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Abstract

Condition based maintenance (CBM) systems of induction machines (IMs)
require fast and accurate models that can reproduce the fault related har-
monics generated by different kinds of faults. Such models are needed to
develop new diagnostic algorithms for detecting the faults at an early stage,
to analyse the physical interactions between simultaneous faults of different
types, or to train expert systems that can supervise and identify these faults
in an autonomous way. To achieve these goals, these models must take into
account the space harmonics of the air gap magnetomotive force (MMF) gen-
erated by the machine windings under fault conditions, due to the complex
interactions between spatial and time harmonics in a faulty machine. One of
the most common faults in induction machines is the rotor eccentricity, which
can cause significant radial forces and, in extreme cases, produce destructive
rotor-stator rub. However, the development of a fast, analytical model of the
eccentric IM is a challenging task, due to the non-uniformity of the air gap.
In this paper, a new method is proposed to obtain such a fast model. This
method, which is theoretically justified, first enables a fast calculation of the
self and mutual inductances of the stator and rotor phases for every rotor
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position, taking into account the non-uniform air-gap length and the actual
position of all the stator and rotor conductors. Once these inductances are
calculated, they are used in a coupled circuits analytical model of the IM,
which in this way is able to calculate the time evolution of the electrical and
mechanical quantities that characterize the machine functioning, under any
type of eccentricity. Specifically, the model is able to reproduce accurately
the characteristic eccentricity fault related harmonics in the spectrum of the
stator current.

The proposed approach is validated through two different methods. First,
using a finite elements (FEM) model, in order to validate the correctness of
the proposed method for calculating self and mutual inductances, taking into
account the non-uniform air-gap. Finally, through an experimental test-bed
using a commercial induction motor with a forced mixed eccentricity fault,
in order to validate that the full model correctly reproduces the phase cur-
rents in such a way that their spectra accurately show the harmonics related
with the eccentricity fault, which are the basis of many MCSA diagnostic
approaches.
Keywords: Inductance, Induction Machines, Convolution, Discrete Fourier
Transforms, Fault Diagnosis, Air Gap Eccentricity

Nomenclature

CBM Condition based maintenance

DE Dynamic eccentricity

FEM Finite elements method

FFT Fast Fourier transform

FRM Field reconstruction method

IFFT Inverse fast Fourier transform

IM Induction machine

MCSA Motor current signature analysis
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ME Mixed eccentricity

MMF Magnetomotive force

MWFA Modified winding function approach

SE Static eccentricity

UMP Unbalanced magnetic pull

1. Introduction

Induction motors (IMs) are present in most industrial processes, as driv-
ing motors [1] or as generating units [2], due to their inherent robustness
and reliability. Nevertheless, they are subject to mechanical and electrical
ageing, with the risk of suffering different kinds of faults during their oper-
ational life. Their unexpected failure can provoke the sudden stoppage of
production lines or power generating stations, with heavy economical losses.
CBM systems for IMs [3] can reduce these risks, detecting machine problems
prior to a failure [4], and can also help optimize the schedule of maintenance
stops. From a broader point of view, CBM systems for IMs can be inte-
grated in maintenance systems for electrical installations, along with CBM
systems for inverters [5], generators [6], transformers [7, 8], power systems
[9], transmission lines [10] or microgrids [11].

Different signals can be used for implementing a CBM system for IMs,
such as currents [12, 13], vibrations [14], instantaneous power [15], volt-
ages [16], thermal images [17], internal flux [18], acoustic emissions [19],
etc. Among these methods, the analysis of the machine current signature
(MCSA) has attracted a particular interest [20], because it is non invasive,
fast and easy to implement online. In its basic version, MCSA needs just
a current probe and the fast Fourier transform (FFT) to display the fault
signatures in the current spectrum. Besides, it can detect different, (and pos-
sibly simultaneous) types of faults [21]. In spite of its simplicity, the practical
application of MCSA in harsh industrial environments is a challenging task.
The amplitude of the fault harmonics is much smaller than the fundamental
component, so that electromagnetic noise produced by electronic converters
[22], oscillating loads, or even the FFT spectral leakage can hide the fault
harmonics, avoiding their detection until the fault is severe. A fast, analytical
model [23] that can reproduce the fault harmonics in the current spectrum,
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under different working conditions, becomes then a valuable resource for the
development and testing of robust MCSA algorithms and expert systems for
CBM systems [2, 24, 25].

Eccentricity is a common type of IM fault [12, 26–30], which is caused
primarily because of maladjustment of bearings, load imbalance, shaft flex-
ibility, thermal deformations, or misalignment [31]. The asymmetry of the
magnetic field in the non-uniform air gap of the eccentric IM produces ra-
dial forces [30], that is, an unbalanced magnetic pull (UMP) [32–34], which
generates abnormal vibrations, damages in the shaft bearings, destructive
rotor-stator rub [35] or even sparks during the starting of the motor [36].
Diverse models of the eccentric IM have been proposed recently:
• FEM models: The most accurate models of the eccentric machine are

based on the finite elements method (FEM). Transient finite-element
models of the eccentric IM have been applied to assess the influence
on the UMP of the series/parallel winding connections [37]. A time-
stepping FEM model is used in [38] to analyse the influence of load
variation on the diagnostic indexes of an eccentric motor; in [30] to
compute the power balance of an eccentric IM; and in [39] to obtain the
characteristic harmonic components generated by an eccentricity fault.
Despite its great accuracy, FEM models of an eccentric IM require
important computer resources and computing time. To overcome this
drawback, an hybrid FEM/superposition approach is proposed in [40],
which is able to model an eccentric motor with a saving in time of
several orders of magnitude, with a 3% of relative error compared with
a full FEM model. In [41] a 3D field reconstruction method (3D-FRM)
is applied to built stator and rotor basis using a reduced number of
FEM simulations, maintaining the accuracy of 3D FEM models.

• Analytical models: Diverse analytical models have been presented in
the technical literature with an accuracy similar to FEM models, re-
garding the calculation of fault harmonics, but with a much lower cost.
For example, [42] reports a few seconds for the analytical model versus
more than three hours for the FEM model, and [43] reports 4 min-
utes for the analytical model versus 50 hours for the equivalent FEM
model. A 3D magnetic equivalent circuit model has been presented
in [44], but, in most cases, simpler 2D equivalent circuit models are
used for diagnostic purposes. The modified winding function approach
(MWFA) [28, 45–49], which uses the inverse air-gap function of the
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eccentric machine to compute the matrix of phase inductances, is a
common approach for building such 2D models. But MWFA has some
drawbacks: to account for coil pitch, slot skewing or the rise of the
air gap MMF across the slot, different winding functions must be used
in each case; besides, complex integrals that depend on the winding
layout must be solved in this process, which may be very cumbersome
in the case of arbitrary winding distributions. As stated in [50], this
task typically consumes a high amount of time, so that only discrete
curves of inductance versus rotor position are calculated and linear
interpolation is applied at intermediate rotor positions. To overcome
these difficulties, in [51, 52] the convolution theorem has been used to
speed-up the calculation of the integrals of the winding functions for
eccentric or saturated IMs.

In a previous paper [53], after a critical review of the MWFA, a com-
pletely different way of attacking the problem was undertaken, and a new
method for computing winding inductances in uniform air gap machines was
presented. In the present paper, this method is extended to include the
effects of eccentricity, in a two stage process:

• First, a novel analytical expression is derived for representing the yoke
flux generated by a single conductor, placed at any angular position in
the air-gap, for any rotor position and for any level of eccentricity.

