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Abstract We present a simple quantum–mechanical estimate of the cosmological con-
stant of a Newtonian Universe. We first mimic the dynamics of a Newtonian spacetime
by means of a nonrelativistic quantum mechanics for the matter contents of the Uni-
verse (baryonic and dark) within a fixed (i.e., nondynamical) Euclidean spacetime.
Then we identify an operator that plays, on the matter states, a role analogous to that
played by the cosmological constant. Finally we prove that there exists a quantum state
for the matter fields, in which the above mentioned operator has an expectation value
equal to the cosmological constant of the given Newtonian Universe.

1 Introduction

1.1 Goals
While avoiding the sophistication of general relativity, Newtonian cosmology succeeds
in capturing some essential physics of the Universe. In this letter we take advantage of
this simplification in order to present a toy model of a Newtonian Universe, in which
a certain repulsive force plays a role analogous to that played by the cosmological
constant Λ in general relativity.

In natural units one has the approximate value Λ ' 10−122 [20]. Therefore Λ−1 '
10122, a number that comes surprisingly close to Smax/kB ' 10123. Here kB denotes
the Boltzmann constant, while Smax is the maximal entropy of the Universe allowed
by the holographic principle [12, 23]. This approximate equality of two dimensionless
quantities might be a coincidence, but it might also hide some deeper connection. In
this paper we explore this latter possibility.

In refs. [17, 18], a nonzero value of the cosmological constant has been argued to
render the amount of cosmic information accessible to an eternal observer finite. This
relation has allowed to determine the numerical value of the cosmological constant
from the quantum structure of spacetime. Information is of course related to entropy,
which seems to point towards the existence of some link between the two dimensionless
numbers Λ−1 ' 10122 and Smax/kB ' 10123.

Of course one would like to be able to derive the above numbers from a full–
fledged theory of quantum gravity. More modestly, in refs. [5, 10] we have obtained
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Smax/kB ' 10123 using a finite–dimensional quantum–mechanical model1 of a New-
tonian Universe. This strongly suggests that the cosmological constant Λ must also be
obtainable from the same model as in refs. [5, 10]. Carrying out this computation is
one of the goals of the present paper.

Another goal is to establish a link between the operator that represents the cosmo-
logical constant Λ, on the one hand, and the entropy operator S used in refs. [5, 10]
to compute the number Smax/kB ' 10123, on the other. For this we will resort, as
already done in refs. [5, 10], to some entropic notions concerning the emergent nature
of spacetime put forward in ref. [24].

1.2 The cosmological constant as an operator
The Newtonian gravitational attraction created by a unit point mass located at the ori-
gin is described by the attractive potential−1/r. The derivative of the latter, 1/r2, is of
course (minus) the Newtonian force. But one can also interpret 1/r2 as yet another po-
tential, the corresponding repulsive force decaying like 1/r3. In this letter we take the
point of view that the repulsive potential 1/r2 plays the role of a cosmological constant
within a hypothetical Newtonian Universe. Arguments in favour of this interpretation
are given below.

Following the steps of refs. [5, 10], we will model the volume density of (baryonic
and dark) mass in this toy Universe as being given by |ψ(x, t)|2. Here ψ(x, t) is a
quantum wavefunction satisfying a 1–particle Schroedinger equation. The value of
the mass m present in this equation is the total (baryonic and dark) matter contents
of the Universe; the mass mV enclosed by a volume V equals mV = m

∫
V

d3x|ψ|2.
By the correspondence principle, this quantum–mechanical model exhibits classical
properties in the limit of large quantum numbers. We will a posteriori verify that the
relevant quantum numbers involved do indeed fall within the semiclassical regime.

In the literature, the cosmological constant Λ has adopted a number of different
impersonations. To name but a few, in ref. [1] is has appeared as the eigenvalue
of a Sturm–Liouville problem, while in ref. [2] it has been regarded as a field. In
our finite–dimensional quantum–mechanical model an operator Ω and a state |ψ〉 can
be identified, such that the expectation value 〈ψ|Ω|ψ〉 will equal Λ. Specifically, the
sought–for operator Ω is

Ω =
1

r2
; (1)

the state |ψ〉 will be specified presently. Up to a dimensionless multiplicative constant,
the above form of Ω is dictated by symmetry (spatial isotropy) and by dimensional
arguments: in standard (i.e., nonnatural) units, Λ has the dimensions of inverse length
squared. We see that Ω differs from the usual centrifugal potential ~2l(l + 1)/(2mr2)
by multiplicative factors. However the centrifugal potential has a vanishing expectation
value in the spherically symmetric l = 0 states. This allows us to regard Ω as an
analogue of the centrifugal force that however does not vanish in the l = 0 states.

