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Abstract 

With the rapid development of higher business education, higher business education evaluation has attracted 

considerable attention of researchers and practitioners. The higher business education evaluation is an essential part 

of the development of a business school, which has a direct impact on its resource distribution. The higher business 

education evaluation can be considered as a multiple criteria group decision making (MCGDM) problem that 

involves a group of experts. Due to the complexity of the decision-making problem, decision criteria are not fully 

independent to each other, and the assumption of complete rationality of experts is usually invalid in many situations. 

In this paper, we propose a Choquet integral-based hesitant fuzzy gained and lost dominance score method to address 

the two important issues regarding the interactions among criteria and the behavior preference characteristics of 

experts in MCGDM problems. Firstly, a comprehensive distance measure of hesitant fuzzy sets is introduced by 

considering the relative importance of two separations. Then, a Choquet integral-based hesitant fuzzy gained and lost 

dominance score method based on the prospect theory is proposed to address the MCGDM problems in which experts 

make decision with the risk preference psychology. Finally, an illustrative example of higher business education 

evaluation is provided to demonstrate the applicability of the proposed method, and the sensitivity and comparative 

analysis are also completed to verify the validity of the proposed method. 

Keywords: Multiple criteria group decision making; Hesitant fuzzy set; gained and lost dominance score method; 

Choquet integral; Prospect theory 
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_____________________________________________________________________________________ 

1. Introduction  

With the acceleration of the world economic globalization, the economic trade exchanges between China and 

other economies become increasingly frequent, especially since China entered the WTO (World Trade Organization) 

in 2001. Consequently, the demand for business talents in Chinese socioeconomic development is growing 

significantly. In the last two decades, Chinese higher business education has experienced a rapid development. The 

higher business education evaluation plays a vital role in the development of advance-business education. It can not 

only promote the benign competition of business institutes and colleges, but also improve the quality of higher 

business education (Adam, 2016). To comprehensively and objectively evaluate the performance of higher business 

education, multiple factors and stakeholders should be taken into consideration. Therefore, the higher business 

education evaluation can be regarded as a multiple criteria group decision making (MCGDM) problem including 

multiple evaluation criteria such as school-running resources, education process and scientific research achievements.  

In actual situations, for education evaluation problems, an assessment specialist usually cannot grasp all precise 

information regarding all criteria. The hesitant fuzzy set (HFS) introduced by Torra (2010) is a powerful tool to deal 

with vague and uncertain information. As people may hesitate among several possible values when determining the 

membership of an element to a given set, the HFS, whose membership degree includes several possible values, can 

represent such a situation exactly. Since the HFS was proposed, a large number of studies have been published 

(Bustince et al., 2015; Liao et al., 2018, 2019b; Rodriguez et al., 2014). Thanks to these achievements, many complex 

and uncertain decision-making problems can be solved. 

The gained and lost dominance score (GLDS) method, originally proposed by Wu and Liao (2019), is a useful 

outranking method to solve multiple criteria decision making (MCDM) problems. The main advantage of the GLDS 

method is that it produces more reasonable and robust results than other MCDM methods. It considers both the gain 

and loss in uncertain context. In many MCDM methods, such as the VIKOR (VIsekriterijumska optimizacija i 

KOmpromisno Resenje) and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), the utility 

values of some criteria are completely compensated by those of other criteria, while in the GLDS method, the bad 

performances of some criteria cannot be compensated by the good performances of other criteria. Thus, using the 

GLDS method for MCDM can avoid selecting an alternative performing too bad under any criterion. Motivated by 

the originally GLDS method proposed by Wu and Liao (2019), Fu et al. (2018) studied the underground mining 

method selection problem in China in which the evaluation information was represented by hesitant fuzzy linguistic 
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term sets (Rodriguez, Martinez & Herrera, 2012; Liao, Xu, Zeng & Merigó, 2015). Liao et al. (2019c) further 

investigated the probabilistic linguistic GLDS method with the logarithm-multiplicative analytic hierarchy process 

and then applied the integrated method for life satisfaction evaluation in earthquake-hit area. Although the GLDS 

method has been applied in various fuzzy environments, few scholars, to the best of our knowledge, pay attention to 

the extension of this method in the hesitant fuzzy context. As mentioned earlier, a lot of imperfect and imprecise 

information is involved in the process of higher business education evaluation and the hesitant fuzzy set is adequate 

to cope with the situation where the evaluations can only be expressed by a set of possible values. In this regard, it is 

necessary to investigate the hesitant fuzzy GLDS method by considering the advantages of both the HFS and GLDS 

method to address this issue well. 

In addition, although the GLDS method has advantages over other MCDM methods, there are still two strikes 

against it. On one hand, the distance measure used in the dominance flow function is inadequate to tackle the hesitant 

fuzzy information that has the nature of uncertainty and complexity. As a useful technique to capture the difference 

between HFSs, various distance measures of HFSs have been investigated by scholars, including but not limited to 

the generalized hesitant normalized distance (Xu & Xia, 2011), generalized hesitant fuzzy synergetic weighted 

distance measure (Peng et al., 2013) and normalized generalized distance measure (Tang et al., 2018). However, since 

those distance measures of HFSs are based on distinct weighted mean operators, unreasonable results may be 

produced. For example, let 1 {0.1, 0.2}h  , 2 {0.3,0.4}h   and 3 {0.1,0.2, 0.5,0.6}h   be three hesitant fuzzy 

elements (HFEs). Using the normalized generalized distance measure to compute the distances 1 2( , )d h h  and 

1 3( , )d h h , we have 1 2( , ) 0.2d h h   and 1 3( , ) 0.2d h h  , respectively. Because of the significant difference between 

2h  and 3h , the above results are not reasonable. So, it is essential to develop a new distance measure to meet this 

research challenge. In this paper, we introduce a novel distance measure for HFSs based on the reference (utopia) 

point theory (Yu, 1973), which can overcome the above flaw well.  

On the other hand, the original GLDS method is incapable to handle the situation in which the decision criteria 

are not independent to each other. In practical decision-making problems, the inter-dependency of criteria has become 

such a common phenomenon that could not be ignored in MCDM. How to model the inter-dependent characteristic 

between criteria is a hot topic in the field of MCDM. To portray the inter-dependency of arbitrary sets, Choquet (1954) 

introduced the concept of capacities that provides an ability to represent the importance of a set of criteria. Afterwards, 

for integrating the information in fuzzy environment, a few Choquet integral-based aggregation operators were 

proposed by Wei et al. (2013), Joshi and Kumar (2016) and Yager (2018). A hesitant fuzzy linguistic Choquet integral 



4 

 

arithmetic (HFLCIA) operator for MCDM problems was also proposed (Liao et al., 2019a). Inspired by the HFLCIA 

operator, we propose a hesitant fuzzy Choquet integral arithmetic (HFCIA) operator in this study. On this basis, we 

introduce a Choquet integral-based GLDS method for MCGDM problems with interactive decision criteria. In this 

way, we can bridge the second research gap of the original GLDS method. 

Moreover, experts usually make a decision under risk. In such a case, the expected utility theory may be 

inadequate for the MCGDM problems that involve a panel of experts with risk preference characteristics. In other 

words, the assumption of completely rational decision-makers is invalid in this situation. Given that the utility theory 

is not an appropriate model to capture the attitude characteristic, Kahneman and Tversky (1979) introduced the 

prospect theory for decision-making problems in which experts have incompletely rational psychological aspects. 

Since the prospect theory aligns closely with the psychological characteristics of human, MCDM methods based on 

the prospect theory have recently attracted considerable attention of scholars. For example, Qin et al. (2017) 

researched an extended TODIM method using the prospect theory for the green supplier selection problem. Based 

on the prospect theory, Wang et al. (2018) established failure modes and effect analysis (FMEA) framework that 

takes into account decision-makers’ psychological characteristics. Liu et al. (2019) proposed a prospect cross-

efficiency (PCE) model to capture the risk preference psychology of decision-makers. As a new member of the family 

of decision-making methods, the GLDS method failed to consider the attitude characteristics of experts. To fill this 

gap, we develop a prospect dominance flow function which characterizes the risk preferences of experts. 

