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Abstract — In the induction motor predictive maintenance area 

there is a continuous search for new techniques and methods that 

can provide additional information for a more reliable 

determination of the motor condition. In this context, the analysis 

of the stray flux has drawn the interest of many researchers. The 

simplicity, low cost and potential of this technique makes it 

attractive for complementing the diagnosis provided by other well-

established methods. More specifically, the study of this quantity 

under the starting has been recently proposed as a valuable tool for 

the diagnosis of certain electromechanical faults. Despite this fact, 

the research in this approach is still incipient and the employed 

signal processing tools must be still optimized for a better 

visualization of the fault components. Moreover, the development 

of advanced algorithms that enable the automatic identification of 

the resulting transient patterns is another crucial target within this 

area. This paper presents an advanced algorithm based on the 

combined application of MUSIC and neural networks that enables 

the automatic identification of the time-frequency patterns created 

by the stray flux fault components under starting as well as the 

subsequent determination of the fault severity level. Two faults are 

considered in the work: rotor problems and misalignments. Also, 

different positions of the external coil sensor are studied. The 

results prove the potential of the intelligent algorithm for the 

reliable diagnosis of electromechanical faults. 

Index Terms — Induction motors; transient analysis; stray flux;  

MUSIC; neural networks; fault diagnosis; reliability; rotor; 

predictive maintenance. 

I. INTRODUCTION 

HE ultimate trend in the induction motors condition 

monitoring area relies on combining the information 

coming from the analysis of different quantities in order 

to reach a more accurate and reliable conclusion of the motor 

condition. It has been concluded that no technique based on the 

analysis of a single quantity is able to provide a complete 

knowledge of the motor health, since each particular quantity is 

valid for the diagnosis of specific failures. In this regard, 

analysis of vibrational data is the most widespread technique in 

industry and has provided good results for diagnosing faults 

with mechanical origin, such as misalignments, bearing faults or 

gear failures, among others [1-2]. On the other hand, the 

analysis of motor currents has been also proven to be effective 

for the detection of certain faults, such as rotor damages or 

eccentricities, becoming an interesting complementary option 

for the diagnosis of bearing damages, coupling system problems 

or even load anomalies [3-4]. Analysis of motor currents 

includes both classical methods relying on the analysis of 

steady-state currents [5], as well as modern techniques based on 

the analysis of transient current signals; these latter have proven 

to provide some advantages versus the classical steady-state 

methods under several situations [6-7]. Infrared (IR) data 

analysis is suitable to detect faults such as cooling system 

problems, deficient bearing lubrication or transmission system 

issues [8-10]. However, none of the aforementioned techniques 

has proven to be effective to detect other types of faults such as 

insulation damages. For this specific fault, analysis of partial 

discharge (PD) data has given satisfactory results [11]. In 

addition to these facts, each particular technique has its own 

constraints that may make its application difficult in specific 

cases. For instance, installation of vibration, PD or even current 

sensors is not feasible in some specific applications. In other 

situations, one technique can provide false indications when 

diagnosing the faults for which it is theoretically more 

appropriate. 

   The insufficiency of a single technique to determine the health 

condition of the whole motor has led to the emergence of new 

collaborative systems that try to combine the information 

obtained from the analysis of different motor quantities. In this 

regard, the combination of current data analysis and IR 

thermography was proposed in [12], while [13] proposes to 

merge the information obtained from wireless current, vibration 

and acoustic sensors, among other works. However, in spite of 

these advances, the need of additional techniques and 

approaches that overcome the problems of the currently existing 

methods or that can be used in cases in which the available 

techniques are not reliable still remains. 

   During these last years, the research on stray-flux-based 

diagnosis techniques is living a renewed dynamism in the 
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electric motors condition monitoring area. The fact that 

occasional faults in an electric motor lead to effects in the 

magnetic field in the vicinity of the machine was known for 

years and, especially since the 2000s, several works have 

proposed the analysis of stray-flux data for the detection of rotor 

problems, stator short-circuits, bearing damages or even 

coupling system problems [14-26]. The great majority of these 

works has been based on the analysis under steady-state 

conditions and already reported the main drawbacks of this 

technique, which mainly rely on the strong influence of the 

sensor position on the results, as well as on the lack of validated 

thresholds for determining the fault severity. However, the 

progressive cost decrement of the necessary equipment to 

acquire flux data (which has come together with the spectacular 

development of their features) [27], along with the optimization 

of sophisticated signal processing tools haven given a strong 

impulse to the research devoted to this technology, that has 

proven to be effective to avoid some false positives obtained 

with other techniques [28]. In this context, very recent papers 

have proposed, for the first time, the analysis of stray-flux data 

that are collected under transient operation conditions of the 

motor (such as the starting) [26, 29-31]. These works showed 

that the analysis of these data has been proven to provide very 

useful information for the diagnosis of some electromechanical 

failures and even enables, together with other quantities, to 

discriminate among different types of mechanical faults [31]. 

