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Abstract: In hematological malignancies, leukemias or myelomas, malignant cells present
bone marrow (BM) homing, in which the niche contributes to tumor development and drug
resistance. BM architecture, cellular and molecular composition and interactions define differential
microenvironments that govern cell fate under physiological and pathological conditions and serve
as a reference for the native biological landscape to be replicated in engineered platforms attempting
to reproduce blood cancer behavior. This review summarizes the different models used to efficiently
reproduce certain aspects of BM in vitro; however, they still lack the complexity of this tissue, which
is relevant for fundamental aspects such as drug resistance development in multiple myeloma.
Extracellular matrix composition, material topography, vascularization, cellular composition or
stemness vs. differentiation balance are discussed as variables that could be rationally defined
in tissue engineering approaches for achieving more relevant in vitro models. Fully humanized
platforms closely resembling natural interactions still remain challenging and the question of to
what extent accurate tissue complexity reproduction is essential to reliably predict drug responses
is controversial. However, the contributions of these approaches to the fundamental knowledge
of non-solid tumor biology, its regulation by niches, and the advance of personalized medicine
are unquestionable.

Keywords: blood cancer; disease modeling; bone marrow; niche; microenvironment; tissue
engineering; 3D models; tumor-on-a-chip; leukemia; myeloma

1. Introduction

Historically, the objective of tissue engineering and regenerative medicine (TERM) has been to
apply the principles of engineering and life sciences to the development of biological substitutes that
restore, maintain, or improve the function of a tissue or whole organ [1]. While this objective remains
intact, the focus in the field has been extended to the implementation of engineered tissues that will
never be implanted into patients, but will transform the way we study human tissue physiology
in vitro [2–5]. Each tissue and organ is unique and has well defined functions, anatomy and cellular,
molecular and soluble components. In vivo, individual cells are harbored in specific niches where they
integrate many external cues (including those that arise from extracellular matrix (ECM), mechanical
stimulation and soluble signals from adjacent and distant cells) to generate a basal phenotype and
respond to perturbations in their environment. The development of 3D platforms with well-defined
architectures resembling native cellular environments has contributed to significant advances, among
other tissues, in liver or heart modeling [6–8]. The integration of three dimensionality, multi-cellular
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interactions, patient-specific polymorphisms, fine control of chemical parameters (pH, oxygen level,
biochemical gradients) and ECM composition are the main assets of this engineered tissues [4,9,10].

2. Modeling Solid Tumors in Vitro

Cancer is a heterogeneous dynamic disease in which the associated stroma plays a critical role as
a pro-tumorigenic environment, drug desensitization inductor and drug penetration barrier [11]. 3D
engineered cancer models have been used to overcome major issues of conventional 2D planar cultures
and animal models. The average success rate for candidate drugs in translating from animal models to
clinical cancer trials is less than 8% [12]. Biological differences among humans and animals limit their
ability to mimic complex processes such as carcinogenesis and tumor physiology, progression and
metastasis. Mice are the most frequently used animal models. Crucial genetic, molecular, immunologic
and cellular differences between mice and humans prevent them from serving as effective models [9].
Significant progress has been made, such as humanizing mice by transplanting human cells or obtaining
patient-derived tumor xenografts (so called PDTX or avatar mouse). Nevertheless, such models are
still challenging and expensive to adopt for routine use. Furthermore, fundamental differences in
telomerase regulation between rodents and humans [13] have raised questions regarding the reliability
of transgenic and inducible mouse cancer models, and discrepancies between certain rodent and
human cytokines generate uncertainty for mouse models [9,14]. 2D planar cultures’ lack of architecture,
cell-cell and cell-ECM interactions, and the exposure of cells to high-stiffness substrates like culture
plates could affect cell behavior in terms of gene expression profile and drug sensitivity. For example,
the PI3K–AKT–mTOR pathway is a central regulator of cell growth, proliferation, survival, metabolism
and aging. Riedl et al. reported significant differences in mTOR activity and crosstalk between
AKT-mTOR-S6K and the MAPK pathway in spheroids vs. planar cultures of colorectal cancer Caco-2
cells, including alterations in the responses in treatments with inhibitors of AKT, mTOR and S6K axis
or of the MAPK (ERK) axis, which are ongoing pharmacological targets [15]. Moreover, the role of
specific ECM signaling in regulating gene expression and cell fate has been largely validated as a
pivotal agent in cancer progression and drug resistance. The attachment of tumor cells to the ECM
may trigger cell adhesion-mediated drug resistance (CAM-DR). Several receptors such as integrins
and their ligands, including fibronectin (FN) or hyaluronic acid (HA), are involved in this process.
The interaction between α4β1 integrin on tumor cells and FN induces progressive drug resistance in
chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). Also, β1 integrin-mediated
PI3K activation overrides treatment-induced cell cycle arrest and apoptosis in various solid tumors [16].
As the specific crosstalk between a given cancer and its stroma varies for each cancer type and
perhaps for each patient, in vitro models that better reflect the in vivo human environments and their
heterogeneity may provide more accurate indications of patient outcome [17,18].

TERM has been used to explore several approaches for modeling solid tumors (Table 1).
Scaffold-free models such as spheroids and organoids have achieved great in vitro results [15,19].
Organoids, cell aggregates deriving from one or several stem cells able to self-organize and phenocopy
essential aspects of the organs they derive from, are of great interest from the point of view of drug
testing, as they are easily compatible with high throughput screening technologies (HTS). Genetic
modification of organoids allows disease modeling and organoids can be grown from patient tumor
tissues (tumoroids) and recapitulate better native tumors arising in superior models for patient-specific
drug testing [20]. Other approaches incorporate polymeric substrates with tunable composition,
stiffness or functionality into the equation, as in scaffold or hydrogel-based models [21,22]. Including
bioreactors and perfused microfluidic chambers gives strict control of oxygen, temperature, pH or
nutrients and precise spatiotemporal control over gradient formation [23]. Advances in bioprinting
techniques endow tumor-on-a-chip models with specific properties such as anisotropy or complex
physiological architecture [22,23]. More recent approaches integrate the above-mentioned features in
realistic systems that can even include cancerous vascularized tissues embedded in chemico-physically
defined environments with ECM and healthy neighboring cells under dynamic perfused conditions.
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Table 1. Summary of different TERM approaches for modeling solid tumors.

