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Model-based ammonia slip observation for SCR
control and diagnosis

Carlos Guardiola, Benjamı́n Pla, Pau Bares, and Javier Mora,

Abstract—The control and diagnosis of selective catalytic
reduction (SCR) system require from a precise estimation of
NOx reduction in order to properly control the NH3 injection.
This paper aims to resolve the cross-sensitivity of current NOx
sensors at the outlet of the SCR, by providing the control unit
with an estimation of NOx and ammonia slip.

The problem of discerning between NOx and ammonia slip
is solved by identifying an intermediate variable representing
the SCR load. The SCR load is estimated by combining the
mass conservation principle between the inlet and the outlet of
the SCR and a NOx reduction model, via an Extended Kalman
filter. Current models and observers have several limitations to
represent the real behaviour of the SCR along all the operating
conditions: on one hand, when relying on the mass conservation,
small errors at models are integrated, leading to important bias
on the SCR load, on the other hand, the dynamics at the SCR
difficult the observation and the adaptation of the model. The
main focus of the developed algorithm is to use a simplified
model which might be used for ammonia slip estimation, being
aware of current limitations of SCR models in real operation.

Experimental results in a EURO 6 compression ignited (CI)
engine show the potential of such observation in transient
conditions and an adequate correlation with external ammonia
measurements provided by additional sensors available on the
test bench.

Index Terms—Diesel engine emissions, SCR, NOx sensor, cross-
sensitivity, Kalman filter

I. INTRODUCTION

Regulation requirements are evolving to meet society needs
for a low polluted atmosphere [1]. For this purpose, new
regulation procedures use portable emissions measurement
systems (PEMS) in real driving emissions (RDE) conditions for
type-approval procedures[1]. In this line, diesel after-treatment
systems (ATS) have evolved to reduce pollutant emissions
below regulation thresholds [2]. Specifically, selective catalytic
reduction (SCR) systems allow reducing engine-raw NOx
emissions, with the injection of ammonia (NH3) in the exhaust
line. However, due to the own SCR operation characteristics,
NOx and NH3 species may slip from the catalyst [3], [4].
Then, measuring these species slip on-board is relevant to
keep emissions below the admitted threshold.

On-board sensors are required for control and on-board
diagnostics (OBD), as it is the case of the SCR downstream
NOx sensor [5], [6], [7], [8]. Specifically, this sensor is, for
closed-loop control of deNOx systems, required to meet Euro
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6 emission targets [9]. However, it presents cross-correlation
with NH3 [10], [11]. Therefore, NOx and NH3 signals must
be decoupled from the sensor measurement, or it could lead,
for instance, to instabilities in closed-loop control, if NH3 slip
is considered as NOx slip. A NH3 sensor could allow the NOx
signal reconstruction [12], [13], [14], although depending on
the vehicle segment, the inclusion of the NH3 sensor may
be expensive [15]. Then, the aim of this article is to isolate
both NOx and NH3 signals from the NOx sensor measurement,
without the use of an on-board NH3 sensor measurement and
by means of a Kalman filter.

Several configurations can be found in an after-treatment
system with regards to blocks and sensors [16], [17], [18],
[19]. In this sense, a diesel oxidation catalyst (DOC) or
passive NOx adsorber (PNA) are usually placed in front of
the exhaust line, while diesel particulate filters (DPF) and
deNOx reduction systems can be found in [20]. In case an
SCR is present, as it is the case of this work, an injector is
placed upstream the SCR to inject an NH3-based solution
[21], [22]. Then, for the purpose of this article, both SCR up-
and downstream NOx signals are considered available, while
the downstream NH3 signal will be used to provide the NH3
slip, only for the algorithm calibration and validation.

