

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/169035

Valderas, P.; Torres Bosch, MV.; Pelechano Ferragud, V. (2020). A microservice
composition approach based on the choreography of BPMN fragments. Information and
Software Technology. 127:1-17. https://doi.org/10.1016/j.infsof.2020.106370

https://doi.org/10.1016/j.infsof.2020.106370

Elsevier

A Microservice Composition Approach based on the

Choreography of BPMN fragments

Pedro Valderas, Victoria Torres, Vicente Pelechano

PROS Research Centre

Universitat Politècnica de València

Camí de Vera s/n, E-46022, Spain

{pvalderas, vtorres, pele}@pros.upv.es

Abstract

Context: Microservices must be composed to provide users with complex and

elaborated functionalities. It seems that the decentralized nature of

microservices makes a choreography style more appropriate to achieve such

cooperation, where lighter solutions based on asynchronous events are

generally used. However, a microservice composition based on choreography

distributes the flow logic of the composition among microservices making

further analysis and updating difficult, i.e. there is not a big picture of the

composition that facilitates these tasks. Business Process Model and Notation

(BPMN) is the OMG standard developed to represent Business Processes

(BPs), being widely used to define the big picture of such compositions.

However, BPMN is usually considered in orchestration-based solutions, and

orchestration can be a drawback to achieve the decoupling pursued by a

microservice architecture.

Objective: Defining a microservice composition approach that allows us to

create a composition in a BPMN model, which facilitates further analysis for

taking engineering decisions, and execute them through an event-based

choreography to have a high degree of decoupling and independence among

microservices.

Method: We followed a research methodology for information systems that

consists of a 5-step process: awareness of the problem, suggestion,

development, evaluation, and conclusion.

Results: We presented a microservice composition approach based on the

choreography of BPMN fragments. On the one hand, we propose to describe

the big picture of the composition with a BPMN model, providing a valuable

mechanism to analyse it when engineering decisions need to be taken. On the

other hand, this model is split into fragments in order to be executed through an

event-based choreography form, providing the high degree of decoupling

among microservices demanded in this type of architecture. This composition

approach is supported by a microservice architecture defined to achieve that

both descriptions of a composition (big picture and split one) coexist. A

realization of this architecture in Java/Spring technology is also presented.

Conclusions: The evaluation that is done to our work allows us to conclude that

the proposed approach for composing microservices is more efficient than

solutions based on ad-hoc development.

Keywords: microservices, composition, choreography, BPMN

1 Introduction

Microservices (Fowler & Lewis, 2014) propose an architectural style where

applications are decomposed into small independent building blocks (the

microservices), each of them focused on a single business capability. Microservices

communicate with each other with lightweight mechanisms and they can be deployed

and maintained independently, which leads to more agile developments and

technological independence between them (Fowler, 2015). As a matter of fact, we can

see how companies such as Amazon, Airbnb, Twitter, Netflix, Apple, Uber and many

others (Bogner et al. 2019) have shifted towards a microservices architecture to be

more agile in doing their business.

The decomposition of a system into microservices forces developer teams to build

microservice compositions to provide their customers with valuable services (Dragoni

et al., 2017). It seems that the decentralized nature of microservices makes the

choreography approach more appropriate to define these compositions (Butzin et al.,

2016; Dragoni et al., 2017), where lighter solutions based on asynchronous events are

generally used (Newman, 2015; Rudrabhatla, 2018). According to Peltz (2003) “a

Choreography [...] allows each involved party to describe its part in the interaction.

Choreography tracks the message sequences among multiple parties and sources

rather than a specific business process that a single party executes”. In our work, we

support microservice choreographies that use publish/subscribe mechanisms to

establish collaboration (Dragoni et al., 2017; Rudrabhatla, 2018). When a

microservice has done their work, an event is produced, and other microservices that

are waiting for this event execute their corresponding tasks.

The major problem of choreographies is that the flow logic is distributed across

microservices and implicitly defined by the interaction between them. This means that

the overall logic of a choreography is scattered over the microservices that compose

it. Therefore, there is not a big picture of the whole composition’s flow, turning

difficult visualizing, understanding, and maintaining it when further engineering

decisions need to be taken (e.g. change the microservice composition to support a new

requirement). In addition, note that choreographies force a microservice to support not

only business requirements, which is what the definition of a microservice says

(Fowler & Lewis, 2014), but also the coordination requirements derived from the

compositions it participates. In order to make microservices mainly focus on business

capabilities, it is relevant to separate these two concerns in such a way coordination

requirements can be delegated to an additional software entity.

Thus, although it is desirable to compose microservices in a choreographic way, the

complexity of choreographic composition has forced many companies, even not

software development companies, to propose other solutions based on orchestrations.

Among these solutions, we find Zeebe (2019), Netflix Conductor (2019), ING Baker

(2019), Uber Cadence (2019), Pinterest Pinball (2019), or Azkaban (2019). In these

cases, microservice compositions are defined by a single model that coordinates, in a

centralized way, the interaction between the different microservices, and that is

executed by an orchestrator microservice endowed with the corresponding engine.

With this solution, the logic of the microservice composition is centralized in the

orchestrator microservice facilitating its further maintenance. The major problem with

this approach is the orchestrator executes the composition through synchronous

invocations to the rest of microservices creating a high dependency among the

orchestrator and the rest of microservices. This can be a drawback to achieve the

decoupling pursued by the microservice architecture.

Therefore, in this paper, we face the challenge of defining a microservice composition

approach that provides the benefits of both composition mechanisms, i.e.,

orchestration and choreography. Our goal is to provide a solution that allows

developers to have a centralized model that describes the big picture of a microservice

composition and also to have the possibility of executing the composition defined in

this model through an event-based choreography. The modelling language used to

create such centralized model is the one provided by the BPMN (2011) process

diagram. BPMN provides an intuitive and easy way to represent the semantics of

complex processes and it is used by experts on the notation to define these processes,

but also by other process stakeholders such as end customers, marketing

professionals, or finance employees that just need to analyse them (Nysetvold &

Krogstie, 2006; Harmon & Wolf, 2011; Leopold et al., 2016). In particular, we

introduce a proposal that provides the possibility of:

1. Defining the microservice composition in a BPMN model to have the big

picture of the whole composition, which facilitates further analysis and

maintenance when requirements change.
2. Executing the BPMN model by following an event-based choreography to

provide a high degree of decoupling and independence to implement and

maintain microservices.

1.1 Problem statement

Considering the motivation presented above, the problem that this work tries to

improve can be stated by the following research question:

How can we define microservice compositions with BPMN models in such a

way they can be executed through an event-based choreography?

1.2 Main Contributions

In order to answer the research question presented above, we present:

(1) Guidelines to create microservice compositions in BPMN models, split them

into fragments, and distribute these fragments among microservices to be

executed through an event-based choreography.

(2) A microservice architecture defined to support the coexistence of the two

descriptions of a composition (i.e. the big picture and the split one).

(3) Tool support in order to implement the proposed microservice architecture in

Java/Spring technology.

1.3 Research methodology

We carried out a research project following the design methodology for performing

research in information systems as described by March & Smith (1995) and

Vaishnavi & Kuechler (2004). Design research involves the analysis of the use and

performance of designed artefacts to understand, explain and, very frequently, to

improve on the behaviour of aspects of Information Systems (Vaishnavi & Kuechler,

2004).

The design cycle consists of a 5-step process: (1) awareness of the problem, (2)

suggestion, (3) development, (4) evaluation, and (5) conclusion. The design cycle is

an iterative process; knowledge produced in the process by constructing and

evaluating new artefacts is used as input to provide a better awareness of the problem.

Following the cycle defined in the design research methodology, we started with the

awareness of the problem: we identified the problem to be resolved and we stated it

clearly. Next, we performed the second step, which involves making a suggested

solution to the problem, and comparing the improvements introduced by this solution

with pre-existing solutions. To this end, the most relevant approaches related to our

work were analysed. Once the solution to the problem was described, we developed

and validated it (steps 3 and 4). These two steps were performed over a series of

phases: (1) we define the main characteristics of our approach to create microservice

compositions; (2) we design a microservice architecture to support an event-based

choreography of fragments as well as their maintenance; (3) we develop the required

tools to support the modelling of microservice compositions, the split of these models

into fragments, and the deployment of these fragments into microservices. Finally, we

analysed the results of our research work to obtain several conclusions as well as to
define areas for further research (step 5).

1.4 Structure of the paper

The remainder of the paper is structured as follows. Section 2 presents the related

work and the limitations of our approach. Sections 3 outlines the solution that we

proposed to create and execute microservice compositions. Section 4 faces the

updating of the requirements of microservice compositions. Section 5 presents the

architecture designed to support the proposed solution and the proposed realization.

Section 6 presents the evaluation done for our work. Finally, Section 7 concludes the

paper and provides insights into directions for future work.

2 Related Work

In this section, we present the works related to ours. To find these works, we made a

systematic search in five electronic libraries (SpringerLink, ScienceDirect, Scopus,

Google Scholar and Crossref Search). The search string was defined based on

keywords we derived from our own knowledge on the topic, i.e., we applied

subjective search string definition (Zhang et al., 2011). The search string was the

following: (microservice or service) and (composition or orchestration or

choreography). We also studied the literature referenced by the works that we found,

and the literature that cited them i.e., literature found by the application of backward

and forward snowballing. From the initial search in electronic libraries, we retrieved a

total number of 600 studies. Then, 534 studies were discarded because they do not

focus on the composition of services or merely mention some of the search concepts

in a general manner. Afterwards, the remaining 66 studies were evaluated based on

their title, abstract, and keywords in order to determine its relevance to our work. As a

result, a set of 18 studies were selected. Finally, we applied a further analysis of the

literature and included backward and forward snowballing, and general studies about

choreography and orchestration. From this analysis we incorporated 13 new studies,

resulting in a total of 31 studies. In addition, the commercial tools introduced in the

introduction were also considered.

From the performed search, we did not find a solution similar to ours i.e. that combine

the use of BPMN process modelling with event-based choreographies to support the

composition of microservices.

