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Dual Indicators to Analyse AI Benchmarks:
Difficulty, Discrimination, Ability and Generality

Fernando Martı́nez-Plumed and José Hernández-Orallo

Abstract—With the purpose of better analysing the result of
AI benchmarks, we present two indicators on the side of the
AI problems, difficulty and discrimination, and two indicators
on the side of the AI systems, ability and generality. The first
three are adapted from psychometric models in item response
theory (IRT), whereas generality is defined as a new metric that
evaluates whether an agent is consistently good at easy problems
and bad at difficult ones. We illustrate how these key indicators
give us more insight on the results of two popular benchmarks
in AI, the Arcade Learning Environment (Atari 2600 games) and
the General Video Game AI competition, and we include some
guidelines to estimate and interpret these indicators for other AI
benchmarks and competitions.

Index Terms—AI evaluation, AI benchmarks, item response
theory, generality.

I. INTRODUCTION

SYSTEMS in all areas in AI, however well designed
or implemented, are ultimately evaluated on a set of

problems or applications. In order to prevent systems from
specialising to these benchmarks, these try to include as many
problems and as diverse as possible. Also, because of the
maturity of some subfields in AI, many different techniques
are available. This leads to a situation where many techniques
are usually confronted with many problems. This is what we
usually find in the experimental section of many technical
papers and, especially, on running competitions.

We see this change from the breakthroughs of one system
on one single problem, to the evaluation of many systems
on many problems. Examples of the former are draughts
(checkers) in the 1950s [1], chess in the 2000s with Deep
Blue against the human chess champion Garry Kasparov [2],
the 2010s IBM’s program Watson winning the Jeopardy! TV
quiz [3], or, recently, the game of Go [4]. Examples of the
latter are the UCI machine learning repository [5], the ICAPS
planning and scheduling competitions [6] or the ImageNet
challenges [7] (see [8] for a more complete list of benchmarks
and competitions).

Furthermore, AI is nowadays used to generate much more
general-purpose, adaptive and successful behaviours primarily
in (video) games. For instance, deep reinforcement learning
and other approaches are now able to perform extremely well
in board games (e.g., [4]) and relatively well in many arcade
games (e.g., [9]). This brings the potential to use them as non-
player characters (NPC) or non-human opponents for more
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complex games in the future [10], where the same architecture
can be retrained for different games, without the effort of
designing specific NPCs for each game. However, in these
more generic scenarios, we do not know how to analyse their
behaviour beyond specific performance, especially when we
want to compare different approaches for a range of games. In
particular, apart from specialised agents, it would be useful to
have generic algorithms that can produce relatively good NPCs
for games that look of easy or medium difficulty, instead of
those that are very good, or specialised, at some hard games
but very poor at many easy others.

AI is also now paying attention to systems that solve several
tasks at a time [8], [11]. Indeed, a popular setting for general-
purpose evaluation today is a collection of games under an
interactive scenario, where agents can perceive and act, and
are rewarded when they make good choices. Many different
platforms have recently appeared in this regard [12], laying
special emphasis on the use of 2D/3D videogames for AI
evaluation [13] and attracting mainstream attention [14].

Two representative examples are the Arcade Learning En-
vironment (ALE) [15], a collection of Atari 2600 games; and
the General Video Game AI (GVGAI) competition [16], a
benchmark that comprises a large number of real-time 2D grid
games. Both ALE and GVGAI are remarkable benchmarks
that allow us to observe the performance of AI agents on a
multiplicity of problems. They have both received plenty of
interest and have become a reference for AI experimentation
and evaluation in the past few years. The popularity of these AI
benchmarks have produced a good number of results that can
now be analysed in hindsight and used to better understand not
only these benchmarks, but also general-purpose AI overall.
This analysis can be understood from the viewpoint of the
AI systems (and how to improve AI techniques) but also
from the viewpoint of the problems (and how to improve the
benchmarks). In this paper we argue that using performance
is insufficient to get a proper insight of what the systems are
able to do (and how they achieve it) and what the problems
in the benchmark are evaluating.

In this paper we present two pairs of key indicators that can
help us understand the results in AI benchmarks in a more
informative way. On the one hand, we claim difficulty and
discrimination as key indicators for AI problems. On the other
hand, we postulate ability and generality as key indicators for
AI systems. Namely,

• Looking at the problems, inferring a difficulty indicator
helps us control whether we are evaluating a proper range
of difficulties, and clarifies that we expect a general
systems to perform well for almost all easy problems
before we can direct our progress towards areas of higher
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difficulty. Relatedly, it is also important to detect whether
difficult problems are only solved by able systems, and
not by chance or specialisation by very poor systems. This
is the notion of discrimination, which will spot that some
problems may be useless, or even detrimental, for an
efficient and robust evaluation. Considering the increasing
computing demands of training and evaluation for recent
algorithms, any understanding of what the key tasks are
can imply an important contribution for AI researchers.

• Looking at the systems, ability gives us a different per-
spective from performance, as it considers the difficulty
of the problems, instead of a simple average. The most
novel insight comes from seeing whether a system –
motivated by increasing performance– focuses on a big
pocket of problems while neglecting some other smaller
pockets. It is of key importance, however, and widely
overlooked in AI, that we must understand generality in
the context of difficulty [11]. In other words, if a system
covers some of the low-hanging fruits but excludes others,
we may suspect there is some specialisation. On the
contrary, if a system covers all low-hanging fruits and
almost none of the hard problems, we can usually infer
some kind of systematic generality in the behaviour of
the system. Ultimately, it is crucial for AI researchers to
know whether they are progressing through generality or
through the exploitation of subfamilies of problems.

