

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/168951

Sánchez Peiró, JA.; Romero, V. (2020). Computation of moments for probabilistic finite-state
automata. Information Sciences. 516:388-400. https://doi.org/10.1016/j.ins.2019.12.052

https://doi.org/10.1016/j.ins.2019.12.052

Elsevier

Computation of moments for probabilistic finite-state
automata

Joan Andreu Sánchez, Verónica Romero
Pattern Recognition and Human Language Technologies Center

Universitat Politècnica de València
Camino de Vera s/n, 46022 , València, Spain

Abstract

The computation of moments of probabilistic finite-state automata (PFA) is re-

searched in this article. First, the computation of moments of the length of the

paths is introduced for general PFA, and then, the computation of moments of

the number of times that a symbol appears in the strings generated by the PFA is

described. These computations require a matrix inversion. Acyclic PFA, such as

word graphs, are quite common in many practical applications. Algorithms for

the efficient computation of the moments for acyclic PFA are also presented in

this paper.

Keywords: moments, probabilistic finite-state automata

1. Introduction

Probabilistic graphs have been used in many applications of information sci-

ence. Probabilistic graphs are related to formal grammars and automata. Thus,

Probabilistic Context-Free Grammars (PCFG) are a core concept that has been

used for probabilistic parsing in Natural Language Processing [1], RNA mod-

∗Tel: +34 96 387 7253, Fax: +34 96 387 7239. e-mail: jandreu@prhlt.upv.es

Preprint submitted to Information Science October 2, 2019

elling [2], Mathematical Expression Recognition [3], and Machine Translation [4].

Probabilistic regular models such as N -gram models and Hidden Markov Mod-

els are used for Automatic Speech Recognition (ASR) [5] and Handwritten Text

Recognition (HTR) [6]. Probabilistic Finite-State Automata (PFA) are regular

models that are used in many applications such as ASR [7], Machine Transla-

tion (MT) [8], and the computation of Confidence Measure for different pur-

poses [9, 10, 11]. PFA are very relevant for practical reasons since many algo-

rithms that deal with these models have polynomial time complexity in many real

applications.

The probabilistic properties of these syntactical models are very relevant since

these properties reflect their representation capabilities. For example, entropy

has been studied for PCFG [12, 13, 14], HMM [15], and regular models [16,

17, 18, 19], and conditions about the consistency of PCFG have been researched

in [20, 21, 22, 23, 24].

Moments are an important concept related to statistics. The first moment is a

relevant concept since it represents the average value of a stochastic variable. The

second moment and higher order moments are of interest for knowing the aspect

of a distribution and other convergence properties.

The computation of moments for PCFG has been researched in [25, 26], cross-

moments computation has been researched for factor graphs in [27], and the com-

putation of moments in other types of graphs has been researched in [28, 29].

Generating functions are used in [25, 26] as a core mathematical tool for com-

puting moments that are related to the derivation and string lengths produced by

PCFG. The algorithms described in [25, 26] are based on matrix computations

that require a matrix inversion, and, therefore, the time complexity is at least the

2

time complexity of this matrix inversion.

This paper studies the computation of moments for PFA [30]. The main con-

tribution of this paper is that this computation is not based on generating functions

but rather on matrix computations, which allow for a very intuitive interpretation.

The formulation of the problem introduced in this paper allows us also to obtain

efficient algorithms for acyclic PFA. We study moments of path length and also

moments of the number of times that a symbol appears in the strings generated

by a PFA1. Acyclic PFA are a relevant formalism since they are related to trellises

that are used in ASR [10] and HTR [11]. From a practical point of view, the first

and second moments of the path lengths are relevant for computing the variance

of the string represented in a word graph that, in turn, represents a speech signal

or a handwritten text line.

Section 2 introduces the notation used in this article. The computation of

moments for general PFA is presented in Section 3. Section 4 introduces the

computation of moments for acyclic PFA, and presents efficient algorithms for

carrying out these computations.

2. Notation and definitions

We introduce the notation related to probabilistic finite-state automata (PFA)

that will be used in this article. We mainly follow the notation of [30] and [31]

and some notation from [23].

Definition 2.1. A PFA is a tupleA = 〈Q,Σ, δ, I, F, P 〉, where: Q is a finite set of
states; Σ is the alphabet; δ ⊆ Q×Σ×Q is a set of transitions; I : Q→ R≥0 is the
probability function of a state being an initial state; P : δ → R≥0 is a probability

1In formal language theory, automata are considered to be string acceptors, but PFA may be
considered to be generative processes (see Section 2.2 in [30]).

3

function of transition between states; F : Q→ R≥0 is the probability function of
a state being a final state. I , P , and F are functions such that:∑

i∈Q

I(i) = 1 , (1)

∀i ∈ Q, F (i) +
∑

k∈Σ,j∈Q

P (i, k, j) = 1 . (2)

For the sake of notation simplification, P is assumed to be extended with

P (i, k, j) = 0 for all (i, k, j) 6∈ δ. An automaton is said to be proper if it satisfies

equation (2). Without loss of generality, throughout this paper, we assume that

there are no useless states in the PFA [30].