We found some works that focus their efforts on improving the orchestration of

microservices. For instance, Rajasekar et al. (2012) presented the integrated Rule

Oriented Data System (iRODS) to orchestrate microservices within data-intensive

distributed systems. A microservice orchestration is defined as a set of textual event-

condition-action rules. Each rule defines the data management actions that a

microservice must execute. These actions generate events within the system that

trigger the rules associated with other microservices. Authors also proposed the use of

recovery microservices to maintain transactional properties. The main drawback of

this work is that the logic of the process is dispersed by the different rules that each

microservice implement, making its further maintenance difficult.

Oberhauser (2016) presents the Microflow approach, which proposes an architecture

to orchestrate semantically annotated microservices by using agents. A Microflow is

defined declaratively with a goal and other constraints. The agents are in charge of

executing the workflow of microservices required to achieve this goal and satisfy the

specified constraints. To do so, the semantic annotation included in each microservice

are used. The main drawback of this work is that agents centralized the execution of

the composition, losing the decoupling among microservices demanded in this type of

architecture.

Yahia et al. (2016) introduce Medley, an event-driven lightweight platform for

microservice orchestration. They propose a textual domain-specific language (DSL)

for describing orchestrations using high-level constructs and domain-specific

semantics. These descriptions are compiled into low-level code run on top of an

event-driven process-based and lightweight platform. Monteiro et al. (2018) introduce

Beethoven, another an event-driven lightweight platform for microservice

orchestration. This work proposes the Partitur DSL based on three main concepts:

Workflow, Task and Event Handler. The reference architecture follows an event-

driven design approach and has been instantiated by using the actor model and the

ecosystem provided by Spring Cloud Netflix. Our work differs from these in the fact

that our solution is based on a standard like BPMN to create microservice

compositions and execute them in an event-based choreography. Developers do not

need to learn a new DSL or use proprietary tools.

Kouchaksaraei et al. (2018) present Pishahang, a framework for jointly managing and

orchestrating cloud-based microservices. This framework introduces tools to easily

integrate SONATA (Dräxler et al. 2017), an orchestration framework, with Terraform

(2019), a multi-cloud tool. However, tools for modelling business processes and

support them within a decoupled microservice infrastructure are not provided.

Indrasiri & Siriwardena (2018) introduce Ballerina, an emerging technology that is

built as a programming language and aims to make it easy to write programs that

integrate and orchestrate microservices. However, although they propose an

environment to design microservice integrations with sequence diagrams, most of the

communication issues among microservices need to be managed at the programming

level. Our work provides a solution which the microservice communication is

modelled at a high level of abstraction and managed by BPMN engines.

Gutiérrez–Fernández et al. (2016) explain how a BPMN engine can be integrated into

a microservice architecture to support microservices whose business logic implies a

workflow. However, the solution they propose is based on using an orchestrator

microservice, in contrast to our event-based choreography solution.

Other works such as Petrasch (2017) presents an approach based on UML to design

microservices and the communication among them. However, complex business

processes involving multiple microservices cannot be modelled.

Other works propose a microservice composition language based on the Jolie

programming language. Guidi et al. (2017) present the need for specific programming

languages aimed towards microservices composition. Authors claim that these

languages should include concepts such as communication, interfaces, and
dependencies. They instantiate their proposal in terms of the Jolie programming

language. Similar work to this is the one presented by Safina et al. (2016), which

extends the Jolie programming language to support data-driven workflows. This

means that the flow of microservice compositions is controlled at the time of message

passing according to the nature of the message structure and type. Although not

specifically target at the composition of microservices, other works provide similar

languages to support choreographies. Montesi (2014) introduces the Choreographic

Programming, which advocates for implemented choreographies as programs that a

compiler transforms into executable code and distribute among participants. In this

work, the Chor (2014) programming language is used, which is based on concepts

such as session, protocol and the definition of message exchange among parties. It has

solid formal foundations (Carbone & Montesi, 2013). The AIOCJ framework is

presented in (Preda et al., 2016) and comprises an integrated development

environment, a compiler from a choreography language, called Dynamic Interaction-

Oriented Choreography (DIOC), to distributed Jolie programs, and a runtime

environment to support their execution. Our work differs from all of these approaches

in the fact that we propose a solution based on business process modelling, which

provides a visual notation that is directly executable. On the contrary, these

approaches provide programming languages that need to be compiled and provide a

lower level of abstraction to analyse process requirements. This problem is faced by

Giallorenzo et al. (2018) which propose both the use of a UML Sequence Diagram to

represent a choreography and a refinement process to obtain a choreography

definition based on AIOCJ. We differ from this work in two main aspects. On the one

hand, we use BPMN models that are directly executable and do not need refinement.

On the other hand, changes in requirements after a composition is created are

supported in two ways: (1) allowing changes of both business and coordination

requirements from the big picture of the composition and propagating these changes

to microservices, and (2) allowing local updates of business requirements that do not

change the existing flow of interaction among the microservices in a BPMN fragment

and integrating these changes with the big picture. The approach proposed by

Giallorenzo et al. (2018) only supports changes in requirements from the big picture.

In the context of Service-Oriented Architectures (SOA), some works use the

capabilities of BPMN to model web service choreographies. However, BPMN models

are translated into other specifications to be executed. For instance, Decker et al.

(2008) transform BPMN models into BPEL4Chor descriptions to execute

choreographies. Nie et al. (2014) identify enterprise integration patterns from BPMN

models in order to define data flows that can be executed by EAI technologies such as

ESBs. Nikaj et al. (2019) use the business process choreography diagram introduced

in BPMN 2.0 to generate formal specification of RESTful choreographies. Leshob et

al. (2019) propose an MDD method that complements BPMN choreographies with

SoaML service description to design SOA-based information systems. Choreography

execution is not faced in this work. Ebrahimifard et al. (2016) uses the interaction

view of BPMN 2.0 to model choreography business processes and then, translate

them into WS-CDL code. In the context of the project CHOReOS, Autili et al. (2014)
introduce a solution for the development and execution of choreographies out of a

large-scale service base. In particular, they take a BPMN 2.0 choreography diagram

as a source to generate, through model transformations, software entities called

Coordination Delegates. These entities are executable artefacts that are interposed

among the participant services that need coordination to realize the specified

choreography. Our work differs from all of these in the fact that we do not compile

BPMN models to generate code that allows the execution of the service

choreography. In contrast, we just divide it into fragments that are distributed among

microservices which just need to use a BPMN engine to execute them. In this way, we

avoid to perform complex compilation tasks and we maintain the same graphical

notation between the centralized description of its big picture and the particular

description managed by each microservice.

Following with SOA, Bocciarelli et al. (2012) improve applications implemented as

service orchestration by using also BPMN process diagrams as we do. However, they

focused on the simulation of these orchestrations. They proposed a model-driven

method to support distributed simulation analysis of business processes by

transforming BPMN-based descriptions into Extended Queueing Network models,

which can be executed as distributed simulations. They also faced in Bocciarelli &

D’Ambrogio (2014) the analysis of QoS properties of business processes that are

defined and executed as orchestrations of software services.

In the area of declarative workflow modelling, we must highlight several interesting

works that face the challenge of defining event-based processes with a declarative

style, in contrast to the imperative notation proposed by BPMN. Some examples are

DCR graphs (Slaats et al. 2013), DECLARE (Pesic et al., 2007) or GSM (Hull et al.,

2010) which generally support specification and analysis of requirements. DCR

graphs have also the advantage of serving the runtime representation of a process

instance, which can be adapted dynamically if the requirements change. They

presented a workbench (Debois & Hildebrandt, 2017) that can be used to improve the

communication and discussion with industry and the experimentation with new

analysis and variants. These works provide valuable mechanisms to analyse and

validate the big picture of event-based processes at the requirements level. However,

it is not clear how these descriptions can be distributed among participants to achieve

independent and autonomous management, as microservice developers can do with

our BPMN fragments. In addition, the modelling notation provided by these

approaches cannot be executed by commercial engines as it is the case with BPMN

models, which can make it difficult for the industry to adopt.

Other works focus on microservices and business processes. However, they do not
face the challenge of composing microservices to support business processes. For
instance, Bocciarelli et al. (2018) present a multi-tier architecture based on
microservices to support the simulation of business processes. To do so, they propose
the eBPMN (executable BPMN) language, which is a domain-specific simulation
language that conforms to the execution semantics defined by the BPMN 2.0
specification. Jayawardana et al. (2018) introduce MSstack, a full-stack framework to
create systems based on a microservice architecture from business requirements. In
this work, the goal is not supporting business processes from existing microservices
but creating the microservices from a business process description. To do so, a new
business process modelling language is presented. Alpers et al. (2015) describe a
microservice architecture for BPM tools, highlighting it can enact collaborative
modelling techniques, increase reuse of components and improve their integration
into lightweight user interfaces.

Also, it is worth noting that the commercial tools that we can found to support the
composition of microservices are mainly based on orchestration solutions. This is the
case of Zeebe (2019), Netflix Conductor (2019), ING Baker (2019), Uber Cadence
(2019), Pinterest Pinball (2019), or Azkaban (2019). These solutions propose the
creation of a big picture of the composition that is used to centralize the orchestration
of microservices. Our work differs from these in the fact that we split the big picture
of a microservice composition into BPMN fragments to allow each microservice to
execute its tasks in a decoupled way. However, a special comment requires Zeebe,
which proposes a distributed engine architecture without any central component to
achieve fault tolerance, resilience and horizontal scalability. This solution differs from
the others in the fact that components of its distributed architecture form a peer-to-
peer network in which there is no single point of failure since all of them perform the
same kind of tasks and the responsibilities of an unavailable element can be
reassigned to another. However, it still focuses on composing microservices by
following an orchestration strategy instead of using a choreography style as our work
proposes, which provides more independency to microservice developers if they need
to adapt the participation of a microservice in a composition.