Based on the above analysis, in this study, we dedicate to proposing a Choquet integral-based hesitant fuzzy 

GLDS (HF-GLDS) method to handle the higher business education evaluation problem in which the experts have 

the risk preference psychology. The highlights of this paper can be summarized as follows: 

(1) We first propose a compromise value function of HFSs, based on which, a comparison method of HFEs is 

developed. Then, we introduce a comprehensive distance measure to capture the difference between HFEs. 

(2) Considering the attitude characteristics of experts, we introduce a novel dominance flow function based on 

the prospect theory. 

(3) To solve the complex MCGDM problem involving a set of interactive criteria, a Choquet integral-based 

HF-GLDS method is proposed. We use a higher business education evaluation problem to illustrate the 

proposed method. 

The remainder of this paper is structured as follows: Section 2 reviews relevant concepts about the HFS, Choquet 

integral and GLDS method. Section 3 introduces a comprehensive distance measure for HFSs based on the 

compromise values of HFSs and their relative importance. We propose a dominance flow function considering the 
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loss-aversion, and then develop a Choquet integral-based HF-GLDS method considering the risk preferences of 

experts in Section 4. Section 5 gives an illustrative example and provides sensitivity and comparative analyses to test 

the applicability and validity of the proposed method. Section 6 describes an extension of the used   fuzzy measure 

to allow the detection of the interaction between any pairs of criteria. Conclusions are provided in Section 7. 

2. Preliminaries  

In this section, the basic concepts of HFSs and the Choquet integral are reviewed. The idea of the original GLDS 

method is also presented in this section. 

2.1. Hesitant fuzzy set 

Since it is difficult for experts to evaluate an object with certain values, Torra (2010) introduced the concept of 

HFS which provides a set of possible values to express experts’ preferences. In a real-life decision-making process, 

experts may hesitate if they think several evaluation values are all possible about the degree of an element to a given 

set (Wang & Xu, 2016). This situation can only be modeled by the HFS that permits experts to assign a set of possible 

values of the membership degree to express their preferences. The HFS is much closer to people’s cognition than 

other extensions of fuzzy set such as the interval-valued fuzzy set, type 2 fuzzy set and intuitionistic fuzzy set. 

Let X  be a reference set. An HFS H  on X  is defined in terms of a function h  that returns a subset of 

[0,1] . Mathematically, it can be represented in the following form (Xia & Xu, 2011): 

   , ( ) |AH x h x x X              (1) 

where ( )Ah x  is a set of values in [0,1] , indicating the possible membership degrees of x X  to the set A . The 

basic component of an HFS is called a hesitant fuzzy element (HFE) (Xia & Xu, 2011). 

Bedregal et al. (2014) introduced the typical hesitant fuzzy set that considers only a set of all finite non-empty 

subsets of unitary interval [0,1] . For real-life MCDM problems, the HFS can be easily used in the cases that 

aggregation or score function is considered as a tool of ranking HFEs (Rodríguez et al., 2016). In this paper, we only 

consider the typical HFSs as the base of ranking strategy. A comparison scheme was developed to rank any pair of 

HFEs using the score and variance functions of HFEs (Xia & Xu, 2011). An obvious drawback of this comparison 

scheme is that the twice-comparison is generally required. To overcome this defect, a comprehensive score function 

(Liao et al., 2019a) was introduced in the process of eliciting the order of HFEs, which simultaneously considers the 

average value and hesitancy degree of an HFE. The proposed score function can be shown as follows (Liao et al., 

2019a): 
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 
     

1
111

#

HD hHD h

hE h
h

 




 
  
 

         (2) 

and  

   
21

#
hHD h

h
            (3) 

where   is the possible membership grade, #h  is the number of elements in h ,   indicates the arithmetic mean 

of  . 

2.2. The Choquet integral 

Let  1, , nC c c  be a non-empty finite set of criteria, and 1{ , , }mA a a  be a set of alternatives. For an 

MCDM problem, ijx  denotes the evaluation of alternative ia  with respect to criterion jc . 

Given that the inter-dependence may exist among the decision criteria of MCDM problems, it is essential to take 

into account the sophisticated relations of criteria in the process of aggregating evaluation information. The Choquet 

integral (Choquet, 1954), as a type of aggregation function, provides an opportunity to integrate the evaluation 

information on dependent criteria. This method is based on the fuzzy measure that substitutes the additive property 

for monotonicity (Grabisch, 1996). Considering the difficulty of calculating the fuzzy measures of the subsets of 

criteria, Sugeno (1974) proposed the   fuzzy measure to tackle this issue. For the facility of calculation, in this 

paper, we use the   fuzzy measure to capture the interaction between decision criteria. 

Suppose that the fuzzy measure ( )   represent the importance degree of a subset of criteria and 2C  is the 

power set of C . Then, the set function,  : 2 0,1C  , satisfies the following conditions (Sugeno, 1974): 

(1) (Boundary conditions) ( ) 0    and   1C  , 

(2) (Monotonicity condition)    A B   if B A , 

where A  and B  are subsets of the criterion set  1, , nC c c , and ( )A , ( )B  and  C  indicate the 

weights of corresponding subsets. 

Using the fuzzy measure to capture the importance degrees of criteria provides an ability to model the interaction 

between criteria. In this regard, the use of fuzzy measure makes it possible to handle the situation that 
1

( ) 1
n

j

j

c


 . 

Because of the difficulty of calculating the fuzzy measure, Sugeno (1974) proposed the following   fuzzy measure: 
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          A B A B A B               (4) 

where [ 1, )    and A B  .  

  represents the interaction between the sets of criteria. In particular, if 0  , there exists positive interaction 

between criteria; if 0  , there exists negative interaction; if 0  , the fuzzy measure would reduce to a simply 

additive measure as: 

{1, ,| |}

( ) ( )
j

j j

c A j A

A c w 
 

   , for any A C              (5) 

For a finite set C , the   fuzzy measure satisfies (Chiou et al., 2005): 

1 2

1 2 1

1
1

1

1 1 1

1

( ) ( ) ( ( ) ( ) ( ) ( ))

1
( (1 ( )) 1)

n n n
n

j j j n

j j j j

n

j

j

C c c c c c

c

       







   



   

  

  


     (6) 

Let ( ) 1C  . Then, Eq. (6) can be rewritten as: 

1

1 (1 ( ))
n

j

j

c 


            (7) 

By Eq. (7),   can be uniquely determined as an average interactive index of the given criteria. The   fuzzy 

measure is useful when the single criterion importance is obtained. In this case, it can be used to calculate the Choquet 

integral. If the fuzzy measure of each criterion is difficult to obtain, the   fuzzy measure could give a way to other 

forms of fuzzy measure. One of the most well-known techniques is the Möbius transform of fuzzy measure. We will 

discuss it in Section 6 in detail. 

Based on the   fuzzy measure  , the Choquet integral for MCDM problems can be defined as follows (Joshi 

& Kumar, 2016): 

    ( ) 1

1

( ) ( )
n

j j j

j

C x f x A A    



            (8) 

where ( )jf x  is a utility function under criterion jc . ( )   is the permutation of criteria such that 

     (1) (2) ( )0 nf x f x f x      , and 
      1

, , ,j j j n
A x x x

  
   is a subset of 1n j   biggest 

components in X  with 1nA   . 

Motivated by the Choquet integral (Choquet, 1954), Angilella et al. (2016) developed a Choquet integral-based 

Multiple Criteria Hierarchy Process (MCHP) to solve the university ranking problem. Based on a case study about 

the appraisal of an abandoned quarry, a multiple criteria preference aggregation model using the Choquet integral 
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was developed by Bottero et al. (2018). Some Choquet integral operators were proposed to integrate the evaluations 

under fuzzy and linguistic environments for MCDM problems (Yu et al., 2011; Joshi & Kumar, 2016; Jin et al., 2018). 