The analysis under these key indicators represents a novel way
of understanding not only benchmark results in AI [12], but
also video game competitions (e.g., Super Mario Bros [17] or
Angry Birds [18] or StarCraft [19] AI competitions) as well as
the existing architectures for multi-purpose game agents and
bots addressing them [20]. This kind of assessment may have a
huge impact on how players and competitions are designed and
how the results of the AI systems (and humans) are interpreted.
We are not claiming that these two pairs of indicators are
necessarily giving us the most complete information (this is
ultimately given by the whole data), but they are a good trade-
off between monolithic indicators (and limited insight) and too
many indicators (and strong overlap).

In this paper, we obtain these indicators in different ways.
Some of them (difficulty, discrimination and ability) are esti-
mated through simple models inherited from Item Response
Theory (IRT), a powerful technique from psychometrics [21].
Generality, as newly defined in this paper, is derived from
the dispersion statistics, but taking difficulty into account. In
all cases –and this is important to note–, the indicators are
populational, i.e., they depend on a set of AI systems and
a set of AI problems. Consequently, when we change the
population, the obtained indicators may change as well.

The rest of the paper is organised as follows. Section II
presents the indicators we propose for analysing the results of
AI benchmarks. Section III describes the result data we will
explore: the ALE and GVGAI problems and the AI techniques
used to solve them. The estimation of the indicators for these
benchmarks and how they can be used to understand the
behaviour of problems and systems, is seen in sections IV
and V respectively. Section VI summarises the main findings
and contributions, describes some limitations and guidelines

for evaluation, and discusses the future work.

II. KEY INDICATORS FOR AI BENCHMARK RESULTS

Whenever a benchmark is built, its creators usually consider
a set of problems or tasks that are representative of the kinds
of applications we want to progress on. One way of looking
at this progress is in terms of overall performance. If the
set of systems or agents j is Π, with |Π| = m, and the
set of problems, tasks or items i is M , with |M | = n,
we can have a measure of the result (the response) of each
system j for each problem i, as Rj,i, making up an m × n
result matrix1. Then, for a single system j, we can calculate
its (weighted) average performance

∑
j wiRj,i, where wi are

weights given to problems. The first thing this assumes is
that performances are commensurate, with the weights giving
more or less relevance to some problems depending on their
importance. In this case, we would say that a system A is
better than a system B if the (weighted) average performance
is higher. In some other cases, if the performances are not
commensurate, one can be satisfied with a binary comparison
by how many wins/ties/losses there are in their performances.
If we want to compare more than two systems at the same
time, we would use rankings instead, which can be produced
from the aggregated performance, from a count of pairwise
comparisons or in other ways. There are many other variations,
especially when we want to apply some statistical tests on the
results, but all of them are based on some notion of aggregated
or comparative performance.

However, there is another way of looking at this. One can
consider that not all problems have the same difficulty. That
does not mean that difficult problems should count more than
easy problems, but that difficulty should be taken into account
in any notion of quality of a system, and most importantly,
in any measure of progress. Indeed, a system behaving well
on difficult items but poorly on easy items would certainly
be a strange specimen. In a way, we not only expect a
positive monotonicity between the quality of a system and
the probability of a correct response, but also some kind of
positive monotonicity between the quality of a system and the
difficulty of the problems it can likely solve. This observation
suggests a completely different way of analysing results, which
led to IRT, as we introduce next.

A. IRT in AI: ability, difficulty and discrimination

Item response theory (IRT) [21] has mainly been used
in educational testing and psychometric evaluation in which
examinees’ ability is measured using a test with several
questions (i.e., items). In essence, IRT is a set of mathematical
models that describe the relationship between a latent trait
of interest and the respondents’ answers to individual items,
where the probability of a response for an item is a function
of the examinee’s ability and some item’s parameters. There
are models developed in IRT for different kinds of response,
but we will focus on the dichotomous models where responses
can be either correct or incorrect. Multiple choice items (more

1We follow the usual convention in IRT with items being columns referred
to by index i.
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than two options) can also be considered dichotomous since
they can still be scored as correct/incorrect.

In this context, let Rj,i be the binary result of a respondent
j to item i, with Rj,i = 1 for a correct response and Rj,i =
0 otherwise. Let θj be the ability or proficiency of j, and
let us imagine for a moment that this value is known. Now,
assuming that the result only depends on the ability of the
respondent, and we assume a particular value for respondent
j, we can express the result as a function of i alone, i.e. Ri.
For the basic 3-parameter (3PL) IRT model, the probability of
a correct response on an item given the examinee’s ability is
modelled as a logistic function:

P (Ri = 1|θj) = ci +
1− ci

1 + e−ai(θj−bi)
(1)

The above model provides an Item Characteristic Curve (ICC)
(see Fig. 1 (Left)) with three parameters:

• Difficulty (bi): it is the location parameter of the logistic
function and can be seen as a measure of item difficulty.
When ci = 0, then P (Ri = 1|bi) = 0.5.

• Discrimination (ai): it indicates the steepness of the
function at the location point. Alternatively we can use
the slope at location point, computed as ai(1− ci)/4 to
measure the discrimination value of the instance.

• Guessing (ci): it represents the probability of a correct
response by a respondent with very low ability (P (Ri =
1|−∞) = ci). This is usually associated to a result given
by chance.

The basic IRT models can be simplified to two parameters
(e.g., assuming that ci = 0), or just one parameter (assuming
ci = 0 and a fixed value of ai, e.g., ai = 1).