Finally, note that our work uses publish/subscribe mechanisms to establish

collaboration among microservices within a choreography. However, other solutions

such as end-to-end composition, the API gateway, or service mesh can be found

(Chandramouli, 2019). Note also that there are some efforts to integrate these event-

based solutions with end-to-end communications in the context of the Internet of

Things (Collina, et al. 2012; Gabbrielli, et al. 2018). They focus on bridging the gap

between the protocols required by machines and the APIs demanded by developers to

easily design interfaces that are driven by the users’ needs.

2.1 Properties of choreographic composition and limitations of the proposed

approach

In this work, we propose the execution of a microservice composition through a
choreography of BPMN fragments, which provides a high level of independence and
decoupling among microservices. These fragments are automatically generated from a
global BPMN model, which describes the big picture of the composition. As
discussed above, this solution introduces several benefits, such as facilitating
engineering decisions by having the big picture of the choreography in a model of
high level of abstraction i.e. a BPMN process diagram; or supporting changes in
requirements by updating BPMN models and not code. However, our approach has
also limitations regarding some problems considered by choreography-based systems.
Other works on the choreographic approach (discussed below) provide some
correctness guarantees over choreography implementations. While these guarantees
are not considered in this work, we briefly present them and discuss possible future
research directions for our proposal.

One of the most usual problems in choreography systems is conformance checking,
which is the act of verifying whether one or more parties stick to the agreed-upon
behaviour by observing the actual behaviour, e.g., the exchange of messages between
all parties. Many works propose techniques to analyse the conformance of a
choreography using, for instance, Petri Nets (van der Aalst et al. (2006)) or other
formal models (Bravetti & Zavattaro, 2007; Kazhamiakin & Pistore 2006). In this
context, our work requires further research to formally check the conformance of the
obtained choreography regarding the big picture of the composition. To achieve this,
it is interesting to consider works such as the one presented by Busi et al. (2006) that
proposes a formal framework to verify whether a choreography and an orchestration
describe the same application.

Another important problem in choreography-based systems is realizability checking
(Basu et al., 2012). This problem consists in determining if, given a choreography
specification, it is possible to build a system that communicates exactly as the
choreography specifies. Several works face this challenge by proposing formal
frameworks. See for instance Salaün (2008) or Su et al. (2007). However, note that
our work does not focus on creating a system from an orchestration specification but
on composing the operations of already existing microservices. In this sense, the
CHOReOS project (Autili et al., 2014) goes a step further providing support to
choreography realizability enforcement, i.e. restricting the interaction among third-
party services so to fulfil the collaboration prescribed by the choreography
specification. This is important to avoid undesired interactions among services that
may appear when, for instance, there are many parallel and alternative flows and the

participation of one service depends on the results of others. In these cases, undesired
interaction may occur if the dependent results are not provided in time due to the
parallel execution. This work endows the so-called Coordination Delegates, which are
interposed at runtime among the services that participate in the choreography, with
Coordination Models that codify, among others, the information that each
Coordination Delegate needs to know in order to interact with others. Coordination
Delegate and Models are automatically generated from choreography models.
Regarding this issue, we need to do additional research efforts to achieve that a
microservice can consider the state of the others when participate in a composition,
but maintaining the high degree of independence and decoupling among
microservices that is demanded in this type of architecture.

Related with realizability checking, we can find works that support the correctness-
by-construction principle. According to Chapman (2006), correctness-by-construction
aims at a design approach with measures that make it difficult to introduce defects
and means to detect and remove any defects as early as possible. From the works
analysed above, it is worth to highlight the Chor (2014) programming language
developed by Montesi (2014) for its Choreographic Programming paradigm. This
language is based on a formal model that guarantees correctness-by-construction in
such a way we can be sure that a choreography created with Chor is executed
conformance to its definition. In addition, the formal model that underlies Chor also
assures that choreographies are free of deadlocks by design in parallel executions. In
our approach, the correctness-by-construction should be guarantee in the construction
of the BPMN models that describe the microservice compositions. The use of change
patterns such as the ones presented by Webber et al. (2008) seem to be an interesting
solution to face this issue.

3 Composition of microservices

In this section, we present an approach to (1) create the whole picture of a
microservice composition in a BPMN model, which facilitates further analysis to take
engineering decision, and (2) execute this model through an event-based
choreography to have a high degree of decoupling and independence among
microservices.

The combination of a BPMN-based definition of a microservice composition with a
choreography-based execution constitutes the main contribution of this approach. As
introduced in Section 2, other works have faced the definition of choreographies with
BPMN but most of them focused on providing a solution for documentation purposes
or to generate other executable specifications. Our work goes a step further providing
a solution to execute the own BPMN model by following the choreography style, in a
context where the decoupling and independence among participants is a key aspect to
be considered.

Note that to compose microservices they need to be previously developed and
deployed. Microservices are developed to support a specific business capability of the
system, they are not developed to support specific composition purposes. Once a
system based on microservices has been developed, our approach allows composing
them to support complex business processes.

Section 3.1 introduces a motivating example that is used to present our approach,
whose main steps are explained in Section 3.2. Section 3.3 presents a discussion about
the proposed approach.

3.1 Motivating example

We present an example based on the e-commerce domain. It describes the process for
placing an order in an online shop. This process is supported by four microservices:
Customers, Payment, Inventory, and Shipment. The sequence of steps that these
microservices must perform when a customer places an order in the online shop is the
following:
1 The Customers microservice checks the customer data and logs the request. If the

customer data is not valid then the customer is informed and the process of the

order is cancelled. On the contrary, if customer data is valid the control flow is

transferred to the Inventory microservice.

2 The Inventory microservice checks the availability of the ordered items. If there is

not enough stock to satisfy the order, the process of the order is cancelled and the

customer is informed. On the contrary, the items are booked and the control flow

of the process is transferred to the Payment microservice.

3 The Payment microservice provides the customer with different alternatives to

proceed with the payment of the order as well as to change payment details. Next,

the microservice processes the payment.

Depending on the result of the payment two different sequences of steps are

performed.

If the payment fails:

4A.1 The Inventory microservices releases the booked items and the process of the

order is cancelled.

If the payment is successful, the following three steps are performed:

4B.1 The Inventory microservices update the stock of the purchased items and the

control flow is transferred to the Shipping microservice.

4B.2 The Shipping microservice creates a shipment order and assign it to a driver and

the control flow is transferred to the Customer microservice.

4B.3 The Customer microservice updates the customer record and informs the

customer about the finalization of the process.

Considering the high degree of independence and decoupling that is demanded in

microservices architectures (Fowler & Lewis, 2014), and the complexity that

introduce the definition and maintenance of compositions such as the one presented

above, we want to provide developers with a new approach that satisfy the following

requirements:

1 Building the big picture. Developers must be able to define the whole

microservice composition in a unique model. In particular, two types of

requirements need to be considered in these descriptions:

• Business requirements, which define the tasks that each microservice must
do in the context of a microservice composition.

• Coordination requirements, which define how microservices must
communicate among them to achieve the goal of a composition.

2 Separation of responsibilities. Given the above-introduced model, the

approach must facilitate the separation of responsibilities, in such a way each

microservice can be in charge of considering only the part of the model that

implies its participation. For instance, the Customers microservice only needs to

know the fragment of the model that indicates the tasks it must perform (e.g.

checking customers data, updating their records, etc) and when performing

them.

3 Decoupled communication at runtime. The approach must allow

microservices to communicate with each other asynchronously and persistently

in a way that facilitates independence and autonomy for microservices. For

instance, when the Customers microservice checks the customer data it must be

able of informing the Inventory microservice without requiring a point-to-point

communication that creates dependencies between the two microservices.

3.2 The proposed approach

Considering the requirements introduced above, the steps that we propose to create a
microservice composition are the following:

1. Define a BPMN model of the complete microservice composition.

2. Split this model into BPMN fragments that are distributed among

microservices.

3. Deploy and execute BPMN fragments through an event-based choreography.

Next, we explain each step in more detail using the motivating example.

STEP 1: Definition of the microservice composition in a BPMN model

The first step of our approach consists in the definition of a single BPMN model
describing the complete microservice composition including both business and
coordination requirements. To support decoupled communication among
microservices at runtime we consider an event-based communication. In particular, the
following aspects should be considered:

• Each microservice should start its tasks when a specific event occurs. This event
can be either a start event generated by the client application, which indicates the
beginning of the whole process, or the results obtained by other microservice.
For instance, the Customers microservice should start the whole process when
the client application generates a start event (because it is the microservice that
executes the first action of the process). In the same way, the Inventory
microservice should start their tasks when the Customer microservice checks
that the customer data is valid (step 1).

• Each microservice should finish their tasks by generating an event that indicates
either that the whole process is finished or the results obtained after executing
some tasks. For instance, the Customers microservice can finish the whole
process generating an event that indicates that the order has been processed (step
4B.3). In the same way, the Inventory microservice can finish its tasks by

generating an event that informs the Shipping microservice about the update of
the stock (step 4b.1).

• A microservice may need to pause its tasks and pass the control flow to other
microservice. The tasks should be resumed after an undetermined number of
microservices perform theirs. For instance, the Customer microservice pauses its
tasks after checking the customer data (step 1), and resumes them after the rest
of microservices have performed theirs (step 4B.3).

BPMN 2.0 specification provides constructors to define event-based communications
such as the ones introduced above, which are valuable mechanisms to create
choreographies of microservices. In particular, we can use the following elements:
pool, message start event, receive task, message end event, send task, message
intermediate catch event, message intermediate though event.

Considering this set of constructors, we have two main options to define an event-
based communication among microservices: (1) using BPMN events or (2) using
send/receive tasks. Let us introduce some guidelines to explain how these elements
can be used to create choreographies of microservices:

- Each microservice is represented by a pool. The actions that each microservice
must perform in the context of the composition are defined in its
corresponding pool as a typical BPMN process. Figure 1 shows how two
microservices (A and B) are represented by pools. This example has been
represented by using the two options introduced above: using BPMN events
(option 1), and using receive/send tasks (option 2).

- The process of each microservice must start with a message start event (see
“Event A” in option 1) or a receive task replacing this event (see “Receive
Event A” task in option 2).

- The process of each microservice must end with a message end event (see
“Event B” in option 1, microservice A) or a send task just before the end event
(see “Send Event B” task in option 2, microservice A).

