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Abstract—With the appearance of multi-/many core machines,
applications and runtime systems evolved in order to exploit
the new on-node concurrency that brought new software
paradigms. POSIX threads (Pthreads) was widely-adopted for
that purpose and it remains as the most used threading solu-
tion in current hardware. Lightweight thread (LWT) libraries
emerged offering lighter mechanisms to tackle the massive
concurrency that current hardware is offering. In this paper,
we analyze in detail the most representative threading libraries
including Pthread- and LWT-based solutions. In addition, to
examine the suitability of LWTs for different use cases, we
develop a set of microbenchmarks consisting of commonly
found OpenMP patterns in current parallel codes, and we
compare the results using threading libraries and OpenMP
implementations. Moreover, we study the semantics offered by
threading libraries in order to expose the similarities among
different LWT application programming interfaces and their
advantages over Pthreads. This study reveals that LWT li-
braries outperform solutions based on operating system threads
in cases where tasks and nested parallelism are required.

Index Terms—Lightweight Threads, OpenMP, GLT, POSIX
Threads, Programming Models

1. Introduction
Operating system (OS) threads, such as POSIX threads

(Pthreads) [1], are employed to leverage the computa-
tional power of multi/many-core architectures. These threads
are commonly used in two ways: via the Pthreads im-
plementation or by means of threading-based programming
models (PMs) that rely on Pthreads, such as OpenMP [2].

In the past few years, the number of cores per processor
has increased steadily, reaching impressive counts such as
the 260 cores per socket in the Sunway TaihuLight super-
computer [3], which was ranked #1 for the first time in
the June 2016 TOP500 list [4]. This trend indicates that
exascale systems may well feature a large number of cores.
Therefore, future applications will have to accommodate this
massive concurrency by deploying a large number of threads
and/or tasks in order to extract a significant fraction of the
computational power of such hardware.

Current solutions for extracting on-node parallelism are
based on OS threads in both low- or high-level libraries.
However, performing thread management in the OS in-

creases the cost of these operations (e.g. creation, context-
switch, or synchronization). As a consequence, leveraging
OS threads for a massive degree of hardware parallelism may
be difficult. In response to this problem, dynamic scheduling
and lightweight threads (LWTs) (also known as user-level
threads, or ULTs) models were first proposed in [5] in order
to deal with the required levels of parallelism, offering more
efficient management, context switching and synchronization
operations. These thread solutions rely on the usage of
threads that are managed in the user-space so that the OS is
not involved and, hence, the overhead is lower.

To illustrate this, Figure 1 highlights the time spent when
creating OS and user-level threads (labeled as OS and ULT,
respectively). In this example, one thread is created for each
core in an machine with two Intel Xeon E5-2695v4 (2.10
GHz) CPUs and 128 GB of memory. For the OS thread, we
have employed the GNU C 6.1 library [6], and an Argobots
(07-2018) thread for the ULT case [7]. The time difference
is caused by the implication of the OS and by the features
of each type of thread.
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Figure 1: Cost of creating OS threads and ULTs.

A number of LWT libraries have been imple-
mented for specific OSs, such as Windows Fibers [8]
and Solaris Threads [9], for specific hardware
such as TiNy-threads [10] for the Cyclops64 cel-



lular architecture, or for network services such as
Capriccio [11]. Other solutions emerged to support spe-
cific higher-level PMs. This is the case of Converse
Threads [12] [13] for Charm++ [14] and Nanos++
LWTs [15] for task parallelism in OmpSs [16]. More-
over, general-purpose solutions have emerged such as GNU
Portable Threads [17], StackThreads/PM [18],
ProtoThreads [19], MPC [20], MassiveThreads [21],
Qthreads [22] and Argobots [7]. Other solutions
that abstract LWT facilities include Cilk [23], Intel
TBB [24] and Go [25]. In addition, solutions like
Stackless Python [26] and Protothreads [19] are
more focused on stackless threads.

In spite of their potential performance benefits, none
of these LWT software solutions has been significantly
adopted to date. The easier code development via directive-
based PMs, in combination with the lack of a standard/
specification, hinder portability and require a considerable
effort to translate code from one PM to another. In order
to tackle this situation, a common application programming
interface (API), called Generic Lightweight Threads (GLT),
was presented in [27]. This API unifies LWT solutions under
a unique set of semantics, becoming the first step toward
a standard/specification. GLT is currently implemented on
top of Qthreads, MassiveThreads, and Argobots.
One further step is presented in [28] and [29], where the
OpenMP and OmpSs PMs were implemented on top of the
GLT API.

In this paper we demonstrate the usability and perfor-
mance gain of LWT solutions. We analyze several threading
solutions from a semantic point of view, identifying their
strong and weak points. Moreover, we offer a detailed
performance study using the OpenMP PM because of its
position as the de facto standard parallel programming model
for multi/many-core architectures. Our results reveal that the
performance of most of the LWT solutions is similar and that
these are as efficient as OS threads in some simple scenarios,
while outperforming them in many, more complex cases.

In our previous work [30], we compared several LWT
solutions and used the OpenMP PM as the baseline; in this
paper we expand that work adding Pthreads library to
our semantic and functional analysis of threading libraries
and in order to highlight the overhead (if any) introduced by
the OpenMP implementations. The purpose of this paper is
to present the first comparison of threading libraries from
a semantic point of view, along with a complete perfor-
mance evaluation that aims to demonstrate that LWTs are
a promising replacement for Pthreads used both as low-
level libraries and as the base of high-level PMs.

The contributions of this paper are: (1) an extensive
description of the current and most-used threading solutions;
(2) an analysis of their APIs; and (3) a performance analysis
designed to illustrate the benefits of leveraging LWTs instead
of OS threads.

The rest of the paper is organized as follows. Section 2
briefly reviews related work. Section 3 reviews in detail the
threading solutions. Section 4 presents an analysis of the
different LWT approaches. Section 5 introduces the different
parallel patterns that are analyzed. Section 6 provides im-
plementation details on the microbenchmarks we developed

for this paper. Section 7 analyzes the performance of LWT
libraries. Section 8 closes the paper with conclusions.

2. Related Work
The use of ULTs to increase concurrency while main-

taining performance is not a new topic. The concept of
LWT was introduced in [5], focusing on fundamentals
such as scheduling, synchronization, and local storage.
Converse Threads was later presented in [12] as a
low-level LWT library. It supports not only ULTs but
also stackless threads called Messages. Qthreads was
presented in [22] and compared with the Pthreads li-
brary by means of a set of microbenchmarks and appli-
cations. This solution increases the number of hierarchi-
cal levels to three with an intermediate element known
as Worker. MassiveThreads was presented in [21].
This work provides a performance comparison among
MassiveThreads, Qthreads, Nanos++, Cilk, and
Intel TBB on several benchmarks. Argobots was pre-
sented in [7] with microbenchmark and application evalu-
ations against Qthreads and MassiveThreads. This
library is conceptually based on Converse Threads and
allows the use of stackless threads called Tasklets (also
known as Tasks). In addition, it features complete design
flexibility and stackable, independent schedulers. Go [25],
developed by Google in 2009, is an object-oriented, concur-
rent programming language. Generic Lightweight Threads
(GLT) was presented in [27], unifying LWT solutions un-
der a unique set of semantics. An analogous ULT pro-
gramming model is the task-based oriented solutions such
as CompSs [31], or a fine-grained OpenMP task employ-
ment [32].