However, these models can hardly tackle the hesitant fuzzy information. In this paper, we propose an HFCIA operator 

to aggregate the evaluations expressed in HFEs. 

2.3. Gained and lost dominance score (GLDS) method 

The GLDS method, originally proposed by Wu and Liao (2019), is a powerful outranking technique based on 

dominance scores. The main idea of this method is to obtain the dominance degree between alternatives using the 

dominance flow function. It takes into account the group utility and individual regret value of each alternative at the 

same time. The procedure of the GLDS method is described as follows: 

Step 1. Let 
1 2( , , , )T

nw w w w  indicate the weight vector of n  criteria. Calculate the normalized dominance 

flow  ,N

j i vdf a a  of alternative ia  to alternative va  with respect to criterion jc  by: 

 
 

  
2

1 1

,
,

,

j i vN

j i v
m m

j i v

v i

df a a
df a a

df a a
 





        (9)  

where  ,j i v ij vjdf a a x x   for benefit criterion jc  and  ,j i v vj ijdf a a x x   for cost criterion jc . 

Step 2. Calculate the gained dominance score of alternative ia  under all criteria by: 

  1 1
1

( ) ,
n

m N

i j j i vv
j

DS a w df a a




  , for 1,2, ,i m       (10) 

1( )iDS a  can be regarded as the “group utility” value of alternative ia . The first subordinate rank set 

 1 1 1 1 2 1( ), ( ), , ( )mR r a r a r a  can be obtained by listing 1( )iDS a  ( 1,2, ,i m ) in descending order.  

Step 3. Calculate the lost dominance score of alternative ia  under all criteria by: 

  2 ( ) max max ,N

i j j v i
j v

DS a w df a a , for 1,2, ,i m      (11) 

2 ( )iDS a  can be deemed as the “individual regret” value of alternative ia . The second subordinate rank set, 

 2 2 1 2 2 2( ), ( ), , ( )mR r a r a r a , is derived by listing 2 ( )iDS a  ( 1,2, ,i m ) in ascending order. 

Step 4. Calculate the global score of each alternative using the following expression: 
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   

1 1 2 2

2 2

1 2

1 1

( ) ( ) 1 ( ) ( )

( 1) 2 ( 1) 2
( ) ( )

i i i i
i

m m

i i

i i

DS a m r a DS a r a
BS

m m m m
DS a DS a

 

 
   

 
 

, for 1,2, ,i m   (12) 

Step 5. Rank the alternatives according to the descending order of the global scores of alternatives. 

From the above procedure, it is easy to see that the global score is a comprehensive value involving two different 

score values and two different ranks. In other words, the GLDS method takes into account the values of “group utility” 

and “individual regret”, simultaneously. In this regard, the GLDS method can avoid selecting an alternative 

performing too badly on some criteria as obtained by the simple weighted averaging operators. 

2.4. Literature review on higher business education evaluation 

Over the past decades, many MCDM methods have been developed by researchers and scholars for university 

evaluation and ranking. Kao and Lin (2011) used the data envelopment analysis (DEA) to handle the qualitative 

evaluation of UK universities. Wu et al. (2012) developed a hybrid MCDM method involving the analytic hierarchy 

process (AHP) and VIKOR method for higher education evaluation. Kabak and Dagdeviren (2014) integrated the 

analytic network process (ANP) and PROMETHEE (preference ranking organization method for enrichment 

evaluations) method for ranking universities. Angilella et al. (2016) developed a Choquet integral preference model 

to obtain the ranking of universities. Chen et al. (2016) proposed an outranking method based on the probability 

theory to evaluate university faculties. Kobina et al. (2017) investigated several power aggregation operators for 

undergraduate school ranking problems with the probabilistic linguistic information. Corrente et al. (2017) studied 

the university ranking problem based on the extended ELECTRE III method. Liu et al. (2019) proposed a prospect 

cross-efficiency (PCE) model to evaluate universities in China. An overview was offered based on the comparison 

between the GLDS method used in this paper and the other methods proposed in previous researches, shown in Table 

1. 
 

Table 1. Comparisons between different MCDM methods for university ranking used in 2011-2019 

Reference Ranking 

method 

The category of 

ranking method 

Information form Interaction 

among 

criteria 

Group 

decision 

This paper GLDS Outranking  HFEs √ √ 

Liu et al. (2019) PCE Utility value Crisp values × × 

Corrente et al. (2017) ELECTRE III Outranking Crisp values √ × 

Kobina et al. (2017) - Utility value PLEs × √ 

Chen et al. (2016) - Outranking PHFLEs × √ 

Angilella et al. (2016) MCHP Utility value Crisp values √ × 
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Kabak and Dagdeviren 

(2014) 

ANP and 

PROMETHEE 

Outranking Crisp values × × 

Wu et al. (2012) AHP and 

VIKOR 

Outranking Crisp values × × 

Kao and Lin (2011) DEA Utility value Fuzzy number × × 
 

From Table 1, we can see that many ranking methods have been applied to handle the university ranking problem. 

However, few literature has investigated the emerging GLDS method for higher education evaluation. In addition, 

few MCDM methods took into account the risk preference psychology of experts and the inter-dependency between 

criteria, simultaneously. Therefore, it is necessary to improve the GLDS method to address the complicated MCDM 

problem involving the behavior preference and inter-dependency characteristics. It not only extends the boundary of 

applications of the GLDS method, but also addresses the increasing sophisticated higher education evaluation 

problems. 

3. A comprehensive distance measure between hesitant fuzzy sets 

For MCGDM problems, it could be difficult to determine an optimal solution if conflicting criteria are involved 

in the evaluation process. To derive a final solution, Yu (1973) explored the compromise solution instead of the 

optimal solution to address this issue. The main idea of this method is to find a compromise value between positive 

ideal solution (PIS) and negative ideal solution (NIS). Based on the compromise theory, in this section, we first 

propose a compromise value function for HFEs based on the reference point, and then develop a comprehensive 

distance measure for HFEs using the proposed compromise value function. 

3.1. The compromise value function for hesitant fuzzy sets 

In the following, we propose a compromise value function which takes into account the relative importance of 

the distances to PIS and NIS. Based on the score function of HFEs (Liao et al., 2019a) given as Eq. (2), we develop 

a score value-based distance function of an HFE to the PIS in the following form: 

Definition 1. Let h  be an HFE. The score value-based distance between h  and 1  can be defined as: 

     
1

111
( ,1) (1 )

#

HD hHD h

hd h
h

 




 
  
 

         (13) 

where #h  denotes the number of elements in h . 1 {1,1, ,1}  and the number of elements in the set 1  is #h . 

In analogous, the distance between the HFE h  and 0  can be determined by the score value-based distance 
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function ( ,0)d h  using the following expression: 

     
1

111
( ,0) ( 0)

#

HD hHD h

hd h
h

 




 
  
 

        (14) 

where 0 {0,0, ,0}  and the number of elements in the set 0  is #h . 

Remark 1. It is noteworthy that the score values-based distance function contains a hesitancy degree function 

( )HD h , reflecting the uncertainty of the expert’s evaluation. For any two HFEs 1h  and 2h , if 1( )HD h  is higher 

than 2( )HD h , then, the former expert’s evaluation has a larger uncertainty. Specifically, ( ) 0HD h   implies that 

the expert evaluates an object without hesitancy. 

In MCDM, balancing the separations to the PIS and NIS plays an important role in finding the compromise 

solution(s) (Kuo, 2017). To address this issue, we associate   and (1 )  to the two separation measures of an 

alternative, where   is the relative importance of jd 
 and (1 )  is the relative importance of jd 

, 0 1  . 

Based on the proposed distance measure function, we develop a distance-based compromise value function under the 

hesitant fuzzy environment, which can be defined as follows: 

Definition 2. For a criterion jc , jh  is an HFE that indicates the evaluation of an alternative on criterion jc . 

Then, the distance-based compromise value function of jh  is defined as follows: 

( ) (1 )j j jCV h d d               (15) 

where 1 2{ ( ,1) | , ( ,0) | }j j jd d h j C d h j C     and 1 2{ ( ,0) | , ( ,1) | }j j jd d h j C d h j C    . Here, 1C  indicates the 

set of benefit criteria, and 2C  indicates the set of cost criteria. 