1By this we mean the quantum theory of a finite number of degrees of freedom, as opposed to a field
theory.
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Based on the operator (1), our estimates for the cosmological constant Λ are given
by the dimensionless numbers Λn defined as

Λn :=
~

mH0
〈ψn|Ω|ψn〉, n = 1, 2, . . . , (2)

the best fit to the experimentally measured value of Λ being obtained for a certain
value of the quantum number n in the semiclassical regime. Here the {ψn}∞n=1 form
a complete, orthonormal set of states in Hilbert space, H0 is Hubble’s constant, m
is the (baryonic and dark) mass of the observable Universe, and R0 its radius. The
dimensionless combination λ := ~/(mH0R

2
0) will appear frequently; its numerical

value is [20]

λ :=
~

mH0R2
0

= 2.6× 10−124. (3)

The dimensionful constants ~, m and H0 are imposed on us by the requirement that Λ
be dimensionless (when expressed in natural units). Three such constants are needed,
with the dimensions of action, mass and frequency; respectively Planck’s constant, the
(baryonic and dark) matter contents of the Universe, and Hubble’s constant are natural
choices to make.

Altogether, in units of the dimensionless parameter λ, our value Λn for the cosmo-
logical constant Λ is

Λn = λR2
0〈ψn|Ω|ψn〉, n = 1, 2, . . . (4)

We will compute Λn with respect to the eigenstates |ψn〉 of the free, 1–particle Hamil-
tonian operator

HF = − ~2

2m
∇2, (5)

which will be assumed to describe the matter contents of our hypothetical Newtonian
Universe. We will find that the best fit of Λn to the measured value of Λ [19, 22] will
occur for a certain value of n in the semiclassical regime. However, in the first place,
we need to justify our use of finite–dimensional quantum mechanics in the study of a
Newtonian cosmological problem.

2 Newtonian cosmology as a quantum mechanics
In Newtonian cosmology (for a summary see, e.g., ref. [4]) the Universe is regarded
as being (a submanifold of) Euclidean R3. The gravitational potential U satisfies the
Poisson equation

∇2U = 4πGρ. (6)

The matter content (baryonic and dark) is modelled as an ideal fluid satisfying the
continuity equation and the Euler equation,

∂ρ

∂t
+∇ · (ρv) = 0,

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p− F = 0. (7)
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The cosmological principle requires that the velocity field v be everywhere propor-
tional to the position vector r. This requirement is equivalent to Hubble’s law [13],
which can be described phenomenologically by the harmonic potential

UHubble(r) = −H
2
0

2
r2. (8)

Hubble’s constant H0 is a frequency; the negative sign implies that this potential is
repulsive. Accordingly, UHubble satisfies the Poisson equation (6) with a negative mass
density.

Although not widely recognised, Schroedinger quantum mechanics can also be un-
derstood in terms of an ideal fluid, the quantum probability fluid. Following Madelung
[15] one factorises the nonrelativistic wavefunction ψ into amplitude and phase:

ψ = exp

(
S

2kB
+ i
I
~

)
. (9)

The amplitude exp(S/2kB) is a real exponential; one can invoke Boltzmann’s principle
to regard S as a Boltzmann entropy of the matter described by ψ. It will also be
convenient to define a dimensionless Boltzmann entropy S := S/2kB . The phase
exp(iI/~) is the complex exponential of the classical–mechanical action integral I.
Substituting the Ansatz (9) into the Schroedinger equation for ψ, one arrives at a set
of two equations. One of them is the continuity equation for the quantum probability
fluid,

∂S

∂t
+

1

m
∇S · ∇I +

1

2m
∇2I = 0, (10)

where
v :=

1

m
∇I, ρ = e2S . (11)

The second equation obtained is known as the quantum Hamilton–Jacobi equation:

∂I
∂t

+
1

2m
(∇I)2 + V +Q = 0, (12)

where V is the external potential present in the Schroedinger equation.2 Above,

Q := − ~2

2m

[
(∇S)

2
+∇2S

]
(13)

is known as the quantum potential [16]. Indeed, in the limit when ~→ 0, the quantum
potential vanishes, and (12) reduces to the classical Hamilton–Jacobi equation.