• And, second, a new procedure, based on the spatial convolution of this
expression and the distributions of the phases conductors, is developed
for obtaining the phase inductances of the eccentric IM, which are used
in the equivalent circuit model. This procedure it is very fast, because
it is based on the FFT. Besides, the computation time of the FFT of a
given winding distribution is practically independent of its complexity.
Once these inductances are calculated, they are introduced in a cou-
pled circuits analytical model of the IM, which in this way is able to
reproduce the time evolution of electrical and mechanical quantities of
the machine, such as currents, powers, torque speed, etc., with any
type of eccentricity and functioning regime; specifically, the proposed
model is able to reproduce the characteristic eccentricity fault related
harmonics in the stator currents spectra. Thus this model is useful
for the development of new eccentricity diagnostic methods based on
MCSA techniques.
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The structure of this paper is as follows: in Section 2 the system equations
of an induction machine are briefly reminded. In Section 3, the inverse air-
gap function of the eccentric IM is presented, which is used in Section 4 for
deriving the expression of the yoke flux generated by a single conductor in
an eccentric IM, as a function of the rotor center. Section 5 establishes
the expression of the rotor center coordinates as a function of the rotor
angular position, for every type of eccentricity. Based on these results, a
new convolution-based method is presented in Section 6 for obtaining the
phase inductances for any rotor position, and it is implemented in Section
7 using the FFT. The proposed method for calculating the inductances in
eccentric IM is validated in Section 8, where the calculated self and mutual
inductances are compared with those obtained through a FEM model; also
in this section an experimental validation of the full model is carried out,
by comparing the spectra of the simulated current with the spectra of the
measured current in a commercial IM with a forced eccentricity fault. Finally,
in Section 9, the conclusions of this work are presented.

2. Induction Machines Electromechanical Equations System

The following electrical equations system [54, 55] can be written for an
induction machine with m stator and n rotor phases:

[U ] = [R][I] + d[Ψ]
dt

= [R][I] + d([L][I])
dt

(1)

where [U ] = [us1, us2, ...usm, ur1, ur2, ...urn]T is the phase voltages matrix,
[I] = [is1, is2, ...ism, ir1, ir2, ...irn]T is the phase currents matrix, [R] is the
resistances matrix, [Ψ] is the flux linkages matrix and [L] is the inductances
matrix. Subscripts s and r are used for the stator and rotor, respectively.

The mechanical equations are:

Te − TL = 1
2[I]T ∂[L]

∂θ
[I]− TL = J

dΩ
dt

= J
d2θ

dt2
(2)

where Te is the electromechanical torque of the machine, TL is the load torque,
J is the total system inertia (rotor plus load), Ω is the mechanical speed and
θ is the mechanical angle position of the rotor. To solve (1) and (2), the
self and mutual phase inductance matrices must be calculated previously for
every rotor position. Due to the presence of the derivatives in (1) and (2),
it is necessary to achieve a very good accuracy in this process, especially if
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different fault conditions are to be detected and diagnosed in a sure way.
The elements of the inductances matrix [L] are computed in this work using
a novel approach based on the FFT, taking into account the air gap MMF
harmonics and the effect of the rotor eccentricity. End turn and slot leakage
inductances need to be pre-calculated, and are included in the [L] terms in
(1), as usual in the technical literature, where explicit expressions for these
inductances can be found in [56, 57].

3. Modelling of the Eccentric Air Gap Length

Under the assumption of infinite iron permeability and smooth, constant
air gap, the mutual inductances of the phases only change with their relative
position. However, for machines with non-uniform air gap, such as the eccen-
tric machines, the value of the air gap length for each angular coordinate at
the machine cross section must also be taken into account. If both the stator
and rotor cores are cylindrical, the distribution of the air gap lengths at a
given time can be completely characterized by the position of the geomet-
ric center of the rotor Or with respect to the geometric center of the stator
Os; and this is true regardless of the type of eccentricity (static, dynamic or
mixed eccentricity). To analyse the eccentric machine, a coordinate system
attached to the stator will be used in this paper, as shown in Fig. 1 and
Fig. 2. In this coordinate system, the effect of eccentricity at every time can
be fully characterized by the position of the rotor center (see Fig. 1), as

g0
· δr

Os

Or

Θr

−−−→
OsOr = g0 · δr · ejΘr

Figure 1: Parameters used for characterizing the level of eccentricity at every time: dis-
tance from the rotor center to the stator center (g0 · δr), and angular position of the rotor
center (Θr), measured in a stator reference frame.

−−−→
OsOr = g0 · δr · ejΘr 0 ≤ δr < 1, 0 ≤ Θr < 2π (3)
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where g0 is the air gap width of the healthy machine, δr is the distance
from the rotor axis to the stator axis (in per-unit (p.u.) value of g0), which
is assumed constant along the machine axial length, and Θr is the angular
position of the rotor center, measured in a stator reference frame.

Assuming, without any loss of generality, that the rotor center lies in the
stator d-axis, that is, Θr = 0 in Fig. 1, the air gap length at an angular
position ϕ, g(ϕ) in Fig. 2, is given by the distance between a point on the
external surface of the rotor at this coordinate, PR, and a point on the inner
surface of the stator at the same coordinate, PS. That is,

ϕ

Or

Os

PR

PS

Rr

g0 · δr

g(ϕ)

Rs

Figure 2: Air gap length g(ϕ) of an eccentric machine as a function of the angular coor-
dinate ϕ, measured in a stator reference frame.

g(ϕ) = |OsPS −OsPR| = Rs − |OsPR| (4)

For computing the phases’ inductances, it is needed the inverse of the air
gap function to obtain the permeance function of the machine. Based on
previous works [58–62], this expression has been obtained in Appendix D as

g(ϕ,Θr, δr)−1 = g−1
0 ·

(
A0 +

nt∑
m=1

Am · cos
(
m(ϕ−Θr)

))
(5)
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where

A0 = 1√
1− δr2

Am = 2
1−

√
1− δr2√

1− δr2

m m = 1 . . . nt (6)

It is worth mentioning that only the first term of the series in (5) have
been used in [58–61], and two terms in [62]. In this paper, the equations are
derived for a generic number nt of terms, where the value of nt can be freely
chosen to achieve the desired precision.

4. Yoke Flux Generated by a Single Conductor in an Eccentric
Induction Machine

Let’s consider a conductor of the eccentric induction machine, placed in
the air-gap at a given angular position α (Fig. 3).

α

Figure 3: Single conductor of the eccentric induction machine, placed in the air-gap, at a
given angular position α.

To obtain the yoke flux distribution that this single conductor generates
for any given rotor center position −−−→OsOr = δr · ejΘr when it is fed with a unit
current, the following steps are taken in this work:

1. The air gap MMF generated by a one-turn, short pitched coil is deter-
mined for an eccentric machine, with the rotor center at the arbitrary
position −−−→OsOr = δr · ejΘr (Section 4.1).

9



2. Based on the air gap MMF of a short pitched coil, the air gap MMF of
a single conductor is obtained (Section 4.2).

3. From the air gap MMF of the conductor, the magnetic flux density
distribution that it generates along the non-uniform air gap of the ec-
centric machine is obtained (Section 4.3).

4. Finally, the yoke flux generated by the conductor is calculated, based
on its MMF (Section 4.4).

Using the yoke flux of this single conductor in the eccentric machine’s air
gap, the convolution theorem will be used in Section 6, to obtain the flux
linkage of a phase B due to the current flowing through other phase A, for
any position of the rotor and any relative position of both phases.

4.1. Air Gap MMF Generated by a One-turn, Short Pitched Coil in an Ec-
centric IM

The air gap MMF generated by a coil along the air gap of an eccentric
induction machine at an angular coordinate ϕ, Fc(ϕ,Θr, δr), is given by

Fc(ϕ,Θr, δr) = Hc(ϕ,Θr, δr) · g(ϕ,Θr, δr) (7)

where ϕ is the angular coordinate, −−−→OsOr = g0 · δr · ejΘr is the position of the
rotor geometric center, Hc(ϕ,Θr, δr) is the mean value of the radial compo-
nent of the magnetic field intensity at ϕ and g(ϕ,Θr, δr) is the air gap length
at the angular coordinate ϕ.