In this article, we assume that all states are nominated by integers from 0 to

|Q| − 1. For simplicity without loss of generality, we assume that the PFA have

only one initial state, named 0, and, therefore, the sum in the left part of (1) has

only one term. We assume without loss of generality that the PFA have only one

final state, named |Q| − 1, which moreover does not have loops. We also assume

that all symbols are nominated by integers from 0 to |Σ| − 1. The difference

between integers that refer to states and integers that refer to symbols will be clear

from the context. These assumptions greatly simplify the notation. For practical

reasons, we assume that the final state differs from the initial state and therefore

the empty string is not in L(A).

Given a PFA A, a path s in A is a sequence of transitions:

0 = i0
k1−→

P (0,k1,i1)
i1 · · · ils−1

kls−→
P (ils−1,kls ,ils)

ils = |Q| − 1 .

such that P (ij−1, kj, ij) ∈ δ, 0 < j ≤ ls, and ls is the length of the path s, that is,

the number of transitions. Its probability is defined as pA(s) =
∏ls

j=1 P (ij−1, kj, ij).

We denote as ck,s the number of times that the terminal k, k ∈ Σ, appears in the

path s.

4

In this work, a cycle is a path i0
k1−→

P (i0,k1,i1)
i1 · · · in−1

kn−→
P (in−1,kn,in)

in such that

ir 6= is, 0 ≤ r, s < n and i0 = in, and a loop is a cycle in which n = 1 [30].

Definition 2.2. An acyclic PFA is defined as a PFA that cannot have cycles.

If the graph is acyclic, then a topological order can be defined over the nodes2.

If the graph is acyclic, then we assume that the nodes are numbered according to

this topological order from 0 (the initial state) to |Q| − 1 (the final state).

Definition 2.3. Given a PFAA, we define the characteristic matrixE = (ei,j) [21]
of dimensions |Q| × |Q| as3:

ei,j =
∑
k∈Σ

P (i, k, j) . (3)

where 0 ≤ i, j ≤ |Q| − 1.

Definition 2.4. The terminal expectation matrix [22] Z = (zi,k), 0 ≤ i ≤ |Q| − 1
and 0 ≤ k ≤ |Σ| − 1, of the PFA A is defined as:

zi,k =
∑
j

P (i, k, j) . (4)

3. Moments for general PFA

This section describes the computation of moments of path lengths for general

PFA, i.e., PFA that can have cycles and loops. This problem has been researched

in the past by using formal power series [25, 26]. We present similar results with a

different formalism. The computations described in this section will be useful for

a more efficient computation for acyclic PFA, which is described in the following

section. This section also describes the computation of moments for the number

of times that a symbol appears in the language generated by a PFA.

2Note that different topological orders can exist, but this is not relevant in this article. We
consider just one of them.

3Throughout the article, we assume that the rows and columns of any matrix with dimensions
n× n are indexed from 0 to n− 1.

5

3.1. The first moment of the path lengths

For PFA as described in Section 2, the infinite sum Q =
∑∞

i=0 E
i converges

to (I −E)−1, where I is the identity matrix. The convergence of Q is guaranteed

since we have assumed that the PFA does not have useless states [30].

Definition 3.1. The expected path length of all possible paths in A is defined as:

l̄A =
∑
s∈A

pA(s) ls . (5)

Note that this expression is the first moment of the path lengths.

The expected path length of expression (5) l̄A is [22]:

l̄A =

|Q|−2∑
i=0

(Q)0,i . (6)

The range of the right sum of expression (6) ends with |Q| − 2 because each

(Q)0,i can also be understood to be the expected number of times that the state i

is used in paths from the initial state 0 to the final state |Q| − 1. Note that each of

these paths has a length equal to the number of states in the path minus 1, which is:

l̄A =

|Q|−1∑
i=0

(Q)0,i − 1 =

|Q|−2∑
i=0

(Q)0,i + (Q)0,|Q|−1︸ ︷︷ ︸
=1

−1.

The time complexity of this computation is at least the time required to com-

pute the inverse of a matrix.

In order to illustrate this computation, consider the PFA in Figure 1. This PFA

includes cycles, loops, and transitions from one state to a different state using

two different labels. The possible paths that this PFA can generate and the corre-

sponding probability for each path can be computed from paths that are shown in

Figure 2.

6

0

1a / 0.3

2b / 0.4

3a / 0.3

a / 0.2

5

a / 0.3

b / 0.5
a / 0.3

a / 0.7
4b / 1.0

b / 0.7

b / 0.3

Figure 1: Example of a PFA.

0
a→

0.3
1

a→
0.2

1︸︷︷︸
i times, i≥0

a→
0.3

5

0
a→

0.3
1

a→
0.2

1︸︷︷︸
i times, i≥0

b→
0.5

5

0
b→

0.4
2

a→
0.3

1
a→

0.2
1︸︷︷︸

i times, i≥0

a→
0.3

5

0
b→

0.4
2

a→
0.3

1
a→

0.2
1︸︷︷︸

i times, i≥0

b→
0.5

5

0
b→

0.4
2

a→
0.7

3
b→

1.0
4

b→
0.7

3
b→

1.0
4︸ ︷︷ ︸

i times, i≥0

b→
0.3

5

0
a→

0.3
3

b→
1.0

4
b→

0.7
3

b→
1.0

4︸ ︷︷ ︸
i times, i≥0

b→
0.3

5

Figure 2: Possible paths for the PFA in Figure 1.