Some works can be found in literature concerning SCR
model approaches, from detailed 1D models to control-oriented
0D models [23], [24], [25], [26], [27]. These models capture
the different dynamics present in an SCR [28], [25]. While
NOx slip follow the upstream NOx dynamics, the NH3 slip
dynamics are slower, since its dynamics are similar to the
catalyst NH3 storing capacities [29], [30]. The use of an open
loop SCR model is restricted to track the NH3 loading state of
the SCR. In this sense, if for any reason like sensor excursions
or model inaccuracies, the SCR load (θ) is biased with regards
to the actual value, the model will be inaccurate until the
actual SCR load returns to a known value, which can be an
empty state of the catalyst. Then, this problematic points out
the need for updating this state through an observer.

Several works have been focused on designing optimal
observers for the estimation of the NH3 and NOx slip by
using simulations for validation purposes. Some examples
can be found in [31] with a Newton observer, in [32] with
a Lyapunov-based observer, or in [33], [34], [35] with an
Extended Kalman Filter. Specially remarkable is the work
of Zhang et al., which is focused on the observation of the
operation of single-cell [36], [37] and double-cell [38], [39]
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SCR systems by designing Luenberg-like observers with SCR
models based in three states, namely ammonia and NOx
concentrations, and SCR coverage ratio, and by assuming
pre-calibrated cross-sensitivity as a function of the temperature.

The observer presented in this work analyses sensor signals
that can be found nowadays in vehicles, i.e. inlet and outlet
NOx, NH3 injection estimation, temperature, pressure and
exhaust mass flow, and estimates an intermediate state that
represents the SCR load to discern between NH3 and NOx slip.
In contrast with previous works, here an observer with a single
state (the SCR load) is modelled by analysing the emptying
and filling dynamics of the SCR, and a variable update of
the state from a NOx conversion model is proposed by using
an EKF with variable noise. The SCR load is updated faster
when no NOx is measured at the inlet of the SCR and hence
all NOx measured at the outlet can be assumed ammonia slip
caused by sensor cross-sensitivity.

The presented model makes use of several hypothesis in
order to capture the main characteristics of the SCR but
taking into account the existing limitations in real operating
conditions, such as variable cross-sensitivity, or inaccurate
prediction of NOx sensor and transport dynamics. Furthermore
its computational burden is low and its linearization facilitates
the Kalman filter state space with limited associated errors.
The developed algorithm has been validated with experimental
data and had shown the potential to be implemented in real
time applications for control and diagnosis purposes.

II. EXPERIMENTAL SET-UP

Experimental tests were carried out in a dynamic engine
test bench, to which a turbocharged 1.5l common-rail direct
injection Euro 6 Diesel engine was coupled. The engine has
an intercooled exhaust gas recirculation (EGR) valve and a
variable geometry turbine (VGT), whose relevant characteristics
are summarized in Table I.

TABLE I: PSA dV5 Engine main characteristics.

Stroke (S) x Bore (D) 84.8 x 75 mm
Number of cylinders (z) 4
Displacement 1498 cc
Compression ratio 16:1
Maximum torque 300 Nm @ 1750 rpm
Emission standard Euro 6

The engine ATS is composed of a compacted unit with
DOC, SCR and SCR filter (SCRF), where the mixing chamber
for the NH3 injection is located between the DOC and the
SCR. The Horiba Dyno3 engine bench was controlled with
a STARS system, i.e. an automation system provided by
Horiba for running a wide range of Test Programs from simple
manual testing to dynamic automatic tests, to which several
temperature and pressure measurements along the exhaust line
were connected. An image of the engine test bench and the
instrumented after-treatment system is shown in Figure 1.

A hardware-in-the-loop system was implemented in the
test bench, in order to perform the real time signal separation
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3. Experimental data 
The experimental data is obtained with the PSA DV5RC engine, which includes an aged H4 line. 
 

 
Figure 1 H4 exhaust line configuration. 

Figure 1 shows the H4 exhaust line, characterised by having the DOC, the SCR and the DPF in a 
unique block. It also has two NOx sensors, located upstream and downstream the block. A 
downstream NH3 sensor and 4 temperature sensors along the SCR were used for the tests. 
 