Obviously, ( ) [ 1,1]jCV h   , for 1,2, ,j n . The two distance measures, jd 
 and jd 

, can be deemed as 

the two separations of the compromise value function by which the compromise solution is determined. 

Example 2. Consider {0.2,0.3,0.5}h   as an evaluation value under a benefit criterion. Based on Eqs. (13) 

and (14), we obtain the score value-based distances of the HFE as: ( ,0) 0.331d h  , ( ,1) 0.665d h  . Then, if 

0.5  , we have the compromise value as ( ) 0.167CV h   . 

According to Definition 2, the following theorem can be derived. 

Theorem 1. Let h  be an HFE defined in the finite set of X . Then, the compromise value function is 

monotonically non-deceasing with respect to h . Namely, for any two HFEs 1h  and 2h , if 1 2h h , then 
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1 2( ) ( )CV h CV h . 

Proof. Please see Appendix A. 1. 

According to Eqs. (13) and (14), the distance-based compromise value considering the relative importance can 

be determined by the score value-based distance measures ( ,1)jd h  and ( ,0)jd h , which are both real numbers. In 

fact, the distance-based compromise value ( )jCV h  makes a trade-off between the PIS jd 
 and NIS jd 

. The 

distance-based compromise value provides an intuitive interpretation of ranking for HFSs. This means that the 

distance-based compromise value function can be deemed as a useful tool to explore the ranking of HFSs. In this 

sense, we can derive the ranking of any two HFEs 1h  and 2h  using their compromise values.  

Theorem 2. Let 1h  and 2h  be any two HFEs, and 1( )CV h  and 2( )CV h  are the compromise values of them. 

Then, the ranking of 1h  and 2h  can be determined as follows: 

(1) If 1 2( ) ( )CV h CV h , then 1h  is inferior to 2h , denoted as 1 2h h ; 

(2) If 1 2( ) ( )CV h CV h , then 1h  is superior to 2h , denoted as 1 2h h ; 

(3) If 1 2( ) ( )CV h CV h , then 1h  is indifferent to 2h , denoted as 1 2h h . 

Proof. Please refer to Appendix A.2. 

Example 3. Suppose that there are two HFEs 1 {0.2,0.3,0.5}h   and 2 {0.4,0.7}h   on a benefit criteria. 

Based on Eq. (15), we can calculate the compromise values as: 1( ) 0.167CV h    and 2( ) 0.050CV h  . Since 

1 2( ) ( )CV h CV h , we can obtain 1 2h h  according to Theorem 2. In other words, 1h  is inferior than 2h . 

Example 4. Using the input data in Wang and Xu (2016), we can derive the ranking of the two HFEs 

1 {0.1,0.6,0.8}h   and 2 {0.2,0.4,0.9}h   based on Theorem 2. It is easy to find that they have the same average 

value and the same deviation degree using the comparison technique proposed by Liao et al. (2014). However, with 

the aid of the distance-based compromise value function, we have 1( ) 0.005CV h    and 1( ) 0.005CV h  . We can 

distinguish 1h  and 2h  using the suggested ranking method.  

According to Definition 2, it is easy to observe that the boundary condition 1 ( ) 1CV h    is satisfied. Based 

on the set theory, we can demonstrate that the proposed value function is endowed with partial orders by Theorem 3. 

Theorem 3. Let H  be a non-empty set of HFEs in X , and the preference relation “ ” on the set H  be a 
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binary relation. Then, the order preference relation “ ” is a partial order and ( ,[0,1], )H  is a complete bounded 

lattice with the smallest element 0 {0,0, ,0}  and the greatest element 1 {1,1, ,1} . 

Proof. Please refer to Appendix A.3. 

The proposed order relationship of HFEs can be used in the Choquet integral operators, which require a 

permutation among HFEs. It would be an interesting topic to discuss the admissible order of HFEs given that the 

envelope of an HFE is an interval value and the admissible order of interval values has been discussed by many 

scholars (Bustince, Fernández, Kolesárová, & Mesiar, 2013). We will pay attention to this issue in the future. 

3.2. A comprehensive distance measure of HFSs based on the compromise value function 

Although the orders of HFEs are vital to capture the relations between HFEs, the ranking relation is unable to 

identify the difference level which play an important role in the GLDS method. In this regard, the distance measure 

plays a significant role to characterize this relation. However, existing distance measures of HFEs based on weighted 

mean operators may produce unreasonable results as justified in the Introduction. To improve the validity of the 

distance measure of HFEs, we propose a compromise distance measure for HFSs using the compromise value 

function. 

Definition 3. Let 1 jh  and 2 jh  be two HFEs. Then, the comprehensive distance measure between 1 jh  and 

2 jh  is defined as: 

1 2 1 2( , ) ( ) ( )j j j jd h h CV h CV h  , for 1,2, ,j n       (16) 

where 1 jh  denotes the evaluation under criterion jc , and 1( )jCV h  is the compromise value of 1 jh .  

Remark 2. It is worth noting that the comprehensive distance measure contains a significant coefficient   

which has not been displayed in Eq. (16). If 0.5  , then 1 2 1 1 2 2 1 2( , ) 0.5 ( ) ( )j j j j j j j jd h h d d d d d d           . 

Namely, the comprehensive distance measure will reduce to a distance measure only considering one reference point. 

In this special case, there is no need to consider the NIS in this situation. 

According to Definition 3, it is easy to find that the proposed comprehensive distance measure satisfies the 

properties shown in Theorem 4. 

Theorem 4. Let 1 jh , 2 jh  and 3 jh  be three HFEs. The comprehensive distance measure d  is a real number, 

and the following properties are satisfied: 
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(1) 1 20 ( , ) 1j jd h h  ; 

(2) 1 2( , ) 0j jd h h  , iff 1 jh = 2 jh ; 

(3) 1 2 2 1( , ) ( , )j j j jd h h d h h ; 

(4) 1 3 1 2 2 3( , ) ( , ) ( , )j j j j j jd h h d h h d h h  . 

4. A Choquet integral-based GLDS method considering the risk preferences of experts for MCGDM problems 

In this section, we propose a Choquet integral-based HF-GLDS method for MCGDM problems by using the 

comprehensive distance measure introduced in Section 3. The proposed method considers not only the inter-

dependent characteristic between decision criteria, but also the behavior preferences of experts.  

A general MCGDM problem is mainly composed by a set of alternatives 1={ , , }mA a a , a finite set of criteria 

1={ , , }nC c c  and a set of experts 1{ , , }qE e e  where q  denotes the number of experts. 1( , , )T

qs s s  is a 

weight vector associated with the experts, which satisfies [0,1]ks   and 
1

1
q

k

k

s


 . ( )k k

ij m nD h   is the individual 

hesitant fuzzy decision matrix, where 
k

ijh  is the evaluation of alternative ia  with respect to criterion ic  given by 

expert ke , 1,2, ,k q , which can be expressed as follows: 

1

1 11 1 1

1

1

j n

k k k

j n

k k k k

i i ij in

k k k

m m mj mn

c c c

a h h h

D a h h h

a h h h

 
 
 
 
 
 
 
 

 

Based on the prospect theory (Tversky & Kahneman, 1992), we propose a novel dominance degree function for 

HFSs by considering the risk attitude of experts, which is defined as follows: 

( , ), if ( ) ( ) 0

( , ) 1
( , ), if ( ) ( ) 0

ij vj ij vj

j i v

vj ij ij vj

d h h CV h CV h

dd h h
d h h CV h CV h



  


 
  


      (17) 

where   denotes the loss-aversion parameter associated with experts. If 0 1  , then the sensitivity of losses is 

high; if 1  , then the sensitivity of losses is low. ( , )ij vjd h h  is the distance between ijh  and vjh , and ( , )vj ijd h h  

is the distance between vjh  and ijh . ( ) ( )ij vjCV h CV h  indicates the difference of the compromise values. 
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For MCGDM problems, suppose that k

ijh  and k

vjh  are the evaluations given by expert ke  ( 1,2, ,k q ). 