Therefore, the expected path length is:

l̄A = 0.09
∞∑
i=0

0.2i(i+ 2) + 0.15
∞∑
i=0

0.2i(i+ 2) + 0.036
∞∑
i=0

0.2i(i+ 3) +

0.06
∞∑
i=0

0.2i(i+ 3) + 0.084
∞∑
i=0

0.7i(2i+ 4) + 0.09
∞∑
i=0

0.7i(2i+ 3)

= 0.253 + 0.422 + 0.146 + 0.244 + 2.427 + 2.3 = 5.792 .

Note that, in this computation, we have used the following results for a real value

7

r such that 0 < r < 1.0:
∞∑
i=0

ri =
1

1− r
, (7)

∞∑
i=0

iri =
r

(1− r)2
. (8)

The second equation follows from the first, by differentiating both sides in (7),

and then both sides are multiplied by −1/r. It is easy to show that the infinite

series iri is convergent as i→∞ for 0 < r < 1.0. We include these well-known

results because they will help us to explain further demonstrations.

Continuing with the example, we now compute expression (5) by using the

matrix form introduced in Definition 2.3. Matrix E, which is associated to the

PFA in Figure 1, is:

E =

0 0.3 0.4 0.3 0 0

0 0.2 0 0 0 0.8

0 0.3 0 0.7 0 0

0 0 0 0 1 0

0 0 0 0.7 0 0.3

0 0 0 0 0 0

and the matrix Q for matrix E is:

Q =

1.0 0.525 0.4 1.933 1.933 1.0

0 1.25 0 0 0 1.0

0 0.375 1.0 2.333 2.333 1.0

0 0 0 3.333 3.333 1.0

0 0 0 2.333 3.333 1.0

0 0 0 0 0 1.0

8

Therefore, the following result is obtained using expression (6):

l̄A =
4∑
i=0

(Q)0,i = 5.792 .

3.2. The second moment of the path lengths

The variance of the expected path length of the paths in a PFAA is defined as:

σ2
lA

=
∑
s∈A

pA(s) (ls − l̄A)2 =
∑
s∈A

pA(s) l2s − l̄2A . (9)

The sum in expression (9) is the second moment of the path lengths. We now

describe how to compute this second moment. Note that (Ek)0,|Q|−1 represents

the probability accumulated in all paths whose length is k that start in state 0 and

reach the final state |Q| − 1. Consequently, we have the following result:

Lemma 3.1. ∑
s∈A | ls=k

pA(s) l2s = k2 (Ek)0,|Q|−1 . (10)

Proof. As we stated above, (Ek)0,|Q|−1 is the addition of the probability of all

paths that start in state 0 and reach the final state |Q| − 1 whose length is k. This

is exactly the addition represented on the left side of (10).

For instance, in the example in Figure 1, expression (10) for the paths with

length 3 and their probabilities are the following:

0
a→

0.3
1

a→
0.2

1
a→

0.3
5 0.018

0
a→

0.3
1

a→
0.2

1
b→

0.5
5 0.03

0
b→

0.4
2

a→
0.3

1
a→

0.3
5 0.036

0
b→

0.4
2

a→
0.3

1
b→

0.5
5 0.06

0
a→

0.3
3

b→
1.0

4
b→

0.3
5 0.09

9

and the left part of equation (10) is:

32
∑

s∈A|ls=3

pA(s) = 2.106

while the right part is
32(E3)0,5 = 2.106 .

We now have the following result.

Theorem 3.1. ∑
s∈A

pA(s) l2s =

(
E2 + E

(I − E)3

)
0,|Q|−1

. (11)

Proof. It holds that: ∑
s∈A

pA(s) l2s =
∞∑
k=1

∑
s∈A|ls=k

pA(s) l2s (12)

=
∞∑
k=1

k2 (Ek)0,|Q|−1 .

To solve the last sum, we apply the same ideas from expressions (7) and (8). First,

note that the following equation is immediate:

E + E2 + . . . = (I − E)−1E . (13)

Each term in the sum in the left part of the equation is a matrix with dimensions

|Q| × |Q|, and the right part is also a matrix with the same dimensions. Let E be

a square matrix of real values with dimensions |Q| × |Q|; we define the following

differentiating operation for this matrix:

|Q|−1∑
i=0

∂E

∂ei,i
.

Appendix A shows the application of this differentiating operation to the matrices

that are shown above. Then, with some operations, expression (13) becomes:

10

E + E2 + . . . = (I − E)−1E

{apply differentiation}

I + 2E + 3E2 + . . . = (I − E)−2

{multiply both sides by E}

E + 2E2 + 3E3 + . . . = E(I − E)−2

{apply differentiation}

I + 22E + . . . = (I − E)−2 + 2E(I − E)−3

{multiply both sides by E}

E + 22E2 + . . . = E(I − E)−2 + 2E2(I − E)−3

∞∑
k=1

k2 Ek =
E2 + E

(I − E)3

Finally, ∑
s∈A

pA(s) l2s =

(
E2 + E

(I − E)3

)
0,|Q|−1

.

The time complexity of the right part of this expression is at least the time

complexity of computing the inverse of a matrix, i.e., it is at least cubic with the

dimension of the matrix. In addition, note that several matrix products are in-

volved. Also note that other moments of higher order can be computed following

the above demonstration.