3. Threading Libraries
In this section we describe the two types of threading

libraries, OS threads and LWTs, that are analyzed and evalu-
ated in this paper. Moreover, we briefly present the OpenMP
PM, for which production implementations are currently
based on Pthreads.

For the evaluation of the libraries, from the point of
view of OS threads, we have selected Pthreads because
it is the standard library that tackles perfectly the current
hardware concurrency. In the case of LWTs, Qthreads and
MassiveThreads have been selected because these are
among the most used lightweight threading models in high-
performance computing (HPC); Converse Threads and
Argobots were chosen because they correspond to the first
(and still currently used) LWT library and the most flexible
solution, respectively. Despite Go is not HPC-oriented, we
have also included it as representative of the high-level
abstracted LWT implementations.

3.1. Pthreads API
The Pthreads API [33] defines interfaces and func-

tionality to support multiple control flows—called threads—
within a process. This API exposes thread management and
synchronization primitives to be implemented by threading
libraries.

Pthreads offers three PMs that differ in how the
threads are bound and which is in control. An important
agent in these PMs is the kernel scheduled entity (KSE).



KSEs can be managed directly by the OS kernel and the
PM changes depending on the threads–KSE mapping.

The library–thread model contains a single KSE, and
several threads are scheduled and executed on top of it. This
relationship is N:1 and may limit concurrency because only
a single thread is scheduled at a time. It is leveraged by the
GNU Portable Threads library [34].

The hybrid model is composed of a set of KSEs, each
managing several threads in an M:N relationship. Since LWT
libraries follow this hybrid approach, the Pthreads API
should be able to accommodate the PM offered by LWTs.

The kernel–thread model employs one KSE for each
thread that is generated (1:1 relationship).This increases the
overhead of the management mechanism because the OS
kernel is involved in the scheduling and execution of the
threads. This is probably the most used implementation of
the Pthreads API that is used in the GNU C library [6].

Pthreads does not expose KSEs as part of the API,
although these are present in its execution model. Hence,
the Pthreads implementations interpret KSEs differently,
leading to the previously discussed mappings between KSEs
and threads (N:1, 1:1, or M:N). Therefore, users do not have
control over this mapping; instead, they have to follow the
mapping offered by the threading implementation. Although
some implementations offer functionality for this mapping
(e.g. pthread_setaffinity_np in the GNU C library),
this is not supported by the standard and, therefore, changing
the underlying Pthreads implementation may produce a
misbehavior in the application/runtime.
3.1.1. OpenMP over Pthreads

High-level parallel PMs have been implemented on top
of Pthreads in order to promote programming produc-
tivity by easing the use of parallel techniques. The most
well-known example is OpenMP,

an API that supports multi-platform shared-memory mul-
tiprocessing programming. Currently, there exist implemen-
tations of OpenMP for most platforms, processor architec-
tures, and operating systems. OpenMP exposes a directive-
based PM that helps users to accelerate their codes exploiting
hardware parallelism by adding annotations to the code, and
at compile time, these annotations are converted to runtime
function calls. Intel and GNU develop two commonly used
OpenMP implementations that leverage Pthreads in order
to exploit concurrency. These runtimes automatically create
all the necessary structures and distribute the work among
Pthreads.

Since version 3.0, OpenMP supports the concept of
tasks, which constitute different pieces of code that may be
executed in parallel, and each can be different (e.g., only
computation, I/O, communication, etc.). In contrast with
work-sharing constructs, distinct OpenMP implementations
leverage different mechanisms for task management. In par-
ticular, while the GNU version implements a shared task
queue for all threads, the Intel implementation incorporates
one task queue per thread and integrates an advanced work-
stealing procedure for load balancing.

3.2. Converse Threads
Converse Threads [12] [13] was one of the first

LWT implementations, developed at the University of Illi-

nois in 1996. It is a parallel language-integration solution
designed to enable the interaction of different PMs.

Although Converse Threads was designed and de-
veloped more than 20 years ago as a general-purpose so-
lution, it is still being used because it composes the un-
derlying layer of the Charm++ implementation [14]. Since
its creation, Converse Threads has been extended with
several modules (e.g., client–server) that expand the basic
functionality and adapt the PM to diverse application sce-
narios. This continuous development maintains Converse
Threads as an appealing solution for HPC environments.

The Converse Threads PM offers two hierarchical
thread levels: process (OS threads) and work units. Processes
allocate queues where work units are stored. Users may se-
lect the number of active processes by means of environment
variables.

As an innovative feature, Converse Threads ex-
poses two types of work units: ULTs and Messages. ULTs
are the base of the LWT solutions, and represent a migratable
(a ULT is executed by an OS thread, paused, and resumed
by another OS thread), yieldable, and suspendable work
unit with its own stack. A “message” represents a piece
of code that is executed atomically. Messages lack an own
stack and thus cannot be migrated, yielded, or suspended.
Instead, these are recommended for inter-ULT communica-
tion, for short nonblocking tasks, and as synchronization
mechanisms. Only messages may be inserted into other
thread’s queues and this situation reduces flexibility because
some codes (e.g., a blocking code) cannot be executed as a
message.

Figure 2 depicts the PM offered by Converse
Threads, showing the interaction of Converse
Threads processes via messages. In that scenario,
Process 0 sends a message to Process 1 that is scheduled
and executed. Once Process 1 finishes executing the ULTs,
it communicates to Process 0 the work completion via the
insertion of a message into the Process 0 queue.

Figure 2: Converse Threads PM and process interac-
tion.

From the point of view of the PM, Converse
Threads allows different execution manners, aimed to
different scenarios. The behavior is selected with the func-



tion ConverseInit, which initializes the environment. If
the “normal” mode is selected, threads operate like MPI
processes and all the threads execute the overall code. The
user is able to select the code portion to execute depend-
ing on the thread id. In the “return” mode, Converse
Threads creates one thread that acts as the master. This
thread dispatchs the work among other threads by sending
messages.

The Converse Threads scheduler is a priority sys-
tem that supports efficiently stackless and standard threads.
This scheduler allows two strategies: First-In-First-Out
(FIFO) and Last-In-First-Out (LIFO). In order to enhance
the flexibility of Converse Threads, this library also
allows user-defined schedulers that interact with threads.

To complete this concurrent environment, the
Converse Threads library offers several concurrent
implementations of data structures developed specifically for
this PM, including queues and lists that are automatically
managed by the library.