In our adaptation of IRT, an item in IRT can be identified
with a problem or task in AI (e.g., an ALE or GVGAI game),
and an individual, subject or respondent can be identified with
an AI method, technique or system [22]. While a guessing
parameter might be meaningful in some AI problems (e.g.,
classification [23], [24]), it is not appropriate when a random
agent is expected to score poorly (e.g., in a videogame). On
the contrary, the discrimination parameter is very informative
about whether a particular instance is aligned with ability (i.e.,
to detect a negative monotonicity between the quality of a
system and the probability of a correct response).

For IRT, the difficulty and discrimination of the items are
considered latent traits that may be unknown, and they have
to be estimated from the result matrix. Similarly, the ability
of an individual is considered a latent trait that can also be
estimated based on her responses to discriminating items with
different levels of difficulty. Respondents who tend to correctly
answer the most difficult items will be assigned to high values
of ability. Difficult items in turn are those correctly answered
only by the most proficient respondents. Notice that ability
and difficulty appear subtracted in the exponent of the logistic
model in Eq. 1, so they are on the same scale, which gives
these two parameters a dual character (e.g., an agent of ability
4 has 0.5 probability of being correct for an item of difficulty
4). Also many models assume that both parameters follow a
normal distribution.

Straightforward methods based on maximum-likelihood es-
timation (MLE) can be used to estimate either the item pa-
rameters (when respondent abilities are known) or the abilities
(when item parameters are known). A more difficult, but com-
mon, situation is the estimation when both the item parameters
and respondent abilities are unknown. In this situation, an
iterative two-step procedure, the Birnbaum’s method [25], can
be adopted for dichotomous items:

• (1) Start with initial values for abilities θj (e.g., random
values or the number of correct responses).

• (2) Estimate the model parameters, assuming the abilities
of the previous step.

• (3) Estimate the abilities θj , assuming the model param-
eters in the previous step.

• (4) Until stop condition, go to (2).
Some implementations iterate the above process a fixed num-
ber of times (1,000 in ltm R package2) and/or stop when
the model’s goodness of fit reaches a given threshold. In
Birnbaum’s method, the fit of the model is based on approxi-
mate marginal maximum likelihood, using the Gauss-Hermite
quadrature rule for the approximation of the required integrals.
Item parameters and respondent abilities are alternatively
estimated in this iterative process, and overall they are derived
only based on a set of observed responses to items, with no
previous knowledge about the true ability of the respondents.

The key assumption, in any case, apart from the particular
model family and the parameter scales and distributions, is
monotonicity. Fig. 1 (Left) shows an item characteristic curve,
where the probability of correct response grows monotonically
as a function of the ability of a classifier.
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Fig. 1: Left: Example of a 3PL IRT ICC curve , with slope
a = 2, location parameter b = 3 and guessing parameter c =
0.1. Right: Example of PCC curves with different abilities.

A positive (i.e., increasing) monotonicity is captured by a
positive discrimination parameter. We actually expect more
able systems to perform better than less able systems for
that item. If this is not the case, when discrimination is
negative, we have an unusual problem (and abstruse item,
in the IRT terminology). If the problems are well selected
(or well filtered) we should not have negative discriminations.
When comparing positive discriminations, higher positive val-
ues (steeper curves) indicate that the item is very informative
around its level of difficulty (very discriminative in the region
where a high slope takes probability from low to high values).

2https://cran.r-project.org/web/packages/ltm/
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On the contrary, low positive discrimination (flatter curves)
means that the item is informative in a wider range of abilities,
but less crisp near the difficulty parameter.

In a dual way, for a given ability we can plot the probability
of correct response against difficulty. Fig. 1 (Right) shows
three person characteristic curves (PCC) for three agents with
different abilities. For AI we will call them agent character-
istic curves. We expect these curves to be decreasingly mono-
tonic, with very able systems being good at easy problems and
decaying later than less able systems.

B. Precluding specialisation in AI: generality
The dichotomy between narrow and general AI has caused

a long and controversial debate we will not reproduce here.
However, even when we restrict to particular domains, there
is usually the very good argument that we cannot expect a
general system to be good at all possible problems. For some
classes of problems, it is possible to build a system that is valid
for all the problems in the class, but the situation becomes
trickier for some other classes. This is especially the case for
very open classes of problems such as video games. The idea
of thinking of a general system that excels at all of them
seems infeasible for many areas and benchmarks. This means
that systems will fail at some tasks.

The subset of problems a system fails at can be completely
random or can follow some pattern. If this pattern represents
some particular characteristics these problems do (not) have,
we can infer that the system has somewhat specialised in
favour of (or against) that pattern. But if the pattern is related
to the resources or the difficulty of the problem, we tend to
consider this as a general adjustment between possibilities
and resources. For instance, a calculator that could only
multiply even numbers is not considered very general, whereas
an ordinary pocket calculator is still considered general for
multiplication, even if it fails for all the large numbers that go
beyond its digit capacity. This suggests that the crux of the
question about generality is capacity, or difficulty. One can
actually be good at all (or almost all) problems up to certain
difficulty, even for very broad problem classes.