Continuing with the example, let us now compute the left part of expres-

sion (11). We will make use of the following result which is obtained from equa-

tion (8) by first differentiating both sides and then multiplying both sides by r:

∞∑
i=0

i2ri =
r(1 + r)

(1− r)3
. (14)

11

It is also easy to show that the infinite series iri is convergent as i → ∞ for

0 < r < 1.0. Then we have:∑
s∈A

pA(s) l2s

= 0.09
∞∑
i=0

0.2i(i+ 2)2 + 0.15
∞∑
i=0

0.2i(i+ 2)2 + 0.036
∞∑
i=0

0.2i(i+ 3)2

+ 0.06
∞∑
i=0

0.2i(i+ 3)2 + 0.084
∞∑
i=0

0.7i(2i+ 4)2 + 0.09
∞∑
i=0

0.7i(2i+ 3)2

= 0.605 + 1.008 + 0.489 + 0.816 + 29.742 + 26.967 = 59.627 .

In matrix form according to expression (11), ((E2 + E)(I − E)−3)0,|Q|−1 =

59.627 .

Therefore, the variance of the expected path length of the paths in the PFA in

Figure 1 according to expression (9) is:

σ2
lA

= 59.627− 5.7922 = 26.08 .

3.3. The first moment of the number of occurrences of a symbol

In addition to the moments of the path lengths, other interesting moments can

be computed. For example, the moments of the number of times that a symbol k

appears in the language generated by a PFA A allow us to compute the variance

of this expected value. This means that:

σ2
kA

=
∑
s∈A

pA(s)c2
k,s − c̄2

kA
. (15)

where ck,s is the number of times that the symbol k appears in the path s, and

c̄kA is the expected value of the number of times that the symbol k appears in the

language generated by A.

12

This section describes the computation of the first moment of the number of

occurrences of a symbol in the language generated by PFA A, which is defined

as:

c̄kA =
∑
s∈A

pA(s) ck,s . (16)

This problem is researched in [20] for probabilistic grammars, and the solution

provided, which is adapted to the PFA defined in this paper, is:

c̄kA =
∑
s∈A

pA(s) ck,s = (QZ)0,k . (17)

The time complexity of this solution is the same time complexity of computing

the inverse of a matrix.

For the example in Figure 1 and following similar computations as in Figure 2,

for the symbol “a”:

c̄aA =
∑
s∈A

pA(s) ca,s

= 0.09
∞∑
i=0

0.2i(i+ 2) + 0.15
∞∑
i=0

0.2i(i+ 1) + 0.036
∞∑
i=0

0.2i(i+ 2)

+ 0.06
∞∑
i=0

0.2i(i+ 1) + 0.084
∞∑
i=0

0.7i + 0.09
∞∑
i=0

0.7i

= 0.253 + 0.234 + 0.101 + 0.094 + 0.28 + 0.3 = 1.262 .

In matrix form according to expression (17) and assuming that the first column of

Z is associated to symbol “a”, (QZ)0,0 = 1.262. If we assume that the second

column of Z is associated to symbol “b”, then (QZ)0,1 = 4.529. As expected, the

addition of both values is exactly l̄A.

13

3.4. The second moment of the number of occurrences of a symbol

The definition of the second moment of the number of times that a symbol k

appears in a path s is: ∑
s∈A

pA(s) c2
k,s . (18)

and the computation in the matrix notation introduced in the above sections is the

following.

From Definition 2.3, let Ek be the characteristic matrix for symbol k, which is

(Ek)i,j = P (i, k, j) . (19)

and letEk̃ be the characteristic matrix for the other symbols that are different from

k, which is

(Ek̃)i,j =
∑

m∈Σ|m6=k

P (i,m, j) . (20)

Note that for any k ∈ Σ, it holds that E = Ek + Ek̃.

Theorem 3.2.∑
s∈A

pA(s) c2
k,s =

(
(I − Ek̃)

−1(R2 +R)(I −R)−3
)

0,|Q|−1
. (21)

where R = Ek(I − Ek̃)−1

Proof. Let us add all of the paths from the left side of equation (21) in the PFA

that have the symbol k only once:(
(I+Ek̃+E2

k̃
+ . . .)Ek(I+Ek̃+E2

k̃
+ . . .)

)
0,|Q|−1

=
(
(I − Ek̃)

−1Ek(I − Ek̃)
−1
)

0,|Q|−1
.

Note that the infinite sum I +Ek̃ +E2
k̃

+ . . . is convergent [22]. Analogously, let

us add all of the paths from the left side of equation (21) in the PFA that have the

symbol k twice:

22
(
(I−Ek̃)

−1Ek(I−Ek̃)
−1Ek(I−Ek̃)

−1
)

0,|Q|−1
.

14

In general, the addition of all of the paths with i times the symbol k is:

i2
(
(I − Ek̃)

−1(Ek(I − Ek̃)
−1)i

)
0,|Q|−1

.

Consequently, if R = Ek(I − Ek̃)−1, then:

∑
s∈A

pA(s) c2
k,s =

(
(I − Ek̃)

−1

∞∑
i=1

i2Ri

)
0,|Q|−1

=
(
(I − Ek̃)

−1(R2 +R)(I −R)−3
)

0,|Q|−1
.

Note that the infinite sum in the last expression is analogous to the infinite sum

that appeared in Theorem 3.1.