Then, the overall dominance flow of alternative ia  over alternative va  on criterion jc  corresponding to the expert 

group can be defined as: 

1

( , ) ( , )
q

k k

j i v k j i v

k

df a a s dd h h


           (18) 

As we know, normalizing evaluation values is an essential process when not all criteria are established on the 

same dimension. In this regard, we integrate the evaluations given by the k  experts using Eq. (18). Then, to 

aggregate the dominance flows under different criteria, we should normalize the dominance flows by: 

  
2

1 1

( , )
( , )

,

j i vN

j i v
m m

j i v

v i

df a a
df a a

df a a
 





         (19) 

To obtain the group utility value of alternative ia , the essential procedure is to aggregate the evaluations under 

all criteria. Considering that the sophisticated relationship usually exists in real MCGDM problems, it is necessary 

to model the inter-dependency relation between criteria. Using the HFLCIA operator proposed by Liao et al. (2019) 

to aggregate the alternative evaluations provides an ability to depict the inter-dependency relation between criteria. 

Motivated by the HFLCIA operators, we propose a hesitant fuzzy Choquet integral arithmetic (HFCIA) operator to 

integrate the hesitant fuzzy evaluations on inter-dependent criteria as follows: 

First, based on Eq. (19), we can obtain the gained dominance score of alternative ia  over alternative va  under 

criterion jc  as: 

 
1

( ) ,
m

N N

j i j i v

v

df a df a a


           (20) 

Then, the HFCIA operator, which can aggregate the individual dominance scores into the gained dominance 

score of alternative ia  over alternative va  under all decision criteria, is defined in the follow form: 

 1 1 2( ) ( ), ( ), , ( )N N N

i i i n iDS a HFCIA df a df a df a  

                       ( ) ( ) ( 1 )
1

( ) ( )
n

N

j i j j
j

d f a C C    


                        

         ( ) ( ) ( 1 )

1

( ) ( )
n

N

j i j j

j

d f a C C    



              (21) 

where ( )j   1,2, ,j n  is a permutation of  1,2, ,n  such that (1) (2) ( )( ) ( ) ( )nCV h CV h CV h      and 
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( 1)nC   , and ( ) ( ) ( 1) ( ){ , , , }j j j nC c c c     is a subset of 1n j   biggest components in C . 

Similarly, to obtain the individual regret value of alternative ia , we use the maximum dominance flow of 

alternative va  over alternative ia  under all criteria to represent its lost dominance score. Inspired by the original 

GLDS method (Wu & Liao, 2019), we define the lost dominance score of alternative ia  over all other alternatives 

on all criteria using the following expression: 

  2 ( ) ( ) ( 1)( ) max max ( , ) ( ) ( )N

i j v i j j
j v

DS a df a a C C            (22) 

Finally, based on the gained and lost dominance scores and their corresponding ranks, we derive the global score 

of each alternative by the following formula: 

   

1 1 2 2

2 2

1 2

1 1

( ) ( ) 1 ( ) ( )

( 1) 2 ( 1) 2
( ) ( )

i i i i
i

m m

i i

i i

DS a m r a DS a r a
BS

m m m m
DS a DS a

 

 
   

 
 

    (23) 

where m  is the number of alternatives. 1( )ir a  is the rank of alternative ia , which is determined in descending 

order of 1( )iDS a , for 1,2, ,i m . 2 ( )ir a  is the rank of alternative ia , which is determined in ascending order of 

2 ( )iDS a , for 1,2, ,i m . 

Based on the global scores of all alternatives, we can obtain the final ranking of alternatives. 

For the facility of application, we can summarize the procedure of the Choquet integral-based HF-GLDS method 

for MCGDM problems in detail as follows: 

Step 1. Determine the dominance flows. For an MCGDM problem, the individual decision matrix associated 

to different experts can be established as ( )k k

ij m nD h  , 1,2, ,k q . Then, based on Eqs. (17) and (18), the 

dominance flow of alternative ia  over alternative va  corresponding to the k  expert under each jc  is 

determined as ( , )k

j i vdf a a .  

Step 2. Normalize the dominance flow. Calculate the normalized dominance flow of alternative ia  over 

alternative va  under criterion jc  by Eq. (19). 

Step 3. Determine the fuzzy measures. Determine the weight ( )jc  of criterion jc , and then the fuzzy 

measures of criterion subset are defined by Eq. (4). 
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Step 4. Calculate the gained dominance scores. Calculate the gained dominance score 1( )iDS a  of alternative 

ia  over alternative va  under all criteria by Eqs. (20) and (21). Then, the first subordinate rank set, 

 1 1 1 1 2 1( ), ( ), , ( )mR r a r a r a , can be determined according to the values of ia  in descending order. 

Step 5. Calculate the lost dominance scores. Calculate the lost dominance score 2 ( )iDS a  by Eq. (22). Then, 

the second subordinate rank set,  2 2 1 2 2 2( ), ( ), , ( )mR r a r a r a , is determined by the values 2 ( )iDS a  in ascending 

order. 

Step 6. Aggregate the gained dominance scores and lost dominance scores. Determine the global score iBS  

of alternative ia  by Eq. (23). Then, the global rank set  1 2( ), ( ),..., ( )mR r a r a r a , of the alternatives is determined 

in descending order of iBS . The higher iBS  is, the better ia  is. 

Considering the complexity of MCGDM problems, the assumption that the weights given by experts satisfying 

additivity is invalid. Besides, the process of weight vector normalization ignores the inter-dependency among the 

criteria. Therefore, it is necessary to use the Choquet integral to aggregate the evaluations under the criteria that are 

usually not independent to each other. It is noteworthy that, in this study, the single fuzzy measure ( )jc  is provided 

by a group of experts directly. 

Compared with the original GLDS method, the Choquet integral-based HF-GLDS method possesses the 

following strength: 

(1) It uses a comprehensive distance measure to capture the difference between HFEs in MCGDM problems 

involving multiple conflicting criteria. In the original GLDS method (Wu & Liao, 2019), an important step 

is to adjust the probabilistic linguistic elements into the same probability distribution before calculating the 

distance between two evaluation values. This extra operation on the raw data may lead to information loss. 

In this regard, our method overcomes not only this flaw but also the shortcoming of the original GLDS 

method on handling conflicting criteria. 

(2) It provides an ability to depict the attitude characteristics of experts to loss. The risk preference psychology, 

as we know, generally exists when experts make decision under risk. It is vital to portray this psychology for 

MCGDM problems. While the proposed method takes into account this preference using the prospect theory, 

the original GLDS method ignores this psychological phenomenon. 

(3) It considers the inter-dependency phenomenon among criteria. The independence of criteria is a potential 
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assumption of the original GLDS method that is unable to capture the inter-dependent characteristics 

between criteria. Using the Choquet integral to aggregate information provides an ability to handle more 

complicated situation in MCGDM problems in which the criteria are not independent.  

5. An illustrative example: Case study of higher business education evaluation 

In this section, the Choquet integral-based HF-GLDS method is implemented to derive the ranking of four 

business schools in Sichuan, China. Sensitivity and comparative analyses are given to demonstrate the validity and 

effectiveness of the proposed method. 

5.1. Problem description 

The university education is not only one of the most expensive consumption that most people ever make, but 

can exert influence on lifestyle, income and occupation of lifetime. Higher business education evaluation plays a 

critical role in many aspects. From the perspective of educational decision-making bodies, this evaluation process 

can assist universities and colleges to recognize their advantages and form their own school-running features. 

Furthermore, it can help management departments to make scientific educational decisions, develop educational 

planning and allocate educational resources rationally. From the perspective of social public, it is not only conducive 

to grasping the actual outputs of educational inputs of colleges and universities, but also conducive to enhancing the 

confidence and support of the whole society for the development of colleges and universities. From the perspective 

of students, it can help young people who are ready to go to college and aim to major in business make rational 

decisions.  