Let’s consider the general case of a short-pitched, one-turn coil, with its
first conductor placed at the origin ϕ = 0, and the other one at position
ϕ = α (see Fig. 4a), fed with a unit current, and with the rotor center placed
at the arbitrary position −−−→OsOr = g0 ·δr ·ejΘr . The air gap MMF generated by
this coil at a generic coordinate ϕ, F0α(ϕ,Θr, δr), can be calculated applying
Ampere’s law to a path as the one labelled ’abcd’ in Fig. 4.a, under the
assumption of infinite iron permeability, straight conductors and uniform air
gap length along the machine axis, in the z direction, as

F0α(ϕ,Θr, δr)− F0α(0,Θr, δr) = 1 0 ≤ ϕ < α

F0α(ϕ,Θr, δr)− F0α(0,Θr, δr) = 0 α ≤ ϕ < 2π
(8)

The total flux crossing a cylindrical surface of radius r and unit length,
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parallel to the stator bore axis, amounts to zero. Therefore

µ0 · r ·
2π∫
0

Hc(ϕ,Θr, δr) · dϕ = 0 (9)

and, taking into account (7) and (8), (9) gives

α∫
0

(1 + F0α(0,Θr, δr))
g(ϕ,Θr, δr)

dϕ+
2π∫
α

F0α(0,Θr, δr)
g(ϕ,Θr, δr)

dϕ = 0 (10)

that is,

F0α(0,Θr, δr) = −

α∫
0
g(ϕ,Θr, δr)−1dϕ

2π∫
0
g(ϕ,Θr, δr)−1dϕ

(11)

Replacing (5) in (11) gives

F0α(0,Θr, δr) = − α

2π −
nt∑
m=1

Am
2πA0

sin(mΘr)− sin(m(Θr − α))
m

(12)

and, combining (12) and (8), gives finally

F0α(ϕ,Θr, δr) =


1− α

2π −
nt∑
m=1

Am

2πA0

sin(mΘr)−sin(m(Θr−α))
m

0 ≤ ϕ < α

− α
2π −

nt∑
m=1

Am

2πA0

sin(mΘr)−sin(m(Θr−α))
m

α ≤ ϕ < 2π
(13)

that is

F0α(ϕ,Θr, δr) =
{

1− α
2π −K0α(Θr, δr) 0 ≤ ϕ < α
− α

2π −K0α(Θr, δr) α ≤ ϕ < 2π (14)

where
K0α(Θr, δr) =

nt∑
m=1

Am
2πA0

sin(mΘr)− sin(m(Θr − α))
m

(15)

It should be noted that the expression of the MMF generated by a short
pitched coil of a healthy (non-eccentric) IM [53, 63] can be deduced as a
particular case of (14) in which δr = 0 (and, therefore K0α(Θr, δr) = 0);
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Fig. 4.b shows the waves of MMF of the short pitched coil in a healthy
machine (red line) and in eccentric one (blue line). It is remarkable that the
MMF wave of the eccentric machine can be obtained shifting down the wave
of the healthy machine a distance K0α, that only depends on the rotor center
position.

ϕ

A
ir

G
ap

M
M

F
(A

v
)

0 α 2π

Or

Os

d

b

Θr

c

a

ϕ

α

1 − α
2π

− α
2π

K0α(Θr, δr)

K0α(Θr, δr)

F0α(ϕ,Θr, δr)

Healthy machine

Eccentric machine

a) b)

Figure 4: a) Short pitched coil fed by a dc current of 1 A. b) MMF generated by a short
pitched coil F0α(ϕ,Θr, δr) in a healthy machine (red, dashed line) and in an eccentric
induction machine (blue, solid line), as a function of the angular coordinate ϕ, and of the
position of the rotor center −−−→OsOr = g0 · δr · ejΘr .

4.2. Air Gap MMF Generated by a Single Conductor in an Eccentric IM
The MMF generated by the short pitched coil (13) can be expressed also

as the sum of the MMFs generated by each of its conductors, taking into
account the opposite direction of their currents, that is

F0α(ϕ,Θr, δr) = F0(ϕ,Θr, δr)− Fα(ϕ,Θr, δr) (16)

A close inspection of (13) shows the presence of two terms in the summa-
tion, each of them corresponding to one of the coil’s conductors:
• One of them is proportional to sin(mΘr), which can be attributed to

the MMF of the conductor placed at the origin, ϕ = 0.

• The other one is proportional to − sin(m(Θr − α)), which can be at-
tributed to the MMF of the conductor placed at ϕ = α, with the sign
reversed to account for the direction of the current.
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Therefore, the expression of the MMF of a single conductor placed at
an angular position α in the eccentric machine, Fα(ϕ,Θr, δr), which satisfies
(16), can be expressed as

Fα(ϕ,Θr, δr) =
{

1
2 −

(ϕ−α)
2π −Kα(Θr, δr) 0 ≤ ϕ < α

−1
2 −

(ϕ−α)
2π −Kα(Θr, δr) α ≤ ϕ < 2π

(17)

with

Kα(Θr, δr) =
nt∑
m=1

Am
2πA0

sin(m(Θr − α))
m

(18)

Fig. 5.b shows the spatial wave of MMF generated by the single con-
ductor shown in Fig. 5.a. The red line corresponds to the healthy machine,
obtained for δr=0, Kα(Θr, δr)=0 in (17). The blue line corresponds to an
eccentric machine, for which Kα(Θr, δr) 6= 0 in (17). It is noticeable that,
similarly to the case of a short pitched coil, the MMF wave generated by
a conductor in the eccentric machine can be obtained by shifting down the
MMF corresponding to a healthy machine a distance Kα, which depends on
the rotor center position. Furthermore, it should be noted that the expres-
sion of the MMF generated by a single conductor of a healthy, non-eccentric
IM [53, 63, 64] can be deduced as a particular case of (17) in which δr = 0
(and, therefore, Kα = 0).
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ϕ

A
ir

G
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M
M

F
(A

v
)

0 α 2πOr

Os

Θr

ϕ

α 1
2

−1
2

Kα(Θr, δr)

Fα(ϕ,Θr, δr)

Healthy machine

Eccentric machine

a) b)

Kα(Θr, δr)

Figure 5: a) Single conductor, placed at an angular position α, fed by a dc current of 1 A.
b) MMF generated by a single conductor placed at an angular position α, Fα(ϕ,Θr, δr),
in a healthy machine (red, dashed line) and in an eccentric induction machine (blue, solid
line), as a function of the angular coordinate ϕ, and of the position of the rotor center
−−−→
OsOr = g0 · δr · ejΘr .

Eq. (21) can be expressed in a more compact way by wrapping the angular
coordinates to the interval [0, 2π),

Fα(ϕ,Θr, δr) = 1
2 −

((ϕ− α))2π

2π −Kα(Θr, δr) (19)

where ((ϕ− α))2π stands for the modulo 2π operation

((ϕ− α))2π = mod
(
(ϕ− α + 2π), 2π

)
(20)

For easy of notation, in the rest of this paper the modulo notation will
be omitted, and all the angular variables will be assumed to be wrapped to
the [0, 2π) range, so that (19) will be written as

Fα(ϕ,Θr, δr) = 1
2 −

(ϕ− α)
2π −Kα(Θr, δr) (21)

It is worth mentioning that the air gap MMF of an arbitrary coil (e.g. a
short-pitched coil) obtained by Ampere’s Law, coincides with the one given
by summing up the air gap MMFs of its conductors, computed through (21).
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Therefore, the air gap MMF of an arbitrary phase can be expressed as the
sum of the air gap MMFs of all of its conductors.

