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Abstract
A control oriented model of Spark Ignition combustion is presented. The model makes use of avaliable signals, such
as Spark advance (SA), air mass, intake pressure, and lambda, to characterize, not only the average combustion
evolution, but also the cycle-to-cycle variability. The conventional turbulent flame propagation model with two states,
namely entrained mass and burnt mass, is improved by look-up tables at some parameters, and the cycle-to-cycle
variability is estimated by propagation of an exogenous noise with a normal probabilistic distribution at the turbulent
and laminar flame speed, which intends to simulate the unknowns at turbulent flow, temperature distribution, or initial
kernel distribution.

The model is able to estimate which is the expected variability during the combustion evolution and might be used
online for characterizing the time response of closed-loop control actions or it can be used offline to improve the control
strategies without large experimental test campaigns. Experimental data from a 4 stroke commercial engine was used
for calibration and validation purposes, demonstrating the capabilities of the model in steady and transient conditions.
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Introduction

New stringent legislations are including restrictions in the
vehicular CO2 emissions to reduce the effect of transport
sector in the global warming. Henceforth, although spark
ignited (SI) engines are characterized by lower NOx
emissions in comparison with compression ignited (CI)
engines, special efforts are being taken to improve SI
combustion efficiency by newer controller designs.

Nowadays, the spark advance (SA) is controlled by
electronic control units (ECUs) with open-loop maps stored
in the memory. These maps cannot always ensure optimal
combustion control because the relationship between the
SA and the combustion phase its affected by many factors,
such as the ambient pressure and temperature, air humidity,
engine aging and wear, fuel quality, etc. Spark ignited
combustion is characterized by a flame front evolution,
which can be modelled by a zero dimensional model with
two states, namely the entrained mass and the burnt mass1.
Such model can be used offline for simulation purposes
or online to predict the optimal actuation2. However,
turbulence during the combustion process is complicate to
predict3,4, and disturbances at the inputs or unpredicted
phenomenon might change the start of combustion and the
flame propagation evolution. Some works propose using in-
cylinder pressure for updating the parameters and consider
non-calibrated phenomena that might bias the model5.

Furthermore, because of the flame front propagation
principle and the increase in pressure at the combustion
chamber, SI engines are affected by knock, i.e. the undesired

autoignition of the end gas6. Knock is an stochastic
phenomena which cannot be predicted in a deterministic
manner. Although some works aim to simulate the stochastic
behaviour of knock by physical models7,8 or open-loop
tables9, in most of the engines, knock is avoided by retarding
the spark advance at each knock event with the so named
conventional knock control strategy10.

An effective method to ensure an optimal control action
in the system is to use combustion indicators for feeding
the control system. The combustion phase is estimated from
the pressure analysis in the cylinder with a heat release
analysis11. The center of the combustion must be set in such
a value that maximizes the efficiency by means of the spark
advance management (SA)12. The combustion efficiency
is commonly evaluated by the indicated mean effective
pressure (IMEP), which might be also derived from the
in-cylinder pressure trace. Finally, knock can be computed
through parameters such as the maximum amplitude of
pressure oscillation (MAPO)13, by a predefined threshold
that is admissible for the vehicle operation14.
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These indicators can be used in two ways: by developing
closed-loop combustion strategies or by employing on-board
learning algorithms for real-time optimal combustion
control15–17: Zhang et al. firstly proposed a scheme with two
layers to update a look-up table to control the spark advance
and achieve optimal efficiency, either by pre-defining an
optimal CA5018 or by using extremum seeking to detect the
optimal one19. In other works, they included a third layer
to control knock under a desired level, either by a knock
constraint which is updated in an open-loop map20 or with
a likelihood-based control21. Corti et al. also proposed the
use of extremum seeking control over the spark and the Air
to fuel ratio (AFR) to optimize a cost function composed
from the combustion efficiency, the knock intensity, and
the exhaust temperature22,23. Popovic et al. tested different
algorithms of extremum seeking for automatically optimize
the variable valve timing (VVT) for minimizing the fuel
consumption24 while Hellstrom et al. used extremum
seeking for finding the optimal spark advance in a flex-fuel
engine25.

