical response. To be more pre-
cise, these oscillations are of two different types. The first
type (type 1) is the one that is present, especially, in the
time intervals 300-600 s and 1500-1900 s, approximately.
The second type (type 2) is the one present in the time
interval 800-1300 s. They are two distinct types of oscillations
because their oscillation frequencies and the causes of their
appearance are different.

Type 1 oscillations are due to variations in the hot water
tank temperature (Tt2). This temperature, which was assumed
constant in the design stage, actually shows small variations
around 54.45 ◦C. Fig. 19 shows the signal Tt2 measured
during the test of xL10. This fact has been confirmed. In effect,
when the real signal Tt2 is incorporated into the simula-
tion, then the experimental result coincides, as can be seen
in Fig. 20 (noises from the real outputs Twout and Twin are also
included in this simulation). The effect of the variations of Tt2
is not uniform throughout the test. This is because the system
is nonlinear. Where they are most noticeable is in the time
intervals 100-700 s and 1300-1900 s, i.e. for i = 200 A.

FIGURE 19. Variations in the hot water tank temperature (Tt2) during the
experimental test of controller xL

10. These variations are the cause of the
oscillations (type 1) present in the experimental response of the system
controlled by xL

10.

FIGURE 20. When the real signal Tt2 is incorporated in the simulation,
the experimental response of the system controlled by xL

10 (blue)
coincides with the simulated response using the nonlinear model (red).

In regard to the type 2 oscillations, we believe that they are
due to a discrepancy between the nonlinear model and the real
plant. In particular, we think that they are due to the fact that
in the real plant there is a time delay in the primary cooling
circuit which is not perfectly modeled.
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FIGURE 21. Experimental validation of xL
1, with Tt2 constant in the simulation and without noises in the outputs (simulation in red, experimental

response in blue).

The theoretical results showed that several solutions of CL
did not meet the design requirement regarding the settling
time when they were simulated using the nonlinear model
(solutions xL1 , x

L
4 , x

L
6 , x

L
8 , x

L
9 , x

L
10). Of these, the one that

failed to meet it in the greatest degree was xL1 (see Fig. 14).
The experimental validation of xL1 is shown in Fig. 21 (with
Tt2 constant in the simulation) and in Fig. 22 (with the real
signal Tt2 in the simulation). In both cases, the fit between
the experimental response and the simulated response is very
satisfactory. In Fig. 23, it can be seen in detail that the
controller xL1 , when tested in the real plant, effectively does
not meet the requirement of the settling time defined in the
design stage, as the theoretical results predicted.

Finally, the theoretical analysis revealed that using the non-
linear model instead of the linear model, solutions with better
performance in f1 can be found. In particular, the best solution
of CL for f1 (xL9 ) and the best solution of CNL for that same
objective (xNL12 ) were compared. This comparison displayed
an improvement in f1 of 71.65% (see Fig. 15). When these
controllers are tested in the real plant, the experimental results
shown in Fig. 24 are obtained. As can be seen, the exper-
imental responses achieved by xL9 and xNL12 corroborate the

theoretical results obtained in simulation with considerable
accuracy: test signals match simulated ones and the predicted
improvement in f1 is apparent.

VI. DISCUSSION OF RESULTS
We briefly summarize here, before discussion, the main
results presented in the previous section:

1) The performance of the controllers designed using
the linear model degrades significantly when they are
tested on the real plant.

2) In some cases (xL6 ) this degradation is such that the
dynamic response of the real plant does not stabilize,
which is unacceptable.

3) Several of the solutions obtained using the linear model
do not meet the design requirements when they are
tested on the real system. This is the case of xL1 , x

L
4 , x

L
6 ,

xL8 , x
L
9 and xL10, regarding the settling time requirement.

4) The use of the nonlinear model in the control design
leads to controllers with better performance in the spec-
ified objectives than those obtained using the linear
model.
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FIGURE 22. Experimental validation of xL
1. The simulation is carried out including the real signal Tt2 and the noises in the outputs (simulation in red,

experimental response in blue).

5) In particular, if a designer opted to optimize f1, that
is to say, if they chose their controller aiming for the
smallest average absolute error in Twout , they would
find, by using the nonlinear model, a solution (xNL12 ) that
is 71.65% better than the best solution that can be found
using the linear model for that same objective (xL9 ).