In this study, we use the first perspective aforementioned to analyze. Suppose that the provincial government of 

Sichuan needs to assess the performances of four business schools 1 2 3 4{ , , , }a a a a  and distributes education 

resources depending on their evaluation results. A number of studies have investigated the criteria considered in the 

higher education evaluation (Chen et al., 2016; Kabak & Dagdeviren, 2014; Wu et al., 2012). In current study, four 

criteria are considered in the evaluation process. Their detailed descriptions are shown in Table 1. 

 
Table 1. Establishing the evaluation criteria. 

Evaluation objective  Criteria  Description of criteria 

Higher business  

education evaluation 

School-running resources 1c  It contains the number of doctor and master degree 

authorization centers and reflects proportion of teachers with 

deputy senior professional titles. 

Scientific research outputs 2c  We utilize the number of national projects and average annual 

research funding to represent scientific research outputs. 
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Talent cultivation 
3c  It refers to the number of students, teaching achievement Award 

and number of national excellent courses. 

International exchanges 
4c  It mainly involves two aspects, international academic 

conference and overseas exchanges. 
 

Suppose that three experts 1 2 3{ , , }e e e  are invited to evaluate the four business schools and give a ranking. The 

weight vector of the three expert is (0.3,0.3,0.4)s  . These experts use HFSs to evaluate the performances of the 

four business schools under the four criteria. The decision matrices can be shown in Tables 2-4. 

Table 2. The decision matrix 
1D . 

 1c   
2c  

3c  
4c  

1a  {0.5,0.6,0.8}   {0.3,0.6}  {0.2,0.4}   {0.3,0.4,0.5}  

2a  {0.4,0.6,0.7}  {0.4,0.7}   {0.6,0.7,0.8}   {0.6}  

3a  {0.6}  {0.3,0.4}   {0.8,0.9}   {0.6,0.8}  

4a  {0.9,1.0} {0.8}  {0.6,0.8}  {0.5,0.7}  
 

Table 3. The decision matrix 2D . 

 1c   
2c  

3c  
4c  

1a  {0.6,0.8}   {0.2,0.5}  {0.5,0.8}   {0.8}  

2a  {0.4,0.6}  {0.5,0.7}   {0.7}   {0.6,0.8}  

3a  {0.7,0.9}   {0.5,0.6}   {0.9}   {0.2,0.5}  

4a  {0.8}  {0.6,0.7} {0.5,0.7,0.8}  {0.7}  
 

Table 4. The decision matrix 
3D . 

 1c   
2c  

3c  
4c  

1a  {0.8}   {0.2,0.3}  {0.2,0.3,0.4}   {0.4,0.5}  

2a  {0.6,0.7} {0.5,0.7}   {0.6}   {0.5,0.8}  

3a  {0.8}   {0.5,0.6}   {0.6,0.7}   {0.5,0.6,0.8}  

4a  {0.9} {0.6,0.7,0.8}  {0.8}  {0.8}  
 

5.2. The decision-making process using the Choquet integral-based HF-GLDS method 

Based on the proposed Choquet integral-based HF-GLDS method, we solve the MCGDM problem concerning 

the higher business education evaluation in the following stepwise procedure: 

Step 1. Determine the dominance flows. Based on Eq. (17), we set 1  , which indicates the median value 

about the sensitivity to loss. We set 0.5   and obtain the dominance flows in Tables 5-8. 

Table 5. The dominance flows of one alternative over another under criterion 1c . 

 Expert 1e   Expert 2e   Expert 3e  

 1a   2a  3a  4a   1a   2a  3a  4a   1a   2a  3a  4a  
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1a  0.000 0.067 0.034 -0.317  0.000 0.201 -0.101 -0.100  0.000 0.150 0.000 -0.100 

2a  -0.067 0.000 -0.033 -0.384  0.201 0.000 -0.301 -0.300  -0.150 0.000 -0.150 -0.250 

3a  -0.034 0.033 0.000 -0.351  0.101 0.301 0.000 0.001  0.000 0.150 0.000 -0.100 

4a  0.317 0.384 0.351 0.000  0.100 0.300 -0.001 0.000  0.100 0.250 0.100 0.000 
 

Table 6. The dominance flows of one alternative over another under criterion 
2c . 

 Expert 
1e   Expert 

2e   Expert 
3e  

 1a   
2a  

3a  
4a   1a   

2a  
3a  

4a   1a   
2a  

3a  
4a  

1a  0.000 -0.101 0.100 -0.350  0.000 -0.251 -0.201 -0.301  0.000 -0.350 -0.300 -0.450 

2a  0.101 0.000 0.200 -0.250  0.251 0.000 0.050 -0.050  0.350 0.000 0.050 -0.100 

3a  -0.100 -0.200 0.000 -0.450  0.201 -0.050 0.000 -0.100  0.300 -0.050 0.000 -0.150 

4a  0.350 0.250 0.450 0.000  0.301 0.050 0.100 0.000  0.450 0.100 0.150 0.000 
 

Table 7. The dominance flows of one alternative over another under criterion 3c . 

 Expert 1e   Expert 2e   Expert 3e  

 1a   
2a  

3a  
4a   1a   

2a  
3a  

4a   1a   
2a  

3a  
4a  

1a  0.000 -0.401 -0.551 -0.401  0.000 -0.049 -0.249 -0.016  0.000 -0.300 -0.350 -0.500 

2a  0.401 0.000 -0.150 0.000  0.049 0.000 -0.200 0.033  0.300 0.000 -0.050 -0.200 

3a  0.551 0.150 0.000 0.150  0.249 0.200 0.000 0.233  0.350 0.050 0.000 -0.150 

4a  0.401 0.000 -0.150 0.000  0.016 -0.033 -0.233 0.000  0.500 0.200 0.150 0.000 
 

Table 8. The dominance flows of one alternative over another under criterion 
4c . 

 Expert 1e   Expert 2e   Expert 3e  

 1a   2a  3a  4a   1a   2a  3a  4a   1a   2a  3a  4a  

1a  0.000 -0.200 -0.301 -0.200  0.000 0.100 0.451 0.100  0.000 -0.201 -0.184 -0.350 

2a  0.200 0.000 -0.101 0.000  -0.100 0.000 0.352 0.000  0.201 0.000 0.017 -0.149 

3a  0.301 0.101 0.000 0.100  -0.451 -0.352 0.000 -0.351  0.184 -0.017 0.000 -0.166 

4a  0.200 0.000 -0.100 0.000  -0.100 0.000 0.351 0.000  0.350 0.149 0.166 0.000 
 

Step 2. Normalize the dominance flows. According to Eq. (19), we calculate the normalized dominance flows 

of alternative ia  over another va . The obtained results are shown in Tables 9-12. 

 

Table 9. The normalized dominance flows of one alternative over another under criterion 1c . 

 1a   2a  3a  4a  

1a  0.000 0.229 -0.033 -0.270 

2a  -0.229 0.000 -0.262 -0.499 

3a  0.033 0.262 0.000 -0.237 

4a  0.270 0.499 0.237 0.000 
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Table 10. The normalized dominance flows of one alternative over another under criterion 
2c . 

   2a  
3a  

4a  

1a  0.000 -0.317 -0.194 -0.484 

2a  0.317 0.000 0.123 -0.168 

3a  0.194 -0.123 0.000 -0.290 

4a  0.484 0.168 0.290 0.000 

1a  

Table 11. The normalized dominance flows of one alternative over another under criterion 
3c . 

 1a   
2a  

3a  
4a  

1a  0.000 -0.310 -0.462 -0.395 

2a  0.310 0.000 -0.152 -0.085 

3a  0.462 0.152 0.000 0.067 

4a  0.395 0.085 -0.067 0.000 
 

Table 12. The normalized dominance flows of one alternative over another under criterion 4c . 