Nonetheless how information is used for feedback, such
indicators are affected by cycle-to-cycle variations, which
induces undesired noise at the control indicators and makes
combustion control challenging. Combustion variation is one
of the major barriers for achieving higher thermal efficiency
in Spark-Ignited (SI) engines. The cyclic and cylinder-
to-cylinder variation can cause drop of efficiency, engine
vibration, and uncomfortable noise that must be reduced.
It is important that the engine is designed to minimize
the combustion variation, and for a given engine design,
operating conditions with high cycle-to-cycle variability
should be avoided26.

Many studies have been devoted to identify the causes
of SI combustion variability by analysing the combustion
with detailed simulations, i.e. Direct Numerical Simulation
(DNS) and Large-Eddy simulations (LES), or by using
specific experimental test benches, such as transparent
combustion chamber optical engines. These works proved
that the sources of combustion variability are diverse and
complex, e.g. residual gases distribution27, velocity field
around spark28, internal kernel size29, turbulence30,31,
etc. Because of the different phenomena that triggers the
combustion variability, at each operating condition the
laminar flame speed and the turbulent characteristics of the
flame might have a different probabilistic distribution32.

Several works proposed algorithms to update look-
up-tables, by designing proper filters that rejects the
cycle-to-cycle variability33–35. Precise information about
the variability is crucial, as there is a trade-off when
updating the combustion models between robustness and
time response. Gao et al. proposed an stochastic controller
which uses hypothesis tests to determine if the probability
distribution of the combustion indicator is in a desired range
or if some correction at the spark must be applied36,37.
Lee et al. used a combustion model with variability to
reduce the experimental effort and calibrate an extremum
seeking control approach with the spark advance and VVT

as actuation38. All these studies highlight the need of cycle-
to-cycle variability models with low computational burden
that might be used in real time for simulation purposes or
for determining the parameters of the control strategy.

Most of the control-oriented models for cycle-to-cycle
variation prediction are based on black-box models, such
as neural networks39? , and they use to be focused on the
prediction of single indicators, such as IMEP or CA50.
Nevertheless, the effect of the actuators and the final
emissions highly depend on the shape of the heat release
and detailed information about the heat release evolution
variation would be beneficial for controllers based on the
heat release pattern40.

The present paper aims to model the cycle-to-cycle
variability of the heat release pattern by modelling the
causes of the variability as a probability distribution at
the laminar speed and at the turbulent speed. The model
is able to predict the expected heat released evolution as
well as the cycle-to-cycle variability with few available
signals in commercial ECUs. The model has been tested
in a four-strokes engine at various operating conditions,
ranging from 1000 to 3000 rpm and from 25 to 75 % load.
The paper is structured as follows: Next section presents
the experimental set up. Section three introduces the flame
propagation model used and the simulation of cycle-to-cycle
variability developed. Section four is focused on presenting
experimental results and extracting conclusions. Finally, last
section highlights the main contribution of the model and
proposes future work on the topic.

Experimental set-up
Several experimental tests are presented in this paper.
Experimental tests have been carried out in a four stroke
EURO VI SI engine boosted with turbocharger. The main
characteristics of the engine are collected in the following
table:

Table 1. Engine main characteristics

Combustion SI
Injection DI
Stroke (S) 81.2 mm
Bore (D) 72 mm
S/D 1.128
Number of cylinders (z) 4
Displacement 1300 cc
Compression ratio 10.6:1
Valves by cylinder 4
Maximum power 120kW @ 4500 rpm

The engine is coupled in a test bench with additional
measurements of temperature and pressure at the intake and
exhaust manifolds. A Horiba Mexa 7100 series was used
to measure the emissions of the engine. Figure 1 shows an
image of the test-bench used. The overall operation of the
engine has been controlled by the Electronic Control Unit,
which has been bypassed with ETAS 910 for modifying the
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standard calibration. A prototyping system from National
Instruments, composed from a PXIe8133 controller and
acquisition modules (PXIe6356 and PXI6143), was used to
acquire and process information from in-cylinder pressure
and additional sensors. In-cylinder pressure was acquired
every 0.5 CAD by using spark plugs instrumented (AVL
ZI33) and an optical encoder. The turbocharger is controlled
by variable geometry turbine (VGT), which was controlled
by the prototyping system by using a cRIO 9114 (Virtex-5
LX50 FPGA) with a NI 9759 module (H-bridge controller).

Figure 1. Test bench instrumentation

Two datasets have been used for calibration and validation
purposes.