The time complexity of this computation is again at least the time complexity

of computing the inverse of a matrix, i.e., it is at least cubic with the dimension of

the matrix. In addition, many matrix products are involved in the computation.

For the example in Figure 1, for the symbol “a” it holds that:∑
s∈A

pA(s) c2
a,s

= 0.09
∞∑
i=0

0.2i(i+ 2)2 + 0.15
∞∑
i=0

0.2i(i+ 1)2 + 0.036
∞∑
i=0

0.2i(i+ 2)2

+ 0.06
∞∑
i=0

0.2i(i+ 1)2 + 0.084
∞∑
i=0

0.7i + 0.09
∞∑
i=0

0.7i

= 0.605 + 0.352 + 0.242 + 0.14 + 0.28 + 0.3 = 1.919 .

15

The matrix obtained according to expression (21) for the PFA in Figure 1 is:

0 0.984 0 1.933 1.933 1.919

0 0.469 0 0 0 0.938

0 0.703 0 2.333 2.333 1.656

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

With these computations, the variance of the expected number of times that

the symbol “a” appears in the language generated by the PFA in Figure 1 that is

computed using expression (15) is:

σ2
aA

= 1.919− 1.2622 = 0.326 .

4. Moments for acyclic PFA

In the case of acyclic PFA, the computations introduced in the above sections

can be largely simplified and the time complexity can be decreased for all of them.

This section describes new algorithms for computing moments for acyclic PFA.

The subsections in this section are in parallel correspondence with the subsections

in Section 3.

4.1. The first moment of the path lengths

If the PFA is acyclic, then each (Q)0,i, 0 ≤ i ≤ |Q|−1 can also be understood

to be the posterior probability of the i-th state given all of the paths that start in

the initial state 0 and reach the final state |Q| − 1 and go through the i-th state. In

this case, the first row of Q can be computed using this simple forward algorithm

16

for an acyclic PFA A:

αA(0) = 1.0 , (22)

αA(i) =
i−1∑
j=0

∑
k∈Σ

αA(j)P (j, k, i) 0< i≤ |Q|− 1 . (23)

In this algorithm, value αA(i) also represents the probability accumulated in all

prefixes starting in the initial state 0 and reaching state i. This algorithm coincides

with algorithm 3.1 in [30]. It is immediate to see that the probability accumulated

in all suffixes that can be obtained from the subgraph that is induced from all

states that are reachable from i adds up to 1.0. That is the reason we stated above

that αA(i) can also be understood to be a posterior probability. Note that this

algorithm can be implemented in linear time with the number of edges in the

PFA, i.e., O(|δ|), which is a better time complexity than the time complexity of

a matrix inversion. In real applications of ASR, HTR, or MT where trellises are

used, it is usual that |δ| � |Q|2.

Lemma 4.1.

αA(i) =
i∑

j=0

(Ej)0,i ∀i such that 0 ≤ i .

Intuition. Each new term in the addition in the right part of this equation includes

the accumulated probability of all of the paths from the initial state 0 to the ith state

that requires j transitions. The elements in the upper row of matrix Q are being

fixed from left to right as a new power of matrix E is computed. The computation

of this row coincides with the iterative computation of αA(·).

Proof. The demonstration is by induction on i. Note that Ej is null for j ≥ |Q|

since E is an upper triangular matrix. For i = 0, it holds that

α(0) = (E0)0,0 = I0,0 = 1.0 .

17

Note that in (Ek)i,j , 1 ≤ k ≤ |Q| − 1, 0 ≤ i ≤ |Q| − k − 1, k + i ≤ j ≤ |Q| − 1

may be non-null values. Then, for 0 < i ≤ |Q| − 1:

i∑
j=0

(Ej)0,i

= I0,i︸︷︷︸
=0

+
i∑

j=1

(Ej−1E)0,i

= (E)0,i +

(E)0,0︸ ︷︷ ︸
=0

(E)0,i + (E)0,1(E)1,i + (E)0,2(E)2,i + . . .+ (E)0,i (E)i,i︸ ︷︷ ︸
=0

+

(E2)0,0︸ ︷︷ ︸
=0

(E)0,i + (E2)0,1︸ ︷︷ ︸
=0

(E)1,i + (E2)0,2(E)2,i + . . .+ (E2)0,i (E)i,i︸ ︷︷ ︸
=0

+

. . .

(Ei−1)0,0︸ ︷︷ ︸
=0

(E)0,i + (Ei−1)0,1︸ ︷︷ ︸
=0

(E)1,i + . . .+ (Ei−1)0,i−1(E)i−1,i + (Ei−1)0,i (E)i,i︸ ︷︷ ︸
=0

+

= αA(0) (E)0,i + αA(1) (E)1,i + . . .+
i−1∑
l=0

(El)0,i−1︸ ︷︷ ︸
=αA(i−1)

(E)i−1,i

=
i−1∑
j=0

∑
k∈Σ

αA(j)P (j, k, i) = αA(i) .

For example, consider the PFA in Figure 3. Since this PFA does not include

cycles or loops, it is an acyclic PFA.

The algorithm in expressions (22) and (23) produces the following result for

the PFA in Figure 3:

0 1 2 3 4

1.0 0.4 0.42 0.916 1.0

In matrix form, these computations are as follows. Matrix E associated to the

18

0 1b / 0.4

2a / 0.3

3

a / 0.3

a / 0.3

a / 0.7

a / 0.8 4
b / 0.2

b / 1.0

Figure 3: Example of an acyclic PFA.