3.1. Experimental setup 
The experimental tests were carried out in a dynamic test bench with the PSA DV5RC engine and 
an aged H4 after-treatment line, which are shown in Figure 2. 
The H4 after-treatment system is composed of a DOC, an SCR and an SCRF. Besides, a urea 
injector is placed between the DOC and the SCR. The ATS is instrumented with several temperature 
measurements. As it is shown in Figure 3, gas analyser measurements are available at the DOC 
upstream, at the DOC downstream and at the SCRF downstream. The available gas analyzers are 
a Horiba Mexa 7100 series and a Horiba FTIR, whose measurements are only available at one of 
the available positions for a given test. 
The H4 line contains two upstream and downstream NOx sensors, a downstream NH3 sensor, two 
DOC up-and downstream temperature NTC sensors and a pressure differential sensor for the SCRF. 

 
Figure 2 PSA DV5RC engine, dynamic test bench and aged H4 line. 
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Fig. 1: Image of the engine (left) and after-treatment system
(right).

strategy with a dSpace microautobox II rapid prototyping
system. Then, the prototyping system was connected to an
ETAS 910, which was connected to the electronic control unit
(ECU) of the engine and allowed to perform bypass control.
In this sense, while the NOx sensors were connected to the
ECU, the NH3 sensor was connected to the prototyping system.

The necessary signals to execute the algorithm are the
exhaust mass flow, the temperature and pressure of the exhaust
gases, the inlet NOx signal, the outlet NOx signal and the
NH3 injection flow, while the NH3 sensor was used only for
calibration and to validate the strategy performance. Figure
2 shows an scheme of the engine and after-treatment layout,
where the relevant systems and sensors have been highlighted.

EGR

Coolers

Air intake

Diesel engine

ma
·

Exhaust line

SC
RDOC SCRF

Urea injector

NOx

NOx

NH3

Fig. 2: Experimental test bench engine and after-treatment
system layout.

Various tests were carried out in the engine with variable
NH3 dosing and by varying the engine operating conditions.
In this paper, only three tests will be shown to illustrate the
characteristics of the developed approach: two training tests,
one at low and other at high temperature, and a validation
test, which consists in a World Harmonized Light-Duty Test
Procedure (WLTP) cycle. Figure 3 shows the temperature (top
plots), mass flow (middle plots), and inlet NOx (bottom plots)
of three aforementioned tests.

III. METHOD DESCRIPTION

The presented methodology designs a Kalman filter that
makes use of a simplified 0D model, which is able to
capture the main features of the SCR system but has low
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Fig. 3: Temperature (top), mass flow (middle), and inlet NOx
(bottom) of three tests used to analyse the algorithm: a)
training dataset at low temperature, b) training dataset at high
temperature, and c) WLTP cycle.

computational burden and is suitable for being linearized.

SCR model: The SCR model used in the current approach
is based on four hypothesis.

1) The cross sensitivity, that evaluates which is the influence
of the NH3 slip on the outlet NOx measurement, can be
represented by a constant value of 0.67, such as suggested
in [11]. The sensors used in the present paper have been
evaluated at various operating conditions, showing a cross-
sensitivity close to that value.

NOxSS = NOxout + 0.67NH3out (1)

where NOxSS is the outlet NOx measurement, NOxout
the NOx slip, and NH3out the NH3 slip.

2) The mass conservation can be applied between the inlet
and the outlet of the SCR to estimate its load (θ).

δθ

δt
= (NH3in −∆NOx−NH3out) (2)

where NH3in is the the NH3 absorbed by the SCR, and
∆NOx the NH3 used for NOx conversion. The model
assumes that 1 ppm of NH3 is used to convert 1 ppm of
NOx, and considers that all the NH3 injected is absorbed
by including its dynamics at the desorption process. The
NOx used for conversion can be also rewritten as:

∆NOxk = NOxkin −NOxkSS + 0.67NH3kout (3)

3) The NOx variations along the SCR volume (δV ) and over
the time (δt) are proportional to the existing NOx in the
SCR, and the SCR load, with a proportional value which
depends on the temperature, following:

δ2NOx

δtδV
= NOxθf ′2(T ) (4)

where the influence of the temperature, f ′2(T ), use to be
represented by an Arrhenius function, such as in [23]. This
equation is composed from an exponential function of the
SCR load and the residence time when it gets discretized,
such as:

NOxout = NOxine
−θf2(T )∆t (5)

where ∆t is the residence time, and f2(T ) represents the
effect of the temperature.