This is related to some fundamental questions such as
whether it is possible to build a system that excels at all
possible problems. The no-free-lunch theorems [26], [27]
argue that this is not possible, if one assumes block-uniformity
for all possible problems. But this assumption will not hold if
we order problems by some metric of difficulty (making very
difficult problems less likely) and hence we look for agents
that are good up to a certain level of difficulty. Actually, it
is not a surprise that one finds free lunches, with systems
that work generally well, when problems are built in such
a way that resources (and difficulty) is not a completely
unbounded and random variable, as happens with benchmarks
in AI (e.g., [28]), or other games that were originally conceived
for humans, which are resource-bounded systems. As we will
see, only when the notion of difficulty is introduced (as we
have done with IRT in the previous subsection), the analysis
of generality becomes really meaningful.

To make the point even clearer, let us start with a notion
that ignores difficulty, and we will introduce a version that

does consider difficulty afterwards. Ignoring difficulty or any
other parameter of the problems, one can simply introduce a
measure of dispersion. Let us denote by σ2

j the populational
variance of results for system j:

σ2
j =

∑
i(Rj,i − R̄j)

2

n
(2)

where R̄j is the average result for system j. Considering this
variance as an extra, informative, parameter, we could simply
define a measure of regularity as the inverse of the variance. In
an AI benchmark, such as ALE or GVGAI, one system would
be regular if their results have low variance. If a system has
very good results on some problems but very bad results on
others, even if the overall quality is good, the regularity would
be low.

For binary responses, we have a Bernouilli distribution,
which means that the variance is reduced to just R̄j · (1− R̄j).
Consequently, we would not need an extra parameter for the
dispersion of results for an agent, as variance, and hence
regularity, would just be a function of the average performance
R̄j of the agent. This is one reason why an extra fourth
parameter is not usually considered in the binary models in
IRT. However, if the models are not binary, things are different
(further information can be found in [29]).

In an AI benchmark, such as ALE or GVGA, one system
would be regular if their results have low variance. If a system
has very good results on some problems but very bad results on
others, even if the overall quality is good, the regularity would
be low. But is this variance caused by failing at more difficult
problems (as expected) or failing at some subfamilies (pockets)
of problems? This is when difficulty comes in: any generality
metric (and associated plot) has to be analysed in terms of
difficulty. We now introduce a new metric of generality that
does take difficulty into account:

γj =
1∑hmax

h=1 (σ
[h]
j )2

(3)

where σ[h]
j is the standard deviation of agent j on all problems

of difficulty h. Continuous difficulties could be handled by
using an integral instead of a sum. However, as we will
estimate generality from a sample, we assume difficulties are
discrete (or discretised by bins). Note that for small samples
the number of bins is important. For instance, if there is
only one single bin for all items then generality becomes
equal to regularity. The higher the number of bins the better,
approaching a continuous notion of difficulty. However, in
estimation, for a finite number of instances, binning has to
be done with at least a minimum number of examples per bin,
to avoid undefined or very unstable variances.

The estimation can be done up to a maximum difficulty
hmax. Nevertheless, if we assume that systems have zero
performance once a certain difficulty is reached, then there
is no need to set a limit of difficulties on the sum.

Given Equation 3, how can we get maximum generality?
This is actually achieved when the slope of the agent charac-
teristic curve is −∞, i.e., the agent is perfect up to a given
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difficulty and hopeless from that moment on. In this case all
variances are 0 and generality is infinity.

This relation of generality to the slope of the agent char-
acteristic curve finally completes the circle and the duality
between agents and problems, since generality can be seen
as dual to discrimination (the slope of the item characteristic
curve). For binary answers, there is no extra degree of free-
dom, and this extra parameter is confounded by all the others.
But for continuous values (scores or probabilities), the slope
has this extra degree of freedom.

In the same way that two agents with the same average
performance (or ability parameter) cannot be distinguished as
more or less general, we can have two systems with the same
generality value with very different behaviour. For instance,
we can have an agent A that is perfect up to difficulty h = 5
and an agent B that is perfect up to a difficulty h = 2.
Looking at generality, both would have γ = ∞ and would
then be indistinguishable with generality. But, clearly, agent
A is more capable than agent B. Actually, in this case, we
have a very interesting way of looking at their relation. If
two agents are perfectly general and one is more capable than
the other, we have a dominance relation. In our example, A
dominates B. We can assert that whatever is solved by B
is solved by A. This is closely related to the intuition of
the transitivity of performance, already explored in previous
papers of the GVGAI competition, which has raised doubts
about the generality of the participants [30], [31].

In the following sections, we will better analyse the be-
haviour and interpretability of this new notion of generality.
But let us first introduce the two benchmarks we will work
with.

III. BENCHMARKS: ALE AND GVGAI

In this section we will describe the benchmarks (ALE and
GVGAI) we will use for the experiments in the next section3.

A. The Arcade Learning Environment

The Arcade Learning Environment (ALE) was introduced
by [15], after compiling a good number of games for Atari
2600, a popular console of the late 1970s and most of the
1980s. The simplicity of the games from today’s perspective
and the use of a visual input of 210 × 160 RGB pixels
at 60Hz makes the benchmark sufficiently rich (but still
simple) for the AI algorithms of today. After [9] achieved
superhuman performance for many of the ALE games, the
benchmark became very popular in AI. There are so many
platforms, techniques and papers using ALE today that the
results on this benchmark are usually analysed when talking
about breakthroughs4 and progress5 in AI.

We have performed a bibliographical search to find all the
papers that include experiments with a wide range of ALE

3For the sake of reproducibility and transparency, all the code and data is
on Github (https://github.com/nandomp/AI benchmark analysis).