3.3. MassiveThreads
MassiveThreads [21] was developed at the Uni-

versity of Tokyo (Japan) in 2014. This LWT library is a
recursion-oriented solution that tackles the thread blocking
problem when an I/O operation is executed. In addition, this
solution provides a tuned load balancing via work-stealing
mechanism among threads.

MassiveThreads is a consolidated solution in con-
tinuous development, which enables it to be used in current
hardware systems.

As almost every other LWT solution does,
MassiveThreads offers two hierarchical levels:
Workers (the OS thread) and ULTs. Each worker includes
its own work unit queue that is managed by a scheduler.
The representation of the PM is illustrated in figures 3a
and 3b. The default queue scheduler follows the work-first
scheduling policy (Figure 3a): when a new ULT is created,
it is immediately executed, and the current ULT is moved
into a ready queue. In this scenario, Worker 0 generates
a new ULT and the Main task (labeled as M) is moved
to the queue. Then, M may be stolen by idle Workers.
Although this policy benefits recursive codes because of the
exploitation of data locality, this behavior may be modified
to a help-first policy (Figure 3b) at compile time. The
help-first policy prevents the worker from executing the new
ULTs unless a yield function is called. Therefore, Worker 0
generates a certain number of ULTs that are stored in the
queue and Worker 1 steals the lastly created ULT.

The number of workers that are spawned by the
MassiveThreads environment is selected by the user via
the environment variable MYTH_NUM_WORKERS. Once the
application is launched, this number cannot be modified.

In contrast with Converse Threads,
MassiveThreads does not allow the introduction
of work units into other Worker’s queues. Therefore, all the
work units are created into the current Worker’s queue and
the load balance is pursued with a work-stealing mechanism
that allows an idle Worker to gain access to the ready
queue of other Workers and to steal a ULT from there.
The work-stealing mechanism is also depicted in figures 3a
and 3b.

(a) Work-first policy.

(b) Help-first policy.

Figure 3: MassiveThreads PMs and scheduler policies.

Once the work units are in the queues, the execution
follows the LIFO policy for each worker’s work, and a FIFO
policy in case of work-stealing. This algorithm was selected
because this scheduling policy is known to be efficient for
recursive task parallelism.

MassiveThreads includes a mechanism for I/O han-
dling that consists of three procedures, namely, (1) register-
ing a new file descriptor, (2) performing the I/O call, and
(3) polling to resume blocked threads. With this mechanism,
MassiveThreads tackles the blocking thread problem by
overlapping communication and computation.

In order to enhance portability from Pthreads to
MassiveThreads, the latter provides a Pthreads-like API.
This feature allows programmers to convert their legacy
codes into MassiveThreads applications without effort.
Moreover, it allows the use of high-level PMs that are cur-
rently written on top of Pthreads, with MassiveThreads
as the underlying library.

3.4. Qthreads
Qthreads [22] was developed by Sandia National Lab-

oratories (US) in 2008 as a general-purpose LWT imple-



mentation based on the full/empty bit design. The feature
that distinguishes this LWT PM is the use of a hierarchy
of three levels instead of the two-level structure of the
other approaches. The new level is located between the OS
thread (called Shepherd) and the work units (ULTs) and
it is known as Worker. Shepherds and Workers may be
bound to several types of hardware resources (nodes, sockets,
cores, or processing units) with the unique restriction that the
Shepherd boundary level may lie in a higher level than the
Worker level.

Depending on the level of the Shepherds, these may
manage one or more Workers. On the one hand, when
a Shepherd is bound to a node, it may manage up to n
Workers, where n is the number of logical cores. On the
other hand, when a Shepherd is bound to a logical core,
it only manages one Worker bound to the same core.
These configurations are determined via a few environment
variables; concretely, QTHREAD_NUM_SHEPHERDS,
QTHREAD_NUM_WORKERS_PER_SHEPHERD,
QTHREAD_SHEPHERD_BOUNDARY, and QTHREAD_-
WORKER_UNIT for the number of Shepherds,
number of Workers per Shepherd, and Shepherd and
Worker boundaries, respectively. As in the case of
MassiveThreads, all environment is created inside the
initialization function.

Depending on the number of Shepherds (single or mul-
tiple) the user is allowed to select the work unit sched-
uler during the library configuration step. Figure 4 depicts
the Qthreads system when one Shepherd is bound to a
core and one Worker (omitted for simplicity) is spawned
per Shepherd. The scheduler configurations integrate work-
stealing in order to attain a fair work-load balance among
Shepherds. In addition, Qthreads enables creating ULTs
for specific Shepherds, and those ULTs cannot be stolen by
other Shepherds. In Figure 4, Shepherd 1 is not able to steal
the last ULT (Assigned ULT), so it steals the previous ULT.

Figure 4: Qthreads PM.

Qthreads allows that a large number of ULTs access
any word in memory. Associated full/empty bits are used not
only for synchronization among ULTs but also for leveraging
mutex mechanisms. This access to memory requires hidden

synchronization, which may severely impact performance.
A large number of distributed structures such as queues,

dictionaries, or pools, are offered along with for loop and
reduction functionality. ULT-aware system call functions are
also offered in the Qthreads API.

3.5. Argobots
Argobots [7] was developed in 2015 at Argonne Na-

tional Laboratory (US). It is presented as a mechanism-
oriented LWT solution, that means that in addition to be
used as a low-level library, it also offers the mechanism
for building different environments. Therefore, it allows
programmers to create their own PM.

Thanks to its development approach, this PM offers
the programmer an absolute control over all the resources.
In contrast with previous LWT solutions, the OS threads
(named Execution Streams, ES) may be dynamically created
at runtime by the user instead of at the initialization point
with environment variables. Since those ESs are indepen-
dent, there is no need for an internal synchronization mech-
anism. Users may also decide the number of required work
unit pools, as well as which ESs have access to each pool.
Those pools may be configured with different access patterns
depending on the number of producers and consumers. For
example, a queue may be accessed by a single ES in order
to create ULTs while it may be accessed by several ESs for
executing the work units, and vice-versa.

Figure 5: Argobots PM using one private pool for ES 0
and a shared pool for ES 1 and ES 2.

Although a default scheduler is defined for each pool,
in Argobots programmers may create their own instances
and apply them individually to the desired pools. The default
scheduler implements a LIFO policy and only allowed ESs
may interact with the scheduler. Furthermore, Argobots
supports stackable schedulers, enabling dynamic changes to
the scheduling policy that may benefit code portions. The
Argobots flexibility is represented in Figure 5. This fea-
ture enables the programmer to create different environments
inside a unique code. As an example, in Figure 5, ES 0
features its own private queue, while ESs 1 and 2 share
a work unit queue. This complete flexibility increases the
programming difficulty but, at the same time, improves code



adaptability.
Argobots presents two types of work units: ULTs and

Tasklets (as Converse Threads does). The difference is
that Tasklets are an atomic piece of work and threfore, it can-
not yield, migrate, and/or pause. Since Argobots features
a mechanism-oriented, its low-level API offers a high va-
riety of functionality that enables implementing other LWT
solutions and low/high-level runtimes on top of Argobots.