Reference Type of Model Material and ECM
Mimicry

Tumor Type (Cell
Line/Cell Source) Application or Description Conclusions

[15]
2016

Scaffold-free.
Spheroids.

Methylcellulose (for
spheroid formation).

Colorectal cancer.
(Cell line CaCo2).

Comparative study of tumor
related pathway signaling in
planar vs. spheroid culture.

Spheroids present diminished AKT–mTOR–S6K
signaling. mTOR activity and crosstalk between

AKT–mTOR–S6K signaling and the MAPK pathway
is altered in 3D cultures. Spheroids present
in vivo-like mTOR-S6 signaling gradients.

[19]
2017

Scaffold-free.
Patient-derived organoids

(tumoroids).

Basement membrane
extract.

Matrigel.

Primary liver cancer.
(Cell source: patient

derived cells from 3 tumor
subtypes; hepatocellular

carcinoma,
cholangiocarcinoma and

combined).

Validation of patient-derived
organoids as preclinical

personalized cancer model.
Identification of potential

prognostic biomarkers and
patient-specific drug sensitivities.

Primary liver cancer-derived organoids preserve
features of native tumor and subtype in vitro.

Tumorigenic and metastatic potential are preserved
in vivo (xenograft implantation). Amenable systems

for biomarker identification and drug testing.
Identification of the ERK inhibitor SCH772984 as a

potential therapeutic agent.

[21]
2017 Scaffold-based. Poly-ether-

urethane foam.

Breast cancer. Bone
metastasis model. (Cell

source: human ADSC and
MCFS).

In vitro model to recapitulate the
metastatic spreading of breast

cancer in bone tissue.

Importance of osteoblasts in mediating adhesion
and growth of breast cancer cells. MCFS proliferate
and form aggregates in the co-culture biomimetic
model. MCFS affects Ca and P deposition in the

bone mimetic tissue.

[22]
2019

Hydrogel-based.
3D bioprinting.

Gelatin methacryloyl UV
cross-linked.

Bladder cancer.
(Cell lines: 5637 and T24).

Development of a 3D
environment for tumor formation

and chemotherapy response
characterization.

3D cultures showed higher cell proliferation and
cell-cell interactions (E and N-cadherin expression).

3D cultures showed diminished response to
rapamycin and Bacillus Calmette-Guérin.

[24]
2019

Scaffold-based.
Spheroids.

Microfluidics.

Polystyrene scaffold.
Microfluidics.

Poly-l-lysine and
laminin-1 coating.

Breast and lung
carcinoma.

(Cell source: 3D tumor
spheroids displaying

CSC-like features from
breast (MCF-7) and lung
(A549) cancer cell lines).

Reproduction of the adhesion
process of CSC to a target tissue

by using a 3D dynamic cell
culture system.

Development of a 3D dynamic model to study
metastasis processes, such as formation of

premetastatic niche and attachment of circulating
tumor cells.

[23]
2019

Tumor-on-a-chip.
Microfluidics.

PDMS.
Matrigel.

Colorectal cancer. (Cell
source: human colon

cancer cell line HCT-116
and HCoMECs).

In vitro 3D microfluidic cell
culture for studying

onco-nanomedicine efficacy.

Validation of model with tumor core supported by
adjacent microvasculature compatible with

real-time image analysis, gradient-like response on
cancer cells,

supports a stable and viable co-culture of HCoMECs
and HCT- 116 and gene expression analysis.

Abbreviations: ADSC, adipose derived stem cells; MCFS, breast cancer derived tumor initiating cells; CSC, cancer stem cells; PDMS, poly (dimethyl siloxane); HCoMECs, primary human
colonic microvascular endothelial cells.
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3. Blood Cancers

Blood cancers, non-solid tumors or hematological malignancies are a collective term for neoplastic
diseases of the hematopoietic and lymphoid tissues with a clinical presentation as leukemia, lymphoma
or myeloma [25]. In humans, definitive adult hematopoiesis is established in the bone marrow (BM)
and thymus [26]. Through this process, all blood cells arise from the hematopoietic stem cell (HSC).
Precursor cells proceed through specific maturation steps before leaving the BM as mature circulating
cells. Two major lineages exist: thrombocytes, erythrocytes, granulocytes, and dendritic cells are
derived from the common myeloid progenitor (CMP) and make up the myeloid lineage, while T-
and B-lymphocytes, plasma cells and natural killer cells arise from the common lymphoid progenitor
(CLP) and compose the lymphoid lineage [26,27]. Lineage and maturation stages can be assessed by
morphologic, immunophenotypic, genetic and cytochemical features. Hematological malignancies are
categorized by the same methods according to cell origin, maturation or tumor characteristics [25].
The World Health Organization (WHO) has published a unified classification of neoplastic diseases
of the hematopoietic and lymphoid tissues [28,29]. Two major classes of cell types are primarily
affected: myeloid neoplasms or lymphoid neoplasms. And then, rare histiocytic, dendritic or mast cell
neoplasms. Each of these major groups is categorized in different subclasses, the most common of
which are summarized in Figure 1.
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Figure 1. Representation of BM hematopoiesis together with the simplified WHO classification of
neoplastic diseases of the hematopoietic and lymphoid tissues [28,29]. Blue box contains lymphoid
neoplasms, orange box myeloid neoplasms and green box rare histiocytic, dendritic or mast cell
neoplasms. Abbreviations: del, deletion; HSC, hematopoietic stem cell; CMP, common myeloid
progenitor; CLP, common lymphoid progenitor; MEP, megakaryocyte-erythrocyte progenitor; GMP,
granulocyte-monocyte progenitor; TNKP, T-natural killer cell progenitor; BCP, B cell progenitor; NK,
natural killer.