The characteristic patterns created by the fault components in 

the maps resulting from the application of time-frequency 

transforms to the stray flux-related signals can be employed to 

reliably detect the existence of the fault and even to determine 

its severity. Nonetheless, a significant research work still needs 

to be done in this area since, for instance, it is pending the 

development of reliable algorithms making possible the 

automatic identification of the fault patterns and computation of 

the fault severity indicators based on the stray flux analyses. 

This would avoid the necessity of user intervention and the need 

of expertness for interpreting the results, which is a crucial 

feature for the incorporation of this technology in portable 

condition monitoring devices. In this context, the use of 

MUSIC-based methods emerges as an excellent option since 

they have shown advantages versus other alternatives when 

tracking fault components present in other quantities [32-33] 

and increase the possibilities of automatization of the method.    

   The present paper applies an advanced algorithm, based on the 

combination of MUSIC methods and artificial neural networks 

(ANN). Its main advantage is to enhance the visualization of the 

harmonics caused by motor failures in the electromotive force 

(emf) signals induced by the stray flux in external coil sensors 

attached to the motor frame. Moreover, the intelligent algorithm 

enables the automatic computation of fault severity indicators 

based on the combination of several features of the MUSIC 

results. These crucial characteristics significantly enhance the 

algorithm versus the preliminary version presented in [34], 

converting it in an ideal option to be incorporated in autonomous 

systems relying on transient stray flux data analysis. 

II. TRANSIENT ANALYSIS OF THE EXTERNAL 

MAGNETIC FIELD 

Previous works proved that the presence of faults in an 

induction motor leads to distortions in the external magnetic 

field and can induce specific frequency components in the emf 

force signals induced in external coil sensors attached to the 

motor frame [14-19]. Depending on the position of these 

sensors, a higher portion of axial or radial flux is captured and, 

therefore, components with axial or radial origin are more 

discernible in the emf signals captured at each considered 

position. For instance, at position A of Fig. 1, the flux captured 

by the sensor is mostly axial, while at position B, the sensor 

captures a portion of axial flux and a portion of radial flux. 

Position C captures mainly the radial flux [14]. 

 

 
 

Fig. 1.  Nature of the flux captured at each sensor position. 

 

As justified in those works, in the case of rotor damages, 

several components are induced in the FFT spectrum of the 

induced emf signals at steady-state regime, the most significant 

ones being: 

- Components at s·f and 3·s·f (s=slip and f=supply frequency): 

these have an axial nature and they can be also amplified due 

to the presence of eccentricities and/or misalignments in the 

machine [14]. 

- Sideband harmonics at f·(1±2·s), which have a primarily 

radial nature and also appear in the spectrum of the steady-

state current [17, 30]. 
 

On the other hand, in the case of mixed eccentricities or 

misalignments, the following components arise [35]: 

- Components at )/)1·(1·( psmffecc −= (with 

m=1,2…and p=number of pole pairs) or, equivalently, at f±fr 

with fr=rotational frequency. 

       These components are justified in several works [31,37]. 

In [31], for instance, the authors deduce the expression of the 

airgap flux density in a machine with eccentricities Bag, ecc, 

as well as on the corresponding induced voltage in a coil c 

(see (1) and (2), where µ0 is the permeability of air, g is the 

nominal airgap length, and s is the angle of minimum 

airgap position due to static eccentricity. s and d represent 

the severity of static and dynamic eccentricity normalized to 

1, Nc, is the number of coils of the coil and Ac, its cross-

sectional area [31]), deducing the appearance of the 

components at f±fr in c.   