3.6. Go

Go [25], developed by Google in 2009, is an object-
oriented programming language focused on concurrency that
is practically hidden to programmers. This library abstracts
the existence of LWTs from users with the aim of increasing
coding productivity in web-service scenarios. This language
supports concurrency by means of goroutines that are
ULTs executed by the underlying threads. The number of
threads may be decided by the user at execution time via
the environment variable GOMAXPROCS. In addition, users
are able to specify the number of threads for a specific code
portion at runtime. Due to the LWT abstraction, Go is the

Figure 6: Go PM.

less flexible solution among those reviewed in this paper. The
Go mechanisms offered to the programmers include: in the
creation step, the goroutine call; and in the joining step,
the creation of a communication channel. In the creation
step, all threads share a global queue where goroutines
are stored. This queue is managed by a scheduler which
is responsible for assigning the ULTs to idle threads. This
global and unique queue needs a synchronization mechanism
that may impact performance in case a high number of
threads is used. Figure 6 depicts the interactions between
Go processes and the shared queue.

The synchronization procedure implemented in Go is
an out–of–order communication channel that may obtain
higher performance than the sequential mechanisms. How-
ever, it is the programmer’s responsibility to identify which
goroutine has sent the message via checking the returned
value.

3.7. Generic Lightweight Threads
GLT [27], developed at Universitat Jaume I de Castelló

(Spain) in 2016, is a generic solution that joins, under
a unique PM, the semantics of several widely-used LWT
libraries. This is the first effort toward creating a standard
in the field of LWTs. The GLT PM is formed by a set of
GLT_threads, in a number that is specified by means
of the environment variable GLT_NUM_THREADS. Each
GLT_thread contains the OS thread, a work unit queue,
and a scheduler. As Argobots does, GLT allows the use
of two types of work units: ULTs and Tasklets (namely
GLT_ult and GLT_tasklet). The GLT scheduling pol-
icy is implementation defined. Therefore, its configurations
directly depend on the approaches that are offered by the
LWT implementation.

Currently, the GLT API is implemented on top of
Argobots, Qthreads, and MassiveThreads. There-
fore, a code written with GLT can be executed by those li-
braries without any code modification. GLT also implements
the Pthreads API in order to transparently execute legacy
codes over LWTs.

4. Analysis of Threading Libraries
In this section, we first analyze the threading libraries

from a semantic point of view, highlighting the most sig-
nificant features in the field of this kind of solutions. Next,
we classify the threading implementations from the usage
difficulty.

4.1. Semantic Analysis
We present a semantical analysis of the threading so-

lutions in order to highlight the different features that pro-
grammers are offered. Threading solutions were designed
to extract the computational power of the many-/multi-core
architectures. LWT solutions provide a programming model
close to that in OS threads; however, since LWTs are exe-
cuted in the user-space, these reduce the overhead caused by
conventional OS threading mechanisms. LWT libraries lie on
top of OS threads (OS threads execute the LWTs); however
these are created at the beginning and they are not managed
by the OS during the application execution. Although LWT
solutions show some common features, each library offers
its own functionality and PM(s). Table 1 lists an example of
the most used functions when implementing a solution using
these libraries. That fuctionality includes init and finalization
functions as weel as the thread management.
TABLE 1: Summary of the most used functions in mi-
crobenchmark implementations using threads.Pth, Arg, Qth,
Mth, CTh and Go identify the threading libraries Pthreads,
Argobots, Qthreads, MassiveThreads, Converse Threads, and
Go, respectively.

Function Pth Arg Qth MTh CTh Go
(pthread ) (ABT ) (qthreads ) (myth )

Init – init initialize init ConverseInit –
Thread create thread create fork create CthCreate go
Tasklet – task create – – CmiSyncSend –
Yield yield thread yield yield yield CthYield –
Join join thread free readFF join – channel
End – finalize finalize fini ConverseExit –



The most important features of the threading libraries
from the PM perspective are summarized in Table 2.
TABLE 2: Summary of the execution and scheduling func-
tionality offered by the LWT libraries. Pth, Arg, Qth, Mth,
CTh and Go identify the threading libraries Pthreads, Argo-
bots, Qthreads, MassiveThreads, Converse Threads, and Go,
respectively.

Concept Pth Arg Qth MTh CTh Go

# of Hierarchy Levels 1 2 3 2 2 2
# of work unit Types 1 2 1 1 2 1
Thread Support D D D D D D
Tasklet Support D D
Group Control D D D D D
Yield D D D D
Yield To D
Global work unit Queue D D D
Private work unit Queue D D D D D
Plug-in Scheduler D D D D D
Stackable Scheduler D
Group Scheduler D

4.1.1. Hierarchical Levels
This number indicates the number of layers inside each

PM. Each layer offers its own features and is aimed for
different purposes. The main difference between OS threads
and LWTs is that the former only contains one level,
Pthread itself, while LWTs feature at least two levels.
The lowest level in each library is the OS thread repre-
sentation and in addition it usually includes, in the case of
LWTs, a queue for work units and a scheduler. This object
receives different names depending on the library: Execution
Stream in Argobots, Shepherd in Qthreads, Worker in
MassiveThreads, Processor in Converse Threads,
and Thread in Go. Users may decide the number of elements
to be spawned via environment variables (Group Control
row), which is also available to programmers to be set at
runtime in the case of Argobots. Pthreads, schedulers,
and queues may be created at runtime by the programmer,
using the LWT APIs.

Qthreads presents an additional level located in be-
tween the two already presented. This level is formed by
workers that execute the work units and are managed by the
Shepherds. This feature enables further hardware adaptabil-
ity depending on the combination of hardware and applica-
tions.

Work units are at the top level of this hierarchy. These are
usually ULTs but, in the case of Argobots and Converse
Threads, these may also be a Tasklet. These work units are
executed by a OS thread of the lower level or by a Worker
in Qthreads.

4.1.2. Work Units
The main work units in threading libraries are ULTs

in the case of LWT solutions and Pthreads in the OS
threading implementation. Both types of threads are indepen-
dent, yieldable, migratable codes featuring their own private
stack. The main difference is that LWTs are managed in
the user space while OS threads are managed by the OS.
In addition, Argobots and Converse Threads support

an additional work unit called Tasklet: an atomic piece of
code that shares the stack with its executor; in other words,
these may be considered as a function pointer. Tasklets (also
known as Tasks) are lighter work units than ULTs and are
aimed for codes that do not block or context switch.