4http://cdn.aiindex.org/2017-report.pdf and https://www.eff.org/ai/metrics
5http://www.milesbrundage.com/blog-posts/

my-ai-forecasts-past-present-and-future-main-post

games. We first discarded those techniques that use look-
ahead access to a simulator (this is common in search-based
approaches [32], [33], [34], but not comparable to humans).
This is due to the real-world situation of human players that
have to perform with no access to the game other than the
screen, and this is the standard for comparison. Look-ahead
techniques could have been studied separately (the ones we
use in the next section with GVGAI), but what should not be
done is to combine results with different rules.

Hence, we will use the results obtained with truly learning
approaches (most, but not necessarily all, using reinforcement
techniques, usually in conjunction with deep learning). In this
category, we are flexible about whether the results include
human demonstrations or not (“noop” and “humanstarts”
settings). Overall, we integrated about 40 techniques from
about a dozen papers covering classical deep reinforcement
learning techniques (DQN) [9], [35], as well as specific adap-
tations to the DQN such as those using duelling architectures
[36], those with prioritised experience replay [37], or those
reducing inherent estimation errors of learning [38]. We also
analysed more recent approaches which improve the stability,
convergence and runtime of DQN [39], [40], [41], as well
as some distributed/parallel versions [42], [43]. Evolution
strategies [44], such as a scalable alternative to DQN, were
also included. We discarded some papers because they did
not include the results for all the 49 games that are most
common in many papers. As some results (especially DQN)
are reported repeatedly for some papers, we removed all results
with a correlation higher than 0.99. In other cases, the results
for the same technique with different parameters were kept.
We also removed repeated results. Note that some techniques,
such as DQN, are used repeatedly, but with different conditions
(parameters). Only exact equal results were removed.

B. The General Video Game Playing Competition
The General Video Game AI (GVGAI) competition [16]

was one of the first AI competitions featuring a significant
number of unseen games within a relatively large problem
space (after [45]). As in ALE, this competition focuses on
video games, in particular two-dimensional games including
classic arcade, puzzles, shooters and many more. The games
can also differ in the way players are able to interact with the
environment (actions), the scoring systems, the objects that are
part of a game or the conditions to end the game. Unlike ALE,
GVGAI was created to avoid participants tailoring their sub-
missions to a few well-known games. Instead, participants are
pitted against a number of unseen games. Another difference is
that controllers are able to access an abstract representation of
the game state (so complex perception is not needed) as well
as a simulator so that (look-ahead) tree search algorithms and
other planning approaches can be used.

Because of this access to the simulator, those controllers
based on Monte Carlo Tree Search (MCTS) [46], Rolling
Horizon Evolutionary Algorithms (RHEA) [47] as well as
hybrids with popular tree search methods have been successful
on this benchmark. However, as shown in [30], performance is
non-transitive since different controllers play different games
best and, thus, no algorithm dominates all the others.
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Regarding the data, we will work with the scores of 49
games and the 23 controllers (agents) that were submitted to
the 2015 GVGAI competition6 [31]. Each game has 5 levels,
and each level was attempted 5 times. This makes a total of
23×49×5×5 = 28175 trials. For each trial the data includes
the win/loss achieved by the controller.

C. Normalisation

In the case of ALE, we have point scores (usual in
videogames), which are clearly not commensurate (10,000
points in a game may be low while 50 in another may be high).
It is then common to normalise them by human scores (where
0 equals random, and 100 equals human level), usually putting
human level as a target for a “successful” or “acceptable”
result. On the other hand, for GVGAI we do not have human
results as a reference, but a notion of success is given by
the “win/loss” values (1:win, 0:loss), which indicate whether
the agent ‘beat’ the game. Each game was attempted 5 times,
so win/loss values can be averaged by the number of trials
to obtain scores. When analysing both benchmarks, we have
linearly scaled their results to z-scores (or standard scores)
for both benchmarks so that we can compare the results in a
more meaningful way. Then we apply the error function, so
Rj,i always ranges from 0 to 1.

IV. TASK ANALYSIS: DIFFICULTY AND DISCRIMINATION

Even if we normalise or scale the scores, this does not
give us any idea of the difficulty of the tasks or their
discriminating power. In these games it is hard to derive a
specific notion of difficulty in terms of the features of the
games. The number of NPCs, the size of the game or other
metrics would not help much to a notion of difficulty7. Other
general definitions of theoretical difficulty and discrimination
[11] would be computationally very expensive. As a result,
a populational approach, as represented by IRT, seems the
most straightforward approach to derive the difficulty and
the discrimination parameters. In order to apply binary IRT,
we consider a ‘success’ as explained in the previous section
(above or equal human performance for ALE, and equal or
more wins than loses for GVGAI games).

Some tasks for ALE were always below or always above
human performance for all techniques (i.e, constant results
after normalisation). This implies that the IRT models cannot
be fitted for these tasks, so these were excluded for the rest of
the analysis. Similarly, some tasks for GVGAI were removed
as they have the same result (0 or 1) for all agents.

Once the data is ready, a 2-parameter IRT logistic model
(2PL) is learned for each ALE and GVGAI game. We adopt
MLE to estimate all the model parameters for all instances
and the classifier abilities simultaneously, as usual in IRT.
In particular, for generating the IRT models, we used the
ltm R package2, using Birnbaum’s method, as explained in

6Results courtesy of Julian Togelius.
7The ALE games include the notion of mode, which alters the games (e.g,

changing the game dynamics, actions, etc.), but it is not linked to difficulty.
ALE supports non-commensurate difficulties since its version 0.6 (Sept 2017),
but no new systematic results are available with these.

section II-A. The package ltm (as many other IRT libraries)
outputs indicators about the goodness of fit, which can be used
to quantify the discrepancy between the values observed in the
data (items) and the values expected under the statistical IRT
model. Item-fit statistics may be used to test the hypothesis
of whether the fitted model could truly be the data-generating
model or, conversely, we expect the item parameter estimates
to be biased. In practice, an IRT model may be rejected on the
basis of bad item-fit statistics, as we would not be reasonably
confident about the validity of the inferences drawn from it
[48]. Apart from the goodness of fit, in order to double-check
the results, we recommend re-estimating the parameters with
different initial values (seeds) for every model you fit in order
to check whether the estimates are consistent. In the present
case, none of the estimated models were discarded because of
bad item-fit statistics or inconsistency in their results.