• The first set of tests has been collected to represent
the engine performance over the entire operating map.
It consists in 54 steady tests, where 250 in-cylinder
pressure cycles have been recorded and processed. The
54 tests have been divided in 9 operating conditions
characterized by intake pressure (and hence air mass
flow) and engine speed. At each operating condition
variations in SA have been performed until the knock
limit, lambda has been maintained at 1 to ensure
stoichiometric conditions. For a precise identification
of knock in-cylinder pressure sensors were used:
the maximum amplitude of the pressure oscillation
(MAPO) was compared with a pre-defined threshold.
Figure 2 shows the engine speed (top plot), intake
pressure (medium plot), and spark advance (bottom
plot) for each test.

• In addition of the steady test campaign, a transient
test of 990 sec has also been recorded for validation
purposes. The transient test consist in step variations at
various conditions (different of those used for training)
in order to validate the method at diverse operating
conditions and in transient operation. Figure 3 shows
the evolution of the intake pressure, the engine speed,
and the SA setted, during the test.

Model description
The model aims to capture the heat release fluctuations as
well as the overall behaviour of the engine. In the following
lines, the thermal analysis performed from the pressure
signal, the model used, and the variability simulation will be
described:
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Figure 2. Operating conditions tested
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Figure 3. Tip-in and tip-out test at 1750 rpm

Heat release analysis

In-cylinder pressure is used to analyse the evolution of the
heat release in experimental data, as it can be considered
the most direct indicator of the combustion evolution.
In-cylinder pressure sensors are used for calibration and
validation purposes, however, their elevated cost confines its
use in control algorithms for high cost engines.

The evolution of the heat in the control volume of
the combustion chamber is commonly evaluated with
the conservation of the energy and assuming ideal gas,
following:

Q =
γ

γ − 1
pdV +

1

γ − 1
V dp (1)
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where Q is the evolution of the heat in the combustion
chamber, p represents the in-cylinder pressure, V is the
instantaneous volume in the combustion chamber which can
be derived from geometrical data of the engine, and γ the
specific heat capacities ratio.

The specific heat capacities ratio can be modelled by
semiempirical equations. In lean mixtures, models use the
air to fuel ratio, the temperature of the gases (T ) and the
mass fraction burnt evolution to determine the properties
of the gases41,42. However, in stoichiometric conditions,
γ can be modelled with much more simple functions,
such as proposed by Gatowski et al.43 who suggested just
a proportional dependence with the temperature. In the
present work, as all the points have been collected near
stoichiometric conditions, the function proposed by Egnell
et al. has been used44, following:

γ = 1.38− 0.2e
900
T (2)

For obtaining the heat released from fuel, at least the wall
heat transfer must be modelled through convection, such as:

Qw = hAw(T − Tw) (3)

whereAw is the area of the walls in the combustion chamber,
Tw its temperature, and h the convective coefficient. The
most widespread model was developed by Whoschni in
196745, and determines the evolution of h as a function of
pressure, temperature, and engine speed, such as:

h = C1D
−0.2p0.8T−0.53 [C2c+ C3K(p− pm)]

0.8 (4)

where pm is the motored pressure, c the average piston speed,
C1, C2, and C3 constants of the model, and K is obtained
from the volume displace, Vdis, and the conditions at the
Intake Valve closing (IVC), following:

K =
VdisTIV C
pIV CVIV C

(5)

The motored pressure can be obtained by assuming a
polytropic evolution, which assumes no heat released and
models the evolution of γ and the wall heat transfer in a
single constant parameter, κ. In that conditions, the pressure
evolution, pm, follows:

pm(α) = p(IVC)

(
V (IVC)

V (α)

)κ
(6)

Some authors use an alternative formulation, which
enforces to represent the losses with a single parameter, κ,
such as:

HRR =
κ

κ− 1
pdV +

1

κ− 1
V dp (7)

This approximation is named apparent heat release
(AHR) and is used in most of control applications due
to the low computational cost and for avoiding errors in
complex phenomena, such as blow-by or the trapped mass
estimation. A typical value used for κ is 1.3. Such value use
to compensate the effect of γ and the wall heat transfer by
slightly underestimating the heat release rate at compression

and overestimate it at expansion, while maintaining a good
prediction during combustion. The apparent heat release is
precise for the combustion phase estimation, but exhibits
significant discrepancies at the total heat release.
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Figure 4. In-cylinder and motored pressure of a cycle at 1000
rpm and high load with the SA at -4.5 CAD-ATDC

Figure 4 shows the in-cylinder and the motored pressure
from a cycle at 1000 rpm and high load, with the SA settled
at -4.5 CAD-ATDC. The κ used here was 1.266.