 1a   
2a  

3a  
4a  

1a  0.000 -0.290 -0.075 -0.447 

2a  0.290 0.000 0.216 -0.157 

3a  0.075 -0.216 0.000 -0.373 

4a  0.447 0.157 0.373 0.000 
 

Step 3. Determine the fuzzy measures. Suppose that the fuzzy measures of criteria jc  ( 1,2,3,4j  ) are given as: 

1( ) 0.4c  , 2( ) 0.2c  , 3( ) 0.3c  , 4( ) 0.4c  . Based on Eq. (4), we obtain the parameter 0.542   . Then 

we have 1 2( , ) 0.557c c  , 1 3( , ) 0.635c c  , 1 4( , ) 0.713c c  , 2 3( , ) 0.468c c  , 2 4( , ) 0.557c c  , 

3 4( , ) 0.635c c  , 1 2 3( , , ) 0.766c c c  , 1 2 4( , , ) 0.836c c c  , 2 3 4( , , ) 0.767c c c  , 1 3 4( , , ) 0.897c c c  , 

1 2 3 4( , , , ) 1c c c c  . 

Step 4. Calculate the gained dominance scores. By Eqs. (20) and (21), we calculate the gained dominance scores 

of the alternatives under different criteria. The results are listed in Table 13. 

 

Table 13. The gained dominance scores of the alternatives. 

Alternative 

The gained dominance score The overall gained 

dominance score 1c   2c  3c  4c  

1a  -0.073 -0.995 -1.167 -0.813 -0.597 

2a  -0.990 0.272 0.073 0.350 -0.033 
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3a  0.058 -0.219 0.680 -0.513 0.075 

4a  1.006 0.942 0.413 0.977 0.892 

 

Step 5. Calculate the lost dominance score. By Eq. (22), we derive the lost dominance scores listed in Table 14. 

Table 14. The lost dominance scores of the alternatives. 

Alternatives The lost dominance scores The aggregated 

lost dominance score 
1c   

2c  
3c  

4c  

1a  0.270 0.484 0.462 0.447 0.134 

2a  0.499 0.168 0.152 0.157 0.200 

3a  0.237 0.290 0.000 0.373 0.149 

4a  0.000 0.000 0.067 0.000 0.020 

 

Step 6. Aggregate the gained dominance scores and lost dominance scores. By Eq. (23), we obtain the global 

dominance scores of the alternatives as 1 0.150BS   , 2 0.288BS   , 3 0.137BS   , 4 0.324BS  . According to 

these global dominance scores, we can rank the alternatives and select the optimal one. Since 

4 3 1 2BS BS BS BS    , then 4 3 1 2a a a a . Thus, 4a  is the best business school in Sichuan, China. 

5.3. Sensitivity analysis 

Compared with the original GLDS method (Wu & Liao, 2019), the proposed Choquet integral-based HF-GLDS 

method takes into account the attitude characteristics of experts based on the prospect theory. To find out what 

influence the risk attitude has on final results, we investigate the change of global dominance scores with different 

parameter  . For the sake of simplification, we use the parameter   to represent the overall loss-aversion degree 

of the expert group rather than individual experts. Figs. 1 and 2 present the corresponding results. 
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Fig. 1. Global dominance scores of the alternatives under different values of   ( 0 1  ) 

 

Fig. 2. Global dominance scores of the alternatives under different values of   ( 1  ) 

According to Figs. 1 and 2, we can derive that the final ranking keeps unchanged no matter what the value of 

  is between 0 and 10. It implies that the global ranking is not sensitive to the attitude characteristics of the expert 

group. In other words, the results are consistent no matter the parameter   is considered or not in this illustrative 

example. 

In addition, it is worth noting that the influence of the parameter   to iBS  is more significant when 0 1   

than when 1  . In other words, the global score function for high loss is steeper than for low loss. This 
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characteristic meets the basic property of the prospect theory that there is a higher sensitivity to losses than gains for 

experts. 

5.4. Comparative analysis 

To demonstrate the validity of the proposed method, we make a comparison with the hesitant fuzzy TOPSIS 

(HF-TOPSIS) method proposed by Xu and Zhang (2013).  

Based on the above decision matrices, we determine the hesitant fuzzy PIS ijh
 and hesitant NIS ijh

, where 

1 2{max ( ,0) | ,mi ( , |  n 0) }ij ij ij
ii

h d h j C d h j C


        (24) 

and  

1 2{min ( ,0) | ,max ( ,  0) | }ij ij ij
i i

h d h j C d h j C

 
        (25) 

Calculate the Euclidean distance id 
 and id 

 of alternative ia  from the PIS ijh
 and NIS ijh

, respectively, 

by the following expressions: 

2

1

( ( ,0) )
n

i ij ij

j

d d h h 



  , for 1,2, ,i n          (26) 

2

1

( ( ,0) )
n

i ij ij

j

d d h h 



  , for 1,2, ,i n       (27) 

Use Eq. (28) to derive the closeness coefficient of alternative ia : 

i
i

i i

d
Cc

d d



 



, for 1,2, ,i n               (28) 

The closeness coefficient values of the alternatives are calculated as: 1 0.193Cc  , 2 0.501Cc  , 3 0.593Cc  , 

4 0.916Cc  . Then, the ranking of these alternatives is 4 3 2 1a a a a , according to the values of iCc  in 

descending order. 

Although the both two methods produce the same optimal alternative 4a , there are some differences of the 

ranking orders derived by the HF-TOPSIS and our method. While the worst alternative is 2a  using the proposed 

Choquet integral-based HF-GLDS method, the worst alternative is 1a  using the HF-TOPSIS. The main reason for 

this is that the HF-TOPSIS method ignores the interdependent characteristic among criteria and the risk preference 

psychology of experts in the decision-making process, while the proposed method assumes that the criteria are not 
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independent and the experts are bounded rational. Given that these characteristics are generally involved in MCGDM 

problems, the proposed method is a more reasonable ranking method in the real life that provides the decision results 

considering the inter-dependent characteristic and behavior preference. 

6. Extension  

In this section, we discuss an extension of the Choquet integral. The illustrative example shows that the  

fuzzy measure is convenient for the computation of Choquet integral. In some cases, however, a decision-maker 

might provide interaction information between criteria instead of giving the values of the fuzzy measure directly. In 

other words, the criteria interactions might be obtained, but the   fuzzy measure could not capture this feature by 

effective tools. To make it possible, a one-to-one representation of fuzzy measure was defined in Grabisch (1997). 

The idea is to decompose a fuzzy measure into unanimity games, such that the fuzzy measure is transformed into an 

additive form. Therefore, the   fuzzy measure in Eq. (4) can be replaced by a transformed representation of fuzzy 

measure, called Möbius transform (Rota, 1964), which refers to a linear transform on the fuzzy measure: 

( ) ( )
A B

B m A


 , for any 2CB                    (29) 

An invertible transform of the Möbius representation can be expressed as: 

( ) ( 1) ( )
A B

B A

m A B




            (30) 

where | |A  indicates the cardinality of the set A . In this way, the boundary and monotonicity conditions of a fuzzy 

measure must be reconstructed as: 

(1) (Boundary conditions) ( ) 0m   , ( ) 1
T C

m T


 , 

(2) (Monotonicity condition) ( { }) 0,j j

T S

m T c c C


     and \{ }jS C c  . 

Grabisch (1997) introduced the concept of Shapley value to represent criteria importance by considering the 

average contribution of a criterion to the whole set of criteria, which can be conveniently expressed by ( )  . Given 

that   is a fuzzy measure on G, the importance index of criterion jg  can be represented by the Shapley value 

(Shapley, 1953): 

/{ }

( 1)! !
({ }) ( ( { }) ( ))

!
j

j j

A G g

n A A
g A g A

n
  



 
   , for 1,2, ,j n .      (31) 

The Shapley value satisfies 0 ({ }) 1jg   and 
1

({ }) 1
n

j

j

g


 , which are similar to the weight in the 
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conventional additive operators. Another interaction index ({ , })j kI g g , taking into account the interactions between 

criteria jg  and kg , was proposed by Murofushi and Soneda (1993), shown as: 

\{ , }

( 2)! !
({ , }) ( ( { , } ( { } ( { } ( ))

( 1)!
j k

j k j k j k

A G g g

n A A
I g g A g g A g A g A

n
   



 
      


   (32) 

where ({ , }) [ 1,1]j kI g g   , indicating the positive (resp. negative) interaction if ({ , }) 0j kI g g   (resp. 