Regarding the results, for the ALE games, difficulties range
from −10.51 to 8.22, while discriminations range from −0.64
to 58.27. For the GVGAI games, difficulties range from
−29.58 to 84.53, while discriminations range from −0.19 to
123.22.

The item parameter that is easiest to understand is difficulty.
Because of the MLE estimation method, the value is not
equal but well correlated with the percentage of AI techniques
that are successful for the game. Intuitively, easy games are
solved by almost all techniques, and difficult games are those
that are only solved by very able techniques. Figs. 2 (left)
and 3 (left) show, respectively, the ICCs of those three most
(and least) difficult ALE and GVGAI games with positive
discrimination. From those games, the most difficult ALE
game seems to be H.E.R.O, and iceandfire.1 for GVGAI.
However, we see cases such as Tennis (ALE), which has the
highest difficulty (8.22) but negative discrimination (−0.13,
Fig. 2 right). According to [15], it is a challenging game
that requires fairly elaborate behaviour before observing any
positive reward, but simple behaviour can avoid high negative
rewards by not ever serving, which possibly explains the
negative discrimination. Something similar happens with the
GVGAI games, where factorymanager.3 is the third most
difficult one (20.9), but its discrimination is negative (−0.15,
Fig. 3 right).

The discrimination parameter measures the capability of a
game to differentiate between techniques. When applying IRT
to evaluate techniques, the slope of an instance can distin-
guish between strong or weak techniques. Figs. 2 (middle)
and 3 (middle) show, respectively, the ICCs of the most
discriminating ALE and GVGAI games. From the 41 ALE
games analysed, 37 had positive discrimination. Regarding
the 154 GVGAI games of different modes analysed, 148 had
positive discrimination. For all these the probability of correct
responses is positively related to the estimated ability of the
techniques. However, negative discriminations were observed
for 4 ALE (Fig. 2 right) and 6 GVGAI games (Fig. 3 right).

These “abstruse” cases (most frequently solved by the
weakest techniques) are anomalous in IRT, and should be
considered with extreme care for the analysis of new AI
algorithms. Are these games particularly difficult or are they
just useless for evaluation since most able techniques do worse
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Fig. 2: ICCs of the 3 most (bluish colours) and least (reddish colours) difficult (left) and discriminating (middle) ALE games.
In both cases the negative discrimination instances have been filtered out (which are shown on the right plot). All ICC plots
from the benchmark are shown in grey.
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In both cases the negative discrimination instances have been filtered out (which are shown on the right plot). All ICC plots
from the benchmark are shown in grey.

than those less able ones? Should we restrict our benchmarks
to those items to positive (preferably high) discrimination?
That depends on the purpose and resources of the evaluation,
but what is clear is that, to determine which games are most
informative for the analysis of new AI algorithms, difficulty
alone is insufficient: we also need to look at discrimination.

In a nutshell, the discrimination parameter provides us an
extra dimension to characterise a game. If a game has positive
discrimination, it is actually well aligned with ability, and only
the good AI techniques obtain good scores. In case a game
has a discrimination close to 0, it has a high failure ratio (but
happens with good and bad classifiers equally). Finally, if a
game has negative discrimination, it is not aligned with ability
(with more good AI techniques failing to obtain good scores
than bad classifiers). These three cases explain the role of the
discrimination parameter when evaluating AI techniques.

V. TECHNIQUE ANALYSIS: ABILITY AND GENERALITY

As we mentioned in Section II-A, IRT has a dual character:
we get information about the items (games) but also about
the respondents (AI techniques). IRT estimates a value of
ability θ for each AI technique. Unlike average scores, ability
takes difficulty into account and is normalised. For instance,

if an AI system scores well for difficult games but fails
for some easy ones, IRT can give it more value than the
opposite situation, depending on their item parameters. Also,
IRT penalises those AI techniques that score well in games
with negative discriminations.

If there are not many items with negative discrimination, as
in our case, ability will be similar to an aggregation of results.
Fig. 4 shows scores on the x-axis and ability as graded colour
from red to blue, with almost perfectly aligned rankings.

Ability assumes that agents are better at easy instances than
they are at difficult instances, but this implies an uneven treat-
ment on subpopulations of problems. As discussed in previous
sections, this is reasonable. The question is what pattern the
“unevenness” (or dispersion) has. If it is actually unrelated
to difficulty, we may have pockets of good performance (and
pockets of poor performance) with different problem patterns,
and the technique would not be very general.