The evolution of the combustion is studied by analysing
the crank angle position (CAx) where a determined
percentage of the energy released is achieved, which
accomplishes: ∫ α=CAx

HRRdα =
xHR
100

(8)

where x is a value comprised between 0 ant 100. Note that
CA0 = SOC and CA100 = EOC.

One of the major issues when analysing the combustion
evolution is the determination of the end of combustion
(EOC). Small divergences at the wall heat transfer
prediction, or in at κ at the AHR, are converted in
virtual heat release terms at compression and expansion.
These errors are rejected at compression by assuming no
heat released before SA, however they are integrated at the
expansion leading to late EOC positions.

One solution is the approximation of the mass fraction
burnt (MFB) evolution at SI combustion by one combustion
event with a vibe function shape, such as:

MFB = 1− exp
(

α− SOC
EOC− SOC

)m+1

(9)

Equation 9 was used for EOC detection by using least-
square recursive method over EOC and SOC, and assuming
that combustion has a shape characterized by m = 3.

Figure 5 shows the mass fraction evolution with the vibe
curve approximation. The left axis was used to show the
total heat released. The combustion efficiency is calculated
as the computed energy, or heat released (HR), divided by
the usable one, assuming that the gasoline energy density is
Hc = 45 kJ/Kg, such as:
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Figure 5. Mass fraction burnt of a cycle at 1000 rpm and high
load with the SA at -4.5 CAD-ATDC

ηc =
mfHc

HR
(10)

Combustion model
The model has been derived from a turbulent and
laminar entrainment combustion model which was originally
presented in 1974 by N. C. Blizard and J. C. Keck46. It
assumes that the mass is firstly entrained at small eddies,
following Equation (11) and later is burned in a characteristic
time (τ ). The final burnt mass is composed from the mass
burnt at these eddies and the mass burnt by the flame
advance, such as suggested in Equation (12).

δme

δt
= ρubAf (ut + Sl) (11)

δmb

δt
=

me −mb

τ
+ ρubAfSl (12)

where me represents the entrained mass, mb the mass burnt,
ρub the density of unburnt gases, Af the flame front area, ut
the turbulent intensity, and Sl the laminar flame speed.

The laminar flame speed, has been derived from the
semi-empirical equations suggested by S. Poulos and J.
Heywood47, such as:

Sl = K1Sl,0(λ)

(
Tub
T0

)α(λ)(
pcyl
p0

)β(λ)
(1− 2.06RGF 0.77)

(13)
where K1 is a calibration factor, S. Poulos and J. Heywood
proposed Sl,0 = 0.281, α = 2.129, and β = −0.217, for
stoichiometric conditions (λ = 1)47.

The evolution of the in-cylinder pressure signal have
been modelled by inverting Equation (1). Henceforth, in
the discrete domain, using euler discrete differentiation,
i.e. dpkcyl = pk+1

cyl − pkcyl, the evolution of the in-cylinder
pressure can be obtained by:

pk+1
cyl = pkcyl +

(
Qk − pkcyldV k

κ

κ− 1

)
κ− 1

V k
(14)

where the total heat evolution (Q) is computed by subtracting
the wall heat transfer (Qw) to the heat released, which is

a function of the mass burnt at each step (∆mb) and a
combustion efficiency (ηc). Following:

Qk =
∆mk

b

14.6
Hcη

k
c −Qkw (15)

The residual gas fraction (RGF ) was estimated from
the in-cylinder pressure trace, by assuming a polytropic
evolution between the exhaust valve opening and the exhaust
valve closing48, such as:

RGF =

[
V (EV C)

V (EV O)

] [
p(EV C)

p(EV O)

]1/γ
(16)

In the work, the RGF is an input for the model simulation
but grey-box models can be used for its estimation in real
time, such as suggested by Wang et al.49.