Although leukemias, lymphomas, and myelomas share some common features, they also have
major differences, with similarities and differences in each disease group. Leukemia (a term derived from
the Greek words “leukos” and “heima”) refers to an excess of leukocytes in the body and originates in
the BM. It can arise in either of two main groups -lymphocytes or myelocytes- and can be acute (a rapidly
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progressing form in which affected cells are very immature and unable to accomplish their function) or
chronic (which progresses slowly from cells that are relatively differentiated but crudely functional).
Lymphoma involves lymphocytes and is initiated in lymphoid tissues. Non-Hodgkin’s lymphoma
is the most prevalent form, with more indolent forms that progress slowly with well differentiated
cells, and the more aggressive forms with less differentiated lymphocytes. Hodgkin’s disease has
different clinical features and is characterized by the presence of the distinctive Reed-Stenberg Cells.
Myeloma are plasma cell disorders characterized by clonal proliferation of malignant cells, normally in
the BM [30]. In leukemia, the cancerous cells are discovered circulating in the blood and BM, while
in lymphoma cells tend to aggregate and form tumors in lymphatic tissues. Myeloma is mainly a
tumor of the BM (Box 1). This review will focus on hematological malignancies with BM homing, how
they are supported by BM niches, and explains how tissue engineers could take advantage of these
interactions and architectures to recapitulate the malignant process in vitro.

Box 1. Blood cancers.

“In leukemia, the cancerous cells are discovered circulating in the blood and BM, while in lymphoma cells
tend to aggregate and form tumors in lymphatic tissues. Myeloma is mainly a tumor of the BM.”

4. Bone Marrow Microenvironment, Home of Hematological Malignancies

4.1. Healthy BM Niche: An Intricate and Precisely Organized Network Sustaining HSCs Homeostasis

To ensure effective hematopoiesis throughout an individual’s lifespan, HSCs are tightly regulated
in their complex BM niche (BMN), which keeps a balance between maintaining the HSC population
and producing mature immune and blood cells. Stromal cells, ECM and biochemical gradients
orchestrate the regulation between quiescence and self-renewal that contribute to maintaining the HSCs
vs. their activation, lineage commitment and terminal differentiation. The hematopoietic system has
developed an adaptive response capacity in order to maintain homeostatic replacement of blood and
immune cells (steady-state hematopoiesis), and also to rapidly increase differentiated cell production
in a context of acute blood loss, infection and metabolic or toxic stress (emergency hematopoiesis).
Aberrant prioritization of differentiation over HSC self-renewal and quiescence leads to the exhaustion
of the HSC compartment, while inhibition of differentiation involves ineffective blood production.
In both cases, the hematopoietic system becomes exhausted, leading ultimately to BM failure and
hematological malignancies. Under physiological conditions, functional HSC heterogeneity appears
to be controlled by spatially-different niches. HSCs with diverse differentiation biases (myeloid vs.
lymphoid) or different fates (quiescent vs. activated) have been found to lodge in different anatomical
locations under the control of different stimuli [31]. Despite the controversies, it is generally accepted
that there are two main HSC niches in the BM: the endosteal BMN (EBMN) in the endosteum, with low
vascularity (arteries and arterioles) and the central BMN (CBMN), with higher vasculature, arterioles
and sinusoids, and enriched in HSCs. In both niches HSCs reside mainly in perivascular areas where
endothelial cells, different stromal cells of mesenchymal origin, neurons or Schwann cells and mature
blood or immune cells critically regulate their location, number and fate (Box 2). They are also governed
by other factors such as the abundance of oxygen tension, shear flow or reactive oxygen species (ROS)
(Figure 2).
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Figure 2. Scheme of bone vasculature structure and healthy BMN. (a,b) BMN location and vasculature
architecture. Arterial vessels that penetrate cortical bone merge and form the central artery. Arterioles
branch from the central artery toward cortical bone and anastomose with the sinusoid, which then
connects with the central vein in bone surface proximities. The vascular structure of the medullary
canal in bones contributes to spatial delimitation of the BM HSC sub-niches. (c) Representation of
cell populations (bold text) and their locations in BMN; main cell-cell interactions by direct contact
and soluble factors and their role in HSC homeostasis (green) are detailed. Abbreviations: EBMN,
endosteal bone marrow niche; CBMN central bone marrow niche; ROS, reactive oxygen species; HSC,
hematopoietic stem cell; CMP, common myeloid progenitor; CLP, common lymphoid progenitor; aEC,
arteriolar endothelial cell; sEC, sinusoidal endothelial cell; LepR+ CAR MSCs, leptin receptor expressing
cells and abundant reticular mesenchymal stem cells; Nest+ NG2+ MSCs, nestin and neural glial
antigen expressing mesenchymal stem cells; SNS, sympathetic nerve fiber; nmSCs, non-myelinating
Schwann cells; OBs, osteoblasts; OCs, osteoclasts; CXCL-12, CXC motif chemokine ligand 12; SCF, stem
cell factor; ANG-1, angiopoietin 1; TIE-2, angiopoietin receptor; IL-18, interleukin 18; FGF-2, fibroblast
growth factor 2; TGF-β, transforming growth factor beta; TPO, thrombopoietin; PF-4, platelet factor 4;
JAG-1, Jagged-1; G-CSF, granulocyte-colony stimulating factor.
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The central niche comprises > 90% of the BM volume, and shelters 85% of the HSCs. It contains
most sinusoids and arterioles. Specific and differentiated functions are linked to arteriolar (aBMN)
or sinusoidal (sBMN) BM niches. Sinusoidal areas are tightly related with myelopoiesis and contain
CMPs and steady-state hematopoiesis. In sBMN mesenchymal stem cell (MSCs) subpopulations
such as leptin receptor expressing cells and abundant reticular cells are mainly overlapping (LepR+

CAR MSCs) and produce crucial growth factors for HSC maintenance as CXC motif chemokine
ligand 12 (CXCL-12) and stem cell factor (SCF). In arteriolar perivascular areas of CBMN and EBMN,
nestin and neural glial antigen expressing cells (Nest+ NG2+ MSCs) are the most abundant MSCs
subpopulation and also produce soluble factors involved in HSC maintenance, such as CXCL-12 and
SCF. Sinusoidal (sEC) and arteriolar (aEC) endothelial cells have also been reported to provide soluble
factors related to HSC maintenance such as CXCL-12, SCF, angiopoietin (ANG-1) or fibroblast growth
factor 2 (FGF-2). However, they have phenotypical differences that determine different functions; aECs
form less permeable blood vessels. High permeability of adjacent vessels increases ROS intracellular
levels in HSCs, increasing their migration capacity while compromising their self-renewal, hampering
quiescence and accelerating differentiation. Sinusoids therefore promote HSC activation and lodge
immature and mature leukocyte trafficking to and from the BM, while more quiescent HSCs are found
adjacent to arterioles. The ROSlow HSCs found in sinusoidal areas reside near megakaryocytes, which
in the BM niche promote HSC quiescence through secretion of transforming growth factor beta (TGF-β),
thrombopoietin (TPO) or platelet factor 4 (PF-4). sECs also express higher levels of E-selectin (adhesion
molecule that supports HSC activation) than aECs [32,33]. Sympathetic nerve fibers innervate BM
perivascular areas and contribute to their functional differentiation. Non myelinating Schwann cells
(nmSCs) in sBMN regulate migration of HSCs by direct contact [31], while Nest+ nmSCs maintain
hibernating HSCs in aBMN [34]. nmSCs associated with sympathetic nerve fibers can promote HSC
quiescence by activating latent TFG-β in EBMN and CMBN [33]. Sympathetic nerves release soluble
mediators such as catecholamines from terminals. Noradrenaline reduces CXCL-12 production by
different niche-forming cells [35], inducing HSC activation (Figure 2c).