({ , }) 0j kI g g  ). Furthermore, the interaction index can be rewritten with the aid of the Möbius transform: 

\{ , }

1
({ , }) ({ , } )

, 1
j k

j k j k

T G g g

I g g m g g T
T

 


        (33) 

Using the Möbius representation of a fuzzy measure, we present an extended Choquet integral as: 

   1( ), , ( ) ( )min
j

n j
c T

T C

C f x f x m T f x




        (34) 

where ( )jf x  is a utility function under criterion jc . The new representation of Choquet integral is based on the 

Möbius transform presented in Eq. (30). Although it is more difficult to solve the Choquet integral by Eq. (34) than 

by Eq. (8), the reconstructed aggregation operator provides an opportunity to learn the parameter ( )m   according 

to the preference information of decision-makers. This preference learning problem has been discussed in Aggarwal 

and Fallah Tehrani (2019). The following example illustrates the use of the transformed Choquet integral. 

For a fair comparison, we use the example presented in Section 5.1. In previous example, we used the  

fuzzy measure with 0.542    given that there exists negative interaction between criteria. The extended Choquet 

integral can make use of the specific interaction index ( )I   instead of using an average interaction index   to 

compute the aggregated score. The parameter ( )m   is suitable for this purpose. The gained dominance scores 

obtained by the extended Choquet integral for three different interaction indices of ( )I   are respectively illustrated 

in panels B-D of Figure 3 in which the x  axis denotes the four alternatives used in Section 5 and the y  axis 

denotes gained dominance scores 1DS . It is clear that the overall scores or ranks of the four alternatives roughly 

maintain unchanged though the transformed fuzzy measures using different interaction indices. This is because, 

giving a set of fuzzy measure values of each criterion ( {0.4,0.2,0.3,0.4}  ), the criteria interactions are certainly 

negative among some criteria and then the aggregated values would not change a lot using the Choquet integral based 

on the negative interactions. In this sense, we conclude that the   fuzzy measure provides a good generality to 

compute the Choquet integral, and the   fuzzy measure-based Choquet integral is convenient to aggregate the 

utility values if each fuzzy measure value is known. 
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Fig. 3. Gained dominance scores using the Choquet integral based on different fuzzy measures 

7. Conclusions and future research directions 

The higher business education evaluation is an important issue for the development of business schools. In this 

regard, developing a decision-making method to conduct a higher business education evaluation is vital to promote 

the competitiveness of it. In general, this issue can be deemed as an MCGDM problem, which has been investigated 

by many scholars. But most of the MCGDM methods did not consider the inter-dependency among decision criteria. 

Furthermore, experts may be more sensitive to losses than gains in real world. Given that the GLDS method (Wu & 

Liao, 2019) is a robust and efficient group decision-making technique with an advantage of avoiding selecting an 

alternative performing too bad under some criteria, this study established a group decision-making model named the 

Choquet integral-based HF-GLDS method to solve the MCGDM problems in which the evaluation information is 

given as HFSs, without involving the aforementioned flaws. For this aim, we first defined a compromise value 

function and a comprehensive distance measure between HFSs considering the relative importance between PIS and 

NIS. Next, we developed a Choquet integral-based HF-GLDS method to derive the final ranking of alternatives. 

Finally, the proposed method was applied to a higher business education evaluation example to demonstrate the 

applicability of the proposed method, and the sensitivity and comparative analysis were completed to verify the 

validity of the proposed method. According to the results, we can come to a conclusion that the proposed method is 

more efficient and flexible than the HF-TOPSIS method. 

In the future, it would be interesting to investigate the MCGDM problems in social network contexts by the 

proposed method, and further take into account the interactive characteristic between experts. It is worth developing 

a consensus reaching method within the framework of the proposed Choquet integral-based HF-GLDS method. 
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Appendix A.1  The proof of Theorem 1. 

Proof. Suppose that 1 1 2 1{ , , , , }l lh      is an HFE involved l  possible values and 2 1 2 1,{ , , , }l lh    
  is 

another HFE involved l  possible values where 
l   is a possible value greater than l . Based on the definition of 



32 

 

HFS, we have 1 2h h . Since 1 2h h , according to the property of deviation, we have 1 2( ) ( )HD h HD h . Then, 

substituting 1h  and 2h  into Eq. (13), we have 
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Since 
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Since ( ,1)d h  is a monotonically non-increasing function with respect to ( )HD h , we have 
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That is, 1 2( ,1) ( ,1)d h d h . 

It is not difficult to prove that 1 2( ,1) ( ,1)d h d h  iff 1 2h h , where ( ,1)d h  is a non-increasing function and 

( ,0)d h  is a non-decreasing function. It is clear that ( )CV h  is a non-decreasing function. This completes the proof 

of Theorem 1. 

Appendix A.2  The proof of Theorem 2. 

Proof. First, we prove the first conclusion. Suppose that 1 1 2 1{ , , , , }l lh      is an HFE involving l  possible 

values and 2 1 2 1,{ , , , }l lh    
  is another HFE involving l  possible values, and they have 1l   same possible 

values. Since 1 2( ) ( )CV h CV h , we have 1 1 2 2( ,0) (1 ) ( ,1) ( ,0) (1 ) ( ,1)d h d h d h d h        , 

 1 2 1 2

(1 )
( ,0) ( ,0) ( ,1) ( ,1)d h d h d h d h






   . According to the presupposition, the two HFEs have only one 

different possible value. Then, we have 1 2( ,1) ( ,1) 0d h d h  . That is 
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    . Thus, we have 
l l    and then 1 2h h . It is not difficult to prove 

that the second conclusion is also satisfied. Then, we only need to prove the third conclusion. We shall prove that if 

1 2( ) ( )CV h CV h , then 1 2h h . It is clear that 1 2

1 2

1
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 if 1 2( ) ( )CV h CV h . We continue to prove this 

theorem by contradiction. 

Suppose that there exists two different HFEs 1h  and 2h  such that 1 2( ) ( )CV h CV h . This implies that for 

1 2h h  or 1 2h h , there exists at least one pair of different HFEs 1h  and 2h  such that 1 2( ) ( )CV h CV h . Let 

1 2h h . By Definition 1, the distance function values satisfy 
1 2d d   and 

1 2d d  . Then, we have 1 2

1 2

0
d d

d d

 
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



. 

This inequality contradicts the assumption that 
1 2 1 2( ) / ( ) 0d d d d      . Moreover, it is not difficult to prove that 

1 2 1 2( ) / ( ) 0d d d d       for 1 2h h . This completes the proof of Theorem 2. 

Appendix A.3  The proof of Theorem 3. 

Proof. To prove the order preference relation “ ” is a partial order, we prove the three properties in set theory 

including reflexivity, anti-symmetricity and transitivity. 

(1) Reflexivity. For an HFE h H , we have ( ) ( )CV h CV h . Based on Eq. (15), it is easy to find that the 

compromise value function is monotonically increasing with h . Thus, we have h h . 

(2) Anti-symmetricity. For any two HFEs 1 2,h h H , if 1 2h h  and 2 1h h , then we have 

1 2( ) ( )CV h CV h  and 2 1( ) ( )CV h CV h  according to Theorem 1. Thus, 1 2( ) ( )CV h CV h . According to 

the monotonicity of the compromise value function, we can obtain that 1 2h h . 

(3) Transitivity. For all HFEs 1 2 3, ,h h h H , if 1 2h h  and 2 3h h , then, according to Definition 1, we have 

1 2( ) ( )CV h CV h  and 2 3( ) ( )CV h CV h . Because the compromise value ( )CV h  is a set of real numbers, 

we obtain 1 3( ) ( )CV h CV h . Based on the monotonic function in Eq. (15), we can derive that 1 3h h . 