Let us start with the global variance as an indication of
regularity, not taking difficulty into account. In Fig. 4, we
see that for the same score and ability value, regularity may
vary significantly. For instance, for ALE, PRIOR DQN and
PRIOR.DUEL (DQN-based methods from [36], labelled in
Fig. 4, top) have similar score and ability, but the former seems
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Fig. 4: Variance vs. average normalised score for the AI
techniques included in this study (top: ALE, bottom: GVGAI).
The IRT abilities are shown with graded colours from red to
blue. The dashed grey curve is the variance of a Bernoulli
distribution (the worst case).

more regular (with a variance of only 0.05).
But is this actually a measure of generality? Is it so different

from the definition of generality in equation 3 that does
take difficulty into account? Let us find out. Fig. 5 (top)
shows the theoretical agent characteristic curves (ACCs). The
IRT models are logistic, with just one parameter varying
for the agents (the position, i.e., the ability). If we fix the
difficulty, and assume the discriminations ah are similar for
all difficulties h, we have that all slopes are the same. That
means that for each technique j, using equations 1 and 3, and
applying the variance of a Bernoulli distribution, we have:

γj =
1∑hmax

h=1
1

1+e−ah(θj−h)
(1− 1

1+e−ah(θj−h)
)

=
1∑hmax

h=1
e−ah(θj−h)

(1+e−ah(θj−h))2

We would have that if θj is sufficiently large (so that the
variance approaches zero for h = 1) and not sufficiently close
to hmax (so that the variance approaches zero for h = hmax),
then we would have the same γj for each j, as the only thing
that changes is location. This is what we see in Fig. 5 (top).

However, the empirical curves, as shown in Fig. 5 (bottom)
give us a different view. Some techniques have different slopes,
which, together with the discontinuities and monotonicities,
give us different generalities, as shown with the areas of the
semitransparent ribbons (the smaller the area inside the ribbon
at the bin points the higher the generality). See, for instance,
the methods DDQN Rank (ALE, in olive green colour) or
AIJim (GVGAI, in pink colour) in Fig. 5 (bottom). Both have
high values of generality but low regularity. The reverse is also
the case. NovTea (GVGAI, in green marine colour) has high
regularity but medium-low generality value. All this can be
seen more clearly in Fig. 6, where we use the slope of the
empirical curves at mean score 0.5 as a proxy for generality
(the higher the slope the higher the generality).

These observations are somehow confirmed by the nature of
the methods used. If we focus on the GVGAI methods because
of its wider variety of algorithms, we see that AIJim, a variant
of MCTS that performs well in related domains (see [46]), has
high generality. As for the low generality of NovTea, it is
an Iterated Width-based approach [49], originally a planning
technique, which tries to outperform MCTS in GVGAI with
specific tuning (pruning using novelty test [31]).

Fig. 6 shows there is a correlation between regularity and
generality (0.62 and 0.4 for ALE and GVGAI, respectively),
but they are different concepts. To see this more clearly,
we find a negative correlation between ability and regularity
(−0.68 and −0.84 for ALE and GVGAI): most able tech-
niques are those that have higher variance (as we saw in
Fig. 4). However, there is no clear correlation between ability
and generality (−0.16 and −0.03 for ALE and GVGAI). This
gives us the reassuring insight that the progress in these two
benchmarks is not significantly due to a loss of generality.

As generality and capability could be increased (or sacri-
ficed) independently, we can ask the question of how gen-
erality should be used for competitions, or for encouraging
further progress in AI. Several options exist, such as setting a
limit of generality in order to qualify for the competition, or
integrate generality and ability in some compound metric. It is
important to see how generality behaves for all the participants,
as if many of them are general then, because of the duality
of the parameters, we will have very discriminating items.
Actually, maximum generality for all agents implies maximum
discrimination for all items and vice versa. Consequently, there
is a risk of trying to eliminate items with low discrimination
to increase the overall generality (and hence transitivity). It is
also important to determine whether low or negative discrim-
inations are caused by issues of a problem or game (e.g., it
depends too much on random effects, or strong discontinuities
in the scores in terms of the effort needed to solve them,
etc.), so that removing it will strengthen the evaluation, or it
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Fig. 5: (top) Theoretical ACCs, i.e., probability of a correct response as a function of the difficulty parameter for an illustrative
subset of techniques for ALE (left) and GVGAI (right). (bottom) Empirical ACCs (across bins on the difficulty parameter)
for the same subset of techniques. In order to see some progression in the curves (sufficient detail) but still some robustness
without spurious peaks, the bins had to contain a minimum number of instances in each interval. Consequently, we set a
minimum number of 4 bins with at least 10 examples per bin. Dashed black vertical lines represent the average difficulty
values for the instances in each bin. Variance is also represented for each technique (semitransparent ribbon in ±(1/2)σ2).
Negative discrimination instances filtered out.

is because lack of generality of the population of agents, which
may be solved by having more general agents in subsequent
competitions. Negative discrimination can also suggest that
the problem is actually an outlier, very different from the rest,
and hence it may be useful to include new problems of similar
characteristics to make a benchmark more general.
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Fig. 6: Slope (proxy for generality) against regularity (inverse
of the variance) for all the analysed techniques. Left: ALE,
Right: GVGAI. Coloured points represent those systems in
Fig. 5.

VI. DISCUSSION

The previous sections have identified four indicators to
analyse the results from sets of AI problems (games) and
AI systems (players). Difficulty and discrimination have been
shown useful for any populational analysis of results in other
areas, and they can also play an important role in AI and
games. When looking at an AI problem, we see that its
difficulty can be caused by several reasons (difficult underlying

state representations, varying speeds and types of enemies or
goals, etc.). It is however when we analyse the discrimination
parameter that we at least can see whether a problem is
difficult due to different reasons: (1) it is difficult because only
the good techniques are able to score well at it, or (2) it is
difficult because no technique gets it right (having a flat slope).
As for ability, while usually related to average performance,
it is a normalised parameter, which also takes difficulty into
account. Indeed, when the discrimination of a problem is flat
or negative, we cannot expect a positive monotonicity between
the ability of a method and the probability of a correct response
for the item. This would make many poor agents (below the
difficulty of the item) getting it right and many good agents
(above the item difficulty) getting it wrong.