PFA in Figure 3 is:

E =

0 0.4 0.3 0.3 0

0 0 0.3 0.7 0

0 0 0 0.8 0.2

0 0 0 0 1

0 0 0 0 0

and the matrix Q for this matrix E is:

Q =

1.0 0.4 0.42 0.916 1.0

0 1.0 0.30 0.94 1.0

0 0 1.0 0.8 1.0

0 0 0 1.0 1.0

0 0 0 0 1.0

Note that the first row of this matrix is equal to the computation performed

with the forward algorithm in (22) and (23). The first moment of the path lengths

for this example is l̄A = 2.736.

19

4.2. The second moment of the path lengths

This section describes how to compute the left part of expression (11) for

an acyclic PFA in an efficient way that does not require a matrix inversion. We

take advantage of an algorithm that is described in [31], however, it is used for a

different purpose in this article. We include that algorithm here for completeness.

We use the right part of equation (12) for this purpose. Note that the inner

sum of this expression is grouped for paths with the same length. Based on this

idea, we define α̂A(i, l), 0 ≤ i ≤ |Q| − 1 and 1 ≤ l ≤ |Q| as the probability

accumulated in all paths starting in the initial state 0, each of which has l different

states and reaches state i:

α̂A(i, l) =
∑

s=(s0=0,k0,s1...,sl−1=i) |
P (sj ,kj ,sj+1)∈δ,0≤j<l−1

pA(s) .

Thus, α̂A(|Q| − 1, l) represents the probability accumulated in all paths starting

in the initial state 0 and reaching the final state |Q| − 1 whose length is l − 1.

Consequently, expression (12) becomes:

∑
s∈A

pA(s) l2s =
∞∑
k=1

∑
s∈A|ls=k

pA(s) l2s =

|Q|∑
l=1

α̂A(|Q| − 1, l) (l − 1)2 . (24)

The computation of α̂A(·, ·) can be performed with this new forward algo-

rithm:

α̂A(0, 1) = 1 (25)

α̂A(i, l) =
∑

0≤j<i
k∈Σ

α̂A(j, l − 1)P (j, k, i) 1 < l ≤ |Q|, l − 1 ≤ i ≤ |Q| − 1 .

(26)

20

This algorithm can also be implemented in linear time with the number of edges

in the PFA and the number of states, i.e., O(|Q| |δ|). In real applications where

|δ| � |Q|2, this algorithm is more efficient than computing expression (11), which

requires a matrix inversion and several matrix products.

If this algorithm is applied to the PFA in Figure 3, the following result is

obtained:
1 2 3 4 5

0 1.0

1 0.4

2 0.3 0.12

3 0.3 0.52 0.096

4 0.36 0.544 0.096

Note that the addition of all values in each row in matrix α̂A(·, ·) is equal to each

value in αA(·), that is,

|Q|∑
j=1

α̂A(i, j) = αA(i) 0 ≤ i ≤ |Q| − 1 .

This is because values in αA(·) are distributed according to path lengths in α̂A(·, ·).

Now, using equation (24) we obtain:∑
s∈A

pA(s) l2s = 0.36 22 + 0.544 32 + 0.096 42 = 7.872 .

In matrix form according to (11), we obtain ((E2 + E)(I − E)−3)0,|Q|−1 =

7.872.

Therefore, the variance is obtained with expression (9):

σ2
lA

= 7.872− 2.7362 = 0.386 .

21

4.3. The first moment of the number of occurrences of a symbol

The computation of the first moment of the number of occurrences of a sym-

bol for an acyclic PFA is immediate from expression (17) and taking into ac-

count Lemma 4.1. Only the first row of expression (17) is needed, and this row is

computed with expressions (22) and (23). Consequently, the computation that is

needed is:

c̄k =

|Q|−1∑
i=0

αA(i)zi,k . (27)

The time complexity for the computation of this expression is clearly better than

the time complexity for the computation of (17).

For the example in Figure 3, c̄0 = 1.336 if we assume that the first column of

Z is associated to symbol “a”, and c̄1 = 1.4 if we assume that the second column

of Z is associated to symbol “b”. As expected, c̄0 + c̄1 = l̄A.

4.4. The second moment of the number of occurrences of a symbol

The computation of the second moment of the number of occurrences of a

symbol can be carried out using an algorithm that is similar to the algorithm in-

troduced in Section 4.2. The main idea is similar to the definition of α̂A(·, ·) in

Section 4.2. The definition is as follows:

α̂′A(i, r) =
∑

s=(s0=0,ko,s1...,sls=i) |
P (sj ,kj ,sj+1)∈δ,0≤j<ls ∧

|{P (sj ,kj ,sj+1)∈δ,0≤j<ls ∧kj=m}|=r

pA(s) .

where α̂′A(i, r) represents the probability of all paths that reach state i that in-

cludes r times the mth symbol. Note that r is finite since the PFA is acyclic. The

22

computation of α̂′A(·, ·) is as follows:

α̂′A(0, 0) = 1 for completeness, (28)

α̂′A(i, 0) =
∑

0≤j<i
k∈Σ:k 6=m

α̂′A(j, 0)P (j, k, i) 1 ≤ i ≤ |Q| − 1 . (29)

α̂′A(i, r) =
∑

0≤j<i

α̂′A(j, r − 1)P (j,m, i) +
∑

0≤j<i
k∈Σ:k 6=m̂

α′A(j, r)P (j, k, i) (30)

1 ≤ i ≤ |Q| − 1, 1 ≤ r < i .