 

𝐵𝑎𝑔,𝑒𝑐𝑐(𝑡,  = 0) =
𝜇0·𝐽

𝑝𝑔
· {(1 + 𝛿𝑠 · cos(𝜑𝑠)) · cos⁡(2𝜋𝑓𝑠 ·

𝑡) +
𝛿𝑑

2
· cos⁡(2𝜋(𝑓𝑠 + 𝑓𝑟) · 𝑡 + cos⁡(2𝜋(𝑓𝑠 − 𝑓𝑟) · 𝑡)}                                                                                                                                                  

(1) 

 

𝑐 = 𝑁𝑐 · 𝐴𝑐 ·
𝑑𝐵𝑎𝑔⁡

𝑑𝑡
                            (2) 

Note that recent works have stated that these latter 

components can be also amplified due to the existence of rotor 

damages [38]. Moreover, other works have proven that 

eccentricity faults amplify the previous components at fecc much 

more significantly than misalignments do [31].  

Recent works [30] showed that, under a direct-on-line 

starting of an induction motor, as the slip s changes, the 

aforementioned frequency components follow particular 

trajectories over time. More specifically, the time- frequency 

evolutions followed by these components under starting are 

those indicated in Table I.  All these evolutions can be identified 

in the time-frequency maps resulting from the application of 

suitable transient analysis tools. The identification of these 

evolutions is only helpful for the detection of the corresponding 

fault, but also for discriminating among different failures (for 

instance, if f±fr appear in the time-frequency map of the starting 

current but not in that of the stray flux under starting, they may 

be due to a misalignment or load-related problems, while if they 

appear in both maps, they are probably related to an 

eccentricity) [31].   

The objective of this work is to apply a MUSIC-based 

algorithm to visualize these evolutions, improving the 

performances of tools presented in previous works. Moreover, a 

feedforward neural network (FFNN) is employed to 

automatically identify the fault components evolutions as well 

as the corresponding fault severity, taking as inputs different 

statistical parameters resulting from the MUSIC plots. Note that 

the developed algorithm is especially robust, since it is not only 

based on detecting the evolution of a single component 

amplified by the fault but on various components. For instance, 

in the case of rotor damages, it relies not only on the detection 

of the classical evolutions of the sideband harmonics (f·(1±2·s)) 

but also on other components amplified by this failure such as 

s·f or f-fr.  

 
 

TABLE I. EVOLUTIONS OF THE COMPONENTS IN THE INDUCED 

ELECTROMOTIVE FORCE SIGNALS UNDER STARTING. 

Component Fault Evolution under starting 

s·f Rotor damages 

(axial) 

Its frequency decreases 

from f to near 0 Hz under 

starting. 

3·s·f Rotor damages 

(axial) 

Its frequency decreases 

from 3·f to near 0 Hz under 

starting. 

f·(1-2·s) Rotor damages 

(radial) 

Its frequency decreases 

from f to 0Hz and later 

increases again to near f. 

f·(1+2·s) Rotor damages 

(radial) 

Its frequency decreases 

from 3·f to near f Hz. 

f-fr Mixed 

eccentricities / 

misalignment 

Its frequency starts at f and 

ends at near f/2 (for p=2) 

f+fr Mixed 

eccentricities / 

misalignment 

Its frequency starts at f and 

ends at near 3·f/2 (for p=2) 

III. MUSIC METHOD 

“Over recent years, the multiple signal classification 

(MUSIC) algorithm has been used in several works to detect 

faults in electric machinery [32-33]. This algorithm belongs to 

the family of methods based on the decomposition of the 

observation space into signal and noise subspaces. MUSIC is 

especially suited for detecting low amplitude components in 

signals with low signal-to-noise ratio. Furthermore, it offers an 

excellent resolution with non-stationary signals whereas it 

requires only a short time window. 

   MUSIC considers that a signal x(t) is a sum of P complex 

sinusoids plus an additive noise (see (3)). 

 

                    𝑥(𝑡) = ∑ 𝐴𝑘𝑒
𝑗(2𝜋𝑓𝑘𝑡+𝜑𝑘) +𝑤(𝑡)𝑃

𝑘=1             (3) 

    

   where Ak is the amplitude, fk is the frequency, k is the phase 

of the kth space vector, w(t) is white noise, and P is known as 

the MUSIC order. The sinusoid amplitude and frequency are not 

random and unknown. The phases of the sinusoids are 

uncorrelated random variables, uniformly distributed over the 

interval [-π, π]. 