The EBMN is a much smaller niche (less than 10% of total BM volume) with 15% of the total
HSC population. Several EBMN signals are related to the promotion of HSC quiescence, essential
to preserve hematopoiesis normalcy through lifespan. It is related to lymphopoiesis and harbors
CLPs [31]. Regulation of hematopoiesis by osteoblasts (OB) may depend on their differentiation
state [36]. The contribution of the osteoblastic niche to HSC maintenance remains controversial
due to OB population heterogeneity and varying degree of maturation. OBs produce cytokines and
growth factors that promote HSC self-renewal and quiescence. For example, ANG-1 interacts with
ANG-1 receptor TIE-2 on HSCs to promote quiescence and adhesion. Increased expression of Jagged-1
(JAG-1) in OBs simultaneously increases their number and HSC self-renewal through Notch-1 signaling
activation in HSCs [36]. OBs also appear to regulate HSC homing and engraftment in the EBMN after
HSC transplantation. Osteocytes, mature bone cells entrapped in the calcified bone matrix, control
HSCs through the secretion of the granulocyte-colony stimulating factor (G-CSF). Osteoclasts (OCs),
bone degrading cells of monocytic origin, also affect hematopoiesis [36].

Non-cellular elements such as oxygen level also affect HSCs in different niches. The hematopoietic
compartment is relatively hypoxic, which contributes to HSC pluripotency by mechanisms such
as reducing intracellular ROS. The oxygen level close to arterioles is higher than in perisinusoidal
regions [32,35]. The ECM produced by niche cells provides structural integrity and has a regulatory
effect on niche-forming cells and HSCs [18]. The most abundant proteins are FN, collagens (COL)
from I to XI, tenascin, osteopontin, thrombospondin or elastin. Also important are proteoglycans,
which can present glycosaminoglycan side-chains such as HA, chondroitin sulfate, heparan sulphate
or heparin. ECM interactions with cells are mediated by integrins or selectins and membrane-bound
immunoglobulins such as the intercellular adhesion molecule 1 (ICAM-1) or vascular cell adhesion
molecule 1 (VCAM-1) [32,37]. Proteoglycans and collagens have been shown to be essential for
HSC maintenance; for example HA is required for in vitro hematopoiesis. As in cell-cell interaction,
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cell-ECM interactions are differentially regulated during steady-state or emergency hematopoiesis [37].
The mechanical properties of BM determined by ECM composition have also been shown to affect HSC
fate. HSC cultivation in different substrates of varying stiffness and topographies have shown that
matrix density and biophysical properties, e.g., specific presentation of adhesion ligands, contribute
to HSC niche modulation, either directly or indirectly. ECM density and components also modulate
direct cell-cell communications by conditioning secreted factors [37].

Box 2. Bone marrow microenvironment.

Healthy BMN in a nutshell. “HSCs maintenance vs. differentiation is tightly regulated in their complex
BM niche ( . . . ). HSCs reside mainly in perivascular areas, where ECs, different stromal cells of mesenchymal
origin, neurons or Schwann cells and mature blood or immune cells and factors as oxygen tension, shear flow
or ROS regulate their location and fate ( . . . ). The central BMN is related with myelopoiesis and steady-state
hematopoiesis; sinusoidal areas promote HSCs activation and lodge immature and mature leukocyte trafficking
while more quiescent HSCs are found adjacent to arterioles. In bone proximities, the endosteal BMN is related
with promotion of HSCs quiescence”.

4.2. BM Niche in Hematological Malignancies: When the Regulatory Machinery Becomes the Perfect
Tumor Partner

Multiple intricate interactions maintain hematopoiesis physiology and also the pathophysiology
of hematological malignancies, which alter the BMN and its normal interactions and so contribute to
tumor progression. Although BMN was suggested to influence tumor initiation twenty years ago its
role is still not clear. However, there is significant evidence of BMN and malignant cell crosstalk being
involved in tumor progression and resistance to therapies [31]. Transformed cells compete with HSCs
to occupy the BMN during the progression of the disease, which disrupts physiological interactions,
reduces the HSC population and disturbs normal hematopoiesis. For example, malignant cells have a
dependence on canonical HSC niche pathways, such as CXCL12- C-X-C chemokine receptor type 4
(CXCR4). However, as the disease progresses transformed cells progressively become independent of
BMN control.

Niche-driven transformations are mutations or functional alterations in BMN-forming cells that
predispose to myeloid malignant tumors. The first indication was provided by two studies reporting
that genetic ablation of the tumor suppressor gene retinoblastoma (Rb) [38] or retinoic acid receptor γ
(Rarγ) [39] in mice induced myeloproliferative neoplasms (MPN), even though their development
required inactivation of either of these genes in hematopoietic and BMN-forming cells. Development
of MPN from Rarγ mutations needs increased levels of the tumor necrosis factor (TNF) [39], depicting
a pro-inflammatory environment as a crucial triggering factor, together with BMN alteration. As
inflammation is a hallmark of aging, and myeloid malignancies are more prevalent among the elderly,
inflamed BMN could be used as a tumor-initiating factor. As BMN aging promotes myeloid biases
at the expense of lymphoid differentiation, some authors suggest that it facilitates pre-malignant
clone growth by overstimulating myeloid cell expansion, which can lead to myeloid malignancies.
This means that myeloid malignancies may develop over a period of years as a continuous process
involving simultaneous mutation of pre-malignant cells caused by certain BMN alterations [40–42].
There is further evidence that BMN is a predisposing factor from the fact that many recipients contract
leukemia after human clinical halogenic HSC transplantations as a result of the transformation of
healthy HSCs into malignant clones [43].