4.3. Magnetic Flux Density of a Single Conductor in an Eccentric IM
The radial component of the magnetic flux density, or magnetic induction

B, at a point of angular coordinate ϕ, located at the inner surface of the
stator bore, that generates a single conductor placed at an angular position
α, fed with a unit current, is given by

Bα(ϕ,Θr, δr) = µ0 ·
Fα(ϕ,Θr, δr)
g(ϕ,Θr, δr)

(22)

and, replacing (5) and (21) in (22), gives

Bα(ϕ,Θr, δr) = µ0

g0

(1
2−

(ϕ− α)
2π −Kα(Θr, δr)

)(
A0 +

nt∑
m=1

Am cos
(
m(ϕ−Θr)

))
(23)

4.4. Yoke Flux of a Single Conductor in an Eccentric IM
If the conductor is placed at an angular position α and fed with a unit

current, the differential of the magnetic flux due to the conductor which
crosses the corresponding air-gap at an angle ϕ, for a given position of the
rotor center, −−−→OsOr = g0 · δr · ejΘr , is (Fig. 6)

d (Φα(ϕ,Θr, δr)) = Φα(ϕ+ dϕ,Θr, δr)− Φα(ϕ,Θr, δr) (24)
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ϕ

dϕΦα(ϕ + dϕ,Θr, δr)

Φα(ϕ,Θr, δr)

Bα(ϕ,Θr, δr) · l · r(ϕ,Θr, δr) · dϕ

r(ϕ,Θr, δr)

Figure 6: Differential of the yoke flux as a function of the radial component of the induction
on the stator inner surface.

The differential of the magnetic flux (24) can be expressed as a function
of the induction’s radial component [53], as (see Fig. 6)

d (Φα(ϕ,Θr, δr)) = −Bα(ϕ,Θr, δr) · l · r(ϕ,Θr, δr) · dϕ (25)

where l is the axial length of the stator bore. As the air-gap width is con-
sidered to be very small, the radius r(ϕ,Θr, δr) can be approximated by its
mean value r(ϕ,Θr, δr), defined in terms of the stator inner radius Rs and
the rotor’s outer radio Rr as [60, 61]

r(ϕ,Θr, δr) ≈ r = Rs +Rr

2 (26)

The substitution of (26), (22) and (5) in (25) yields

d (Φα(ϕ,Θr, δr)) = −µ0lr
g0

(
1
2 −

(ϕ−α)
2π −Kα(Θr, δr)

)
·

·
(
A0 +

nt∑
m=1

Am cos
(
m(ϕ−Θr)

))
dϕ

(27)
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Equation (27) is integrated, which gives

Φα(ϕ,Θr, δr) = µ0lr

g0
· Λα(ϕ,Θr, δr) + C (28)

with

Λα(ϕ,Θr, δr) = A0
4π (ϕ− α)2 +

nt∑
m=1

Am

2π

 (ϕ−α) sin
(
m(ϕ−Θr)

)
m

+
cos
(
m(ϕ−Θr)

)
m2

−
(

1
2 −Kα(Θr, δr)

)
·

A0(ϕ− α) +
nt∑
m=1

Am
sin
(
m(ϕ−Θr)

)
m


(29)

The value of constant C in (28) is given by the condition that, due to the
cyclic nature of the yoke flux generated by a single conductor, its minimum
value is set to zero. Besides, Λα(ϕ,Θr, δr) depends only on the level of
eccentricity, and is independent of the geometric parameters of the machine.
Therefore, it needs to be evaluated only once, and it is scaled to any given
machine using the scaling factor µ0lr/g0.

As in the case of the magnetic flux density, the yoke flux generated by an
arbitrary phase can be expressed as the sum of the yoke flux generated by
all of its conductors.

5. Position of the Rotor Center as a Function of the Type and
Level of Eccentricity

Eq. (28) gives the yoke flux generated by a single conductor of an eccentric
machine as a function of the rotor center coordinates, Θr and δr. But, when
the rotor turns around it rotation center by an angle θr(t), it is necessary
to obtain an expression that gives the coordinates of the rotor center as a
function of the rotor angular position θr(t). Such an expression is derived
in this section, and depends on the type of eccentricity. Three cases will be
analysed in this paper: static eccentricity (SE), dynamic eccentricity (DE)
and mixed eccentricity (ME). Other types of eccentricity, such as axial [34],
inclined [65] or curved eccentricity [33, 46], are outside the scope of this
paper.
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5.1. Static Eccentricity
SE is characterized (Fig. 7) by a displacement of the axis of rotation

of the rotor (Or) with respect to the geometric center of the stator (Os).
The axis of rotation of the rotor Oθ coincides with the rotor geometrical
center. It can be caused by misalignments of the mounted bearings, or of the
bearing plates. The rotor is not centered with the stator bore, but it rotates
around its geometric center (30), that is, Θr= constant. In the case of static
eccentricity, it will assumed in this work, without any of loss of generality,
that the rotor center lies in the stator d-axis (Θr=0). Therefore, (3) becomes

−−−→
OsOr = g0 · δr (30)

Or ≡ OθOs A B

ϕ

OrOs

A

θr(t)

B

g0 · δr g0 · δr

Figure 7: Static eccentricity. Relative position of a rotor conductor, A, and a stator
conductor, B, when the rotor turns an angle θr(t) (right) from the initial line (left), in the
case of SE. The minimum air gap length is always located at the position of the stator
conductor B.

The air gap length is non uniform, but its shape does not change when
the rotor turns (Fig. 7). Therefore, self and mutual inductances of the stator
windings (Lss), are constant, whereas self and mutual inductances of the rotor
windings (Lrr), and mutual inductances between stator and rotor windings
(Lsr) change when the rotor turns.

5.2. Dynamic Eccentricity
DE is characterized (Fig. 8) by a displacement of the rotor geometric

center (Or) from its rotating axis (Oθ), which coincides with the stator bore
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axis (Os). It may be caused by a manufacturing defect, a bent shaft, bearings
defects, etc. Under DE, the rotor center spins along a circular path with the
same speed as the rotor does. In this case, (3) becomes

−−−→
OsOr = g0 · δr · ejθr (31)

Or A B

ϕ

Or

Os

A

θr(t)

B

g0 · δr

g0 · δrOs ≡ Oθ

Figure 8: Dynamic eccentricity. Relative position of a rotor conductor, A, and a stator
conductor, B, when the rotor turns an angle θr(t) (right) from the initial line (left), in
the case of DE. The minimum air-gap length is always located at the position of the rotor
conductor A.

where θr stands for the angle position of the rotor center in stator coor-
dinates. In this case, the position of the minimum air gap rotates with the
rotor (Fig. 8). Contrary to the SE case, in DE both Lss and Lsr change when
the rotor turns, whereas Lrr is not affected by the rotation of the machine.

5.3. Mixed Eccentricity
ME appears when both SE and DE are present. In this case , the rotating

axis (Oθ in Fig. 9) is displaced both from the stator geometric center (Os)
and from the rotor center (Or). From Fig. 9 and (3), the position of the rotor
center can be expressed as a function of the level of static eccentricity (δse)
and the level of dynamic eccentricity (δde) as

−−−→
OsOr = −−−→OsOθ +−−−→OθOr = g0 · (δse + δde · ejθr) = g0 · δr · ejΘr (32)

with
δr =

√
δse

2 + δde
2 + 2 · δse · δde · cos(θr) (33)

19



Θr = tan−1
(

δde · sin(θr)
δse + δde · cos(θr)

)
(34)

g0 · δse

g 0
· δ d

eg0
· δr

Os

Or

Oθ

θr

Θr

−−−→
OsOr = g0 · δr · ejΘr

Figure 9: Mixed eccentricity. Position of the rotor center (Or), the stator center (Os), and
the axis of rotation (Oθ) in a system of coordinates fixed to the stator, in case of ME.