The flame has assumed to be an sphere till the combustion
reaches the piston wall, when a partial semiesphere with
simplifications will be assumed1. Following:

Af =

{
2πr2b if rb ≤ hc

2πrbhc otherwise, (17)

where hc represents the chamber height, and the radius of the
burnt gases (rb) is obtained from the mass burnt evolution,
assuming that the burnt gases have a density approximately
four times bigger than the unburned gases50, and using
the following volume estimation for the aforementioned
geometries:

Vf =

{
2
3πr

3
b if rb ≤ hc

πr2bhc − 1
3πh

3
c otherwise, (18)

The combustion is assumed to start at the spark ignition,
and the initial radius is assumed to be constant. Note that
the effect of the spark might be different depending on
the position of the spark and the conditions around it. The
consequences of such hypothesis have been integrated in
other calibration constants.

The turbulent intensity has been estimated from the
conservation of angular momentum of individual eddies,
such as suggested by R.J. Tabaczynski et al.51, following:

ut = ut0

(
ρub(t)

ρub(SA)

) 1
3

(19)

where the increase of intensity is proportional to the cube of
the proportion between the density of the unburned gases and
its value at start of combustion (SOC). The initial value of
turbulent intensity (ut0) can be computed such as suggested
by J.C. Keck52, as a function of the medium piston velocity
(up) and the square root of the variation in density from the
intake valve closing (IVC) to the SA:

ut0 = K2up

√
ρ(SA)

ρ(IV C)
(20)

where K2 is a calibration parameter.

R.J. Tabaczynski et al. also computed the eddy burning
time (τ ) as the microscale length (λm) divided by the laminar
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flame speed, such as:

τ =
λm
Sl

(21)

The microscale length, also named Taylor microscale,
might be computed by using the integral length scale (L) and
the Reynolds number (Re):

λm
L

= C
√
Re (22)

where the integral length scale can be computed from the
distortion theory53, ending up with an expression of the
micorscale length such as:

λm = K3

√
µhc(SA)

ut0
ρub(SA)

1
3

(
1

ρub

) 5
6

(23)

where K3 is a constant that might be calibrated for a given
engine, and µ is the dynamic viscosity, which is assumed for
the unburned gases equal to that of air, following:

µ = (3.3x10−7)T 0.7
ub (24)

As a summary, if the combustion efficiency is calibrated,
the model is able to predict the heat released as a function
of the SA, the intake pressure, the injected fuel mass (and
hence the air mass flow if stoichiometric conditions are
assumed), the residual gasses, and the engine speed.

HR = fc(pint, SA, n,RGF,mfuel) (25)

by using three calibration constants (K1,K2, and K3),
that characterize the laminar speed and turbulent intensity
evolution.

Top plot in Figure 6 shows the average burning rate at
1000 rpm and low load with a dashed line and the output
of the model for three possible fittings of K1 and K2 with
a continuous lines: The black line represents the optimal
calibration, namely K1 = 0.49 and K2 = 0.67, the lighter
grey shows the effect of increasing K2 by 50 % of the
optimal value, while the darker grey line represents the best
calibration when increasing K2 a 50% over the optimal
value, i.e. by compensating with a reduction of K1. The
medium plot and tops plot show the effect of such variations
in the laminar flame speed and turbulent intensity evolution.

While K1 is directly related with the laminar speed,
K2 and K3 are related with the evolution of the turbulent
intensity and its effect in the burning rate. Note that the
model is able to represent the combustion with precision
if the calibration parameters are properly fitted. Increasing
K1 or K2 would accelerate the combustion rate, while the
opposite effect is expected from K3. If K2 is increased and
K1 is decreased the shapes of the function substantially
change, although the average phase evolution might be
similar. The effect of K3 is similar (but opposite) to that
observed at K2, as it is used for the computation of λm,
which is also divided by

√
K2, i.e. see Equations (20) and

(23). These constants, K1, K2, and K3, depend on the
combustion chamber design, as it influences the emptying
and filling procedure and the combustion evolution.

20

60

100

M
F

B
 [%

]

measured
K

1
 =0.53, K

2
 = 1.08

K
1
 =0.53, K

2
 = 0.54

K
1
 =1.24, K

2
 = 0.54

0.2

0.4

0.6

0.8

S
l [-

]
0 10 20 30 40 50 60

Crank angle [deg]

5

10

15

u
t [-

]

Figure 6. Mass fraction burnt, laminar speed, and turbulent
intensity, obtained from the combustion model by using three
combination of K1-K2.