- The message end event or the send task defined at the end of the process must
be connected with a message flow (arrows depicted by dashed lines) to a
message intermediate catch event, receive task, or a message start event that is
defined in the pool of another microservice:

▪ If they are connected to either a message intermediate catch event (see
“Event B” in option 1, microservice B) or a receive task in an
intermediate position (see “Receive Event B” task in option 2,
microservice B), it means that the microservice that has defined these
elements (microservice B in Figure 1):

1. has previously executed some actions (note how microservice B has
a previous task before the message intermediate catch event in
option A, or the receive task in option B),

2. has passed the control flow to another microservice (although
omitted in the example, the commented previous task should be
connected to an element that transfers the flow control to another),
and

3. is waiting for resuming the execution of actions.
▪ If they are connected to either a message start event (see the message

flow that connects to “Event A” in option 1) or a receive task replacing
this event (see the message flow that connects to “Receive Event A”

task in option 2), it means that the target microservice starts its
participation in the composition by executing the next defined actions.

- If a microservice needs to transfer the flow control to another one during the
execution of its tasks, a message intermediate through event (see “Event C” in
option 1) or a send task defined in an intermediate position (see “Send Event
C” task in option 2) can be used.

Figure 1. Event-based communication among microservices in BPMN 2

Figure 2 shows the BPMN model that describes the microservice composition of the

motivating example. We have used BPMN events to define communication among

microservices. The steps introduced above are highlighted with dashed red lines. As

we can see, the model includes four pools, which represent the four different

microservices of the example. Note, for instance, how the Customer microservice

transfers the control to the Inventory microservice (message intermediate through

event) and waits to resume its tasks until the Shipment microservice has finished its

work (message intermediate through event). Note also that the process of each

microservice finishes with a message end event that is connected to the message start

event of another microservice. This is not the case of the microservices that start and

finish the composition since in this case their start and end events are triggered and

consumed respectively by the client application. In the case of the motivating

example, the microservice that starts and finishes the composition is the same: the

Customers microservice. Thus, this microservice will start its execution when a

message is received from the client application and will send a message to the client

application to notify the accomplishment of the process.

STEP 2: Split the BPMN model into fragments

We have explained above how to use some of the modelling elements of the BPMN
2.0 specification to create a microservices composition. Such composition provides
the big picture of the process, which facilitates further maintenance when
requirements change. However, the model created for the motivating example can be
executed by a single microservice, which is the main reason why BPMN models are
typically used to describe orchestrations managed by an additional orchestrator
microservice.

Figure 2. Microservice composition for the place order process example

However, in this work, we propose to split this model into several fragments and
deploy them into the corresponding microservices in such a way each fragment can be
executed by an independent microservice and in an event-based choreography. To do
so, by taking as source the “big picture” model created above, we propose to apply a
model transformation that creates a new BPMN model for each microservice that
participates in the composition. A description in pseudocode is presented next. For
each microservice pool defined in the BPMN model (line 1), this algorithm creates a
new BPMN model in which the pool is copied together with the event bus pool (lines
2,3 and 4). Then, the algorithm analyses the message flows that connect each
microservice pool with the others in the BPMN model. For each of the message
flows, if they are output messages, i.e. their sources are defined within the
microservice pool and their targets are connected to elements of others pools, the
target of these messages are connected to the event bus pool in the newly create
BPMN model (line 6). In the same way, if message flows are input messages, the
sources of these messages are connected to the event bus pool in the newly create
BPMN model (line 7). Finally, if a microservice pool contains either the start event
that triggers the composition or the end event that finishes it, a new message flow is
added either between the event bus pool and the start message event (lines 8 and 9) or
between the start message event and the event bus pool (lines 10 and 11) in the newly
create BPMN model.

Algorithm 1. Split the BPMN model into fragments

INPUT: a BPMN model that represents a microservice composition

OUTPUT: a set of BPMN fragments

1 For each microservice pool in the BPMN model:
2 A new BPMN model is created;
3 The pool is copied in the new model;
4 A new black-box pool is created to represent an event bus;
5 For each message flow:
6 If the microservice pool is the source: connect the flow target to the event

bus pool;
7 If the microservice pool is the target: connect the flow source to the event

bus pool;
8 If the microservice pool has the start message event which starts the composition:
9 A new message flow is added between the event bus pool and the start

message event;
10 If the microservice pool has the end message event which finishes the
composition:
11 A new message flow is added between the end message event and the event

bus pool;

As a representative example, Figure 3 shows the BPMN model that is created and that
will be deployed into the Customer microservice. The BPMN models created for the
rest of the microservices are analogous. Note how a black-box pool is created to
represent the event bus which the microservice Customer sends messages to, and
receives messages from. Note also how two additional message flows have been
added to connect the start and end events of the microservice with the event bus pool.

Figure 3. BPMN model created for the Customer microservice

With the above-presented model, the Customer microservice is completely
independent of the rest of microservices and it has only the responsibility of executing
the tasks defined within the model as well as sending and receiving messages to and
from the pool representing the event bus

STEP 3: Execution of an event-based choreography of BPMN fragments

Once the BPMN fragments of a microservice composition have been obtained, each

of them must be deployed into the microservice that is responsible for executing it. As

commented above, the technological solution used to execute each fragment is not

considered in this section. We will elaborate on this issue further in Section 6.

The most important aspect to be considered is that an event-based choreography of

BPMN fragments can be achieved as it is illustrated in Figure 4. Each microservice is

in charge of executing its corresponding process fragment and informing the others

about it. Following with the motivating example, once the client places an order in the

online shop, the client application triggers the event “Process Purchase Order”. The

Customers microservice, which is listening to this event (defined through the start

event of its pool), reacts executing part of its associated BPMN fragment and pauses

its execution to trigger the event “Customer Checked” (see the message intermediate

through event). Then, the Inventory microservice, which is listening to this event,

executes its BPMN fragment and generates the event that makes the next

microservice in the composition to execute the next process fragment. And so on.

When the Shipment microservice generates the event “Shipment Managed”, the

Customer microservice resumes its tasks and finishes the composition by triggering

the event “Order Processed”.

Figure 4. Event-based Microservice Choreography of BPMN fragments

3.3 Discussion

We have presented an approach to describe the big picture of a microservice

composition in a BPMN model, split it into fragments, and execute the fragments

thought and event-based choreography. This implies that we have two versions of the

microservice composition, i.e. the global picture created in the BPMN model

presented in Step 1 of the previous section and the split version that is distributed

through the different microservices and that is presented in Step 2.

On the one hand, the global picture of the composition provides microservice

developers with a valuable tool to analyse the flow logic of the complete composition

to take decisions if requirements change. This BPMN model precisely describes in a

visual way the business responsibilities of each microservices as well as the

interaction among them (i.e. coordination requirements), which helps everyone to

understand how the microservice composition works. In addition, this model also

helps to identify and eliminate redundancies and inefficiencies, and clearly set the

beginning and end of the composition.

On the other hand, the split version of the composition provides, for each

microservice, a visual representation of the tasks that it must execute, facilitating the

analysis of them from an individual microservice perspective. However, it also

provides a high degree of decoupling and independence among microservices

regarding the technical support required to execute the composition. Note that one of

the most important characteristics of microservices is that they should be deployed in

isolation, i.e. each microservice should be developed with the most suitable

technology for its purposes, independently of the selection done in the

implementation of other microservices. In our approach, microservices communicate

with each other through an event bus, which provides a high degree of independence

to choose implementation technologies. Current message brokers such as RabbitMQ1,

Fuse2, Kafka3, and so on, which are usually chosen as an event bus implementation,

provide multiple adapters to be used from a myriad of implementation technologies.

In addition, to accomplish its responsibilities within a composition each microservice

just need to execute its corresponding BPMN fragment. Each BPMN fragment is a

model created according to the standard BPMN 2.0. Currently, there are a myriad of

BPMN engines that support this standard (e.g. Camunda4, Activi5, Bonita6, jBM7,

Bizagi8, etc.) that can be deployed into different operating systems and that can be

integrated with the most important implementation technologies.

4 Updating the requirements of a microservice composition

In this section, we analyse how the requirements of a microservice composition can
be changed after the composition has been created and deployed. To do so, let us
consider again the two type of requirements described in a composition of
microservices:

• Business requirements: These requirements define the actions that each
microservice do in the context of a microservice composition but independently
from the rest of microservices. Changes in these requirements imply isolate
changes in the business responsibilities of the microservice(s).

• Coordination requirements: These requirements define how two or more
microservices communicate among them to achieve the goal of a composition.
Changes in these requirements imply coordinated modifications in two or more
microservices in such a way a correct communication is assured.

Note that we have two versions of a microservice composition: the BPMN model that

represents the big picture and the split version of it. Thus, we have two ways of

modifying the requirements of a composition.

One the one hand, business process engineers can introduce changes in the BPMN

model that represent the big picture of a microservice composition. In this case, the

microservice composition is updated from a global perspective, and the two types of

requirements introduced above can be modified. The modifications introduced in the

big picture BPMN model are propagated to the corresponding BPMN fragments of

each microservice as we have shown in the previous section.

On the other hand, the microservice composition can be modified from a BPMN

fragment of an individual microservice by their developers. In this case, the

composition is updated from a local perspective, considering the particular

1 https://www.rabbitmq.com/
2 https://www.redhat.com/es/technologies/jboss-middleware/fuse
3 https://kafka.apache.org/
4 https://camunda.com/
5 https://www.activiti.org/
6 https://es.bonitasoft.com/
7 https://www.jbpm.org/
8 https://www.bizagi.com/

responsibilities of a specific microservice. In this work, we focus only on the local

modification of business requirements. How coordination requirements can be

modified from the particular point of view of a microservice requires additional

investigation and it is left for further work. To better understand the modifications

that can be done in this case, Figure 5 shows an example. The upper side of this figure

shows the BPMN fragment of the Customers microservice. In grey, you can find the

elements that define coordination requirements and which cannot be modified in a

BPMN fragment. In black, you can find the BPMN elements that define business

requirements. The bottom side of Figure 5 shows an updated version of this BPMN

fragment. This new version considers whether or not a customer is a VIP one. In case

it is not a VIP customer, some advertising is shown and the possibility of registering

as a VIP customer is offered. Note how business requirements have been updated

while coordination requirements are respected.