These work units are stored inside pools/queues waiting
to be executed. These structures are also PM dependent and
set the library behavior. In the case of Argobots and
Pthreads these structures may be created by the user.
This increasing difficulty also leads to increased flexibility.
Conversely, Qthreads, MassiveThreads, Converse
Threads and Go hide that feature to users and the environ-
ment may be modified only via environment variables or at
compilation time. Go only allows the use of one shared pool
while Qthreads, MassiveThreads, and Converse
Threads by default assign one queue/pool per OS thread.
4.1.3. ULT Management

Another feature that defines the PM is the functionality
that a programmer is allowed to use over the work units.
Go is the most restrictive solution. This implementation
does not include basic threading operations such as yield,
cancel, or resume, that are exposed by the other libraries.
Moreover, only one shared queue is employed, and hence
the scheduling options are reduced. At the other extreme,
Argobots includes not only the common functionality but
also an improvement of the yield call. The yield_to
function allows the programmer to pause a current work
unit and start (or resume another ULT) without asking the
scheduler. In addition, Argobots enables programmers to
create their own environment.

All these features make of Argobots the most flexi-
ble solution. The other solutions present default schedulers
and environment configurations. As a novelty, Qthreads
enables programmers to create work units for a specific
Shepherd. In the case of MassiveThreads, it only creates
work units inside the current Worker’s queue and an internal
work-stealing mechanism ensures the load balance. Although
some Pthreads implementations allow the use of yield
functions, this functionality is not included in the API spec-
ification and therefore the corresponding API function names
are appended with the _np suffix that means “non-portable”.

4.2. Usage Difficulty Analysis
Although semantics are important when selecting a li-

brary for generating a code solution, the adoption of a PM
is also dependent on its ease of use. From this perspective,
we classify the presented libraries in three levels depending
on the features that are offered to the programmers for
building their application/PM environment: easy, medium,
and difficult.

In the easy level, we include Go and
MassiveThreads because of the reduced number
of features that depend on the programmer. In the former,
the user is responsible of selecting the number of OS
threads and then creating and joining the ULTs. In the
latter, the programmer also needs to allocate the resources
and select if the scheduler may use a Work-first or a
Help-first strategy.

In the medium level we find Qthreads. In this solution
the programmer is involved in more decisions which may



affect performance. Users may select a combination of the
number of Shepherds and Workers via environment vari-
ables. In addition, users may decide the boundaries of each
element (e.g., node, socket, core, or processing unit). Once
the environment is set, at the coding level the programmer
may consider if the ULTs may or may not be bound to a
specific Shepherd.

In the difficult level we include the three remain-
ing solutions: Pthreads, Converse Threads, and
Argobots, but for different reasons. Pthreads, while
not a LWT solution, enforces the use of low-level function-
ality if the programmer wants to generate an environment
where Pthreads share structures and interact among them.
Converse Threads offers three distinct models of exe-
cution and each model follows its own rules. This feature
forces programmers to understand deeply each of the models
in order to select the most appropriate approach in each case.
For all scenarios, programmers may manage the ULTs in
addition to the Tasklets (or messages) for communication
among Processors. Argobots offers complete flexibility for
environment generation. In addition, this environment may
be changed at run time so one part of the application may
behave totally different from others. In this LWT library the
programmer indicates the number of Execution Streams, the
number of pools, the relationship among Execution Streams
and pools, which scheduler policy follows each pool, etc. As
usual, increasing the flexibility in the library implies more
control and more work from the programmers.

5. Parallel Code Patterns
Many scientific applications may benefit from the use

of OpenMP in order to shorten their execution time. The
basic mechanism consists of using OpenMP pragmas in
order to hint the compiler the code that may be executed
concurrently. The compiler translates these directives into
OpenMP runtime calls and, at run time, the code is executed
in parallel. In this section, we present the most common
parallel patterns and explain how current OpenMP runtimes
convert the pragmas into parallel code. These patterns will
be the basis for our performance evaluation of the different
threading solutions.

5.1. For Loop
The most frequently used OpenMP directive and prob-

ably also the shortest path to produce parallel code is
#pragma omp parallel for. It may be placed right
before a parallel loop composed of independent iterations
and produces code where each thread executes its own
range of the iteration space. This thread management is
transparent to programmers, who are in charge of annotating
the parallelizable code with the pragma.

Widely-used OpenMP runtimes, gcc and icc, handle
this scenario similarly. The master thread sets a pointer to a
function call containing the parallel code in each thread’s
data structure and it is also responsible for calling the
function. All threads wait in a barrier (unless a nowait
clause is present) at the end of the parallelized loop.

In the case of LWT solutions, the main thread generates
one work unit per thread and divides the number of iterations
among them. This work unit contains a function pointer to
be executed. All the arguments are passed via a structure

1 void for_lwt(void * args)
{

3 arg_for *arg = (arg_for*) args;
for (int i = arg.ini; i < arg.fini; i++)

5 code(i);
}

7 ...
//Main function

9 //Allocate memory for structures
ULT * lwts[NUM_ULTS]; arg_for * args[NUM_ULTS];

11

for (int i = 0; i < NUM_ULTS; i++)
13 {

//Calculate the number of iterations per LWT
15 ...

//Arguments initialization
17 args[i].ini = XXX;

args[i].fini = XXX;
19 //LWT creation

create_lwt(for_lwt, args[i], lwts[i]);
21 }

23 lwt_yield();

25 //Wait for LWT completion
for (int i = 0; i < NUM_ULTS; i++)

27 join_lwt(lwts[i]);

Listing 1: OpenMP for loop parallelism implemented with
LWT solutions.

that contains critical information (the number of iterations,
variables, etc.) that is necessary to execute the function.
Listing 1 shows an abstraction of how the OpenMP for
loop pragma with a static scheduler is translated into LWT
code. Lines 1–6 compose the function that is executed inside
the ULTs. Lines 8–27 are part of the main function where
initially the data structures for ULTs and arguments are
allocated (Line 10); Lines 12–21 correspond to the division
of the number of iterations among the number of ULTs,
the argument initialization, and the ULT creation (line 20).
Line 23 allows the main thread to call the scheduler and
execute a ready ULT. Once the control is returned to the
main function, all the ULTs are joined (line 27) and the
work is completed. This example highlights the complexity
of the code leveraging low-level LWT APIs.

5.2. Task Parallelism
Task parallelism appeared in the OpenMP 3.0 speci-

fication as a solution to parallelize unbounded loops and
recursive codes. Its usage, however, has been spread to all
type of applications that contain pieces of code that may
be executed in parallel or that present dependencies among
them. In the second case, the runtime generates a directed
acyclic graph of tasks and their dependencies and once
these are fulfilled, the corresponding task may be executed.
OpenMP tasking follows the LWT approach in the sense that
tasks are pieces of enqueued code waiting to be executed by
an idle thread. This is expressed with the pragma #pragma
omp task; however, different OpenMP runtimes leverage
their own internal approach for tasking. More concretely,
gcc OpenMP creates a shared task queue for tasks storage.
This queue is accessed by all the team’s threads. In contrast,
icc allocates one private queue for each thread in the team.
This implementation reduces the contention generated by a
shared queue. It also implements a work-stealing mechanism



for load-balancing purposes. This mechanism is used once
a thread’s task queue is empty and the thread becomes idle.
Storing an elevate number of tasks may reduce performance
because of contention and the cost of queue reallocation;
therefore, gcc and icc include a non-configurable cutoff
mechanism. Once a specific number of tasks is stored (64
times the number of threads for gcc and 256 in a thread’s
queue in the case of icc), the new non-dependent tasks
avoid the queues and are executed immediately. The situa-
tions described in the following two subsections may appear,
depending on the code that creates the tasks.