Cycle-to-cycle variability simulation
The combustion model has been calibrated to represent the
average engine operation in steady conditions. Nevertheless,
the SI combustion suffers from important cycle-to-cycle
variability, even when using the same actuation commands.
Top plot of Figure 7 shows the combustion phase evolution
of 30 cycles with grey lines and the average of all the cycles
collected (200 cycles) with a black line. Bottom plot of
Figure 7 shows standard deviation of the combustion phase
location for these 200 cycles at each combustion location.

Most of the variability at the IMEP, and hence the
combustion efficiency, is caused by the combustion phase
variability as it is directly affected by the combustion
location. The goal of this section is presenting a model
capable of reproducing such variability by assuming that, no
matter which is the disturbance triggering the variability, it
can be modelled by a normal probability distribution at the
laminar flame speed and at the turbulent intensity. Such as:

σCAx(%) = fσ
(
N1(K1,CV1), N2(K2,CV2)

)
(26)

where fσ consist on the propagation of two probabilistic
distributions, N1 and N2, on the previously presented
combustion model fc.

Each normal distribution are characterized by an average
value, K1 and K2, which represent the average combustion
phase evolution, and a variability, defined as the coefficient
of variation CV, such as:
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CV1 =
σ(K1)

K1

100,CV2 =
σ(K2)

K2

100 (27)

Figure 8 shows, with a dashed line, the experimental
variability found at each percentage of the combustion phase
location for the point previously presented in Figure 7, while
the result of three possible combinations of CV1 and CV2:
the optimal one, only CV1, and only CV2, has been drawn
with continuous lines.
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Figure 8. Comparison between the variability found with
experimental data and the result of three possible combinations
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The propagation of such probability distributions should
be made by discrete computation of all the possible values of
K1 and K2 comprised in the probability spectrum, such as:

MFB(i, j, α) = fc(K1i,K2j) (28)

where MFB(i,j,α) is the fuel mass burnt at cranck angle
α when laminar flame speed and turbulent intensity are
modelled by constantsK1i andK2j respectively. Afterwards
the position at each % of the combustion (CAxij) is found,
and finally, the average and the standard deviation of each

probability function can be determined by:

CAx =
∑
i

∑
j

CAxijPij (29)

σ(CAx) =

√∑
i

∑
j

Pij
(
CAxij − CAx

)2
(30)

where Pij is the probability function of each combination of
K1i and K2j , which must accomplish that:∑

i

∑
j

Pij = 1 (31)

The main problem of such model is the computational
burden of recalculating the combustion phase evolution for
all the possible variations. Figure 9 shows the probability
function of the optimal solution, namely CV1 = 5.5% and
CV2 = 9.5%. For an adequate precision, 100 values at each
dimension, ranging from 0.8 to 1.2 have been chosen. That
implies running the model 100x100 times in order to obtain
all the possible combustion phases.
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Figure 9. Probability function Pij of the optimal solution
characterized by CV1 = 5.5% and CV2 = 9.5%

here, the subindex i and j have been used for the trials
at each constants, and the values at the axis have been
adimensionalized to illustrate the proportional effect at each
constant. From now:

A1i = K1i/K1, A2j = K2j/K2 (32)

With the aim of avoiding such tedious implementation,
two hypothesis have been taken:

• The cross effects between A1 and A2 have been
neglected, assuming that:

CAx(A1, A2) = σ(A1, 1) + σ(1, A2) (33)
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• A quadratic dependence of CAx with each parameter,
i.e. a linear function for the derivative, such as:

CAx =
m2
i

2
∆ki + dKi0∆ki + CAx0 (34)

where CAx0 is the average CAx, while mi and
dki0 are constants for each parameter defining the
dependence of the combustion phase evolution respect
to A1 and A2.

With those assumptions, the variability can be simulated
by running 5 times the model (three points at each
dimension). Figure 10 illustrates with crosses the five
iterations selected: one at the average value (K1 and K2)
and the others using a 20% variation (A1 = [0.8, 1.2] and
A2 = [0.8, 1.2]). The derivatives have been also obtained
at the circles by Euler finite differences, and finally, the
evolution of the derivative has been projected from these
points (pointed out by circles in Figure 10).
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A
1i

 [-]

0.8

1

1.2

A
2j

 [-
]

Figure 10. Simulations proposed to obtain the variability at all
the range

Note that these calculations must be updated every
time-step, as the model inputs, namely intake pressure, SA,
injected fuel mass, residual gas fraction, and engine speed,
modify the function (26).