5.4. Coordinates of the Rotor Center as a Function of the Type and Level
of Eccentricity

The three types of eccentricity have been defined in the previous sections
using the relative position of the rotor center Or, the stator center Os, and
the axis of rotation Oθ, as resumed in Table 1.

Table 1: Definition of the types of rotor eccentricity depending on the relative position of
the rotor center Or, the stator center Os, and the axis of rotation Oθ.

Type Relationship between Or, Os and Oθ

SE Or = Oθ 6= Os

DE Os = Oθ 6= Or

ME Os 6= Oθ 6= Or

The expressions for SE and DE, given by (30) and (31) can be considered
as particular cases of (32), as shown in Fig. 10 and in Table 2.
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g0 · δse
Os Or ≡ Oθ

g0 ·
δde

Os ≡ Oθ

Or

θr = Θr

−−−→
OsOr = g0 · δse · ej0

−−−→
OsOr = g0 · δde · ejθr

Oθ Oθ

δr = δde, Θr = θrδr = δse, Θr = 0

Figure 10: Position of the rotor geometric center (Or) in a system of coordinates fixed to
the stator, in case of static eccentricity (left) and dynamic eccentricity (right).

Table 2: Coordinates of the rotor center for the different types of rotor eccentricity.

Type δr Θr

SE δse 0
DE δde θr

ME
√
δse

2 + δde
2 + 2 · δse · δde · cos(θr) tan−1

(
δde·sin(θr)

δse+δde·cos(θr)

)

Therefore, the loci of the positions of the geometric rotor center in a
reference system fixed to the stator defines the type of eccentricity, as seen
in Fig. 11. In the case of a healthy machine (Fig. 11.a), the rotor center is
located on the stator geometric center. In the case of SE (Fig. 11.b), the
rotor center is placed in a fixed position, different from the stator center.
In the case of DE, the rotor center describes a circumference centerd in the
stator center (Fig. 11.c). Finally, in the ME case, the rotor center describes
a circumference whose center does not coincide with the stator center (δr 6=
const., Θr 6= const.).
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Or 6= Os

Os = Oθ Os

Or = Oθ

OrOr

Oθ

(a) (b) (c) (d)

Or ≡ Oθ ≡ Os

Or ≡ Oθ 6= Os Or 6= Oθ ≡ Os Or 6= Oθ 6= Os

Os

Figure 11: Loci of the positions of the rotor geometric center (Or) in a system of coordi-
nates fixed to the stator, in case of (a) healthy machine, (b) static eccentricity, (c) dynamic
eccentricity and (d) mixed eccentricity.

In this paper, the most general case, (3), will be analysed, and the result
will be applied to each particular type of eccentricity following (32). The
election of the position of the rotor center as the variable that characterizes
the eccentricity is the key point that enables this unified approach.

6. Phase Inductances in an Eccentric IM

For the simulation of an eccentric induction machine with a given level of
static (δse) and dynamic (δde) eccentricity, it is necessary to obtain the phase
inductances matrix for each rotor position, θr. The goal of this section is to
obtain the mutual inductance between two phases of the eccentric machine
as a function of their angular positions, for a given position of the rotor.
To achieve this goal, it is advisable to express the yoke flux generated by
a single conductor as a function of three variables, Φcond(ϕ, α, θr), where ϕ
is the angular position where the yoke flux is computed, α is the conductor
angular coordinate, and θr defines the rotor position. This function can be
derived from (28), making use of (33) and (34), as

Φcond(ϕ, α, θr) = Φα

(
ϕ,Θr(θr), δr(θr)

)
= Φα(ϕ, θr) (35)

since, for a given level of SE (δse) and DE (δde), the coordinates of the rotor
center Θr (34) and δr (33) depend only on the rotor position θr as

Θr(θr) = tan−1
( δde sin(θr)
δse + δde cos(θr)

)
(36)
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δr(θr) =
√
δse

2 + δde
2 + 2δseδde cos(θr) (37)

6.1. Yoke Flux Generated by a Phase in an Eccentric IM
Let’s consider a phase A, with an arbitrary distribution of conductors

ZA(α), 0 ≤ α < 2π, where ZA(α) is the number of conductors of phase A
on the air gap at angular coordinate α. The yoke flux ΦA that this phase
generates when it is fed with a unit current, and shifted a given angle ϕA,
can be obtained as a linear superposition of the yoke flux generated by all of
the phase’s conductors, (35), as

ΦA(ϕ, ϕA, θr) =
∫ 2π

0
Φcond(ϕ, α, θr) · ZA(α− ϕA) · dα (38)

6.2. Flux Linkages of a Phase in an Eccentric Induction Machine
Let’s consider now a second phase B, with an arbitrary distribution of

conductors ZB(β), 0 ≤ β < 2π. The flux linkages of phase ΨB, due to the
yoke flux generated by phase A, for any given angular position of phases A
and B, can be obtained just by adding the values of the yoke flux generated
by phase A at the yoke sections corresponding to each one of the conductors
of phase B. Fig. 12 shows the basis of this method: the flux linkage of an
arbitrary coil (a, b) can be calculated by replacing the coil by two equivalent
annular coils, (a, a′) and (b, b′), and summing up the yoke flux that crosses
them, Φ(ϕa) and Φ(ϕb).

ϕb

b′

ϕaΦ(ϕb) Φ(ϕa)

b a

a′

Ψab = Φ(ϕa) + Φ(ϕb)

b
a

a) b)

Figure 12: Flux linkage of a single turn coil. a) Actual coil. b) Replaced by two equivalent
annular coils.

Following the proposed method, the flux linkages of phase B due to the
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yoke flux generated by phase A are given by

ΨBA(ϕB, ϕA, θr) =
2π∫
0

ZB(β − ϕB) · ΦA(ϕ, ϕA, θr) dβ (39)

and combining (38) and (39) gives

ΨBA(ϕB, ϕA, θr) =
∫ 2π

0

∫ 2π

0
ZB(β − ϕB) · Φcond(β, α, θr) · ZA(α− ϕA) · dα dβ

(40)
As phase A is fed with a unit current, (40) provides the mutual inductance

between phases A and B as a function of their angular positions, for a given
rotor position

LBA(ϕB, ϕA, θr) =
∫ 2π

0

∫ 2π

0
ZB(β − ϕB) · Φcond(β, α, θr) · ZA(α− ϕA) · dα dβ

(41)
From (35) and (41) it holds that

LBA(ϕB, ϕA, θr) = LAB(ϕA, ϕB, θr) (42)

7. Numerical Computation of the Phase Inductances in an Eccen-
tric IM using the FFT

The computation of (41) can be cumbersome, because a double integral
must be computed for obtaining the mutual inductance between two phases
A and B for each angular displacement between them, and for all rotor po-
sitions. In this section a novel procedure will be applied to simplify this
calculation using the FFT. For the numerical computation of (41), the air
gap circumference is divided into N equally spaced angular intervals, with
a spatial resolution for the angular coordinate ∆ϕ = 2π/N . With this dis-
cretization, the functions in (41), defined in this discrete mesh, are converted
into the following matrices:

Φcond Yoke flux distribution produced by a single conductor (Φcond(ϕ, α, θr)→
Φcond[i, j, k], with dimension N ×N ×N).
The element [i, j, k] of the 3D matrix Φcond (43) contains the yoke flux

– at a point of the air gap with an angular coordinate i ·∆ϕ,
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– generated by a single conductor, fed with a unit current, placed
at an angular position j ·∆α, with ∆α = 2π/N ,

– for an angular rotor position equal to k ·∆θr, with ∆θr = 2π/N .