This algorithm can be implemented with time complexity O(|Q| |δ|). Note

that this computation is performed independently for every symbol in the alphabet.

Finally, expression (18) is computed as:∑
1≤r≤|Q|−1̂

α′A(|Q| − 1, r) r2 . (31)

For example, the set of paths for the graph in Figure 3 are the following:

0
b→

0.4
1

a→
0.3

2
a→

0.8
3

b→
1.0

4 0.096

0
b→

0.4
1

a→
0.3

2
b→

0.2
4 0.024

0
b→

0.4
1

a→
0.7

3
b→

1.0
4 0.28

0
a→

0.3
2

a→
0.8

3
b→

1.0
4 0.24

0
a→

0.3
2

b→
0.2

4 0.06

0
a→

0.3
3

b→
1.0

4 0.3

and expression (18) for symbol “a” is:

0.096 22 + 0.024 + 0.28 + 0.24 22 + 0.06 + 0.3

= 2.008 .

23

Using the algorithm in expressions (28), (29), and (30) for symbol “a” pro-

duces the following results:

0 1 2 3 4

0 1.0

1 0.4 0.0

2 0.0 0.42 0.0

3 0.0 0.58 0.336 0.0

4 0.0 0.664 0.336 0.0 0.0

Finally, expression (18) can be computed with the final row of this using (31)

as follows:

0.664 12 + 0.336 22 = 2.008 .

In matrix form using expression (21):(
(I − Ek̃)

−1(R2 +R)(I −R)−3
)

0,|Q|−1
= 2.008 .

5. Conclusions

In this paper, we have studied the computation of moments for probabilistic

finite-state automata, specifically, the computation of moments of path lengths

for general PFA. We also studied the computation of moments of the number of

times that a symbol appears in the language generated by a PFA. The algorithms

introduced can be easily generalized for computing moments of higher order and

for other kinds of models like Probabilistic Context-Free Grammars. The gener-

alization for computing moments in matrix form of higher order would require

lemmas that are similar to the lemmas in Appendix A. These moments would pro-

vide additional information about the aspect of the distributions. We also studied

24

computations for acyclic PFA, which are quite common in ASR, MT, and HTR.

The algorithms introduced for acyclic PFA have lower time complexity than the

algorithms for general PFA.

Acknowledgments

This work has been partially supported by the Ministerio de Ciencia y Tec-

nología under the grant TIN2017-91452-EXP (IBEM), by the Generalitat Va-

lenciana under the grant PROMETEO/2019/121 (DeepPattern), and by the grant

“Ayudas Fundación BBVA a equipos de investigación científica 2018” (PR[18]_HUM_C2_0087).

References

[1] S. Petrov, D. Klein, Improved inference for unlexicalized parsing, in: Proc.

NAACL-HLT, 2007, pp. 404–411.

[2] Y. Sakakibara, M. Brown, R. Hughey, I. Mian, K. Sjölander, R. Underwood,

D. Haussler, Stochastic context-free grammers for tRNA modeling, Nucleic

Acids Research 22 (23) (1994) 5112–5120.

[3] F. Álvaro, J. Sánchez, J. Benedí, An integrated grammar-based approach for

mathematical expression recognition, Pattern Recognition 51 (2016) 135–

147.

[4] D. Wu, Stochastic inversion transduction grammars and bilingual parsing of

parallel corpora, Computational Linguistics 23 (3) (1997) 377–404.

[5] F. Jelinek, Statistical Methods for Speech Recognition, MIT Press, 1998.

[6] A. Toselli, E. Vidal, F. Casacuberta (Eds.), Multimodal Interactive Pattern

Recognition and Applications, 1st Edition, Springer, 2011.

25

[7] M. Mohri, F. Pereira, M. Riley, Weighted finite-state transducers in speech

recognition, Computer Speech & Language 16 (1) (2002) 69–88.

[8] F. Casacuberta, E. Vidal, Machine translation with inferred stochastic finite-

state transducers, Computational Linguistics 30 (2) (2004) 205–225.

[9] S. Ortmanns, H. Ney, A word graph algorithm for large vocabulary continu-

ous speech recognition, Computer Speech and Language 11 (1997) 43–72.

[10] N. Ueffing, F. Och, H. Ney, Generation of word graphs in statitistical ma-

chine translation, in: Proceedings on Empirical Method for Natural Lan-

guage Processing, 2002, pp. 156–163.

[11] J. Puigcerver, A. Toselli, E. Vidal, Word-graph and character-lattice combi-

nation for KWS in handwritten documents, in: International Conference on

Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 181–186.

[12] U. Grenander, Syntax controlled probabilities, Tech. rep., Brown University,

Div. of Applied Mathematics (December 1967).

[13] S. Soule, Entropies of probabilistic grammars, Information and Control 25

(1974) 57–74.

[14] J. Justesen, K. Larsen, On the probabilistic context-free grammars that

achieve capacity, Information and Controls 29 (1975) 268–285.