Figure 11 shows how much is modified the location
of the CA50 when varying one unit of A1 and A2. The
experimental value obtained at 100 iterations over A1 and
A2 is drawn with a black line, while the linear interpolation
is illustrated with a grey line.

Notice that increasing A1 0.1, i.e. increasing K1 by a
10%, the CA50 is advanced 1 CAD but when reducing it the
same quantity, combustion is retarded 1.5 CAD. The effect is
lower near the SOC while it uses to increase near the EOC.
Although the function is not linear, i.e. the function tends
to − inf when A1 is equal to 0, the approximation works
with sufficient accuracy for CV1 and CV2 values below 15%.

Regarding the error committed due to the five-points
approximation, the effect is below the 2.5 % for all the
combustion evolution. Figure 12 shows the discrepancies
founded in percentage when computing all the possibilities
with a 100x100 matrix and when using only 5 simulations.
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Figure 11. Variation of CA50 as a function of k1 and k2

The time consumed for the first procedure was 50.39 sec,
while the second method proposed only took 0.0965 sec
(522 times less).
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Figure 12. Discrepancies in percentage between the complete
probability calculation and the five-point iterative method

Results and discussion
The model has been calibrated by using the dataset
described in Figure 2. The combustion model was improved
by mapping three parameters that have been tabbed as
a function of the engine speed ant the intake pressure:
two related with the heat release calculation, namely the
combustion efficiency, and κ, and a one degree of freedom
for the combustion model,K2. The variability was simulated
by propagation of two probability distributions at K1 and
K2 characterized by two constants.

Calibration of heat release analysis
The first step is done by analysing the heat release model in
order to calibrate κ, which is related with the compression
procedure, and ηc, which is related with the combustion
efficiency but also with other phenomena not contemplated
in the model, such as crevice, short-circuit, blow-by, etc.
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Figures 13 and 14 shows the maps obtained for κ and
ηc respectively. The 54 tests used for calibration have been
marked with circles.
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Figure 13. Open-loop map for κ
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Figure 14. Open-loop map for ηc

Although the values of κ and ηc cannot be assumed
constant and depend on the operating conditions, the
influence of SA is negligible and they can be modelled
with a 2D open-loop (OL) table. Figure 15 illustrates
the performance of such OL maps in comparison with the
data directly obtained from the in-cylinder pressure recorded.

Calibration of combustion model
Once the combustion efficiency and κ can be obtained from
the intake conditions, such as:

κ = fκ(pint, n) (35)
ηc = fη(pint, n) (36)

the parameters K1, K2, and K3 can be calibrated.

The main parameter to calibrate here is K2, as the
turbulent intensity is modelled taken as reference the
moment when spark starts, and hence the discrepancies of
the model depend on the operating conditions, but also with
the SA.

Figure 16 shows the optimal K2 value as a function of the
SA, when fixing K1 = 0.65 and K3 = 10. The 9 groups of
tests, at different engine speed and intake pressure, have been
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Figure 15. Measured data and extrapolated values from maps
over the training dataset

coloured with different intensities of blue. No improvements
were experimented when augmenting the degrees of freedom
with K1 or K3.
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Figure 16. Values of K2 obtained as a function of SA

As it can be seen, the dependence ofK2 with the SA seems
to be linear with the SA with a constant slope of 0.02 units
per CAD. Consequently, an adaptation of K2 is proposed,
following:

K2 = K20(n, pint) + 0.02SA (37)

Figure 17 shows the values of the final map of K20. This
Open-loop map intends to represent the dependence of K2

with the operating conditions while the simplification shown
in Equation (37) includes the variation of K2 with the SA.
Figure 18 shows the comparison between the optimal value
found at each test and the result from the model proposed.