BMN remodeling by malignant cells contributes to disease progression. Malignant cells
alter the transcriptome, proteome and function of BMN-forming cells by means or secreted
factors, exosomes or direct cell-cell contact and promote BMN changes towards angiogenesis and
inflammation [44–46]. MSCs, adipocytes, OBs, ECs and sympathetic neurons or Schwann cells
are also affected. The reprogramming of BMN-forming cells has been described in myeloid and
lymphoid malignancies. In the case of myeloid malignancies, chronic myeloid leukemia (CML)
cells activate MSCs through soluble factors like CC motif ligand 3 (CCL3) or TPO, and by direct
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cell-cell contact causing overproduction of functionally altered OBs that do not support normal HSC
maintenance [47]. In lymphoid malignancies, T cell acute lymphoblastic leukemia (T-ALL) cells
impair normal hematopoiesis with a dramatic loss of OBs [48]. In CLL, exosomes from neoplastic
clones reduce the production of soluble HSC supporting factors, and CLL cell-derived vesicles affect
immune cell function as natural killer cells and accelerate the transition of stromal cells towards
cancer supportive phenotypes, up-regulating production of angiogenic factors by ECs and MSCs [49].
Sympathetic neurons, which innervate BMN, also become altered by malignant cells in mouse-model
MPN. Transformed HSCs produce IL-β1, which damages sympathetic neurons and kill Schwann cells,
leading to reduced CXCL-12 production and promoting mutant HSC proliferation [50]. Hypoxia and
angiogenesis are two important traits of hematological malignancies, neovascularization induced by
malignant cells provides increased nutrients and oxygen to supply the higher demand, but it also
encourages the arrival of soluble factors that promote the survival, proliferation and chemoresistance of
malignant cells. For example, vascular endothelial growth factor A (VEGF-A) secretion by transformed
HSCs increases angiogenesis, but also stimulates its proliferation [51]. Under physiological conditions
HSCs preferentially use glycolysis to avoid excessive ROS production and maintain quiescence.
Malignant AML cells rely on different regulatory mechanisms to gain metabolic plasticity. Unlike their
normal counterparts, malignant cells tend to have a high glucose uptake and glycolytic rate in the
presence of oxygen, known as the Warburg effect (aerobic glycolysis) [52]. Although this results in low
ATP yields, the Warburg effect is an essential anabolic mechanism that allows cancer cells to manage
cell growth and division [53]. However, the field of tumor metabolism is extremely heterogeneous and
specific fractions of malignant cells exhibit increased reliance on oxidative phosphorylation [54]. Some
studies report that malignant cells uptake functional mitochondria from niche-forming cells using
endocytic pathways to satisfy the greater demand for energy, which provides a survival advantage as
it promotes ROS detoxification, resistance to chemotherapy and the aggressiveness of the disease [53].

Once transformed, BMN favors malignancy though different mechanisms. In some lymphoid
malignancies such as CLL, B cell acute lymphoid leukemia (B-ALL) or mantle-cell lymphoma activation
of survival and pro-inflammatory pathways, like the nuclear factor κB (NF- κB) pathway by altered
BMN cells is necessary for malignant cell survival. This crosstalk is dependent on cell-cell contact and is
also mediated by IL-1α and IL-15. Previously malignant cells modify BMN cells such as MSCs, inducing
protein kinase C (PKCβ) expression [55]. Protection from excessive ROS is a different mechanism by
which altered BMN protects malignant cells and promotes survival and chemoresistance. Altered BMN
cells provide CLL or B-ALL cells with cysteine, used by malignant cells for production of glutathione
for ROS detoxification, a key ability for survival, as chemotherapy effectiveness relies on ROS-induced
DNA damage [56]. Metabolic reprogramming of malignant cells by altered BMN cells has also been
reported. Altered BMN cells such as MSCs also promote immunosuppression and hamper the activity
of effector lymphocytes by TGF-β, IL-10, prostaglandin E2 (PGE2) or arginase 1 or 2, and help to avoid
attacks by malignant cells [57]. All these mechanisms combine to develop therapeutic resistance by
malignant cells. The simple grafting of malignant cells onto specific sites could inhibit chemotherapy.
CD44 has played a particularly important role in malignant cell interaction with the BMN in myeloid
malignancies such as multiple myeloma, CML or AML [58–60]. CD44 binding with its E-selectin EC
receptor mediates homing and grafting of malignant cells in CML [59] and enhances drug resistance in
multiple myeloma [60]. Likewise, β1 integrins mediate adhesion to VCAM-1 or ICAM-1 molecules
on stromal cells and induce CML cells adhesion to BMN. In AML, interaction between α4β1 integrin
and VCAM-1 mediates chemoresistance towards activation of the NF-κB pathway in stromal cells [61].
Several studies report how the blockage of these interactions may help to sensitize malignant cells
to conventional chemotherapy. In fact, the latest approaches to clinical treatment of hematological
malignancies are combined therapies that not only attack malignant cells but also the altered BMN,
or more specifically the crosstalk between supporting and malignant cells [62]. The importance of
the environment in blood cancer pathogenesis is therefore undeniable (Figure 3). Effective in vitro



Int. J. Mol. Sci. 2020, 21, 5747 10 of 31

modeling of hematological malignancies with BM homing, mainly myelomas and leukemias, goes
through the inclusion into the model of different components from the native BMN.
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5. Advances in BM Models