In order to be able to interpret quantum mechanics as an Euler fluid we need to
derive an Euler equation for the quantum probability fluid. This is achieved by taking
the gradient of Eq. (12):

∂v

∂t
+ (v · ∇)v +

1

m
∇Q+

1

m
∇V = 0. (14)

2We recall that the dimensions of U in (6) and (8) are velocity squared, whereas those of V in (12) are
mass times velocity squared.
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Comparison between Eqs. (14) and (7) produces a bijective correspondence between
the quantum probability fluid and the cosmological fluid. According to this correspon-
dence, Newtonian cosmology can be regarded in either one of two equivalent descrip-
tions:

Euler Madelung
fluid density ρ exp(2S)
velocity field v ∇I/m
fluid pressure ∇p/ρ ∇Q/m

force per unit mass F −∇V/m

(15)

Which suggests that, given the cosmological fluid in the Newtonian approximation, we
use nonrelativistic quantum mechanics as an equivalent description thereof .

We would like to add that, beyond Newtonian cosmology, the dark Universe has
also found an interesting description as a cosmological fluid in refs. [6, 7, 8].

3 Computing Λ

The free Hamiltonian (5) admits the spherical waves

ψκ00(r, θ, φ) =
1√

4πR0

1

r
exp (iκr) , κ ∈ R (16)

as eigenfunctions. They are normalised within a sphere of radius R0 (the radius of the
observable Universe); |κ| is the modulus of the linear momentum; the angular quantum
numbers l,m have been set to zero as demanded by the cosmological principle. For
regularity of the wavefunction at the origin r = 0 we will consider the normalised
linear combination of the states (16) given by

ψn(r) =
1√

2πR0

1

r
sin

(
nπ

R0
r

)
, n = 1, 2, . . . (17)

where the boundary condition ψ(R0) = 0 has been imposed. One readily finds the
expectation value of the operator (1):

〈ψn|Ω|ψn〉 =
2πn

R2
0

Si (2nπ) , n = 1, 2, . . . (18)

where Si(x) =
∫ x

0
dt sin(t)/t [14]. By Eq. (18) in (4) we arrive at the estimates Λn

for the cosmological constant Λ:

Λn = λf(n), f(n) := 2nπ Si (2nπ) , n = 1, 2, . . . (19)
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Evaluating f(n) we can tabulate the first few values of Λn:

Λn in units of λ in natural units
n = 1 8.9 2.3× 10−123

n = 2 18.8 4.9× 10−123

n = 3 28.6 7.4× 10−123

n = 4 38.5 1.0× 10−122

n = 5 48.4 1.3× 10−122

n = 6 58.2 1.5× 10−122

n = 7 68.1 1.8× 10−122

n = 8 78.0 2.0× 10−122

n = 9 87.8 2.3× 10−122

n = 10 97.7 2.5× 10−122

n = 11 107.6 2.8× 10−122

n = 12 117.4 3.0× 10−122

(20)

They are in excellent agreement with the measured value of Λ, the best fit being around
n = 11, well inside the semiclassical regime as announced. As we let n→∞ we find

〈ψn|Ω|ψn〉 '
nπ2

R2
0

, Λn ' λπ2n. (21)

4 The cosmological constant operator as the inverse to
the entropy operator

4.1 Emergent spacetime
In a Newtonian Universe, the area measured by r2 has been argued to be proportional
to the entropy within the volume enclosed by the given area. This point has been
discussed at length in ref. [24], where an entropic concept for the emergent nature of
spacetime has been put forward.

The operator r2 has played a key role in our computation of the number Smax/kB '
10123 in refs. [5, 10]. Specifically, the holographic bound Smax/kB ' 10123 has been
achieved as the expectation value of the operator S = kBmH0r

2/~ in a certain quan-
tum eigenstate of the Hamiltonian (5). Modulo the physical constants kB m, H0 and
~, the entropy operator used in refs. [5, 10] is the inverse operator to 1/r2 used here.