Figure 5. Example of local requirement modifications from a BPMN fragment

To integrate an updated BPMN fragment into the big picture of the composition, this

fragment must replace the corresponding pool in the big picture BPMN model. To do

so, the Algorithm 2 presented below is applied. As we can see, it integrates a BPMN

fragment into the big picture of a composition in an easy way: the microservice pool

is obtained from the BPMN fragment (line 1) and its homologous version in the big

picture (line 2) is replaced by it (line 3). Note that the message flows that describe the

communication among microservices are not considered. Message flows are defined

in a BPMN model separately from pool definitions. Thus, Algorithm 2 does not

access message flows when it gets the microservice pool from the fragment. It only

accesses the pool and the process defined in it including tasks, forks and flow

sequences. In the same way, the message flows defined in the big picture model are

valid for the newly integrated microservice composition pool since coordination

requirements are not modified.

Algorithm 2. Integration of a BPMN fragment into the big model

INPUTS:
big picture: a BPMN model that represents a microservice composition
fragment: a BPMN model that includes a microservice pool together with an event-bus
pool

OUTPUT: an updated BPMN model that represents a microservice composition

1 Get the microservice pool from the fragment
2 Find this microservice pool in the big picture
3 Replace the big picture’s pool by the fragment’s pool

As we can see, the solution proposed in this paper provides an additional benefit when

the requirements of a microservice composition needs to be changed: this can be done

either from a global perspective by introducing changes in the big picture of the

composition, or from a local perspective by introducing changes in a BPMN

fragment. In both cases, requirement changes are managed from a visual and precise

description. However, this aspect also introduces an important challenge: the

synchronization of both descriptions. This challenge can be achieved with the proper

tools. However, current BPMN tools provide little support to create a BPMN model,

split it into fragments that can be deployed into different microservices, and modify

them maintaining the proper synchronization between both descriptions. To improve

this problem, the next section introduces a microservice architecture that describes

how both descriptions can coexist.

5 A Supporting Microservice Architecture

We have presented above an approach to describe the big picture of a microservice

composition in a BPMN model, split it into fragments, and distribute the fragments

through microservices. In this section, we present a microservice architecture in

which both composition representations (i.e. the big picture and the split one) coexist.

Apart from the microservices that implement the business capabilities of a system

(hereafter business microservices), a microservice architecture usually includes other

microservices that are focused on supporting infrastructure issues. Examples of this

type of microservices are the Service Registry that gives support to service discovery,

containing the network locations of microservice instances. Besides, some

supporting tools are also included such as a Message Broker to play the role of event

bus and manage asynchronous communication among microservices.

In this work, we propose the microservices architecture shown in Figure 6 to support

the modelling approach for microservice composition presented in this paper. Note

that some infrastructure microservices and supporting tools that are typically included

in a microservice architecture have been omitted to not overload the figure. The

architectural elements that support our proposal are depicted in red. They have been

defined by separating the responsibilities derived from the steps presented in the

previous section (i.e. model the big picture of the composition, maintain it updated,

split it, and execute it).

Business microservices are complemented with a Compositon Coordinator in such a

way a business microservice can be considered as the assembly of two main elements:

The Composition Coordinator, which is in charge of interpreting BPMN fragments to

execute tasks and interact with other microservices; and the backend, which

implements the functionality required to execute the tasks of each microservice.

Regarding the infrastructure microservices two new ones are introduced:

1. The Global Composition Manager microservice, which is in charge of

managing the big picture of a microservice composition. It must store the

BPMN model that describes the complete composition. It must also update it

when a microservice change the requirements of its corresponding fragment

(as we have explained in Section 4). Also, it is in charge of sending each

composition to another new proposed microservice, the Fragment Manager.

2. The Fragment Manager microservice, which plays the role of gateway

between the Global Composition Manager and the Composition Coordinator of

each microservice. It is in charge of splitting a global BPMN composition into

fragments as we have explained in Section 3.2 (Step 2), and distributing these

fragments among the different Composition Coordinators. To do so, it must be

able to know the network locations of each microservice's coordinator to send

them the corresponding BPMN fragments.

Figure 6. Overview of the proposed architecture

As far as supporting tools, a composition editor must be included. This editor must

allow developers to create a microservice composition with BPMN. To do so, it must

be able to discover the microservices available in the system and access the list of

operations that each business microservice has. Regarding the issue, note that all the

microservices are registered in the Service Registry. Thus, the Composition Editor

must be able to inquiry this registry in order to obtain access end-point of every

microservice. These end-points must provide the Composition Editor with the list of

operations provided by each microservice in such a way developers can include

microservice operations in a BPMN model. Once the microservice composition is

created, the editor sent it to the Global Composition Manager.

In order to better understand the architecture introduced above, let us explain the

interaction among its elements in a little more detail. First of all, the Composition

Editor accesses the Service Registry to discover the microservices that are available in

the system. Next, it asks each microservice to know its operations.

Once the Composition Editor has the list of available microservice operations,

business process engineers can use it to create a new composition. Afterwards, the

following steps are performed (see Figure 7):

1. The Composition Editor sends the BPMN composition to the Global

Composition Manager.

2. When the Global Composition Manager receives a new composition, this

microservice stores it and send it to the Fragment Manager.

3. Once the Fragment Manager receives a BPMN composition, this microservice

splits it into fragments and sends them to the Composition Controller of each

microservice, which store each fragment.

Regarding the updating of an existing composition, we have seen above that we

propose two approaches, updating the global BPMN model, and updating a particular

BPMN fragment. In the first approach, the interaction among elements is analogous to

the one presented above. Business process engineers update the global composition

by using the Composition Editor and then, the new version of the composition is sent

to the rest of the elements as Figure 7 shows. When a BPMN fragment is updated,

developers make changes from a particular business microservice and these changes

must be integrated with the global version of the composition. To do so, the

Composition Controller of each microservice sends the updated BPMN fragment to
the Fragment Manager, which resents it to the Global Composition Manager. Then, it

integrates the updated fragment into the big picture of the composition by applying

the Algorithm 2 presented in Section 4.

Figure 7. Interaction among architectural elements when a new composition is

created

5.1 Realization

In this section, we introduce a realization of the architectural solution presented above

as a prototype involving mapping technology choices onto the solution concepts. The

proposed microservice architecture has been implemented by using Java/Spring Boot9

technology. To do so, we have used existing tools to support some architectural

elements. Others, however, had been supported by the development of specific tools10.

Figure 8 illustrates graphically the realization done of the proposed architecture. In

particular, the main technological decisions that we have taken are explained next.

Service Registry. This microservice is in charge of maintaining the list of business

microservice that there are in the system. For each business microservice, this registry

stores its invocation data. We have used the Eureka Server, which is an open-source

service registry provided by Netflix11. Eureka allows registering different instances of

microservices and accessing their end-points thought HTTP connections.

Message Broker. To manage the communication among microservices at runtime we

have used the RabittMQ queue-based message broker. This message broker represents

the Event Bus defined in the BPMN Fragments (see Figure 3).

Figure 8. Realization of the proposed architecture

Fragment Manager and Global Composition Manager. In order to create these two

infrastructure microservices, we have developed two Java libraries based on Spring

Boot technology that encapsulate their functionality. This functionally is the

9 https://spring.io/projects/spring-boot
10 The implementation of the running example as well as the provided tool support can be

found in the following GitHub site: https://github.com/pvalderas/microservices-composition-

example
11 https://netflix.github.io/

following: (1) a model transformation to generate BPMN fragments from the global

version of the composition, or to update the BPMN model of the global composition

with an updated BPMN fragment, respectively. These transformations implement the

algorithms 1 and 2 presented above. They have been developed by using Java XML

parsers. (2) A module to manage the publication of HTTP end-points to allow the

communication with other microservices through REST.

The functionality encapsulated on both libraries can be included in any Spring Boot

project through two annotations (@GlobalCompositionManager and

@FragmentManager). Thus, to create a Global Composition Manager and a

Fragment Manager, developers just need to: (1) create a Spring Boot project that

includes our Java libraries and (2) create a Java class with the corresponding

annotation.

Composition Editor. It has been implemented as a web tool based on the open-

source modeller bpmn.io12, which is supported by Camunda. Figure 9 shows a

snapshot of this editor. This tool can be deployed in a separated microservice in order

to have a more decoupled solution. Another possibility is to deploy it into de Global

Manager microservice, which is in charge of managing the big picture of a

composition. On load, the Composition Editor connects to the Eureka Server to

discover the list of available microservices. Next, it connects to an HTTP end-point

published by each Composition Coordinator to access the operations of each

microservice.

Figure 9. An adapted version of the modeller bpmn.io

Composition Coordinator. In order to endow a business microservice with a

Composition Coordinator, we have followed the same strategy as the one used with

the infrastructure microservices. We created a Java library that encapsulates all the

12 https://github.com/bpmn-io

functionality required by a Composition Coordinator. This library includes the

@CompositionCoordinator annotation. When this annotation is included in the

main class of a business microservice, it automatically extends the microservice with:

o A light-weight version of the Camunda BPMN engine to execute BPMN

fragments.

o An adapted version of the Composition Editor in order to allow developers to

modify BPMN fragments and send them to the Fragment Manager.

o Specific Java modules that both create HTTP end-points to support REST

communication and register the microservice into the message broker to

communicate with other microservices.

Finally, note how Figure 8 illustrates the HTTP end-points that each element

publishes to supports the interacting among them explained above. The

@GlobalCompositionManager and the @FragmentManager publish the

compositions and fragments endpoints to receive compositions and fragments,

respectively. The @CompositionCoordinator publishes the fragments endpoint

in order to receive fragments, and the operations endpoint to provide the Composition

Editor with the microservice operations.