[15] D. Hernando, V. Crespi, G. Cybenko, Efficient computation of the hidden

Markov model entropy for a given observation sequence, IEEE Transactions

of Information Theory 51 (7) (2005) 2681–2685.

26

[16] G. Mann, A. McCallum, Efficient computation of entropy gradient for semi-

supervised conditional random fields, in: Proceedings of HLT-NAACL,

Companion Volume, Short Papers, Association for Computational Linguis-

tics, Stroudsburg, PA, USA, 2007, pp. 109–112.

[17] M. Nederhof, G. Satta, Computation of distances for regular and context-free

probabilistic languages, Theoretical Computer Science 395 (2008) 235–254.

[18] C. Cortes, M. Mohri, A. Rastogi, M. Riley, On the computation of the rel-

ative entropy of probabilistic automata, Int. J. Found. Comput. Sci. 19 (1)

(2008) 219–242.

[19] V. Ilic, M. Stankovic, B. Todorivic, Entropy message passing, IEEE Trans.

on Information Theory 57 (1) (2011) 91–99.

[20] T. Booth, R. Thompson, Applying probability measures to abstract lan-

guages, IEEE Transactions on Computers C-22 (5) (1973) 442–450.

[21] R. Thompson, Determination of probabilistic grammars for funtionally spec-

ified probability-measure languages, IEEE Transactions of Computers c-

23 (6) (1974) 603–614.

[22] C. Wetherell, Probabilistic languages: A review and some open questions,

Computing Surveys 12 (4) (1980) 361–379.

[23] J. Sánchez, J. Benedí, Consistency of stochastic context-free grammmars

from probabilistic estimation based on growth transformation, IEEE Trans.

Pattern Analysis and Machine Intelligence 19 (9) (1997) 1052–1055.

27

[24] Z. Chi, Statistical properties of probabilistic context-free grammar, Compu-

tational Linguistics 25 (1) (1999) 131–160.

[25] S. Hutchins, Moments of string and derivation lengths of stochastic context-

free grammars, Information Sciences 4 (1972) 179–191.

[26] V. Ilic, M. Ciric, M. Stankovic, Cross-moments computation for stochas-

tic context-free grammars, Tech. rep., https://arxiv.org/abs/1108.0353v2

(2013).

[27] V. Ilic, M. Stankovic, B. Todorovic, Computation of cross-moments, Ad-

vances in Mathematics of Communications 6 (3) (2012) 363–384.

[28] A. Heim, V. Sidorenko, U. Sorger, Computation of distributions and their

moments in the trellis, Adv. Math. Commun. 2 (4) (2008) 373–391.

[29] Z. Li, J. Eisner, First- and second-order expectation semirings with applica-

tions to minimum-risk training on translation forests, in: Proceedings of the

2009 Conference on Empirical Methods in Natural Language Processing:

Volume 1, 2009, pp. 40–51.

[30] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, R. Carrasco, Proba-

bilistic finite-state machines - Part I, IEEE Transactions on Pattern Analysis

Machine Intelligence 27 (7) (2005) 1013–1039.

[31] J. Sánchez, M. Rocha, V. Romero, M. Villegas, On the derivational entropy

of left-to-right probabilistic finite-state automata and hidden Markov mod-

els, Computational Linguistics 44 (1) (2017) 17–37.

28

Appendix A

Lemma 5.1. Consider the following square matrix E of real values with dimen-
sion n× n:

E =

e0,0 e0,1 . . .

e1,0
. . .

... en−1,n−1

Then

|Q|−1∑
i=0

∂En

∂ei,i
= nEn−1 .

Proof. First note that:

|Q|−1∑
i=0

∂E

∂ei,i
=

1 0 . . .

0
. . .

... 0

+ · · ·+

0 0 . . .

0
. . .

... 1

 = I .

Now:

|Q|−1∑
i=0

∂En

∂ei,i
=

|Q|−1∑
i=0

∂(En−1E)

∂ei,i
=

|Q|−1∑
i=0

E
∂En−1

∂ei,i
+ En−1 ∂E

∂ei,i

=

|Q|−1∑
i=0

E
∂(En−2E)

∂ei,i
+ En−1 =

|Q|−1∑
i=0

E(E
∂En−2

∂ei,i
+ En−2) + En−1

=

|Q|−1∑
i=0

E2∂E
n−2

∂ei,i
+ 2En−1 = . . . =

|Q|−1∑
i=0

En−1 + (n− 1)En−1

=

|Q|−1∑
i=0

nEn−1 .

Lemma 5.2. Consider the following square matrix E of real values with dimen-
sion n× n:

E =

e0,0 e0,1 . . .

e1,0
. . .

... en−1,n−1

29

Then
|Q|−1∑
i=0

∂(I − E)−1E

∂ei,i
= (I − E)−2 .

Proof.

|Q|−1∑
i=0

∂(I − E)−1E

∂ei,i
=

(I − E)

1 0 . . .

0
. . .

... 0

− E
−1 0 . . .

0
. . .

... 0

(I − E)2

+ · · ·+

(I − E)

0 0 . . .

0
. . .

... 1

− E
0 0 . . .

0
. . .

... −1

(I − E)2

=
(I − E) + E

(I − E)2
= (I − E)−2 .

30