The 3D matrix Φcond is computed, using (35), as

Φcond[i, j, k] = Φcond(i∆ϕ, j∆α, k∆θr) with i, j, k = 0, 1, . . . , N − 1
(43)

ZA Distribution of conductors of phase A (ZA(α)→ ZA[i], with dimension
N × 1) The element [i] of the 1D matrix ZA (44) contains the number
of conductors of phase A at an angular position i · ∆ϕ. The position
of phase A axis is considered to be aligned with the stator d-axis, for
fixing a common reference frame in the calculation process.

ZA[i] = ZA(i∆ϕ) with i = 0, 1, . . . , N − 1 (44)

ZB Distribution of conductors of phase B, ( ZB(β) → ZB[i], with dimen-
sion N × 1)

ZB[i] = ZB(i∆ϕ) with i = 0, 1, . . . , N − 1 (45)

LBA Mutual inductance of phases B and A (LBA(ϕB, ϕA, θr)→ LBA[i, j, k],
with dimension N ×N ×N)
The element [i, j, k] of the 3D matrix LBA contains the mutual induc-
tance between phases B and A when

– phase B is placed at position i ·∆ϕB, with ∆ϕB = 2π/N ,
– phase A is placed at position j ·∆ϕA, with ∆ϕA = 2π/N ,
– the rotor center is placed at an angular position k ·∆θr.

These four matrices have been represented in Fig. 13.
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ϕA

θr

LBA

β

ZB

α

ϕ

θr

Φcond ZA

αϕB

Figure 13: Matrices used for computing the mutual inductance between phases B and A,
LBA, for every angular position of phase B, ϕB , of phase A, ϕA, and of the rotor θr.

The 3D matrix LBAcan be computed in a very simple and effective way,
making use of the properties of the FFT, and its inverse (IFFT), as

LBA = IFFT
{ (

(FFT{ZA})′ ∗ FFT{Φcond} ∗ FFT{ZB}
) }

(46)

where the symbol ’ stands for the non-conjugate matrix transpose transfor-
mation, and the symbol * stands for an element-by-element row or column
multiplication. That is, each column of the FFT of Φcond is multiplied
element-by-element by the FFT of ZB, and each row of the resulting matrix
is multiplied element-by-element by the transposed FFT of ZA. The inverse
FFT of this product gives directly the inductances matrix LBA.

Equation (46) is based on the convolution theorem, which states that the
FT of the convolution of two functions is equal to the product of their FTs. In
[53] this theorem was applied to the computation of phase inductances, using
1D matrices for representing the phase conductor distributions and the yoke
flux generated by a single conductor. Equation (46) is an extension of this
procedure to the case of an eccentric machine, where the yoke flux generated
by a conductor must be represented using a full 3D matrix Φcond, to take
into account the influence of the rotor center position. Moreover, it can be
programmed very easily in commercial software packages. For example, in
MATLAB language it is simply written as

LBA = ifftn( (fft(ZA).′ . ∗ fftn(PhyCond) . ∗ fft(ZB)) ) (47)

For a given IM, it is necessary to compute the inductance matrices Lss,
Lrr, Lsr and Lrs, which are used in eqs (1) and (2). Denoting Zs as the
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distribution of the conductors or a stator phase (assuming that all the stator
phases are identical), and Zr as the distribution of the conductors or a rotor
phase (assuming also that all the rotor phases are identical), (46) must be
particularized for the following cases:

• Phases A and B in the stator (ZA = ZB = Zs)

Lss = IFFT
{ (

(FFT{Zs})′ ∗ FFT{Φcond} ∗ FFT{Zs}
) }

(48)

• Phases A and B in the rotor (ZA = ZB = Zr)

Lrr = IFFT
{ (

(FFT{Zr})′ ∗ FFT{Φcond} ∗ FFT{Zr}
) }

(49)

• Phase A in the stator (ZA = Zs) and phase B in the rotor (ZB = Zr)

Lsr = IFFT
{ (

(FFT{Zs})′ ∗ FFT{Φcond} ∗ FFT{Zr}
) }

(50)

• Phase A in the rotor (ZA = Zr) and phase B in the stator (ZB = Zs)

Lrs = IFFT
{ (

(FFT{Zr})′ ∗ FFT{Φcond} ∗ FFT{Zs}
) }

(51)

It is worth mentioning that, in equations (48), (49), (50) and (51), the
term Φcond is the same. Therefore, it must be computed just once. More-
over, this term is valid for all IM machines with the same level of eccentricity,
except from a scale factor µ0lr

g0
(28). Besides, Lrs = Lsr

′, which makes unnec-
essary to compute (51).

As for the computation time for equations (48), (49), (50) and (51), the
proposed method, being based on the FFT, is very fast, and practically
independent from the complexity of the winding distributions. In this work it
has been applied to the motor whose characteristics are given in Appendix A,
with a value of N = 1008. The time needed with the computer of Appendix
C is 0.00045 seconds to obtain the vector FFT{Zs}, and 0.00074 seconds to
obtain the vector FFT{Zr}. Therefore, the impact of the complexity of the
phase winding is negligible. The computation of the FFT of the 3D matrix
Φcond takes a longer time, 604 seconds.
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The distribution of the phase conductors ZA in (44) and ZB in (45)
have been assumed aligned with the d-axis, for simplicity of (46). If this
condition is not met, by choosing other origin of angular coordinates, and the
distribution of conductors is not symmetric with respect to this new origin,
then FFT{ZA} and FFT{ZB} in (46) must be replaced by their conjugates,
that is, conj(FFT{ZA}) and conj(FFT{ZB}).

8. Numerical and Experimental Validation

The proposed method has been validated, both numerically and experi-
mentally, using a commercial IM (whose characteristics are given in Appendix
A) with a provoked mixed eccentricity fault, characterized by δse=0.3 and
δde=0.3.

8.1. Numerical Validation
For the numerical validation of the proposed method, a finite element

model (FEM) of the motor has been implemented using FEMM software
[66]. For this simulation, a value ofN=1008 rotor positions has been selected,
obtained by multiplying the rotor and the stator number of slots. For each
rotor position, one of the machine phases is fed with an unit current, and the
flux linkages of all the phases are computed, giving their mutual inductances.
The same procedure is repeated for all the IM phases, and for all rotor
positions, giving a total number of simulations equal to 31 × 1008 = 31248
simulations, with a total time of 1300 hours, using the computer of Appendix
C. Fig. 14 shows the simulations for a rotor position at the origin, for the
first phase of the stator (Fig. 14, top) and of the first rotor loop, constituted
by two adjacent bars and their end-ring connections (Fig. 14, bottom).
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Density Plot: —B—, Tesla

4.552e-001 : >4.792e-001
4.312e-001 : 4.552e-001
4.073e-001 : 4.312e-001
3.833e-001 : 4.073e-001
3.594e-001 : 3.833e-001
3.354e-001 : 3.594e-001
3.115e-001 : 3.354e-001
2.875e-001 : 3.115e-001
2.635e-001 : 2.875e-001
2.396e-001 : 2.635e-001
2.156e-001 : 2.396e-001
1.917e-001 : 2.156e-001
1.677e-001 : 1.917e-001
1.437e-001 : 1.677e-001
1.198e-001 : 1.437e-001
9.583e-002 : 1.198e-001
7.187e-002 : 9.583e-002
4.792e-002 : 7.187e-002
2.396e-002 : 4.792e-002
<4.060e-008 : 2.396e-002

Density Plot: —B—, Tesla

1.027e-002 : >1.081e-002
9.732e-003 : 1.027e-002
9.192e-003 : 9.732e-003
8.651e-003 : 9.192e-003
8.110e-003 : 8.651e-003
7.570e-003 : 8.110e-003
7.029e-003 : 7.570e-003
6.488e-003 : 7.029e-003
5.948e-003 : 6.488e-003
5.407e-003 : 5.948e-003
4.866e-003 : 5.407e-003
4.326e-003 : 4.866e-003
3.785e-003 : 4.326e-003
3.244e-003 : 3.785e-003
2.703e-003 : 3.244e-003
2.163e-003 : 2.703e-003
1.622e-003 : 2.163e-003
1.081e-003 : 1.622e-003
5.407e-004 : 1.081e-003
<1.927e-009 : 5.407e-004