Engineering a BM analog would be important both for basic BMN research and for therapeutic
strategies [63]. However, BM structural complexity, its spatially variable anatomy and the intricacies
and dynamic character of its cellular interactions and regulation under physiological and especially
under pathological conditions make BM and hematological malignancies particularly complicated to
tackle for tissue and disease modeling. Despite the complications, TERM has developed tridimensional
platforms attempting to overcome the limitations of conventional models, such as animal models or
in vitro 2D culture. These platforms have been based on different approaches to provide structural
support for HSCs and BMN-forming populations. BM is a complex machine with many different
pieces (cellular components, ECM, soluble signals, oxygen level, tissue stiffness, etc.) working in
an orchestrated manner to carry out its physiological roles. Different authors have chosen different
approaches, in which some pieces conduct the niche’s in vitro mimicry that governs the spatial and
temporal regulatory signals. Approaches include naïve cultures of hematopoietic progenitors in
association with a biomimetic scaffolding material or in a co-culture with specific niche-forming cells
through the more sophisticated BM-on-a-chip devices. Nonetheless, the development of a functionally
effective model capable of showing BMN diversity and dynamism with the translational potential
for disease modeling is still challenging. No single approach has been adopted as the standard in
the field [63–65], however, different models have succeeded in reproducing some particular and
restricted aspects of specific BM contexts. For example, the first attempts at reproducing cell-cell
interactions started with the co-culture of HSCs and different BMN-forming cells, such as ECs, OBs
or MSCs [66–68]. Cell-ECM interactions have been extensively incorporated into the equation by the
introduction of natural tridimensional substrates or by polymeric synthetic substrates with different
biofunctionalizations, all of them commonly presented in the form of scaffolds or hydrogels [69–73]
(Table 2). Some of these approaches aim to improve the platforms for in vitro expansion of HSCs and ex
vivo platforms for blood production [71,73]. Others aim to reproduce certain complex aspects of native
BMN, such as compartmentalization and differential regulation of HSC fate [69,70,72]. All of them
represent simplified bio-inspired set-ups that have undoubtedly contributed to increasing our basic
knowledge of the hematopoietic compartment. However, their complexity is still far from assimilating
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BM complexity. Micro-scale systems or microfluidic perfusion chips have been used to mimic BMN
complexity. Usually termed as BM-on-a-chip platforms, they include combinatorial approaches of
fluid flow, biomimetic scaffolds and fine control of biochemical parameters (Table 3). These results
are a step forward, as they succeed in mimicking functional compartmentalization, in providing
knowledge that can be applied clinically or even reproduce the particular native behaviors of some
blood cancers [74–78]. Nevertheless, what these different strategies do have in common is that they
show that progress in the field relies on interdisciplinary approaches (Box 3). Although micro-scale
models offer greater control, their design flexibility and significant result assessment are complicated.
For the present authors, the reviewed models that most closely resemble BMN complexity rely on
genetically modified humanized animal models [79], or the series of studies based on, bioengineered
and humanized, mouse ectopically implanted microenvironments [78,80–89]. This raises the issue of
whether animals should be included in the biological complexity, or if less complete models derived
exclusively from human factors should only be used.

Box 3. BM in vitro existing models.

“Nowadays, the development of a functionally effective model with translational potential is still challenging
( . . . ). Different authors have chosen different approaches, and several models succeeded in recapitulating some
behaviors of BM specific contexts ( . . . ) what these different strategies do have in common is that they show that
progress in the field relies on interdisciplinary approaches ( . . . )”.

Narrowing the context down to hematological malignancies, due to the intricacy of the role of
BMN in tumor initiation and progression some authors use healthy BMN models with deliberately
injected malignant cells to study pathological conditions, while others attempt to mimic pathological
niches by including altered ECM or soluble tumorigenic environment [90,91]. For example, major
efforts have been made to optimize complex BMN models for growing leukemia cells [92]. Highly
porous scaffolds made from different biodegradable and non-biodegradable polymeric materials,
such as poly (l-lactic-co-glycolic acid), polyurethane (PU), poly (methyl- methacrylate), poly (d,
l-lactide), poly (caprolactone), and polystyrene coated with COL I or FN have been tested as models to
study AML biology and treatment [93]. Inclusion of cell-cell interactions has also been considered:
co-culture of BMN-forming cells with AML cells in a decellularized Wharton’s Jelly matrix (DWJM)
showed higher resistance to chemotherapy than conventional suspension cultures and best resembled
in vivo drug-resistance [94]. Different ECM components of ECM are known to play a role in inducing
drug-resistance in different tumors: COL gel cultures induce drug resistance in different tumors;
lymphoma or myeloma cells adhering to FN acquired resistance to mitoxantrone or dexamethasone,
respectively, and HA is associated with drug resistance in leukemia [95,96]. Different authors
have selected these biomolecules as scaffolding for in vitro reproduction of drug resistance [92].
For example, COL, FN and HA are present in DWJM scaffolding in the above-mentioned study on
leukemic cells, generating a simplified but rationally designed platform for the study of ECM-induced
drug-resistance [92,94,97]. Multiple myeloma (MM) is a hematological neoplasia in which the BMN’s
role in disease progression via elevated proliferation, migration and CAM-DR has been extensively
reported [98]. Simplified TERM approaches contributed to this knowledge: co-cultivation of MM cells
with BM-MSCs revealed that these cells co-modulated their phenotype and that BM-MSC secretomes
and microvesicles (MVs) participate in this crosstalk [99–101]. MM cell lines cultured on decellularized
ECM from normal donors (ND) or MM patients’ BM-MSC recently showed that MM-MSCs’ ECM
promotes MM cells’ MAPKs/translation initiation-dependent proliferation and migration, while normal
donors’ ND-MSCs’ ECM has the opposite effect [91], an interesting result that supports the use of
transformed in vitro conditions for modeling hematological malignancies. The more sophisticated
platforms developed as healthy BMN have been used to study the behavior of malignant MM cell
lines and effectively succeeded in reflecting resistance to conventional drugs, the main disadvantage in
current MM clinical management [76,102].
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Table 2. Summary of different TERM approaches for modeling BMN interactions.

Reference Factors of Mimicry Cellular Component Biomaterial Achievements

[69] (Figure 4a)
Cell-cell and cell-ECM

interactions.
BMN Compartmentalization.

Human MSCs from
UC or BM.

HSPCs from UC blood.
COL I /III based hydrogels.

3D co-culture system resembles the EBMN and dissects
two sub-populations of HSPCs: (I) highly proliferative

with tendency to lineage commitment and (II) with
clonal expansion and immature phenotype with

self-renewal and repopulation capacity.

[70] (Figure 4b) Cell-cell and cell-ECM
interactions.

Human HSPCs from UC blood.
BMN-forming cells: MSCs

(from BM and UC) and OBs cell
line CAL-72.

PEGDA hydrogel mimicking
trabecular bone. Adhesive

peptides.

Co-culture showed more pronounced positive effect of
MSCs on preservation of HSPCs stemness in 3D than 2D.