Therefore entropy and the cosmological constant are mutually inverse, not just as
numbers as mentioned in section 1, but also as quantum–mechanical operators. The
explanation for the approximate equality between the dimensionless numbers Λ−1 '
10122 and Smax/kB ' 10123 lies in the deeper fact that the corresponding quantum–
mechanical operators are mutually inverse.

Now the operator Ω = 1/r2 becomes singular at r = 0. Below we explore the
consequences of this singularity in more detail. As we will see, one surprising con-
sequence of the regularisation of this singularity will be the natural appearance of a
quantum of length.
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4.2 Regularisation
Consider the coefficients cn of the Fourier–Bessel expansion of Ω = 1/r2 in terms of
Bessel functions [14]:

cn =
2

[R0J ′p(zp(n))]2

∫ R0

0

Jp

(
zp(n)

R0
r

)
dr

r
, n = 1, 2, . . . (22)

Here J ′p(x) denotes the derivative of the Bessel function Jp(x) and zp(n) denotes the
positive zeroes of the latter; the value of p is specific to the precise Hamiltonian con-
sidered (p = 1/2 for the Hamiltonian (5)). As will be proved below, it turns out that
our Λn of Eq. (4) are proportional to the Fourier–Bessel coefficients cn in the limit
when n→∞.

From a knowledge of the cn one may construct the formal series

∞∑
n=1

cnJp

(
zp(n)

R0
r

)
. (23)

Unfortunately the function 1/r2 on (0, R0) does not satisfy the conditions required
for the series (23) to converge to the function 1/r2 on (0, R0) [14]. However this
does not deprive the coefficients cn of their meaning, since Eq. (22) make sense per se.
Moreover, the cosmological constant being relevant only at astronomical scales, Λ does
not affect the short–range physics. One could then introduce an ultraviolet cutoff ε > 0
and consider the function 1/r2 on (ε, R0), where it does satisfy the requisite conditions
for the series (23) to converge to 1/r2. The integrals in (22) would now extend over the
interval (ε, R0). Whichever interpretation one chooses (either to ignore convergence
issues or to enforce convergence through an ultraviolet cutoff), the fact remains that, in
the semiclassical limit, the Fourier–Bessel coefficients of 1/r2 are proportional to the
expectation values of 1/r2, as we establish next.

The complete orthonormal system of radial states (17) can be recast in terms of
Bessel functions as

ψn(r) =

√
nπ

2R0

1√
r
J 1

2

(
nπ

R0
r

)
, n = 1, 2, . . . (24)

Thus setting p = 1/2 and z1/2(n) = nπ, the Fourier–Bessel coefficients (22) now read

cn =
2

[R0J ′1/2(nπ)]2

∫ R0

0

J 1
2

(
nπ

R0
r

)
dr

r
=

4nπ2

R2
0

C
(√

2n
)
, (25)

where C(z) =
∫ z

0
cos
(
πt2/2

)
dt [14]. In the limit n→∞ we have

cn '
2nπ2

R2
0

. (26)

Comparing Eqs. (26) and (21) we observe that, in the semiclassical limit, the Fourier–
Bessel coefficients of 1/r2 are indeed proportional to 〈ψn|Ω|ψn〉 as announced.
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Finally we repeat the above calculations without imposing a boundary condition
at r = R0. In particular this implies that the wavefunctions (16) are permitted, even
though they are singular at r = 0. We have

〈ψκ|Ω|ψκ〉 =
1

R0

∫ R0

0

dr

r2
(27)

This integral diverges at its lower limit; this is a consequence of the singular behaviour,
at r = 0, of both the wavefunction ψκ and the operator Ω. We regularise the integral
(27) by simply dropping the infinite contribution coming from its lower limit and find
a regularised expectation value

〈ψκ|Ω|ψκ〉reg = − 1

R2
0

. (28)

While the operator Ω is nonnegative, a surprising minus sign appears on the right–hand
side; this is a consequence of the regularisation.3 With the regularised integral (28) we
return to Eq. (2) and, changing the sign, find the dimensionless value