6 Evaluation

This section introduces the experiment that we have performed to show the efficiency

of our proposal in the development and updating of microservice compositions when

compared to an ad-hoc solution. The efficiency of software development methods can

be measured by considering the time that is needed to do the same task without losing

quality (Port & McArthur, 1999). Thus, we measured the time required to develop

and update a microservice composition.

We compare the time required to develop and update a microservice composition by

using our BPMN-based approach with the time obtained for the same tasks when

using an ad-hoc implementation of an event-based choreography. This ad-hoc

implementation was done by using the technology provided by Spring and Netflix. To

support the interchange of messages among microservices, a RabbitMQ message

broker was used in both cases.

To do the experiment, we followed the guidelines presented by Kitchenham et al.

(1995) and Wohlin et al. (2012). According to these guidelines, we have divided the

experiment into three main phases: scoping, planning, operation and analysis and

interpretation.

6.1 Scope

The scope of an experiment is set by defining its goal. To do so, we have used the

template proposed by Basili et al. (1988). The goal of our experiment is characterized

as follows:

Analyse: Our BPMN-based approach

For the purpose of: evaluating the impact of our approach compared to ad-hoc

development

With respect to: efficiency

From the viewpoint of: microservice developers

In the context of: researchers in software engineering composing microservices

6.2 Experimental design

We must formalize the hypotheses, determine the dependent and independent

variables, describe the context of the experiment and the instrumentation used, and

consider the threats of validity we can expect.

Hypothesis. The hypotheses defined for the experiment were the following:

• Null hypothesis 1, H10. The efficiency of our BPMN-based approach for

developing and updating microservice compositions is the same as an ad-hoc

development.

• Alternative hypothesis 1, H11. The efficiency of our BPMN-based approach

for developing and updating microservice compositions is greater than an ad-

hoc development.

Identification of variables. We identified two types of variables:

• Dependent variables: Variables that correspond to the outcomes of the

experiment. In this work, the efficiency in composing microservices was the

target of the study, which was measured in terms of the following software

quality factors: development time and updating time.

• Independent variables: Variables that affect the dependent variables. The

development method was identified as a factor that affects the dependent

variable. This variable had two alternatives: (1) Our BPMN-based approach

and (2) an ad-hoc implementation.

Context. The context of the experiment was the following:

• Experimental subjects. Nine subjects participated in the experiment, all of

them being researchers in software engineering. Their ages ranged between

27 and 42 years old. The subjects had an extensive background in Java

programming and modelling tools. However, only 3 of them had experience

in using the Spring Framework and message queues and 4 of them had

previously worked with BPMN.

• Objects of study. The experiment was conducted using a case study similar

to the motivating example used throughout the paper, i.e. the microservice

composition to manage a purchase order in a webshop (see Section 4.1).

Instrumentation. The instruments that were used to carry out the experiment were:

• A demographic questionnaire: a set of questions to know the level of the

users’ experience in Java/Spring programming, modelling tools, and BPMN.

• Work description: the description of the work that the subjects should carry

out in the experiment by using our BPMN approach and the ad-hoc solution.

This work description explained two activities: (1) the development of the

microservice composition to support purchase orders, and (2) the

modification of this composition to support new requirements.

• A form: a form was defined to capture the start and completion times of the

proposed work. For each task that was proposed in the experiment,

participants had to annotate the starting and completion times by using the

clock of the computer. If some interruptions occur while performing the

work, subjects wrote down the times every time they started and stopped

carrying out the activity; thus, the total time was derived using these start

and completion times. Finally, additional space was left after the completion

time of the work for additional comments of the subjects about the

performed activity.

Threats of Validity. Our experiment was threatened by the random heterogeneity of

subjects. This threat appears when some users within a user group have more

experience than others. This threat was minimized with a demographic questionnaire

that allowed us to evaluate the knowledge and experience of each participant

beforehand. This questionnaire revealed that all the users had experience in Java

programming and modelling techniques. Some of them had experience in the use of

Spring-based technologies related to the implementation of choreographies, while

others did not. This problem could affect the evaluation of the development with an

ad-hoc solution since this type of development requires these technologies. Some

participants had experience in BPMN which could affect the evaluation of the

development based on our approach. To minimize this threat, all subjects participated

in training sessions about both choreography implementation technologies and our

BPMN-based approach.

Our experiment also was threatened by the reliability of measures threat: objective

measures, that can be repeated with the same outcome, are more reliable than

subjective measures. In this experiment, the precision of the measures may have been

affected since the activity completion time was measured manually by users using the

computer clock. In order to reduce this threat, we observed subjects while they were

performing the proposed tasks to guarantee their exclusive dedication in the activities

and supervise the times that they wrote down.

6.3 Execution

We followed a within-subjects design where all subjects were exposed to every

treatment/approach (BPMN-based solution and ad-hoc solution). The main advantage

of this design was that it allowed statistical inference to be made with fewer subjects,

making the evaluation a much more streamlined and less resource-heavy evaluation

(Wohlin et al., 2012).

In order to perform the experiment, we arranged a workshop of three days with two

sessions per day (see Table 1).

Table 1. Sessions of the experiment
 Session 1 Session 2

Day 1 Duration: 4h

All participants: Training in

choreography implementation

Duration: 4h

All participants: Training in our

BPMN-based approach

Day 2 Duration: 5h

Group A: Development of a

microservice composition with an ad-

hoc solution

Group B: Development of a

microservice composition with our

BPMN-based approach

Duration: 3h

Group A: Updating of a microservice

composition with an ad-hoc solution

Group B: Updating of a microservice

composition with our BPMN-based

approach

Day 3 Duration: 5h

Group A: Development of a

microservice composition with our

BPMN-based approach

Group B: Development of a

microservice composition with an ad-

hoc solution

Duration: 3h

Group A: Updating of a microservice

composition with our BPMN-based

approach

Group B: Updating of a microservice

composition with an ad-hoc solution

During the first day, we had two sessions of 4 hours in which participants were

proposed to fill in a demographic questionnaire to capture participants’ background

and were trained in choreography technologies and our BPMN-based approach. In

particular:

• Regarding choreography technologies, we provided the subjects with the

necessary tutorials and tools to learn the basics of the Spring and Netflix

technologies needed to develop the case study. We also made an introduction

to message queues and RabbitMQ. The subjects also participated in the

implementation of some guided examples to gain experience with the

technologies.

• Regarding our BPMN-based approach, we provided the subjects with a

tutorial where BPMN and the Composition Editor based on BPMN.io were

explained. The subjects also worked with some examples to gain experience

with BPMN. We also explained the proposed architecture and how the

proposed architectural elements interact among them and need to be

configured.

During the second and third days, participants were divided aleatorily into two

groups, A and B, and two sessions of five and three hours respectively were proposed

for each day. We did the same experiment in both days. In one day, group A used an

ad-hoc solution to develop and update a microservice composition while group B

used our BPMN-based solution. In the second day, groups changed the development

methods.

The tasks designed for the experiment were initiated with a short presentation in

which general information and instructions were given. Afterwards, the work

description and the form were given to the subjects and they started to develop and

update the microservice composition following the development method (our BPMN-

based approach and ad-hoc) that was indicated for each group. The microservice

composition that participants had to develop was described in a textual way. After

performing this work, participants filled in a form to capture the development times.

Once the subjects developed the composition, they started to modify it. For these

activities, they also filled in the form to capture the time taken to update the

composition.

To properly perform this work, we previously developed the microservice architecture

required to support the case study. To do so, we used Netflix’s technology. The

Global Composition Manager and the Fragment Manager microservices were also

created. The Composition Editor was also provided to the subjects for its use. Note

that business microservices were also implemented but they were not defined as

Composition Coordinators in order to make participants configure them.

In a more detailed way, the activities carried out with each development approach

were the following:

• Ad-hoc development: From the case study description, they started the

implementation of the microservice composition for the management of

purchase orders. Generally, they identified the operations that each

microservice should perform, and define for them both a starting event and

an end event. Once this data was clear, they update each microservice with

the classes required to connect to RabbitMQ and listen at the starting event

to launch the operations corresponding to each microservice. To execute

these operations, they implemented some classes that perform the invocation

to the corresponding methods. These classes also were in charge of

launching the ending event. Once they modified each microservice and

achieved the compilation of the code, they spent some time testing the

composition and detecting code errors. Finally, we provided a set of changes

in the requirements for the composition to evaluate its updating. In

particular, we proposed them to support VIP customers in such a way these

customers can proceed with the payment by the end of the process. In this

activity, the participants needed to identify first the microservices that were

involved in this modification (Inventory, Payment, and Shipment). Next,

they made the necessary changes to the code to support the new

requirements. Finally, the participants tested the new composition and fixed

the identified errors.

• BPMN-based development. Before implementing the case study, we

provided the subjects with a brief tutorial about the proposed BPMN

approach to describe microservice compositions. We also explained the

proposed architecture and how the proposed architectural elements interact

among them and need to be configured. Following this approach, the

participants first add the annotation @CompositionCoordinator to each

microservice to provide them with the resources required to participate in a

composition. They also configured the YML files to register microservices in

the Fragment Manager and connect to RabbitMQ. Then, they designed the

microservice composition with the web-based Composition Editor according

to the case study description. Once they finished, they sent the composition

to the Global Composition Manager, which stored it and resent it to the

Fragment Manager to be split and distributed among microservices.

Afterwards, they spent some time testing the composition and detecting

errors in the composition design. Finally, we asked participants to support

the same new requirements as explained in the previous activity. In this case,

the participants changed the composition created with the web-based

Composition Editor and sent it again to the Global Composition Manager.

Then, participants tested the new composition and fixed the identified errors.

6.4 Analysis of results

In this subsection, we analyse and compare the efficiency of both approaches based

on the time required to develop and update a microservice composition. The results

have been studied based on a time mean comparison and the standard deviation. Table

2 presents the descriptive statistics for each of the studied quality factors.

Table 2. Descriptive statistics for each quality factor.