6) If a linear model is used for the control design, it turns
out that some of the solutions obtained as optimal are
not really optimal solutions (xL2 , x

L
5 , x

L
9 ). The use of a

linear model for the temperature control design, there-
fore, does not guarantee obtaining the optimal solutions
(it generates suboptimal solutions). On the other hand,
using a nonlinear model, although it does not guarantee
it either (because even having a perfect model, there is
no certainty that the optimization algorithm converges
towards the truly optimal solutions), increases the prob-
ability of getting closer to them.

These results demonstrate that using a linear model is
inadequate for the design of the temperature control of a
PEMFC stack.

In effect, when a linear model is used, the design process
ultimately leads to controllers that do not meet the design
requirements and that are therefore unacceptable.

FIGURE 23. Detail of the experimental validation of xL
1 (step at t=700 s).

As the theoretical results predicted, the controller xL
1 does not meet the

settling time requirement established in the design stage (see equations
19 and 20).

Furthermore, if the controllers are designed using a linear
model, the final results that will be achieved in the real plant
are unpredictable: the performance of these controllers may
worsen or improve with respect to the values calculated in
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FIGURE 24. Experimental validation of solutions xL
9 (on the left, simulation in red, real response in blue) and xNL

12 (on the right, simulation in purple,
real response in blue). The simulations are carried out with Tt2 constant and without noises in the outputs.

the design stage. In other words, the true performance that the
chosen controller will achieve when tested on the real process
can be very different from that foreseen in the design stage,
which invalidates the design process itself.

FIGURE 25. PEMFC stack [35].

TABLE 6. PEMFC stack characteristics [35].

The results also show that in order to achieve a superior
performance in the temperature control of a PEMFC stack,
it is necessary to use a nonlinear model capable of accurately
representing the behavior of the real plant within a wide
operating range.

Moreover, using a nonlinear model when designing the
temperature control is a sine qua non condition, since, due

to the strong non-linearities of the real system and to the
fact that the stack works within a wide operating range,
the theoretical results obtained using a linear model valid only
around one operating point will not be reproduced in the real
plant. In other words, in order the design process itself to be
valid, i.e. for its results to be reproducible in the real world,
a nonlinear model is necessary.

Finally, the results achieved demonstrate that the use of a
nonlinear model allows designers to adequately design the
temperature control of a PEMFC stack even using simple
control structures, as have been done in this work, where
the control structure adopted consists of two PI-type con-
trollers. This is important, because the use of simple (linear)
control structures, although it will never provide the optimal
performance (since the plant is nonlinear), has some advan-
tages over the use of more sophisticated (nonlinear) control
structures, such as simplicity, robustness and computational
cost. Therefore, in some cases (for the reasons mentioned) the
designer may prefer to maintain a simple control structure.
Under this assumption, using our methodology (multiobjec-
tive optimization and nonlinear model, see Fig. 5), they will
be able to design a controller with better performance, chosen
with all the relevant information, and with the guarantee that
the controller designed will reproduce its performance in the
real plant.

Logically, the use of more sophisticated control structures
will result in improved performance. But the use of these
more sophisticated control structures only makes sense if a
nonlinear model of the real plant, valid within a wide oper-
ating range, is available and used for the adjustment of their
parameters, since, otherwise, the theoretical results will not
be reproduced when the control is tested on the real system.
Therefore, the next natural step (a first possible future line
of research) is the design of a nonlinear temperature control
(sophisticated control) using the same methodology that has
been described in this article (see Fig. 5). The performance
of this sophisticated control can then be directly compared
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to that achieved using a linear control (such as the one pre-
sented in this article), thanks to the fact that both controls are
optimally adjusted and, consequently, compared under equal
conditions, so that the differences in their performance can be
specifically attributed to their different structures.

Using a model like the one we have used here for the
temperature control design (based on first principles) has
still another advantage. As all the model parameters have a
real physical meaning, it is possible to analyze the robust-
ness of the designed controllers to uncertainty in the model
parameters. This type of analysis (robustness to parameter
uncertainties) has been highlighted in the literature as an
important aspect in the design of the temperature control of
PEMFC stacks [5]. This task could thus constitute a second
possible future line of research.