5.2.1. Single Region
In this scenario, a thread executing a single or

master OpenMP region (#pragma omp single or
#pragma omp master) creates all the tasks in that re-
gion. Meanwhile, the other threads in the team are executing
them. Once the thread that creates the tasks finishes its work,
it joins the others in the task execution process.

The OpenMP implementation in gcc uses one shared
queue for all threads and the created tasks are pushed into
that queue. The threads in the team compete for access to
obtain a task. The protection of the queue is enforced via
mutex and thus contention may increase with the number of
threads. Conversely, icc OpenMP uses one private queue
for each thread. This situation triggers work-stealing because
the other threads are idle. The performance in this scenario
is also affected by contention because all threads are trying
to gain access to the queue. The effectiveness of the work-
stealing mechanism may well affect performance.

When using the threading solutions, the main thread
generates one work unit per OpenMP task and, as in the
for loop scenario, the work unit is created with the function
pointer and the necessary data.

5.2.2. Parallel Region
This scenario occurs when all the threads in a team

execute parallel code that creates tasks. During execution,
the threads push the new tasks into the task queue (if the
cutoff value is not reached), and once this is done, the threads
execute the tasks. For gcc OpenMP, threads compete to
gain access to the shared queue twice: the first time for
creating the tasks and the second time for obtaining tasks
to execute. In icc OpenMP, each thread generates the tasks
into its own queue. With this approach, work-stealing is
almost nonexistent thanks to a better load balance.

When threading libraries are employed, we have two
different parallel levels. The first is mapped to the parallel
region, where the main thread generates a work unit for each
thread with the function pointer of the region. Then each
thread executes the parallel region creating their own work
units that are the OpenMP tasks.

5.3. Nested Parallel Constructs
When one or more parallel pragmas are found inside an

already parallel code, it is called nested parallelism. In this
case, for the first pragma, the runtime spawns a team of
threads and for the second pragma, each thread in the team
becomes the master thread of its new threads’ team. In this
scenario, the number of active threads grows quadratically.
Nested parallelism is not frequent in current applications

because performance drops when the number of threads
exceeds the number of cores (oversubscription). However,
oversubscription may occur in some situations that the user
may be unaware of. For example, a programmer accelerates
the code with OpenMP pragmas and, in this concurrent
code, threads may use external library functions that are
parallelized using also OpenMP pragmas.

The way OpenMP solutions manage nested parallelism
differs. The icc OpenMP runtime fulfills the new thread
teams reusing idle threads (if any) or creating new threads.
Conversely, gcc OpenMP does not reuse the idle threads;
therefore, each time an OpenMP pragma is executed, a
new team of threads is created. Since the idle threads are
not deleted (but stored in a thread pool), the number of
active threads in the system may increase exponentially. To
reproduce this scenario, we have implemented code using
two nested for loops, each with its own #pragma omp
parallel for directive.

With LWT libraries, the outer for loop implementation
follows the behavior of that pattern and each work unit
executes a range of iterations of the outer loop. Then each
work unit creates as many work units as number of threads
and divide the iterations of the inner loop among these.

6. Microbenchmark Implementation Details
In this section, we discuss how we adapted our mi-

crobenchmarks implementing the patterns described in Sec-
tion 5 to the specifics of each LWT library 1.

6.1. Pthreads
Although Pthreads is the supporting library used in

production OpenMP and other high-level PMs, we also
used this solution as a low-level threading option for our
microbenchmarks. In those cases where OpenMP tasks are
employed, we generate one Pthread for each task and limit
the available number of cores by means of the taskset
command. The thread management relies on the OS itself
for all the microbenchmarks.

6.2. Converse Threads
In the scenario where Converse Threads is used,

we employ the “return” mode and leverage Messages. The
former enables us to follow the OpenMP approach, where
there is one master thread while the other processes are
treated as slaves. The usage of Messages is necessary be-
cause these are the only work unit that may be pushed
into other threads’ queues, and therefore the only way to
mimic OpenMP’s behavior. In this scenario, the master
thread creates as many Messages as threads and pushes them
to other threads’ queues. This limitation, however, prevents
the use of Converse Threads to support parallel codes
because messages cannot yield and hence the requirements
of OpenMP are not fulfilled.

6.3. MassiveThreads
We have analyzed both Work-first and Help-first policies.

However, only the best of these is shown in Section 7. The
difference among these two policies lies on the way a new
work unit is treated. While the former pushes the current

1. Available at https://github.com/adcastel/ULT work/tree/master/lwt
microbenchmarks



work unit into the queue and executes the recently created
work unit, the latter pushes new work units into the queues
while the current task continues its execution.

6.4. Qthreads
With its three levels of hierarchy, Qthreads accom-

modates multiple combinations in order to attain high per-
formance in a variety of situations. We have tested a set of
combinations, including one Shepherd managing the com-
plete node (it manages up to 72 Workers), one Shepherd per
socket (each manages up to 36 Workers), and one Shepherd
per core (each manages just one Worker). After a preliminary
analysis, we chose two combinations: one Shepherd bound
to a node and one Shepherd per core. The first choice is more
efficient when there is a reduced number of work units, at the
cost of increasing the load imbalance; the second option is
more appropriate for scenarios with a higher number of work
units. In the presentation of our results we discarded the
option with a single Shepherd per socket because it offered
lower performance than the other choices for all scenarios.

We also test the functions qthread_fork and
qthread_fork_to, which differ in the work queue where
the new work unit is stored. While the former pushes the
work unit into the current Shepherd’s queue, the latter
pushes the work unit into a different Shepherd’s queue. If
qthread_fork_to is chosen, the main thread distributes
the work using a round-robin dispatch. Hence, four imple-
mentations have been evaluated for each test: qthread_-
fork with one Shepherd per node, qthread_fork with
one Shepherd per core, qthread_fork_to with one
Shepherd per node, and qthread_fork_to with one
Shepherd per core.

6.5. Argobots
The flexibility offered by Argobots is two-fold. On the

one hand, two different types of work units may be used:
ULTs and Tasklets. On the other hand, the work unit pools
may be private for each thread or shared among all of them.
If the private pool option is selected, the main thread needs
to dispatch the work units directly to each thread’s pool in
a round-robin fashion. Therefore, four possible implementa-
tions have been tested. Since Tasklet does not have its own
stack and is not yieldable, in those scenarios that require two
steps of parallelism (nested and task parallelism), the first of
them is performed by using ULTs.