4) The NH3 slip is proportional to the SCR load and the
mass flow, and the proportional value is function of the
temperature:

NH3out = mexhθf1(T ) (6)

where θ is the SCR load, f1(T ) represents the effect
of the temperature, which is expected to have an
Arrhenius-like shape, mexh the mass flow, and T the
temperature of the gases.

Other SCR models such as [23] or [26] make use of
a maximum SCR load to model the absorption and
desorption of the SCR in order to maintain the SCR load
under desired levels even in the case of a possible a
model bias. In this work a simplified expression of the
NH3 slip has been chosen to facilitate the linearisation
and use of such model in a Kalman filter and because
the SCR load will be continuously updated during the
operation, avoiding a possible integration of errors in
terms of bias in the SCR load.

The residence time in the SCR (∆t) has been calculated by
integrating the instantaneous speed (Vexh) until the length of
the SCR (LSCR) is reached:

LSCR =

∫ t=t+∆t

t

Vexh(t)dt (7)

where the instantaneous speed is computed by assuming an
average frontal area of the SCR (Af = πD2

SCR/4), and
by obtaining the instantaneous density (ρ) from the exhaust
temperature (T ) and pressure (pexh):

Vexh =
mexh

ρAf
=

mexh4RT

pexhπD2
SCR

(8)

where R is the constant of the gases (R ≈ 287J/KgK).

An adequate identification of the residence time through
DSCR and LSCR is important to study the NOx conversion, i.e.
the inlet NOx signal must be delayed in order to be compared
with the outlet NOx measurement. The top plot of Figure 4
shows the residence time obtained during a transient by using
DSCR = 11cm and LSCR = 1.4m, and the bottom plot of the
Figure shows the inlet NOx raw signal (NOxrawin ), the inlet
signal delayed (NOxin) and the outlet NOx signal (NOxout).

The aim of the Kalman filter is the observation of an
intermediate state, the SCR load, in order to distinguish the
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Fig. 4: Residence time and NOx signals obtained in a transient.

NH3 and the NOx slip in the outlet NOx sensor. In fact,
the Kalman filter combine two sources of information, with
different dynamic characteristics:
• The mass conservation: It estimates the evolution of the

NH3 load by analysing the inlet and outlet measurements.
When combining Equation (2), with the NH3 slip assump-
tion, Equation (6), and the cross-sensitivity, Equation (1),
it leads to:

θk+1 = θk + dt[NH3kin −NOxkin +NOxkSS

−1.67θkmk
exhf1(T k)] (9)

Here, all the units are used in the international system.
Sensors commonly use ppm for the signal output, however,
the conversion is direct when using the mass flow and the
molecular weights:

NOx[Kg/s] = NOx[ppm]
17

29
mexh[Kg/s] (10)

• A NOx conversion model: The model of NOx conversion
can be used in combination of the inlet and outlet NOx
measurement to determine which is the SCR load that fits
the NOx conversion. From Equations (1) and (5):

NOxkSS = NOxkine
−θkf2(Tk)∆tk + 0.67θkmk

exhf1(T k)
(11)

It must be remarked that if the inlet NOx are negligible
the NOx conversion model is not used, leading to:

NOxkSS = 0.67θkmk
exhf1(T k) (12)

Note that in Equation (9) the NOx conversion model is
not used, but analyses the inlet and outlet measurements
during the last cycles for characterizing the emptying and
filling of the SCR, while Equation (11) gives an instantaneous
estimation of the SCR load that would fit the NOx conversion
model, but it does not use the injected NH3. On the one
hand, the mass conversion might predict the dynamics of the
SCR load evolution but might integrate a bias in the model
ending up with an inadmissible error prediction, which would

lead to significant errors in the final ammonia slip and NOx
conversion efficiency estimation. On the other hand, the value
given by the NOx reduction model offers a value of SCR
load at each time lapse, but small errors in the model, in the
signals or in the dynamics of the signals, might be amplified
leading to high noise measurement.