VII. CONCLUSION
Temperature control is crucial to achieve optimal operation
in PEMFC stacks, because the performance of this control
impacts on the electrical efficiency and lifetime of these
devices. Many researchers have pointed out the need to use a
nonlinear model in order to design good temperature control.
In this article, we have demonstrated that need in an exhaus-
tive and quantitative way. In effect, the performance of half of
the controllers designed using the linear model degrades for
all design objectives when tested against the nonlinear model
(which represents the real plant). In some cases, this degrada-
tion is extreme (controller xL6 , average degradation 140.35%),
resulting in a dynamic response that never stabilizes (see
Fig. 17). Moreover, 6 out of the 10 controllers designed using
the linear model fail to meet the design requirements, for
example controller xL1 (see Fig. 14 and Fig. 23).

In the literature, there are many articles on temperature
control design for PEMFC stacks, but very few validate
their controllers experimentally on a real system. Without
an experimental validation, there is no guarantee that the
theoretical results are correct. Systems based on PEMFC
stacks are complex and, for this reason, in the experimental
phase there usually arise pitfalls which were not considered in
the theoretical phase. The validity of the theoretical results is
always limited and the conclusions drawn from them can only
be accepted after their experimental verification. In this work,
we have designed a PEMFC stack temperature control based
on two PI control loops and the theoretical results obtained in
simulation have been experimentally verified. The outcome
of this verification is highly satisfactory: the experimental
data faithfully reproduce the theoretical results obtained in
simulation, as can be seen in figures 17, 18, 20, 21, 22, 23
and 24.
The control design has been carried out using a multiobjec-

tive optimization methodology. As far as we know, no one has
ever used this methodology before to design the temperature
control of a PEMFC stack. This methodology has allowed the
consideration of several control objectives simultaneously,
which is precisely what must be done, because in the temper-
ature control of a PEMFC stack there is not a single objective,

but several. For this reason, this methodology is the most
appropriate to solve this control design problem. Any other
methodology will always provide partial results (focused on
a single objective).

We have also shown that by using a nonlinear model and
applying multiobjective optimization, it is possible to arrive
at simple temperature control designs (linear control struc-
tures) with good performance. This is the case, for example,
of controller xNL12 , which achieves in the stack temperature an
overshoot of only 1◦C and a settling time of about 100 sec-
onds (see Fig. 15 and Fig. 24). This, in some cases, may be
preferred by the designer, due to the advantages that a linear
control has over a nonlinear control (simplicity, robustness
and computational cost).

Finally, this study suggests two possible future lines of
research: 1) design of a sophisticated control using multiob-
jective optimization and the nonlinear model and 2) analysis
of control robustness to uncertainty in the model parameters.

APPENDIX I. EXPERIMENTAL EQUIPMENT
The most important component of the micro-CHP system
used to conduct the experimental tests is the PEMFC stack.
The stack is shown in Fig. 25 and its basic parameters are
listed in Table 6.

The rest of the components of the micro-CHP system are
listed below, as well as some of their basic parameters.

• Air mass flow meter. Aalborg, model GFC 57, maximun
flow rate 200 l/min, maximum pressure drop 690 mbar.

• Hydrogen mass flow meter. Aalborg, model GFC 37,
maximun flow rate 50 l/min, maximum pressure drop
551 mbar.

• Air humidifier. Perma Pure, model FC200-780-7, mem-
brane tubing Nafion R©, operating fluid temperature
range 1 - 80◦C.

• Hydrogen humidifier. Perma Pure, model FC125-240-7,
membrane tubing Nafion R©, operating fluid temperature
range 1 - 80◦C.

• Heat exchanger. Alfa Laval, model AlfaNova 14, fusion-
bonded plate heat exchanger, stainless steel, number of
channels 9.

• Electronic load. Elektro-Automatik, model EL9080-
200 HP, input current 0 - 200 A, input voltage 0 - 80 V,
input power 0 - 2400 W.

• Radiator. Pilan, model TP-10, thermal power dissipated
3000 W (at 10 l/min and 1T 30 ◦C).

• Motorized valve. Belimo, model TRC24A-SR, torque
2 Nm, nominal voltage DC 24 V, control modulating DC
0 - 10 V, position feedback DC 2 - 10 V, running time
15 s.

• Pump 1. Pan World, model NH30PX, 24 VDC.
• Pump 2. Pan World, model MD-55R, 220 VAC.
• Control unit. National Instruments, model CompactRIO-
9014 Real-Time Controller.

• Computer. Dell, Intel(R) Core(TM) i7-6700K CPU @
4.00GHz, RAM 16.0GB, Windows 10 Pro.
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