Figure 14: FEM simulation of the IM of Appendix A with an eccentricity level of δse =
0.3 and δde = 0.3. Top: first stator phase fed with a unit current. Bottom: first rotor loop
fed with a unit current.
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The same machine has been simulated with the method proposed in this
paper. The analytical solution, which gives the mutual inductances between
all the phases for the N=1008 different angular rotor positions, has been ob-
tained in just 10 minutes, using the same computer of Appendix C. Fig. 15
compares the inductances calculated for 1008 different rotor positions, using
the FEM, and the proposed analytical method. In both cases, the machine of
Appendix A is used, with a mixed eccentricity characterized by δse=0.3 and
δde=0.3. Fig. 15, top, compares the mutual inductance between the first sta-
tor phase and the first rotor loop for different positions of the rotor. Fig. 15,
middle, compares the self inductance of the first rotor loop for different posi-
tions of the rotor. Finally, Fig. 15, bottom, compares the self inductance of
the first stator phase for different positions of the rotor. A good agreement
is observed in the three comparisons of Fig. 15. The analytical model, unlike
the FEM model, does not take into account the influence of slotting, but,
except this difference, the changes of the inductances produced by the rotor
position are very similar with both models.

The same comparison presented in Fig. 15 has been carried out for two
extreme cases: a pure static eccentricity fault, presented in Fig. 16, and a
pure dynamic eccentricity fault, shown in Fig. 17. As in the case of mixed ec-
centricity fault, presented in Fig. 15, the agreement between the inductances
computed using the FEM model and the analytical model are very good.
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Figure 15: Comparison between the inductances obtained via FEM simulation (blue line)
and with the proposed analytical method (red line), for the IM of Appendix A with an
eccentricity level of δse = 0.3 and δde = 0.3 (mixed eccentricity). Top: mutual inductance
between the first stator phase and the first rotor loop. Middle: self-inductance of the first
rotor loop. Bottom: self-inductance of the first stator phase.
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Figure 16: Comparison between the inductances obtained via FEM simulation (blue line)
and with the proposed analytical method (red line), for the IM of Appendix A with
a eccentricity level of δse = 0.6 and δde = 0 (static eccentricity only). Top: mutual
inductance between the first stator phase and the first rotor loop. Middle: self-inductance
of the first rotor loop. Bottom: self-inductance of the first stator phase.
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Figure 17: Comparison between the inductances obtained via FEM simulation (blue line)
and with the proposed analytical method (red line), for the IM of Appendix A with a
dynamic only eccentricity level of δse = 0 and δde = 0.6 (dynamic eccentricity only).
Top: mutual inductance between the first stator phase and the first rotor loop. Middle:
self-inductance of the first rotor loop. Bottom: self-inductance of the first stator phase.

To further assess the validity of the proposed method, the IM of Ap-
pendix A has been simulated with six different levels of static and dynamic
eccentricity (δse, δde), summarized in Table 3.
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Table 3: Levels of static and dynamic eccentricity of the six simulated and experimental
cases used in this work.

Case N. δse δde Remark
1 0.0 0.0 Healthy machine
2 0.6 0.0 Static eccentricity
3 0.4 0.2 Mixed eccentricity
4 0.3 0.3 Mixed eccentricity
5 0.2 0.4 Mixed eccentricity
6 0.0 0.6 Dynamic eccentricity

Fig. 18 compares the mutual inductance between the first stator phase and
the first rotor loop obtained for the machine in Appendix A via FEM simula-
tion (top) and with the proposed analytical method (bottom), corresponding
to the six cases summarized in Table 3. Fig. 19 shows the same comparison
for the self inductance of the first rotor loop, and Fig. 20 shows the same
comparison for the self inductance of the first stator phase. In these figures
the differences between the inductances computed with the FEM model and
with the proposed method are also displayed.
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Figure 18: Mutual inductance vs. rotor position between the first stator phase and the first
rotor loop of the machine in Appendix A, obtained via FEM simulation (top) and with the
proposed analytical method (middle), and their differences (bottom). Six different levels
of static and dynamic eccentricity (δse, δde) have been plotted: (0, 0), (0.6, 0), (0.4, 0.2),
(0.3, 0.3), (0.2, 0.4) and (0, 0.6).
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Figure 19: Self inductance vs. rotor position of the first rotor loop of the machine in Ap-
pendix A, obtained via FEM simulation (top) and with the proposed analytical method
(middle), and their differences (bottom). Six different levels of static and dynamic eccen-
tricity (δse, δde) have been plotted: (0, 0), (0.6, 0), (0.4, 0.2), (0.3, 0.3), (0.2, 0.4) and (0,
0.6).
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Figure 20: Self inductance vs. rotor position of the first stator phase of the machine
in Appendix A, obtained via FEM simulation (top) and with the proposed analytical
method (middle), and their differences (bottom). Six different levels of static and dynamic
eccentricity (δse, δde) have been plotted: (0, 0), (0.6, 0), (0.4, 0.2), (0.3, 0.3), (0.2, 0.4)
and (0, 0.6).

Figures 18, 19 and 20 show a good agreement between the inductances
calculated using the proposed analytical method, and with the FEM model,
apart from slotting effects that are not included in the analytical model. To
quantify this agreement, the normalized mean squared error (NMSE) has
been computed for each case, as

NMSE(LFEM , Lanalytical) =
∑N
i (LFEM [i]− Lanalytical[i])2∑N

i (LFEM [i])2 (52)
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where LFEM [i] and Lanalytical[i] are the ith elements of the two inductances
matrices that are being compared, the first one obtained with the FEM
method, and the second one with the proposed analytical method. The
square root of the NMSE, expressed as a percentage value, has been summa-
rized in Table 4 for the cases represented in Fig. 18, 19 and 20.

Table 4: Normalized root mean square error between the inductances obtained with the
FEM model and with the proposed approach, as percentage values of the FEM model

inductances.

Case N. δse δde ErrLsr ErrLrr ErrLss

1 0.0 0.0 2.91 % 1.68 % 1.72 %
2 0.6 0.0 6.24 % 8.57 % 2.05 %
3 0.4 0.2 5.34 % 6.76 % 2.57 %
4 0.3 0.3 4.85 % 5.57 % 2.71 %
5 0.2 0.4 4.42 % 4.14 % 2.58 %
6 0.0 0.6 4.25 % 1.12 % 1.94 %

8.2. Experimental Validation
For the experimental validation of the suitability of the proposed analyt-

ical model of eccentric IM for diagnostic purposes, the motor whose char-
acteristics are given in Appendix A has been endowed with an artificially
provoked mixed eccentricity fault. For this purpose, each original bearing of
the motor (see Fig.21.a) has been substituted by a new bearing (Fig. 21.d)
with smaller outer diameter and greater inner diameter. Also two precision
eccentric machined steel rings (Fig. 21.b and Fig. 21.c) have been used for
adjusting the new bearing to the bearing housing (Fig. 21.b) and to the shaft
(Fig. 21.c). The cylindrical surfaces of both rings are eccentric, 0.09 mm in
the case of the outer ring b, and 0.09 mm in the case of the inner ring c.
Fig. 21.e shows the new assembly mounted on the shaft, obtaining in this way
a rotor with a 30% of static eccentricity and a 30% of dynamic eccentricity.
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Figure 21: Rotor of the eccentric motor unit. Top, from left to right: a) original bearing,
b) external and c) internal eccentric rings, and d) new bearing. Bottom: e) mounted unit
on the shaft.