   The power spectrum of x(t) consists of a set of P impulses of 

area 2π|Ak| at frequencies fk for k = 1, 2, ..., P, plus the power 

spectrum of the additive noise w(t). Based on the orthogonality 

of the signal and noise subspaces, the MUSIC pseudospectrum 

PMUSIC of the current signal is given by the following frequency 

estimation function:” 

” 

                                  𝑃𝑀𝑈𝑆𝐼𝐶(𝑓) =
1

∑ |𝑒̅1
𝐻𝑣̅1|

2𝑀
𝑖=𝑃+1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

    

   where 𝑣𝑖̅ is the noise eigenvector and 𝑒𝑖̅
𝐻  is the signal vector 

defined as 𝑒𝑖̅
𝐻(fi)=[1,e-j2πfi,…, e-j2πfi(M-1)]. Expression (4) shows 

a maximum when, for a certain fk that is truly present in the 

signal, the signal and noise subspaces projections are zero. 

   In conclusion, the MUSIC method is a tool that extracts 

meaningful frequencies from the signal with an enhanced 

resolution. Moreover, thanks to the MUSIC results and 

processing, it is possible to apply simple ANN for fault 

classification. Due to this, the combination between MUSIC and 

a FFNN is the option selected as a basis of the proposed 

automatic algorithm. 

   The complete scheme of the method proposed in this paper is 

shown in Fig. 2. As it is shown there, the process starts with the 

capture of the stray flux signals under starting at each sensor 

position. Subsequently, the corresponding MUSIC analyses are 

performed by applying a short-time MUSIC algorithm, in which 

each of the stray flux signals is subdivided and processed into 



rectangular sliding windows with a length size of 4096 data 

points and an overlapping of 75%, thus obtaining a time-

frequency representation in high-resolution of the harmonic 

evolution amplified by the studied faults. This approach allows 

to retrieve information related to time, which is not provided by 

the MUSIC pseudo-spectrum itself. Besides, as pointed out in 

[39], this short-time MUSIC analysis provides more regular 

surfaces, mitigates the effects of noise, and evidences only 

larger frequency components making it a useful tool for the 

analysis of noisy signals with time-shifting frequencies. Then, 

the proposed automatic algorithm starts with the normalization 

of the MUSIC maps and their division into different 

representative frequency regions. Different features (statistical 

and non-statistical) will be extracted from each region of 

interest. These features will serve to build an input matrix that 

will be used to train the ANN which will be in charge of the 

automatic decision process. This will be a FFNN with three 

hidden layers. This process will be described with further detail 

in Section VI. 

 

 
Fig. 2 Scheme of the proposed intelligent algorithm 

 

IV. EXPERIMENTS 

   Different tests were developed in the laboratory using a 1.1 

kW cage motor with 2 pole pairs (motor 1). The motor was 

driving a D.C. generator that enabled to change the load level 

(see Fig. 3). A coil sensor with 1000 turns (see geometric 

characteristics in Fig.4) was attached at different positions of the 

motor frame. The three considered positions of the sensor were 

those depicted in Fig.1 (pos. A, pos B and pos C). Motors with 

different levels of rotor damage were tested (healthy motor, one 

broken bar and two broken bars). Since the motor was not 

properly aligned with the driven load, a certain level of 

misalignment was unavoidable although, as proven in recent 

works [31], this has a relatively minor effect on the stray flux 

signals. In each test, the emf signal induced in the external coil 

sensor was registered both under starting and during 30 seconds 

of the subsequent steady-state regime using a YOKOGAWA 

DL-850 oscilloscope. A sampling rate of 5 kHz was used for the 

acquisition of the signals. The captured signals were later 

transferred to a computer where they were subsequently 

analyzed in Matlab. 

   On the other hand, additional tests were performed in a larger 

cage induction motor (motor 2), which was analogue to those 

used in real industrial applications (see Fig. 5). The exact 

condition of this motor was unknown a priori, so that it was 

useful to validate if the application of the stray-flux based 

methodology worked well when diagnosing its health. The main 

characteristics of this motor were: rated power=7.5 kW, rated 

voltage=380 V, rated current=15.2 A, rated speed= 1435 rpm, 

number of pole pairs=2. 

 
 

Fig. 4.  Dimensions of the coil sensor. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Nature of the flux captured at each coil sensor 

position. 
 

 
 

Fig. 3 Laboratory test bench (motor 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Nature of the flux captured at each coil sensor 

position. 
 