The techniques in this paper also have some limitations. IRT
needs to estimate many parameters, and it can only be applied
once we have a good number of results of the respondents
(controllers/algorithms) over the items (games). This is why
we have chosen ALE and GVGAI to illustrate their use, as
we have been able to get a relatively large results table. In
the case of ALE, this can be done when the benchmark has a
sufficient large number of problems and has attracted sufficient
attention to get many different techniques being evaluated on
it. For competitions such as GVGAI, once the participants of
the competition have submitted their controllers to the game
sets, the results can be used o obtain both the final rankings
and the IRT parameters.

But, once the parameters are estimated, one can obtain the
ability and generality for a single new agent, especially in the
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context of adaptive testing, without a re-estimation of all the
item parameters. The obtained ability is defined on a normal
scale, which is more informative and illustrative than a ranking
(we can see if the winner is much better than the runner-up,
for instance, in the context of the population). In general, if
two editions of the same competition (or two rounds of the
same competition) use the same items (or we just analysed
the common items), the parameters of the first can be used to
evaluate the results of the second without a re-estimation of
the item parameters. Indeed, this is the recommendation when
a competition is held for several rounds or editions: calculate
the item parameters, and use them for the evaluation of new
techniques. From time to time, the parameters can be re-
evaluated when the agent population has changed significantly.

Another feature of IRT and the four parameters introduced
is that they are sample dependent. Of course we expect
that things will change when we change the items (so the
benchmark is measuring a different thing), but it is hard to
understand that in single-player games the ability of an agent
changes if some other new agents are included in the pool, like
in adversarial games such as chess and Go (although this is not
always seen as a negative thing, see e.g., [50]). The reason why
the parameters of one agent are affected by other agents is that
the notion of discrimination/difficulty in IRT is populational,
so when we change the population (e.g., improving an agent),
the obtained parameters will differ. Similarly, in this paper,
IRT is also used to estimate the ability of a new technique,
so it is also populational. As the measure of generality uses
difficulty, it also becomes populational. In these conditions,
the way in which agents progress can make an impact on
several metrics. For instance, if agents improve on the easy
items, they will become more general. The generality of good
agents will help contribute making discrimination positive for
more items, since discrimination is negatively affected by good
agents performing poorly on easy items.

One possibility to make ability and generality less prone to
changes in the population is to calibrate some parameters with
the use of agents for which we have theoretical expectations,
especially if we can change some of their configurations or
we can tune them by some of their hyper-parameters. For
instance, in [23] the IRT models were derived for a random
forest classifier, whose ability was gauged by the number of
trees that were used in the multiclassifier.

A more principled alternative to the sample dependence
issue is to make difficulty non-populational, using some notion
of difficulty that derives from the tasks themselves. With this
we would have a metric of generality (and capability) that
would not depend on the other agents, and would not change
whenever the agent population changes.

Overall, it is important to give some methodological take-
aways for those general situations where we have to estimate
the four parameters. First, we should wait to have a wide
range of problems or games that are representative of what we
want to evaluate or set as a benchmark. Adding many small
variations of the same problem will affect the metrics of ability
but most especially generality, as they can create clusters for
which the agents can specialise. Second, we will have to wait
until an important number of techniques have been applied to

the benchmark, either through a literature meta-review (as we
have done here for ALE) or from the results of a competition
(as we have done here for GVGAI). Third, publishing the
estimated parameters for problems and agents publicly is key
for other researchers to use them in the evaluation of new
agents or the definition of new benchmarks.

The most novel contribution in this paper is the introduc-
tion of the generality indicator, which becomes meaningful
precisely because of the use of difficulty: different levels of
difficulty imply different distribution of results for a method.
Generality should not be understood in terms of the global
variance. This paves the way for a better understanding of the
G in AGI (Artificial General Intelligence), and other domains
in AI that are aiming at more general-purpose AI systems.

The four indicators, which can be obtained easily with
the code we provide, can also be particularly meaningful
from the viewpoint of AI benchmarks [12] and (videogame)
competitions [51], [19], [17], [18], as they provide a proper
insight of what the games (and other tasks) are evaluating,
and even whether they can be considered useless for a good
evaluation in the benchmark. Also, taking into account the long
training and evaluation times of recent computing-demanding
techniques, any understanding of what the key games are (in
order to reduce the size of the benchmark, specially in the
hyperparameter search) can imply an important contribution
for AI researchers. With the generality metric, we also have
an extra parameter that can give us more information about
whether the negative discriminations are caused by some
pathologies of the item or because the agent population has
insufficient generality.

On the other hand, we can also obtain further insight
of those AI systems addressing these games (beyond their
aggregated performance). It is important to determine whether
the new techniques, especially those that rely on long training
stages with a game, are coping well generally, and not only
for a pocket of problems, but failing in some situations. This
is relevant for both the AI and video game communities.

Of course, other models are possible, with more or less
parameters, and estimated in different ways. For instance, we
want to derive more sophisticated 4-parameter IRT models
using continuous inputs. In general, the specific number of
parameters will depend on whether some of the variables are
given or not (for instance, if we have a theoretical notion of
difficulty). Overall, the most important insight is this dual view
between AI tasks and AI systems.
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