Bio-functionalization offers adhesive sites,
supplemented medium provides soluble factors, MSCs

reflect the supporting stromal cell compartment.

[71] Cell-ECM interactions.
BMN Compartmentalization.

Human CD34+ cells from adult
peripheral blood.

PU scaffold with honeycomb
structure.

Compartmentalized scaffolds allow harvest HSCs across
longer periods. Continuous egress of cells with an

erythroid progenitor phenotype over a 28 days period.
Maintenance of CD34+ population, while facilitating

egress of increasingly differentiated cells.

[72]
Cell-cell and cell-ECM

interactions.
Biotransport.

Murine BM derived
Lin−Sca1+cKit+ (LSK)
sub-fraction and Lin+

BMN-forming cells.

Cell-laden COL I hydrogels
with varying densities.

Co-variation of hydrogel diffusivity and BMN-forming
cell density controls HSCs proliferation vs.

differentiation by varying autocrine vs. paracrine
signaling. Biotransport limitations in 3D models as

critical design element.

[73]
Cell-ECM interactions.

Soluble factors improved
presentation.

Murine ckit+ enriched HSCs
cells from BM.

PVA. FN as 2D coating for HSCs
retention. Soluble TPO and SCF.

Ex vivo platform for long-term HSCs expansion.
Affords 1-month expansion of functional HSCs.

Cultures derived robustly engrafted in recipients
without requirement for toxic pre-conditioning,

suggesting new approaches for HSC transplantation.

Abbreviations: ECM, extracellular matrix; BMN, bone marrow niche; BM, bone marrow; MSC, mesenchymal stem cell; UC, umbilical cord; EBMN, endosteal bone marrow niche; HSPCs,
hematopoietic stem and progenitor cells; OB, osteoblast; PEGDA, poly (ethylene glycol) diacrylate; PU, polyurethane; HSC, hematopoietic stem cell; FN, fibronectin; TPO, thrombopoietin;
SCF, stem cell factor; PVA, polyvinyl alcohol.
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Table 3. Summary of different complex microscale systems or BM-on-a-chip approaches.

Reference Approach Achievements

[74]

Hydroxyapatite-coated ceramic cancellous bone mimicking scaffold,
pre-culture with primary BM-MSCs inducing ECM deposition and

factor secretion. Co-culture with HSPCs from UC blood developed in
the MOC platform [69].

Long-term culture of HSPCs. MSCs generated microenvironment conducts HSC
maintenance. HSPCs remain their native state after 4-weeks culture in dynamic
conditions in the perfused MOC and retain multi-lineage differentiation potential.
MOC platform allows co-culture with different organoids in adjacent chambers

[75] Bone-like ceramic scaffold, functionalized by human stromal cells and
by the ECM they deposited during perfusion culture in bioreactors.

Perfusion-based bioreactor system, partially recapitulating structural,
compositional and organizational features of EBMN. Support of HSPCs

maintenance and expansion in vitro with preserved multilineage reconstitution
potential. Functional compartmentalization. Possibility to exploit the system for

study BMN with customized molecular signatures.

[76]
(Figure 4c)

Micro-scale 3DTEBM cultures derived from the BM supernatant of
MM patients. Different BM cellular components (MM cells, BMN cells,

and ECs). Cross-linked fibrinogen scaffold.

3DTEBM cultures allowed proliferation of MM cells, recapitulated their
interaction with the microenvironment, recreated 3D aspects of BMN (such as

oxygen gradients), and induced drug resistance in MM cells.

[77]

PDMS hollow compartment with a COL I gel containing
bone-inducing DBP, BMP2 and BMP4, implanted subcutaneously in

mouse. Posteriorly explanted and maintained in vitro in a microfluidic
device for 4 or 7 days. Functionality and responsiveness of the tested
by exposing it to γ-radiation to determine whether this method could

be used as an in vitro model for radiation toxicity.

Formation a cylindrical disk of cortical and trabecular bone containing marrow
with a hematopoietic cell composition nearly identical to that of natural BM.

Presence of key cellular and molecular components of BMN. During posterior
1-week in vitro culture retained morphology and molecular patterns, enabled

maintenance of a significantly higher proportion of long-term HSCs while
effectively maintaining distribution of mature blood cells. Mimicked

physiological response to clinically relevant doses of γ-radiation.

[78]

Generation of humanized heterotopically localized bone organoid,
“ossicles”, recapitulating normal BMN morphology and function.

Ossicles formed in-situ by BM-MSCs ectopically implantation in mice.
HSCs can subsequently be transplanted into the ossicle.

Transplantation of normal and malignant HSCs.

Robust and reproducible in vivo methodology to study human normal and
malignant hematopoiesis in a physiologic setting. Effectively engraftment of

primary patient-derived AML and myelofibrosis cells in mice. Although bone,
cartilage, and MSCs within the ossicle are of human origin, the vasculature is

mouse derived. Limited applicability of the model to human specific questions.

[65]
(Figure 4d)

Cryogel-based COL coated carboxymethylcellulose micro-scaffold
seeded with murine BMN-forming cell line OP9 to generate a living,

injectable stroma supportive for hematopoiesis, and with murine
HPSCs. Seeded scaffolds act as microcarriers, enabling culture in vivo,

when implanted ectopically in mice for vascularization.

Scaffolds promote hematopoietic cell proliferation over time, amenable to live,
high-resolution imaging. Co-culture on chemically defined scaffold microcarriers.

Simple and scalable. No exogenous cytokine supplementation. Stromal and
hematopoietic cells able to survive in vivo for 12 weeks, showing incorporation

into the native tissue via de novo vascularization.