In the case of mixed eccentricity, it is well known in the technical literature
[67] that this type of fault generates two different series of harmonics in the
line current spectrum: a high frequency series of harmonics, which appear as
sidebands around the principal slot harmonics, and a low frequency series of
harmonics, which appear as sidebands around the fundamental component,
at frequencies given by

fME(s) = f1 ± (k (1− s)f1/p) , k = 1, 2, 3 . . . (53)

where f1 is the power supply frequency, s is the slip and p is the number of
pole pairs of the machine.

Focusing on the most dominant component of the series (53), obtained
with k = 1, a mixed eccentricity fault can be characterized by the presence
in the stator current spectrum of components with frequencies given by:

fME(s) = f1 ± (1− s)f1/p = f1 ± fr (54)

where fr is the rotational frequency of the motor. In the case of the tested
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motor, with p = 2, (54) becomes

fME(s) = f1 ± (1− s)f1/2 (55)

To verify the validity of the method proposed in this paper to reproduce
the fault harmonics at frequencies given by (55), the motor of Appendix A has
been tested at a speed of 1488 rpm (s = (1500− 1488)/1500 = 0.008), under
two different conditions: in healthy state, before mounting the eccentricity
rings, and under faulty conditions, after mounting the eccentricity rings.

In both cases, one of the phase currents has been acquired, using the
current clamp whose data is given in Appendix B, during an acquisition
time of 10 seconds, with a sampling frequency of 5 kHz. The spectra of these
currents are shown in Fig. 22 for the case of the motor in healthy condition
(Fig. 22, top) and with the eccentricity rings mounted (Fig. 22, bottom). As
expected from (55), two fault related harmonics appear in faulty conditions
at frequencies fME(0.008) = 50± (1− 0.008)50/2 = [25.2 Hz, 74.8 Hz].

The motor of Appendix A has been simulated under the same conditions
as the experimental test, 1488 rpm, both in healthy and faulty conditions,
using the Simulink model given in [53]. In this model, the phases inductances
matrix at each simulation time step is updated according to the rotor angular
position, using the inductances matrix computed with (48), (49) and (50).
The spectrum of the simulated stator phase current is given in Fig. 23, top,
for the healthy condition, and in Fig. 23, bottom, for the eccentric fault
condition.
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Figure 22: Spectrum of the experimental current of the motor Appendix A for the case
of the motor in healthy condition (22, top) and with the eccentricity ring mounted (22,
bottom). As expected from (55), two fault related harmonics appear in faulty conditions
at frequencies fME(0.008) = 50± (1− 0.008)50/2 = [25.2 Hz, 74.8 Hz].
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Figure 23: Spectrum of the stator phase current obtained from the simulation of the
motor referenced in Appendix A in healthy condition (top), and with a mixed eccentricity
of (δse,δde)=(0.3, 0.3) (bottom). These spectra show that the inductances matrix obtained
with the method proposed in this paper is able to correctly reproduce the fault harmonics
generated by a mixed eccentricity fault.
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As Fig. 23 shows, the inductances matrix obtained with the method pro-
posed in this paper is able to correctly reproduce the fault harmonics gen-
erated by a mixed eccentricity fault (23, bottom), predicting accurately the
frequencies of the fault components, and also giving a good approximation
for their amplitudes.

9. Conclusions

This paper introduces a new analytical model suitable for simulating the
IM under any type of eccentricity. The model is based on a novel approach for
computing the phase inductances of the eccentric IM; this approach relies on
two main novelties: first, an analytical expression for the yoke flux produced
by a single conductor in an eccentric machine, as a function of the conduc-
tor and rotor position, and of the level of static and dynamic eccentric, has
been obtained; and second, using this expression, a convolution-based pro-
cedure has been proposed for obtaining the inductances matrix, which gives
the self and mutual inductances for every phases and rotor positions by a
simple product in the spatial frequency domain, implemented with the FFT.
The proposed convolution-based method enables to calculate the inductances
matrix in few minutes, instead of hundreds of hours that will take this calcu-
lation using a FEM model. It is noticeable that, for a given level of dynamic
and static eccentricity, the inductances matrix is valid, except for a scale
factor, for any IM. The proposed method has been validated by comparing
it with a FEM model, and with the results obtained from experimental tests
with a commercial IM with a forced eccentricity fault.

Appendix A. Commercial IM

Three-phase induction machine. Rated characteristics: P = 1.1 kW,
f = 50 Hz, U = 230/400 V, I = 2.7/4.6 A, n = 1410 r/min , cos ϕ = 0.8.

Machine dimensions: Effective length of the magnetic core = 120 mm,
radius at the middle of the air gap = 54.1 mm, air gap length = 0.28 mm.

Stator: Three-phase winding, 36 slots, 78 wires/slot, winding pitch =
7/9, slot opening width = 2.1 mm, phase resistance 7.68 Ω, end winding
leakage = 2.3 mH.

Rotor: Squirrel-cage winding, 28 bars, slot opening width = 1.4 mm,
skew = one slot pitch, bar resistance = 0.00202 mΩ, end winding leakage =
2.45× 10−5 mH.
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Appendix B. Current Clamp

Chauvin Arnoux MN60, Nominal measuring scope: 100 mA–20A, ratio
input/output: 1 A/100 mV, intrinsic error: ≤ 2% + 50 mV, frequency use:
400 Hz–10 kHz.

Appendix C. Computer Features

CPU: Intel Core i7-2600K CPU @ 3.40 GHZ RAM memory: 16 GB,
Matlab Version: 9.4.0.813654 (R2018a).

Appendix D. Inverse of the Air Gap Length in an Eccentric IM

The expression of the inverse of the air gap length of an eccentric IM is
obtained in this Appendix. The air gap length is given, from Fig. 2, by

g(ϕ) = |OsPS −OsPR| = Rs − |OsPR| (D.1)

The term OsPR can be expressed as a function of the rotor radius, Rr, as

R2
r = |OsPR|2 + (g0 · δr)2 − 2|OsPR| · g0 · δr · cos(ϕ) (D.2)

that is,

|OsPR| =
2g0 · δr · cos(ϕ)±

√
(2g0 · δr · cos(ϕ))2 − 4(g2

0 · δr2 −R2
r)

2 (D.3)

and, substituting (D.3) in (D.1) gives

g(ϕ) = Rs − g0 · δr cos(ϕ)±
√

(g0 · δr · cos(ϕ))2 − g2
0 · δr2 +R2

r (D.4)

Assuming that the radius of the rotor is much greater than the air gap
length, Rr >> g0 · δr, then (D.4) becomes

g(ϕ) ≈ Rs −Rr − g0 · δr cos(ϕ)) ≈ g0(1− δr cos(ϕ)) (D.5)

From (D.5), the air gap length at any given angular coordinate ϕ can be
approximated by a function of the rotor center coordinates δr and Θr as

g(ϕ,Θr, δr) ≈ g0 · (1− δr · cos(ϕ−Θr)) (D.6)
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For computing the phase inductances, it is needed the inverse of the air
gap function (D.6) to obtain the permeance function of the machine:

g(ϕ,Θr, δr)−1 = g−1
0 ·

1
(1− δr · cos(ϕ−Θr))

(D.7)

Neglecting the variations of the mean air gap radius (26), the function
given by (D.7) can be expressed as the series [62]

1
1− δr · cos(ϕ−Θr)

= 1√
1− δr2

+2
∞∑
m=1


1−

√
1− δr2√

1− δr2

m cos
(
m(ϕ−Θr)

)
)


(D.8)

Applying (D.8) to (D.7) gives finally

g(ϕ,Θr, δr)−1 = g−1
0 ·

(
A0 +

nt∑
m=1

Am · cos
(
m(ϕ−Θr)

))
(D.9)

where

A0 = 1√
1− δr2

Am = 2
1−

√
1− δr2√

1− δr2

m m = 1 . . . nt (D.10)
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