6.6. Go
This library enables only one implementation due to its

unique shared work unit queue. All work units need to be
pushed into this queue, as the gcc OpenMP task implemen-
tation does. Therefore, only one possibility is analyzed.

7. Performance Evaluation
In this section, we first review the work dispatch/syn-

chronization in both threading solutions and the OpenMP
PM. Next, we analyze the different parallel code patterns
presented in Section 5 (see implementation details in Sec-
tion 6). The experiments were performed on an Intel 36-
core (72 hardware threads) server composed by two In-
tel Xeon E5-2695v4 (2.10 GHz) CPUs and 128 GB of
memory. GNU’s gcc 6.1 compiler was used to com-
pile the LWT libraries and OpenMP examples. Intel icc

compiler 17.0.1 was used to evaluate the performance of
the OpenMP implementations, linked with the OpenMP
Intel Runtime 20160808 version. For LWT libraries,
we employed Argobots, Converse Threads, and
Go libraries updated to 07-2018, Qthreads 1.10, and
MassiveThreads 0.95. All shown results are the average
of 500 executions. The maximum relative standard deviation
observed in each experiment is between 2% and 5%. Please,
note that the microbenchmarks’ codes are well-balanced so
all OpenMP implementations may offer their best perfor-
mance.

7.1. Basic Functionality
In OpenMP implementations, a master thread (or work

unit) is in charge of creating secondary threads (or work
units), and then distributing the work among these slaves.
Once that is done, the master completes its work (if any)
and waits for the synchronization that may indicate that the
overall work is completed. This completion may be enforced
using different mechanisms, such as barriers, messages, or
thread joins.

Although parallel codes may vary depending on different
features, such as granularity, the type of code, or the data
locality, the work dispatch and join steps are clearly critical
for performance, especially in fine-grained codes.

Figure 7 shows the overhead in terms of time spent
creating a single work unit for each thread. In this sce-
nario, the main thread creates and dispatches the work
units. As expected, increasing the number of created
work units increases the execution time. As an exception,
MassiveThreads (labeled as MTH) maintains the per-
formance because the new work units are created into the
master’s own queue. Intel and GNU OpenMP runtimes,
labeled as ICC and GCC, follow the trend of LWT solutions.
Go’s performance corresponds to the usage of a single shared
queue, and therefore, more contention is added when the
number of threads is increased.

Converse Threads and Argobots Tasklet, labeled
as CTH and ABT(T), employ the tasklets that yield the
best performance, thanks to its nature, yielding slightly
higher performance than Argobots when ULTs (ABT(U))
are used and two times faster than the Qthreads (QTH)
implementation. As expected, results show that creating
Pthreads (PTH) is more expensive than creating LWTs
(excluding the Go implementation) because the OS is re-
sponsible for managing the creation. The difference between
the Pthreads and OpenMP implementations appears when
all threads are created in a previous parallel section (in
OpenMP), and hence the time spent corresponds only to the
duration of the work assignment.

Figure 8 displays the time required by the master thread
to complete the joining mechanism. Joining mechanisms
may differ among implementations. More concretely, gcc
OpenMP and Converse Threads (labeled as GCC and
CTH, respectively) employ a barrier mechanism which
makes the time grow with the number of threads. Although
Converse Threads uses Tasklets, this mechanism does
not benefit from it. The marked increase of time in icc
OpenMP derives from leveraging more than one thread per
CPU. The master thread accesses memory allocated by other
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Figure 7: Time of creating one work unit for each thread.
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Figure 8: Time of joining one work unit for each thread.

threads and therefore the overhead is increased. The remain-
ing libraries use a join mechanism; while Go implements
an out–of–order channel communication, Qthreads and
Argobots follow a a sequential algorithm that checks
the status of the memory word or work unit, respectively.
The main difference is that Argobots checks the status
and frees the work unit structure. MassiveThreads and
Pthreads deliver the lowest performance. In the former
case, since the main task may be executed by any Worker,
each time a thread is joined several checks are triggered.
In the latter case, the OS itself waits until the thread has
finished and frees the allocated memory.

7.2. Code Patterns
In order to maintain a fair comparison among patterns,

and at the same time, avoid code modification, we have
selected a BLAS-1 function that matches perfectly the fine-
grained approach of LWTs and is highly parallelizable. We
implement a scal function, which multiplies (and over-
writes) the components of a vector by a scalar. We avoid
coarse-grained codes because then, the thread management
overhead is totally hidden by the execution time

In the scenarios where loops (for loop and nested for
loop) are employed, the iterations are divided among the
number of threads. In the task parallelism cases, one task is
created for each vector element attaining a markedly fine-
grained code. This extreme fine level of granularity is chosen
in order to understand the behavior of each LWT solution,
because this type of parallelism does not hide the thread

management overhead. Conversely, if the execution time of
a piece of code is sufficiently long, the overhead is hidden,
and therefore there is no significant performance difference
between using LWTs or OS threads.

7.3. For Loop
For this test, we have created a vector with 1,000 ele-

ments that results in a 1,000-iteration for loop. Figure 9 il-
lustrates the results. The implementations used in this exper-
iment are Argobots with private pools, Qthreads using
a single Shepherd per CPU, and the MassiveThreads
Help-first policy, because these attain higher performance
than other configurations for each LWT solution. While
Argobots (ABT(T) and ABT(U)) presents the highest per-
formance thanks to low creation and join times (see figures 7
and 8), the alternative solutions experiment a notable over-
head when increasing the number of threads. Qthreads
(QTH) shows a low execution time because of its small join
time, but this behavior changes when using more Shepherds
than the number of cores (36). Once this number is reached,
the total time constantly increases because of the resource
sharing overheads. MassiveThreads, Pthreads, and
Converse Threads (labeled MTH, PTH, and CTH, re-
spectively) present results 25 times slower than Argobots
or icc. MassiveThreads suffers from work-stealing
and Pthreads from OS management overheads. When
Converse Threads uses more threads than physical
cores, the performance drops due to synchronization mech-
anisms. Although Go suffers from contention due to the
shared queue, its performance is close to the HPC-oriented
solutions thanks to its small overhead in the joining mech-
anism. The performance of the OpenMP Intel and GNU
implementations (labeled as ICC and GCC) is close to that
of Argobots and Qthreads, respectively, when all the
cores are used.
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Figure 9: Execution time of 1,000-iteration for loop.