To combine these two sources of information a Kalman
filter with one state and one measurement is used, being
the state the SCR load (θ), and the output the outlet NOx
sensor measurement (NOxSS). The state representation can
be defined by:

θk+1 = f(θk, uk) + wk (13)
NOxkSS = g(θk, uk) + vk (14)

where u are the inputs that define the system in a given step k,
w the associated noise to the state equation, and v the noise
associated to the output estimation.

Extended Kalman filter: The KF of the state vector is
defined by:

θ̂k|k−1 = f(θ̂k−1, uk) (15)

εk = NOxkSS − g(θ̂k|k−1, uk) (16)

θ̂k = θ̂k|k−1 +Kkεk (17)

The KF is characterized for minimizing the expected
estimation error by solving an iterative Riccati equation and
updating the value of the Kalman gain (K). Following:

P k|k−1 = (dθkP k−1dθk + wk) (18)
Kk = P k|k−1dNOxkSS

(dNOxkSSP
k|k−1dNOxkSS + vk)−1 (19)

P k = (1−KkdNOxkSS)P k|k−1 (20)

where the derivatives of the system (dθk and dNOxkSS) can
be obtained by linearising equations 9 and 11 with respect to
θ, such as:

dθk = 1− 1.67dtf1(T k)mk
exh (21)

dNOxkSS = 0.67f1(T k)mk
exh

−NOxkinf2(T k)∆tke−θ
kf2(Tk)∆tk (22)

The associated noises (wk and vk), have been selected to
follow the mass conservation but with a slight update when
NOx is being converted and a fast update, when no NOx is
converted (NOin ≈ 0).
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IV. CASE STUDY

Model Calibration: The function f1 characterizes how fast
is filled and emptied the SCR at a given temperature. Figures
5 and 6 show the effect of the parameters in the first training
data set (with an average temperature of 450K). The numerical
values strongly depend on the operating conditions, for these
concrete operating condition, i.e. this part of the first training
dataset, the average values of f1 and f2 are 0.05 and 3.02 e4
respectively, and the model output is 46 ppm of average urea
slip and 102 ppm of average NOx slip.

800 900 1000 1100 1200
0

50

100

150

200

Fig. 5: Part of first training dataset where the model is used
with various values of f1.

870 880 890 900
0

200

400

Fig. 6: Part of first training dataset where the model is used
with various values of f2.

Figure 5 shows the measured NH3 slip, the result of
the model when applying the calibrated value (f1m), and
the effect of reducing and augmenting the parameter per
five. When augmenting the value of f1, the absorption and
desorption of NH3 is accelerated, and hence the dynamics
are faster. Concretely, if f1 is multiplied by 0.2 the model
would estimate an average urea slip of 10 ppm, while if it is
increased 5 times, the final average urea slip would be 128 ppm.

Figure 6 shows the effect of varying the parameter f2.
When this parameter is low, such as in the first case, there
is little NOx conversion and the final NOx value given by
the model is close to the NOxin (154 ppm in this case), but
when the value is too high, such as in the third case, the

conversion of NOx is amplified and hence the final value is
always close to zero (31 ppm in this case).

The effect of the temperature on f1 and f2 is commonly
simulated with Arrhenius function. However in this paper
a 1D look-up-table has been preferred. A 1D look-up-table
allows capturing the effect of the temperature, even with
non-linear behaviour, such as in an Arrhenius function,
but gives more freedom to the function and simplifies the
calibration procedure for a final on-board application.

The calibration procedure proposed can be summarized in a
six step procedure. For identifying the dynamics of the SCR
slip, an external measurement of NH3 slip, provided by a
test-bench sensor or other models, must be used:

1) The exhaust operating conditions (air mass flow and the
engine-out NOx) are varied by maintaining the temperature
almost constant.