 
 

Fig. 5 Second tested motor (motor 2): 7.5 kW, 2 pole pairs 

 

 

 

 

 

 

 

 

 

 

 

 

 



V. MUSIC RESULTS AND DISCUSSION 

 

Figure 6 shows the MUSIC analyses of the emf signal 

captured under starting at the three sensor positions (Pos. A, Pos 

B. and Pos. C) and for the three considered conditions of motor 

1, namely: healthy motor, motor with one broken bar and motor 

with two broken bars. At every fault level (even at healthy), the 

motor had a certain misalignment versus the driven load.  

First of all, note that, when the machine is in healthy 

condition, only slight traces of the evolutions of two 

components are detected at every sensor position: the 

component f-fr and s·f. The first of these components is caused 

by the existence of the misalignment between the motor and 

driven load that yields certain amplitude of this harmonic. In 

recent works [31], it was proven that the existence of 

misalignment has much lower repercussion in the stray flux 

signals (compared to the effects on the starting current signal) 

but, even so, certain traces of this component are detectable. On 

the other hand, the component s·f presents a small amplitude; its 

presence is attributed to the existence of a certain level of 

inherent rotor asymmetry and eccentricity even in healthy 

conditions. This component is clearly noticeable at Pos. A, in 

which the axial flux is predominantly captured. 

The effect of rotor damages (broken rotor bars) is clearly 

detectable through the amplification of different components in 

the time-frequency maps: 

- On the one hand, note that the axial component at s·f is 

amplified at every sensor position when the rotor fault is 

present. The amplification is especially evident at Pos. 

A and Pos. B, which are the positions in which a higher 

portion of axial flux is captured. Note that, as reported 

by some authors [36], this component, alone, is not 

sufficient to be used as a rotor fault indicator, since it is 

also amplified by other failures (e.g. eccentricities) or 

 
 

Fig. 6.  MUSIC analyses of the emf signals under starting of motor 1 for the sensor at positions A, B and C and for the different fault conditions, namely healthy 
motor (with inherent misalignment), motor with one broken bar and motor with two broken bars. 

 
 



effects. However, its amplitude increment is a first 

evidence of the presence of the failure. 

- On the other hand, the component at f-fr is also clearly 

amplified when the fault is present. This occurs at all 

sensor positions. Furthermore, this increment is more 

evident when the level of failure gets worse (compare 

one and two broken bars). The increase in the amplitude 

of this component (and therefore, of its signature in the 

time-frequency map) is in concordance with the recent 

conclusions reached by other authors [38]. This 

increment in its amplitude is a second evidence of the 

presence of the rotor failure. 

- Finally, the evolution component at f·(1-2·s) is also 

discernible in the MUSIC results. The characteristic V-

pattern caused by the evolution of this component is 

more evident at those sensor positions capturing a higher 

portion of radial flux (Pos B. and Pos. C). This pattern 

has been emphasized in the graph. The detection of such 

pattern is not so clear at pos B, due to the rich harmonic 

content of the frequency region below the fundamental 

in which different harmonics evolve under starting (e.g. 

f-fr and s·f) − note that at this position the sensor captures 

not only the radial flux but also the axial, so many 

components are contained in the captured signal. 

   In any case, note that the MUSIC analyses of the starting 

emf signals are very useful for the diagnosis, presenting two 

very interesting advantages in comparison with other 

approaches: 1) the diagnosis of the fault relies on the 

evolutions of multiple fault harmonics (e.g. s·f, f-fr and f·(1-

2·s))and not only on a single one, a fact that confers a high 

reliability in the diagnosis and 2) the harmonic content in the 

stray flux data analyses under starting is much richer than 

that of the analysis of the starting current, in which fewer 

fault harmonics are visualized. This also confers a higher 

potential to the technique, compared to other alternatives.   

   In order to validate the generality of the methodology, it 

was applied to a different motor (motor 2), which was larger 

than motor 1 and had different constructive characteristics. 

Initially, its condition was uncertain so the idea was to apply 

the methodology and verify if it correctly diagnoses the 

condition of this motor. The results of the application of the 

MUSIC method to this motor are shown in Fig.7. Note that, 

at all sensor positions, the only discernible component was f-

fr. No traces of f·(1-2·s) and only slight traces of s·f were 

detected. This was indicative of two facts: 1) there was no 

evidence of rotor damages in the motor (since the evolutions 

of s·f and f·(1-2·s) were not observable) and 2) there were 

clear symptoms of eccentricities/misalignment in the 

machine (since f-fr was present). These diagnostic 

conclusions provided by the method were proven to be valid 

later, after inspecting the machine; it was corroborated that 

the rotor was healthy and that a significant level of 

misalignment was present (measured through a dial gauge). 