7.4. Task Parallelism
For task parallelism, we also used a 1,000-element vec-

tor, creating a task per each vector element. Figure 10
exposes the execution time when the 1,000 tasks are created
by a single thread in a single region. In this case, the LWT
implementations used are Argobots with one private pool
per thread, Qthreads using one Shepherd per core, and
MassiveThreads with the Work-first scheduler policy.
The OpenMP environment has been modified setting the



OMP WAIT POLICY variable to passive to decrease the
overhead caused by the contention in the task queue. In this
scenario, both Argobots work units (Tasklets and ULTs)
obtain the highest performance. The reason for this lies on its
lighter management mechanisms and its ES independence,
which avoid internal synchronization procedures. The ele-
vate number of work units increases the difference between
Argobots ULTs and Tasklets. This demonstrates that if
the code does not need any context switch (e.g. blocking
call, communication, I/O), the use of Tasklets benefits perfor-
mance. Argobots Tasklets idea proceeds from Converse
Threads Messages and hence the proximity of their results.
Both stackless units reduce the execution time by a factor
of two compared with ULT implementations.

Converse Threads attains one of the highest per-
formances (up to 12 times faster than Pthreads) thanks
to its messages and management that are lighter than the
ULT functions. Qthreads performs slightly lower (2.5
times slower) than the previous solutions because of two
reasons: the use of full-empty bit checks in each memory
word and the utilization of more Shepherds than physical
cores, which requires additional synchronization. Go, icc,
and gcc’s performance are in the middle, and this situation
demonstrates that the use of an elevated number of tasks
negatively affects those.

The icc results demonstrate the effects of the work-
stealing mechanism. Workers accessing the master thread’s
queue to steal work units adds contention. Go behaves
similarly to gcc because both rely on a single shared
queue. The lowest performance is attained by Pthreads
and MassiveThreads: the former because we are creating
1,000 OS threads, which causes severe oversubscription; and
the latter because the work-first policy implies that, each
time a new task is created, the main task is stolen by another
thread. As a result, data locality is reduced and there is a
drop in the overall performance.

 1e-05

 0.0001

 0.001

 0.01

 0.1

1 2 4 8 16 18 32 36 40 48 64 72

T
im

e
 (

s
)

# of Threads

GCC
ICC

ABT(U)

ABT(T)
QTH
MTH

CTH
GO

PTH

Figure 10: Execution time of 1,000 tasks created into a single
region.

Another tasking scenario is where tasks are created inside
a parallel region. In that case, each thread creates its own
work units. This situation is a two-step algorithm. In the first
step, as in the for loop scenario, the iterations are divided
among the threads; in the second step, the tasks are created.

In this scenario, the choices for each threading solution
are the same as in the previous test. Figure 11 displays the

results for this experiment. The use of the two-step algo-
rithm affects negatively Go and Converse Threads. Go
suffers the contention added by the shared queue, whereas
the synchronization mechanism in Converse Threads
represents more than 70% of the total execution time. The
main reason is that Converse Threads needs additional
yield calls due to the use of Messages for the first step.
MassiveThreads is more efficient in this case, because
this library is aimed for recursivity. In addition, all the
threads in MassiveThreads are busy, so the work steal-
ing is almost non-existing. Qthreads performance is af-
fected negatively by adding more threads and becomes much
slower than other ULT libraries (up to 32 times slower than
Argobots). Almost all the time difference is due to the join
mechanism. Although both Argobots implementations use
ULTs (that can yield) in the first step, the difference between
ULTs and Tasklets is negligible.

On the OS threads side, icc offers the highest perfor-
mance because work stealing has disappeared. This is caused
by a perfect load balance. gcc outperforms other solutions
thanks to its cut-off mechanism (up to eight threads) and to
the wait policy value set as in the previous test, attaining
results similar to those of Qthreads. The lowest perfor-
mance comes again from the Pthreads solution due to the
oversubscription caused by the creation of 1,000 threads.
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Figure 11: Execution time of 1,000 tasks created into a
parallel region.

7.5. Nested Parallel Structures
In this case a microbenchmark composed by two nested

1,000-iteration for loops has been implemented. The
choices for LWT libraries are Argobots using a private
pool for each thread, Qthreads employing one Shepherd
per Worker, and MassiveThreads with Work-first policy.
Figure 12 shows the results for this test. The trend shown
by both OS-based approaches, OpenMP and Pthreads, is
different in comparison with that of LWT libraries shown
in previous results. This behavior is caused by the sub-
optimal implementation of the nested parallel structures in
the case of OpenMP and oversubscription in the case of
Pthreads. gcc OpenMP creates new threads for each
nested pragma directive and avoids reusing idle threads. As
a result, executing this case with 36 threads, gcc OpenMP
spawns 35,036 threads (36 threads for the main team, and
35 threads more for each outer loop iteration). In contrast,
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Figure 12: Execution time of a nested parallel for
structure with 1,000 iterations per loop.

icc OpenMP makes use of the idle threads. However, this
approach does not avoid creating a large number of threads.
Concretely, it creates 1,296 threads (36 threads for the main
team, and 35 for each secondary team). This number is
considerably higher than the total number of cores (72),
causing severe oversubscription. The Pthreads implemen-
tation performs close to the gcc solution because it follows
the same approach. As in previous tests that follow a two
step algorithm, Go and Converse Threads offer low
performance. Go suffers the contention caused by the em-
ployment of just one shared queue. In the case of Converse
Threads, the addition of yield and barrier functions slow
the execution. However, these still perform higher than
gcc and Pthreads implementations. The three general-
purpose solutions (Argobots Tasklets/ULTs, Qthreads,
and MassiveThreads) avoid oversubscription by just
creating work units instead of OS threads and thus, these
yield the highest performance. Avoiding the oversubscrip-
tion problem reduces the OS thread management overhead,
increasing performance with respect to the Intel OpenMP
approach by factors of 62, 21, and 25 for Argobots,
Qthreads, and MassiveThreads, respectively, with 36
threads.

8. Conclusions
We have presented a complete analysis of a set of

threading solutions including both OS threads and LWTs.
We have performed a PM decomposition of the threading
libraries indicating their features. We have proved, by means
of experimental tests, that LWTs are aimed for fine-grained
parallel codes. For that purpose, we have implemented the
most common OpenMP parallel patterns on top of different
LWT libraries, and these offer a performance level that is,
at least, as good as that attained with Pthreads and the
OpenMP runtimes. In the case of Intel OpenMP, we have
identified some design aspects that may drop performance
of common user code patterns. However, current OpenMP
solutions were designed for the old concurrent hardware and
they are not easy for translating from OS threads to other
approaches. These issues may limit its usability in near-
future problems.

As a summary, using LWTs in OpenMP critical pat-
terns such as task-parallelism or nested parallel structures
may improve the performance compared with the most-used

OpenMP implementations. These scenarios are aimed to
tackle the problem of extracting all the computational power
of exascale systems.
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Adrián Castelló received his BS degree in computer sci-
ence, the MS degree in advanced computer systems, and his
Ph.D. degree in Computer Science from Universitat Jaume
I in 2009, 2011 and 2018, respectively. He is a Post-doc
researcher at Universitat Poitècnica de València and his re-
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