Quality factor Dev. method Mean

(hours)

Number of

Subjects

Std. deviation

(hours)

Development time

Ad-hoc 4.10 9 0.57

BPMN-based 1.60 9 0.39

Updating time

Ad-hoc 1.55 9 0.42

BPMN-based 0.48 9 0.06

Next, we provide further analysis of the results for each measured software quality

factor:

• Development time. The development time following the ad-hoc approach

differed according to the subject implementation experience, ranging from

3.48h (the most experienced subject) to 5.14h. Following our BPMN-based

approach, the development activity ranged from 1.15h to 2.25h. The

difference between the two approaches was high since developing the

microservice composition in an ad-hoc way was more complex and difficult

for the participants since they had to hard-code all the composition logic

manually as well as all the code required to connect with RabbitMQ to

participate in the event-based choreography. The BPMN-based approach

allowed participants to focus on the required requirements instead of solving

technological problems. Note that by following this latter approach, none of

the participants had to implement anything to manage invocation of

operations neither the events required to participate in the choreography. All

these aspects are managed by the resources included by the Composition

Coordinator library. Subjects just needed to configure some YML files.

Regarding the standard deviation, it was low for both development

approaches (see Table 2) indicating that development times tended to be

close for each development approach.

• Updating time. Concerning the ad-hoc development, this activity took

subjects from 1.23h to 2.54h since they had to identify the microservices that

must be updated, and modify the corresponding code. Changing the BPMN-

based description of the global microservices composition took subjects from

24 min to 35 min). This is because updating the microservice composition

was as easy as modifying it by using the web-based Composition editor. In

this case, participants focused again only on requirements and did not need

to identify microservices and hardcoded changes.

With our BPMN-based approach, the subjects took, on average, 2.08h (development

time plus updating time) to develop the case study, whereas with an ad-hoc

implementation the subjects took 5.65h. Therefore, the process for creating and

updating microservice compositions is more efficient using our BPMN-based

approach than using an ad-hoc solution.

In order to verify whether we can accept the null hypothesis, we performed a

statistical study called paired T-test using the IBM SPSS Statistics V2013 at a

confidence level of 95% (α = 0.05). This test is a statistical procedure that is used to

make a paired comparison of two sample means, i.e., to see if the means of these two

samples differ from one another. For our study, this test examines the difference in

mean times for every subject with the different approaches to test whether the means

of an ad-hoc development and our BPMN-based approach are equal. When the critical

level (the significance) is higher than 0.05, we can accept the null hypothesis because

the means are not statistically significantly different. For our experiment, the

significance of the paired T-test for the total time means is 0.000 (calculated using the

IBM SPSS Statistics), which means that we can reject the null hypothesis H10 (the

efficiency of our BPMN-based approach for developing and updating microservice

compositions is the same or lower than an ad-hoc development). Based on this test,

we have given strong evidence that the kind of development influences efficiency.

Specifically, the efficiency using our BPMN-based approach is significantly better

than using an ad-hoc solution, i.e., the mean values for all the measures are lower

when using our BPMN-based approach; thus, the alternative hypothesis H11 is

fulfilled: The efficiency of our BPMN-based approach for developing and updating

microservice compositions is greater than an ad-hoc development.

6.5 Conclusions

The above-presented experiment evaluated our approach to develop and update

choreographed microservice compositions with respect to an ad-hoc solution based on

Spring technology. We have validated that our approach is more efficient than the ad-

hoc solution and have confirmed the expected benefits suggested in previous sections.

In particular, the use of BPMN models to construct microservice compositions have

significantly facilitated the definition and modification of choreographed

13 Statistical analyses using spss, http://www.ats.ucla.edu/stat/spss/whatstat/whatstat.htm#1sampt

microservice compositions. In addition, the tool-supported infrastructure to manage

event-based communication among microservice has demonstrated the feasibility of

executing microservice compositions through the choreography of BPMN fragments.

Note that we have compared our solution with an ad-hoc solution based on

choreographies since the decentralized nature of microservices seems to make

choreographies more appropriate to define microservices compositions (Dragoni et

al., 2017; Butzin et al., 2016). Another interesting experiment should be the

evaluation of our approach respect to some of the choreography solutions presented in

the related work section. After considering this experiment, we found that most of

them were defined in academic environments and was difficult to find the required

tool-support to use them in a practice experiment. Also, in these solutions that we

found some tool support to be downloaded, it was not clear how integrating the

technology they used with a microservice architecture such as the one developed in

the case study of Section 6. Thus, this evaluation requires from additional

investigation and will be considered as further work.

7 Conclusions and further work

In this work, we have presented a solution that combines the global specification of a

microservice composition in a BPMN model with an event-based choreography used

to execute it. The main reason to follow such a solution is that we wanted to maintain

the independence and decoupling nature offered by event-based choreographies but

also want to keep the big picture of the composition offered by BPMN modelling

solutions to facilitate further analysis when requirements change.

We have presented a microservice architecture to support our approach in such a way

the two representations of a composition (i.e. the global description and the split one)

can coexist. We have introduced the new architectural elements that must be

introduced as well as the interaction that they must have. In addition, we have
proposed specific implementation support based on Java/Spring technology in such a

way any developer could apply our approach with little effort.

As future work, we need to consider the data transfer among the microservices that

participate in a composition. In this work, we have focused on the definition of the

composition's flow and its execution in an event-based choreography. However,

microservices may need to interchange data to properly perform a composition. We

need to extend our solution to define this data interchange in the global description of

the composition and how it must be managed by microservices from their

corresponding fragments. We also plan to enrich the proposed tools with goal-

oriented capabilities. In this way, instead of specifying compositions explicitly,

developers would just need to state the goals that a composition must satisfy. Then,

based on them, an initial composition can be proposed to satisfy the stated goals.

Finally, another challenge that we find interesting is the possibility of reusing a

microservice composition in order to create other ones. We want to investigate the

option of extending the Composition Manager microservice in such a way it provides

the Composition Editor with the list of existing compositions to be associated to the

service tasks defined in a BPMN model.

Acknowledgement

This work has been developed with the financial support of the Spanish State

Research Agency under the project TIN2017-84094-R and co-financed with ERDF.

References

Alpers, S., Becker, C., Oberweis, A. and Schuster, T. (2015). Microservice based tool

support for business process modelling. In Enterprise Distributed Object

Computing Workshop (EDOCW), 2015 IEEE 19th International (pp. 71-78).

IEEE.

Autili, M., Inverardi, P., & Tivoli, M. (2014). CHOREOS: large scale choreographies

for the future internet. In 2014 Software Evolution Week-IEEE Conference on

Software Maintenance, Reengineering, and Reverse Engineering (CSMR-

WCRE) (pp. 391-394). IEEE.

Azkaban. (2019). Open-source Workflow Manager. URL: https://azkaban.github.io/ .

Last time accessed: November 2019

Basu, S., Bultan, T., & Ouederni, M. (2012). Deciding choreography realizability.

Acm Sigplan Notices, 47(1), 191-202.

Bocciarelli, P., Pieroni, A., Gianni, D., & D'Ambrogio, A. (2012). A model-driven

method for building distributed simulation systems from business process

models. In Proceedings of the Winter Simulation Conference (p. 227). Winter

Simulation Conference.

Bocciarelli, P., & D’Ambrogio, A. (2014). A model-driven method for enacting the

design-time QoS analysis of business processes. Software & Systems Modeling,

13(2), 573-598.

Bocciarelli, P., D'Ambrogio, A., Paglia, E., & Giglio, A. (2018). A service-in-the-

loop approach for business process simulation based on microservices.

In Proceedings of the 50th Computer Simulation Conference (p. 24). Society for

Computer Simulation International.

Bogner, J., Fritzsch, J., Wagner, S., & Zimmermann, A. (2019). Microservices in

industry: insights into technologies, characteristics, and software quality. In 2019

IEEE International Conference on Software Architecture Companion (ICSA-

C) (pp. 187-195). IEEE.

BPMN. (2011). Business Process Model and Notation (BPMN). Version 2.0. Object

Management Group. URL: https://www.omg.org/spec/BPMN/2.0/PDF/ Last time

accessed: April 2020

Bravetti, M., & Zavattaro, G. (2007). Towards a unifying theory for choreography

conformance and contract compliance. In International Conference on Software

Composition (pp. 34-50). Springer, Berlin, Heidelberg.

Butzin, B., Golatowski, F., & Timmermann, D. (2016). Microservices approach for

the internet of things. In 2016 IEEE 21st International Conference on Emerging

Technologies and Factory Automation (ETFA) (pp. 1-6). IEEE.

Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., & Zavattaro, G. (2006). Choreography

and orchestration conformance for system design. In International Conference on

Coordination Languages and Models (pp. 63-81). Springer, Berlin, Heidelberg.

Carbone, M., & Montesi, F. (2013). Deadlock-freedom-by-design: multiparty

asynchronous global programming. In ACM SIGPLAN Notices (Vol. 48, No. 1,

pp. 263-274). ACM.

Chandramouli, R. (2019). Security Strategies for Microservices-based Application

Systems (No. Special Publication (NIST SP)-800-204).

Chapman, R. (2006). Correctness by construction: a manifesto for high integrity

software, in Proc. 10th Australian Workshop on Safety Critical Systems and

Software, vol. 55, 2006, pp. 43–46.

Chor. (2014). Choreography programming language. URL: http://www.chor-lang.org/

Last time accessed: November 2019

Collina, M., Corazza, G. E., & Vanelli-Coralli, A. (2012). Introducing the QEST

broker: Scaling the IoT by bridging MQTT and REST. In 2012 IEEE 23rd

International Symposium on Personal, Indoor and Mobile Radio

Communications-(PIMRC) (pp. 36-41). IEEE.

Debois, S., & Hildebrandt, T. (2017). The DCR workbench: declarative

choreographies for collaborative processes. Behavioural Types: from Theory to

Tools, 99-124.

Decker G., Kopp O., Leymann F., Pfitzner K., Weske M. (2008). Modeling Service

Choreographies Using BPMN and BPEL4Chor. In: Bellahsène Z., Léonard M.