 

    

VI. AUTOMATIZATION OF THE FAULT DIAGNOSIS 

PROCESS 

 

   The idea behind the proposed method for enabling the 

automatic diagnostic of the rotor failure is to extract as much 

information as possible from the MUSIC analyses and, more 

specifically, from the frequency region below the fundamental 

since, in that region, most of the harmonics of interest evolve 

under starting.  With this idea in mind, the intelligent algorithm 

has been built. This is based on the following steps (see Fig. 2): 

 

1) Obtain the time-frequency maps by applying the 

MUSIC approach to the stray flux signals under 

starting.  

2) Normalize the obtained map by dividing by the 

maximum value (fundamental component). 

3) Split the map into regions of interest. In this work, four 

regions below the fundamental frequency have been 

considered: region 1 (~ [0-11] Hz), region 2 (~ [11-22] 

Hz), region 3 ((~ [22-33] Hz) and region 4 (~ [33-44] 

Hz). These are depicted in Fig. 8. 

4) Obtain statistical and non-statistical parameters to 

characterize the regions (frequency bands). The 

following thirteen parameters have been considered: 

 

 
 

Fig. 7.  MUSIC analyses of the emf signals under starting of motor 2 for the sensor at positions A, B and C. 

 
 



(1) Non-Normalized Wavelet Entropy, (2) Shanon 

Entropy, (3) Signal Energy, (4) Standard Deviation, 

(5) Mean, (6) Median, (7) Kurtosis, (8) Skewness, (9) 

RMS, (10) RSSQ, (11) Peak-to-average ratio, (12) 

Shape Factor and (13) Crest Factor. 

5) Generate the input matrix for the training of the NN: 

the most representative parameters of the analyses are 

selected for each of the four considered regions 

(frequency bands). Table II shows an example of four 

considered parameters for the case of the motor started 

under two different fault conditions (sensor at Pos. B). 

    TABLE II. VALUES OF THE MOST REPRESENTATIVE STATISTICAL 

PARAMETERS AT EACH FREQUENCY REGION FOR TWO DIFFERENT 

FAULT CONDITIONS AND FOR THE SENSOR AT   POS. B 

 

HEALTHY MOTOR 

Region Std 

deviation 

Mean Skewness RMS 

1 0.005 0.0022 3.858 0.0024 

2 0.0076 0.0024 4.8551 0.0089 

3 0.0058 0.0026 3.2846 0.0076 

4 0.0036 0.0036 3.2385 0.0058 

MOTOR WITH ONE BROKEN BAR 

Region Std 

deviation 

Mean Skewness RMS 

1 1.320e-05 0.00011 3.846 0.000117 

2 0.0024 0.000123 7.7093 0.00248 

3 0.0015 0.000135 4.8940 0.00161 

4 0.0012 0.000143 6.4825 0.00129 

 

 

   Fig. 9 illustrates the results of applying the described 

procedure to the stray flux data captured under starting for a 

specific sensor position (pos. B) and for the different fault 

conditions. This figure shows the value of the aforementioned 

statistical and non-statistical indicators (1 to 13), which are the 

inputs of the FFNN after being computed for the four time-

frequency regions under interest. A simple observation of this 

figure reveals that most of these MUSIC-based indicators show 

higher values when the fault severity is greater.  

   These parameters are the inputs of the proposed ANN which 

is based on a FFNN with three hidden layers (10, 6 and 4 

neurons in each hidden layer). In order to train the FFNN, the 

resilient backpropagation algorithm is used for identifying a 

healthy condition in the induction motor or the presence of 

broken rotor bars. For this, 38 real sampled signals are employed 

under each motor condition, resulting in a total of 114 samples. 

Out of the 38 tests obtained for each case study, 19 were used to 

train the FFNN and 19 to validate it. The inputs to the FFNN 

correspond to the 13 statistical and non-statistical parameters 

drawn from the MUSIC time-frequency maps and the targets 

used for training are the three study cases (healthy motor, one 

broken rotor bar and two broken rotor bars). After training and 

validation, the final weights and biases of each layer neuron are 

used for implementation of the proposed automatic diagnosis. 