〈Λ〉reg = − ~
mH0

〈Ω〉reg =
~

mH0R2
0

, (29)

in perfect agreement with our previous result (3).
The above regularisation procedure may appear somewaht ad hoc, but in fact it

is not. It is known in the literature under the dignified name of Hadamard regulari-
sation [3], a popular choice when regularising gravitational models. In what follows
we briefly summarise the Hadamard regularisation in order to provide an alternative
derivation of our Eq. (28). Given x ∈ (a, b) and a function f(t) sufficiently differen-
tiable at t = x, consider the divergent integral∫ b

a

f(t)

(t− x)2
dt. (30)

Then the Hadamard partie finie of (30), denoted by anH in front, is defined by

H
∫ b

a

f(t)

(t− x)2
dt (31)

= lim
ε→0+

[∫ x−ε

a

f(t)

(t− x)2
dt+

∫ b

x+ε

f(t)

(t− x)2
dt− f(x− ε) + f(x+ ε)

ε

]
In the case at hand we rewrite our divergent integral (27) as

〈ψκ|Ω|ψκ〉 =
1

2R0

∫ R0

−R0

dr

r2
(32)

3This is not unsual. A well–known example is the ζ–function regularisation of the divergent sum of
positive integers

∑∞
n=1 n, which yields the negative value −1/12 [9].
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in order to identify a = −R0, b = R0, x = 0, f(t) = 1. Applying Eq. (31) one readily
verifies that

H
∫ R0

−R0

dr

r2
= − 2

R0
. (33)

Finally Eqs. (32) and (33) yield back our former result (28). We conclude that the
ultraviolet cutoff ε > 0 mentioned previously is nothing but Hadamard regularisation.

A natural choice to make for the cutoff ε is of course the Planck length LP . The
cutoff must be small enough to become negligible at astronomical scales, while the
fact that it is actually nonzero must become relevant in the ultraviolet regime. Admit-
tedly, in our Newtonian model there is no compelling argument to set ε = LP . One
would have to resort to a fully relativistic treatment and/or to a quantum–gravitational
theory of spacetime in order to justify setting ε = LP . However if our nonrelativistic,
quantum–mechanical model of a hypothetical Newtonian Universe is to provide a first
approximation to a more accurate theory (we have provided evidence that it does in-
deed provide such a first approximation), then the most natural choice to make for the
cutoff ε is the Planck length LP .

5 Discussion
We have presented a nonrelativistic, quantum–mechanical model of a hypothetical
Newtonian Universe, in which an operator can be identified that plays a role analo-
gous to a cosmological constant. Indeed the expectation value of this operator in a
certain basis of quantum states yields a value that lies close to the measured value of
the cosmological constant.

Admittedly, our toy model is not a theory of quantum spacetime; it contains one ad-
justable parameter, the quantum number n. All this notwithstanding, the close equality
of the two dimensionless quantities Λ−1 ' 10122 and Smax/kB ' 10123 has a very
simple explanation in our framework. Namely, the value Λ−1 ' 10122 arises as the
(inverse of the) expectation value of the operator 1/r2, while the Smax/kB ' 10123

arises as the expectation value of r2. Both expectation values are taken within the same
quantum–mechanical model. Moreover, the Hadamard regularisation used in section
4.2, seen to be equivalent to the inclusion of a cutoff ε in coordinate space, can be re-
garded as an indication of the existence of a quantum of length ε. Thus the requirement
of finiteness of the cosmological constant leads naturally to the existence of a quantum
of length.

Our result for Λ depends on the specific choice of a complete set of orthonormal
vectors {|ψn〉}∞n=1 for 1–particle states; it also depends on the quantum number n. We
have established that, for a given choice of orthonormal vectors, the best fit of Λn to
the measured value of Λ occurs for a certain value of n in the semiclassical regime. Of
course, different Hamiltonians will lead to different choices for the set {|ψn〉}∞n=1, and
correspondingly to different values of Λn. In previous work by some of the present
authors [5, 10, 11] we have modelled the Hubble expansion of a Newtonian Universe
by means of an inverse oscillator [21]

HH = HF −
keffr

2

2
, keff = mH2

0 . (34)
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In upcoming work we propose to use the Hamiltonian (34) in order to refine our present
estimate for the cosmological constant of a Newtonian Universe.
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