2) The value of f1 is obtained by minimizing the error in
NH3 slip, optimizing:

ε(NH3) = |NH3out −mexhθf1| (23)

Note that for f1 calibration, only the mass conservation,
Equation (9), and hence the emptying and filling
dynamics, are considered.

3) Once f1 is estimated, now the experimental SCR load
(θexp) is obtained from the experimental NH3 measured,
such as:

θexp =
NH3out
mexhf1

(24)

4) Next step is based on finding f2 by minimizing the error
in the outlet NOx sensor

ε(NOx) = |NOxSS − (NOxine
−θexpf2∆t

+0.67mexhθexpf1)| (25)

5) Then the procedure is repeated at various temperatures to
find the curves f1(T ) and f2(T ).

6) As it is difficult to obtain experimental data with signif-
icant variations of exhaust mass, outlet NOx, and SCR
load at constant temperature, once the first curves are
found, a second calibration procedure is proposed. In this
second calibration, the full curves will be used multiplied
by a constant value (x1 and x1), to take into account the
variations during the test, following:

ε(NH3) = |NH3out −mexhθx1f1(T )| (26)
ε(NOx) = |NOxSS − (NOxine

−θexpx2f2(T )∆t

+0.67mexhθexpx1f1(T ))| (27)

Figure 7 shows the result of the calibration for the SCR
analysed. Note that the final function is similar to an Arrhenius
function, which is in line with other modelling works.
Regarding the noise associated to the state transition and the

observation model, namely w and v, a variable noise has been
used to consider different state update rates when the NOx
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Fig. 7: Model calibration of f1(T ) and f2(T ).

model is not taking part in the equations.

The noise associated to the observation model (v) when
there is 0 NOx at the inlet of the SCR (and hence all the outlet
NOx measured can be considered NH3) is 5 ppm, while a value
of 35 ppm has been used when the inlet NOx is above 30
ppm and hence some NOx reduction is assumed. In between,
i.e. from 0 to 30 ppm, a variable noise was used to take into
account the uncertainty of the NOx sensor, such as:

vk =

{
NOxkin + 5 if NOxkin < 30

35 if NOxkin ≥ 30
(28)

A value of 1 mg has been selected for the noise associate
to the state transition model, as a trade-off between a fast
adaptation and robustness. Figure 8 shows the result of the
EKF when using various values for the noise associated
to the state transition model. Three values of w have been
represented with various colour intensities, a thick red line
shows the NH3 measurement and dashed line shows the
output of the model without adaptation.

Note that a small value of w (w < 0.1mg) makes the EKF
rely more on the mass conservation, while a high value of
w (w > 10mg) forces a fast adaptation relying on the NOx
conversion model. The effect of v is somehow opposite to that
of w, i.e. if v is increased, the EKF would rely more in the
mass conservation (same effect than reducing w).

The NOx sensor at the outlet is used to provide the most
likely SCR load for the given measurement. Nevertheless,
there are always two possibilities: either everything is urea slip
detected by the cross-sensitivity, and hence the estimated SCR
load is high, or the outlet NOx measured is a combination
of both, urea and NOx slip, and the SCR load is lower. The
objective of the EKF is to use the mass conservation and other
inputs to provide the system with an adequate adaptation of
the SCR load. Although a fast adaptation is sometimes desired

Fig. 8: EKF result of the first training dataset when using
various values of w: thick red line shows the NH3 measurement
and dashed line shows the output of the model without
adaptation.

to eliminate the bias, because of the different dynamics on the
signals acquired and the model errors, the robustness of the
estimation might be in danger.

One of the strengths of the EKF is its robustness to
perturbations at the inputs. The use of an adaptation through
the outlet NOx sensor allows the EKF to correct errors
at the urea injected, at the inlet NOx or at the mass flow
sensor, while using mass conservation allows the algorithm to
avoid spikes caused by incorrect phasing at the outlet NOx
measurement. Only an error in the cross-sensitivity error is
directly propagated at the urea slip estimation but does not
affect the overall performance of the algorithm.