(eds) Advanced Information Systems Engineering. CAiSE 2008. Lecture Notes

in Computer Science, vol 5074. Springer, Berlin, Heidelberg

Dragoni, N, Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M., Montesi, F.,
Mustafin, R., Safina, L. (2017). Microservices: Yesterday, Today, and

Tomorrow. Present and Ulterior Software Engineering. 195-216

Dräxler, S., Karl, H., Peuster, M., Kouchaksaraei, H. R., Bredel, M., Lessmann, J., ...

& Xilouris, G. (2017, May). SONATA: Service programming and orchestration

for virtualized software networks. In 2017 IEEE International Conference on

Communications Workshops (ICC Workshops) (pp. 973-978). IEEE.

Ebrahimifard, A., Amiri, M. J., Arani, M. K., & Parsa, S. (2016). Mapping BPMN 2.0

choreography to WS-CDL: a systematic method. Journal of E-Technology, 7(1),

01-23.

Fowler, M. & Lewis, J. (2014). Microservices. ThoughtWorks.

Fowler, M. (2015). Microservices trade-offs. URL:

http://martinfowler.com/articles/microservice-trade-offs.htm Last time accessed:

July 2019

Gabbrielli, M., Giallorenzo, S., Lanese, I., & Zingaro, S. P. (2018). A language-based

approach for interoperability of IoT platforms.

Giallorenzo, S., Lanese, I., & Russo, D. (2018). ChIP: A choreographic integration

process. In OTM Confederated International Conferences" On the Move to

Meaningful Internet Systems" (pp. 22-40). Springer, Cham.

Guidi, C., Lanese, I., Mazzara, M., & Montesi, F. (2017). Microservices: a language-

based approach. In Present and Ulterior Software Engineering (pp. 217-225).

Springer, Cham.

Gutiérrez–Fernández, A. M., Resinas, M., & Ruiz–Cortés, A. (2016). Redefining a

Process Engine as a Microservice Platform. In International Conference on

Business Process Management (pp. 252-263). Springer, Cham.

Harmon, P., & Wolf, C. (2011). Business process modeling survey. Business process

trends, 36(1), 1-36.

Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, F. T., Hobson, S., ... &

Vaculin, R. (2010). Introducing the guard-stage-milestone approach for

specifying business entity lifecycles. In International Workshop on Web Services

and Formal Methods (pp. 1-24). Springer, Berlin, Heidelberg.

Indrasiri, K., & Siriwardena, P. (2018). Integrating Microservices. In Microservices

for the Enterprise (pp. 167-217). Apress, Berkeley, CA.

ING Baker. (2019). Orchestrate microservice-based process flows. URL:

https://github.com/ing-bank/baker . Last time accessed: November 2019.

Jayawardana, Y., Fernando, R., Jayawardena, G., Weerasooriya, D., & Perera, I.

(2018, September). A Full Stack Microservices Framework with Business

Modelling. In 2018 18th International Conference on Advances in ICT for

Emerging Regions (ICTer) (pp. 78-85). IEEE.

Kazhamiakin, R., & Pistore, M. (2006). Choreography conformance analysis:

Asynchronous communications and information alignment. In International

Workshop on Web Services and Formal Methods (pp. 227-241). Springer, Berlin,

Heidelberg.

Kitchenham, B., Pickard, L. and Pfleeger, S. L. (1995). Case studies for method and

tool evaluation, Software, IEEE, vol. 12, no. 4, pp. 52–62.

Kouchaksaraei, H. R., Dierich, T., & Karl, H. (2018, June). Pishahang: Joint

Orchestration of Network Function Chains and Distributed Cloud Applications.

In 2018 4th IEEE Conference on Network Softwarization and Workshops

(NetSoft) (pp. 344-346). IEEE.

Leopold, H., Mendling, J., Günther, O.: Learning from Quality Issues of BPMN

Models from Industry. IEEE Software 33(4): 26-33 (2016)

Leshob, A., Blal, R., Mili, H., Hadaya, P., & Hussain, O. K. (2019, July). From

BPMN Models to SoaML Models. In Conference on Complex, Intelligent, and

Software Intensive Systems (pp. 123-135). Springer, Cham.

March S. and Smith G. (1995). Design and Natural Science Research on Information

Technology. Decision Support Systems 15, 251–266. DOI: 10.1016/0167-

9236(94)00041-2.

Monteiro, D., Gadelha, R., Maia, P. H. M., Rocha, L. S., & Mendonça, N. C. (2018).

Beethoven: an event-driven lightweight platform for microservice orchestration.

In European Conference on Software Architecture (pp. 191-199). Springer,

Cham.

Montesi, Fabrizio. Choreographic programming. IT-Universitetet i København, 2014.

Newman, S. (2015). Building microservices: designing fine-grained systems. "

O'Reilly Media, Inc.".

Netflix Conductor. (2019). A Workflow Orchestration engine that runs in the cloud.

URL: https://netflix.github.io/conductor/ . Last time accessed: November 2019.

Nysetvold, A. G., & Krogstie, J. (2006). Assessing business process modeling

languages using a generic quality framework. In Advanced Topics in Database

Research, Volume 5 (pp. 79-93). IGI Global.

Nie, H., Lu, X., & Duan, H. (2014). Supporting BPMN choreography with system

integration artefacts for enterprise process collaboration. Enterprise Information

Systems, 8(4), 512-529. DOI: 10.1080/17517575.2014.880131

Nikaj, A., Weske, M., & Mendling, J. (2019). Semi-automatic derivation of restful

choreographies from business process choreographies. Software & Systems

Modeling, 18(2), 1195-1208.

Oberhauser, R. (2016). Microflows: Lightweight automated planning and enactment

of workflows comprising semantically-annotated microservices. In Proceedings

of the Sixth International Symposium on Business Modeling and Software

Design (BMSD 2016) (pp. 134-143).

OMG. (2011). About the business process model and notation specification version

2.0. URL: https://www.omg.org/spec/BPMN/2.0 . Last time accessed: November

2019.

Peltz, C. (2003). Web services orchestration and choreography. Computer, 36(10),

46-52. doi:10.1109/mc.2003.1236471

Pesic, M., Schonenberg, H., & Van der Aalst, W. M. (2007). Declare: Full support for

loosely-structured processes. In 11th IEEE International Enterprise Distributed

Object Computing Conference (EDOC 2007) (pp. 287-287). IEEE.

Petrasch, R. (2017, July). Model-based engineering for microservice architectures

using enterprise integration patterns for inter-service communication. In 2017

14th International Joint Conference on Computer Science and Software

Engineering (JCSSE) (pp. 1-4). IEEE.

Pininterest Pinball. (2019) A scalable workflow manager. URL:

https://github.com/pinterest/pinball . Last time accessed: November 2019.

Port, D., & McArthur, M. (1999). A study of productivity and efficiency for object-

oriented methods and languages. In Proceedings Sixth Asia Pacific Software

Engineering Conference (ASPEC'99)(Cat. No. PR00509) (pp. 128-135). IEEE.

Preda, M. D., Gabbrielli, M., Giallorenzo, S., Lanese, I., & Mauro, J. (2016).

Dynamic choreographies: Theory and implementation. arXiv preprint

arXiv:1611.09067.

Rajasekar, A., Wan, M., Moore, R., & Schroeder, W. (2012). Micro-Services: A

Service-Oriented Paradigm for Data-Intensive Distributed Computing. In:

Challenges and Solutions for Large-scale Information Management (pp. 74-93).

IGI Global.

https://netflix.github.io/conductor/

Rudrabhatla, C. K. (2018). Comparison of Event Choreography and Orchestration

Techniques in Microservice Architecture. International Journal of Advanced

Computer Science and Applications, 9(8), 18-22.

Safina, L., Mazzara, M., Montesi, F., & Rivera, V. (2016, March). Data-driven

workflows for microservices: Genericity in Jolie. In 2016 IEEE 30th

International Conference on Advanced Information Networking and Applications

(AINA) (pp. 430-437). IEEE.

Slaats, T., Mukkamala, R. R., Hildebrandt, T., & Marquard, M. (2013). Exformatics

declarative case management workflows as DCR graphs. In Business process

management (pp. 339-354). Springer, Berlin, Heidelberg.

Salaün, G. (2008). Generation of service wrapper protocols from choreography

specifications. In 2008 Sixth IEEE International Conference on Software

Engineering and Formal Methods (pp. 313-322). IEEE.

Su, J., Bultan, T., Fu, X., & Zhao, X. (2007). Towards a theory of web service

choreographies. In International Workshop on Web Services and Formal

Methods (pp. 1-16). Springer, Berlin, Heidelberg.

Terraform. (2019). URL: https://www.terraform.io/ Las time accesed: July 2019.

Uber Cadence. (2019). Fault-Oblivious Stateful Code Platform. URL:

https://cadenceworkflow.io/ Las time accessed: November 2019.

Vaishnavi, V., Kuechler, W., and Petter, S. (Eds.) (2004). “Design Science Research

in Information Systems” January 20, 2004 (created in 2004 and updated until

2015 by Vaishnavi, V. and Kuechler, W.); last updated (by Vaishnavi, V. and

Petter, S.), December 20, 2017. URL: http://desrist.org/desrist/content/design-

science-research-in-information-systems.pdf. Last time accessed: July 2019.

van der Aalst, W., Dumas, M., Ouyang, C., Rozinat, A., & Verbeek, H. M. W. (2006).
Choreography conformance checking: An approach based on BPEL and Petri

nets. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für

Informatik.

Weber, B., Reichert, M., & Rinderle-Ma, S. (2008). Change patterns and change

support features–enhancing flexibility in process-aware information

systems. Data & knowledge engineering, 66(3), 438-466.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. and Wesslén, A.

(2012) Experimentation in Software Engineering, Springer.

Yahia, E. B. H., Réveillère, L., Bromberg, Y. D., Chevalier, R., & Cadot, A. (2016,

June). Medley: An event-driven lightweight platform for service composition.

In International Conference on Web Engineering (pp. 3-20). Springer, Cham.

Zeebe. (2019). A Workflow Engine for Microservices Orchestration. URL:

https://zeebe.io/ . Last time accessed: November 2019.

Zhang, H., Babar, M.A., Tell, P. (2011). Identifying relevant studies in software

engineering. Information & Software Technology 53, pp. 625-637.