The FFNN showed a success rate of 100% for the cases of 

healthy machine and machine with one broken bar and a 

percentage of 84.2% for the case of two broken bars. Note that 

in this latter situation, cases of two non-adjacent broken bars 

were considered together with cases in which the broken bars 

were adjacent. The occurrence of the fault at non-adjacent 

positions has been proven to cause problems in the 

determination of the level of failure] [40]. In spite of this, the 

obtained success rate was very satisfactory for that case. 

 

VII. CONCLUSIONS 

 

The present paper has proposed an intelligent algorithm for 

the automatic detection of electromechanical faults in induction 

motors, which relies on the analysis of the emf force induced in 

an external coil sensor under starting. The proposed algorithm 

is based on the combined application of MUSIC methods, which 

 
Fig. 8.  Regions considered in the MUSIC maps 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Nature of the flux captured at each coil sensor 

position. 
  

 

Fig. 9.  Computation of statistical and non-statistical parameters (inputs of the 
artificial neural network) for the different regions of the MUSIC analyses of stray 

flux data under different fault conditions (sensor position B). 
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enable the enhanced visualization of fault components and a 

FFNN which enables the automatic identification of the patterns 

caused by the fault components under starting.   

The presented method has been applied to detect different 

levels of rotor failure, but it has also shown potential to detect 

the presence of misalignments between the motor and driven 

load (through the amplification of the component at f-fr).  

The results show that, depending on the considered position 

of the coil sensor, components of different nature (axial or 

radial) are induced; this depends upon whether in the considered 

position a larger portion of axial or radial flux is captured. 

Hence, the corresponding MUSIC analyses of the emf signals 

contain different information depending on the position. 

However, since the developed system is based on combining the 

information obtained at all sensor positions, the diagnosis is 

more reliable since, for the diagnosis of a single fault (e.g. rotor 

faults), the evolutions of multiple components are considered. 

In conclusion, the method presented in this work has certain 

differences as well as important advantages versus other works 

presented in previous literature, namely: 

-    On the one hand, the proposed method is based on the 

detection of patterns in the MUSIC analyses of transient 

stray flux signals. The detection of the ‘patterns’ or 

‘signatures’ followed by fault components during transient 

operation proves to be a reliable way to detect many faults, 

providing important advantages versus classical methods 

based on the evaluation of fault-related frequencies in the 

FFT analyses of stationary signals. This is due to the fact that 

these characteristic patterns are very unlikely caused by 

other phenomena that are not a fault, whereas a frequency 

component in the FFT spectrum can be amplified by the fault 

but also by other effects related to the machine operation 

(load fluctuations…) or constructive characteristics (rotor 

cooling ducts). Due to these facts, conventional methods 

based on stationary analysis can easily lead to false 

indications (positive or negative) when diagnosing the 

condition of the machine.  

-      Second, the short-time MUSIC analysis used in this 

paper allows to retain the outstanding characteristics of the 

pseudo-spectrum MUSIC which mitigates the effects of 

noise and evidences only larger frequency components with 

the advantage of also recovering information in the time-

domain. 

- Third, unlike other works, the paper proposes the use 

of the stray-flux as a basic quantity for the diagnosis. The 

harmonic content in the stray flux signals is much richer than 

that of other quantities (such as currents). As a consequence, 

the diagnosis of the fault is not only based on the 

identification of the evolution of a single component under 

starting but of multiple components (e.g. s·f, f·(1-2·s), f-

fr…), a fact that confers a much higher reliability for the 

diagnosis. 

- Finally, as far as the authors know, it is the first time in 

the literature that an automatic method based on stray-flux 

analysis under transient for induction motor condition 

monitoring is proposed. Unlike other works, the presented 

method does not require the intervention of an expert user to 

identify the fault patterns in the stray-flux signals and reach 

a diagnosis conclusion. The intelligent method developed in 

the work is able to identify itself the evolutions of multiple 

fault related components in the MUSIC results and reach a 

direct conclusion on the health of the machine.  

The success rates for the determination of the level of failure, 

achieved by the developed system, confirm its potential for its 

future incorporation in autonomous diagnosis systems that 

enable to determine the health of the motor based on the analysis 

of stray flux signals.  
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