For a control-oriented model constant values of CV1 =
5% and CV2 = 10.25% are used. A more detailed model of
CV1 and CV2 could be developed by exploring alternatives
in order to characterise the variability dependence on the
model inputs, e.g. by using neural networks (NN).
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Figure 17. Open-loop map for K20
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Figure 18. Comparison between the optimal values of K2

found and the modelled ones

Results on training dataset
Figures 19 and 20 shows the result of the combustion model
with a dashed line, together with the experimental data
processed for the test recorded at 2000 rpm and low load
with the SA at -9 CAD-ATDC.
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Figure 19. Result of the combustion model for each % of
combustion: average (top plot) and variability (bottom plot) at
2000 rpm and low load with the SA at -9 CAD-ATDC

It must be noticed that the model is able to precisely
predict the average mass fraction burnt and the pressure
evolution while achieves a good precision on the prediction

Figure 20. Result of the predicted pressure evolution at 2000
rpm and low load with the SA at -9 CAD-ATDC

of the variability. Top plot of Figure 21 shows the mean
absolute error (MAE), while the bottom plot shows the mean
relative error (MRE) of the 54 training test used. The error
at the variability propagation has been computed at each %
of the evolution.
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Figure 21. Mean absolute error (top) and mean relative error
(bottom) for the variability propagation at each % of the
evolution.

Note that 85% of the cycle-to-cycle variability observed
can be explained by propagation of a constant exogenous
noise with two normal probability distributions.

The model is able to represent the cycle-to-cycle
variability during the combustion evolution (differences
below 3% of MRE) if the noises are updated at each
operating condition. The dependence of these two
parameters (CV1 and CV2) with the operating conditions
is out of the scope in this paper because for a significant
improvement in the final result, non-linear functions with at
least 3 inputs (SA,n, pint) need to be modelled.

One of the major drawbacks of the model is the prediction
between the SOC and the CA5, where the error is above
20%. This is mainly because of the assumption of the
combustion starting at SA and no initial variability at this
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point.

Results on transient dataset
The signal provided by the intake pressure sensor has been
used to phase all the information provided by the ECU, the
prototyping system and the test cell. At each cycle the model
has been analysed with the model inputs recorded and the
in-cylinder pressure has been individually processed. Figure
22 shows a part of the test where the CA20 (top plot), CA50
(medium plot), and the CA90 (bottom plot) are shown. Here,
cycle to cycle measurements are plotted with grey dots, and
the model output has been represented with a black line.

Figure 22. Cycle-to-cycle evolution and model output of the
CA20 (top plot), CA50 (medium plot), and CA80 (bottom plot)

The model is capable of giving an adequate combustion
phase evolution for each cycle while reproduces the increase
of variability as the combustion approaches the EOC. For a
quantitative analysis, the average CAx and its variation have
been quantified with two IIR filters, through:

CAxk+1 = kfmCAxk + (1− kfm)CAxk+1 (38)
σ2
k+1 = kfσσ

2
k + (1− kfσ)σ2

k+1 (39)

where kfm and kfσ are setted at 0.95 and 0.97 respectively,
and are used to filter the CAx and the variability measured.
The variance at each cycle (σ2) is obtained by:

σ2
k = (CAxk − CAxk)2 (40)

Figure 23 shows the evolution of the CA50 and its
variability during all the transient test. The experimental
values are drawn with black line while the model results are
represented by a thicker grey line.

The mean relative error of the model at each % is show in
Figure 24. During this transient test the model has exhibit an
average error on the combustion phasing of 5% at each % of
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Figure 23. CA50 evolution and its variability during the
transient test
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Figure 24. Mean relative error of the CAx and its variation
predicted by the model

the combustion, while the error on the variability predicted
grows up to the 15 %.

Conclusions
A combustion model for SI engines has been presented. The
model is not only able to predict the average combustion
phase evolution, but it also predicts the cycle-to-cycle
variability at each % of the combustion.

The variability estimation is based on the propagation of
two probability distributions (at the laminar flame speed
and at the turbulent intensity) in a flame propagation
model. A control oriented model is proposed by designing
an algorithm that allows the propagation of the normal
distribution by running just 5 times the model. Several
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corrections at some critical parameters have been also
suggested to improve the precisions when varying the
operating conditions.

The combustion model consists in 3 OL tables: two for
the heat release calculation and a table to characterize the
combustion model. The variability can be simulated with
two constant probability distributions.

The model has been validated in an extensive test
campaign with a state of the art four-stroke SI engine, where
the engine speed, the SA, and the VGT were modified.
The combustion model is able to precisely reproduce the
average in-cylinder pressure and mass fraction burnt, while
the propagation of the variabilities is able to predict the
cycle-to-cycle variability with a mean relative errors of 15%,
nevertheless, because of the assumptions taken, the errors
rapidly grow up before the CA5.

The model can be used to simulate the real behaviour of
the engine in off-line applications or it can be programmed
on-line to improve the performance of SA controllers.
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