V. RESULTS AND DISCUSSION

Figure 9 shows the NH3 sensor output (with a thick red
line), the result of the model (with a dashed grey line), and the
result of the Kalman filter (with a continuous black line) in the
three tests shown in Figure 3. As it is shown, the dynamics of
the measured NH3 slip is followed by the model, however a
bias is produced during the tests as the model is based on the
past measurements and not only the current measured signals.
As consequence the NOx output of the model when using the
modelled SCR load does not perfectly correlate with the NOx
sensor output. The bias is corrected when using the Kalman
filter with the measurement provided by the NOx sensor and
a NOx conversion model to update the SCR load.

The error of the SCR model, calculated as the absolute
value of the differences with the NH3 sensor, i.e. Equation
(23), is 26.65, 57.13, and 66.35 ppm, for the three tests,
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Fig. 9: NH3 slip in the three tests: training dataset at low
temperature (top plot), training dataset at high temperature
(medium plot), and WLTP cycle (bottom plot). A thick red line
shows the NH3 measurement, a black line shows the output
of the EKF and a dashed grey line shows the model result
without adaptation.

which have an average NH3 measured slip of 17.71, 88.24
and 121.94 ppm. When applying the Kalman filter the error is
reduced to 7.9, 41 and 32.6 ppm at each test, that implies an
error reduction of 70%, 40%, and 50% for the three tests.

Figure 10 shows the measured NOx at the outlet (with a
thick red line), the result of the model (with a dashed grey
line), and the output of the Kalman filter (with a continuous
black line) in a given range. The modelled NOx seems to
correlate with the experimental results, however predicted NOx
are underestimated or overestimated because of the bias at the
SCR load. The Kalman filter follows the NOx measurement by
using the error between the model and the outlet NOx sensor
to correct a possible bias that might be integrated at past cycles.

VI. CONCLUSIONS

NH3 injection in current SCR systems is based in a
control scenario based on the inlet and outlet NOx sensor
measurements. However, in order to use these sensors
for an adequate NH3 injection strategy, an estimation of
the NOx and the NH3 slip, must be provided. Current
SCR models determine the NOx and NH3 slip based on
the SCR load and predict the SCR load by using the
mass conservation at the inlet and oultet of the SCR to
analyse the accumulation of NH3. Nevertheless, these
models use to exhibit significant errors when the initial SCR
load is not known, or when model or sensor bias are integrated.

Fig. 10: NOx sensor reading in the three tests: training dataset at
low temperature (top plot), training dataset at high temperature
(medium plot), and WLTP cycle (bottom plot). A thick red line
shows the NH3 measurement, a black line shows the output
of the EKF and a dashed grey line shows the model result
without adaptation.

The present paper proposes a simplified model oriented to
control applications which provides a measurement of the
NH3 slip based on an intermediate state which represents
the SCR load. The approach makes use of two sources of
information to predict the SCR load: the mass conservation to
determine the evolution of the SCR load and a model of the
NOx conversion efficiency to analyse which is the most likely
value of SCR load at each time lapse.

A Kalman filter is used to combine both measurements
by modelling the dynamics of the SCR load with the mass
conservation principle and by updating the current model in
two levels: with a slow update when NOx are converted, and
consequently a significant error can be expected from the NOx
conversion, and a fast update when no NOx are converted,
and hence all the NOx measured at the outlet NOx sensors
are mainly NH3 slip.

An external NH3 measurement was used to validate the
proposed methodology with experimental data. Using a
Kalman filter implies an error reduction of 70%, 40%, and
50% for the three tests shown, when comparing with the
results of the model. The presented approach has the potential
of predicting the NH3 slip, not only qualitatively, but also to
quantify it. Future works will be focused on the possibility of
an online adaptation of SCR models to consider ageing factor
or different exhaust lines, and the use of such measurement
for SCR control purposes.
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