Abbreviations: BM, bone marrow; MSC, mesenchymal stem cell; ECM, extracellular matrix; HSPCs, hematopoietic stem and progenitor cells; UC, umbilical cord; MOC, multi-organ-chip;
EBMN, endosteal bone marrow niche; BMN, bone marrow niche; 3DTEBM, 3D tissue engineered bone marrow; MM, multiple myeloma; EC, endothelial cell; COL, collagen; HSC,
hematopoietic stem cell; DBP, demineralized bone powder; BMP2, bone morphogenetic protein 2; BMP4, bone morphogenetic protein 4; AML, acute myeloid leukemia.
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Figure 4. TERM models of healthy BMN. (a) Co-culture of human HSPCs with MSCs in 3D COL hydrogel
dissects two sub-populations of HSPCs. (i) Scheme of the 2-compartment system. (ii) HSC morphology by
SEM at day 14 (adapted by kind permission of [69]). (b) Co-culture of HSPCs with mesenchymal stromal
cells in PEGDA hydrogel coated with adhesive peptides mimicking trabecular bone. (i) Scheme of the
approach. (ii) Cross-sections of hydrogels, SEM images (top panel) and fluorescence micrographs (lower
panel) with Alexa Fluor 647-labeled BSA in red as tracer molecule to reveal interconnectivity of the pores.
Scale bars, 20 µm (SEM) or 100 µm (FL). (iii) Pseudo colored SEM micrograph of a hydrogel seeded with
primary MSC-BM and HSPCs. Purple: adherent MSC-BM, 28 µm in size; red: HSPCs, 12 µm in size. Scale
bar, 20 µm (adapted by kind permission of [70]). (c) In vitro 3DTEBM used for culture of BM aspirates from
MM patients. (i) Scheme of the approach; cultures were developed through cross-linking of fibrinogen with
calcium; numerous cellular components, including MM cells, MM-derived stromal cells and endothelial
cells were incorporated. (ii) Illustration of the BMN and the 3DTEBM with oxygen and drug concentration
gradients (adapted by kind permission of [76]). (d) Cryogel-based COL coated carboxymethylcellulose
scaffold seeded with murine BMN-forming cell line OP9 to generate a living, injectable stroma supportive for
hematopoiesis, and with murine HPSCs, seeded scaffolds used as microcarriers for in vivo culture in mice (i).
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(ii) Fluorescence image of CCM seeded scaffold, blue: Hoechst (scaffold); green: GFP (OP9 stromal
cells); red: HSPCs (adapted by kind permission of [65]). Abbreviations: SEM, scanning electron
microscopy; HSPC, hematopoietic stem and progenitor cell; PEGDA, Poly (ethylene glycol) diacrylate;
HSC, hematopoietic stem cell; MSC, mesenchymal stem cell; BM, bone marrow; 3DTEBM, 3D tissue
engineered bone marrow; MM, multiple myeloma; COL, collagen.

6. Unresolved Questions in Modeling BM and Non-Solid Tumors

As the review delves into the advances in modeling healthy or malignant BM, some basic questions
regarding the main design principles of TERM approaches should be considered. The physiological
BMN and the transformations leading to or sustaining blood tumors are extremely complex and it
will be a major challenge for TERM to faithfully reproduce these artificially in a BM model. In our
view, cells must raise the artificial BMN from a provided substrate, which should be as biomimetic
as possible, and from the presence of the appropriate environmental conditions (oxygen, fluid flow,
physico-chemical stimuli . . . ) (Box 4). The promising approach proposed by Torisawa et al., consisting
of an artificial substrate engineered in vivo in a biomimetic BM model for in vitro HSC culture,
strengthens the idea that the cells themselves are the last-resort architects of model complexity.
However, this model is implanted in mice and does not closely mimic the human situation. For more
humanized models, TERM must propose alternative methods of cell-guided niche formation. Some of
the critical issues of these approaches to modeling blood cancers are examined in this section (Figure 5).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  16  of  32 
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Box 4. Unresolved questions in modeling BM and non-solid tumors.

“The physiological BMN and the transformations leading to or sustaining blood tumors are extremely
complex and it will be a major challenge for TERM to faithfully reproduce these artificially in a BM model. In our
view, cells must raise the artificial BMN from a provided substrate, which should be as biomimetic as possible,
and from the presence of the appropriate environmental conditions (oxygen, fluid flow, physico-chemical stimuli
. . . ).”

6.1. ECM Dynamics and Remodeling

ECM is a highly dynamic structure continuously undergoing controlled remodeling [103]. In vivo,
cells rebuild and remodel ECM constantly through synthesis, degradation, reassembly, cross-link or
chemical modification of their different components [104] and resultant biophysical, mechanical and
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chemical ECM characteristics influence tissue homoeostasis [105]. ECM remodeling is therefore an
important mechanism helping to regulate cell differentiation or the establishment and maintenance of
stem cell niches, angiogenesis, bone remodeling or wound repair [104]. Deregulated ECM remodeling
is associated with different pathological conditions: abnormal ECM deposition and increased stiffness
have been broadly linked with solid tumors [106,107]. In tissue engineering approaches, when
adherent cells are seeded on 3D substrates (or on 2D surfaces) preexisting adhesion ligands from
substrate functionalizations or serum protein deposition are essential for initial cell attachment, after
which the cells remodel and secrete their own ECM. This inherent ability of ECM remodeling to
control cell behavior has also been reported and exploited in in vitro 3D models [108,109]. In these
approaches, both stiffness and degradability of the polymeric substrates are critical design variables,
as metalloproteinases or other enzymes are commonly used by cells for ECM degradation, and natural or
engineered proteolytically degradable materials have been extensively used in biomimetic approaches.
Other groups have also proposed material-driven ECM remodeling. Salmerón-Sanchez et al. found
that simple FN adsorption onto poly(ethyl acrylate) surfaces triggered FN organization in a fibrillar
network similar to cell-assembled matrices [110]. These studies provide evidence of the cells’ ability to
direct ECM remodeling in vitro and to enhance this process towards biomimetic ECM configurations.
However, it has also been reported that cells embedded in artificial matrices require externally-imposed
parameters, including matrix stiffness, which affect cell-mediated ECM remodeling by altering ECM
regulatory genes [111]. This means that the initial matrix provided by the model will always guide
cell behavior and influence cell-mediated ECM remodeling, perhaps reshaping the native output
of this process. Therefore, the key question in hematological malignancies modeling is whether
patient-derived malignant cells are able to can carry out this process or induce other cells in the model
to do so.

6.2. Vascularization of the Model

To answer the question of how far cells can reconstruct native BMN complexity from an artificial
substrate we should consider not only cell-mediated ECM remodeling but also the cells’ ability to
create complex structures, such as vasculature, or reproduce the anatomical traits essential for tissue
function, like compartmentalization. Vascularization of the model seems essential, as native BM blood
vessels actively contribute to functional differentiation into subniches by their different BMN-forming
cell populations and generating different biochemical gradients. In vitro vascularization is by itself a
wide research field. Vascular networks have been generated in vitro by different approaches to study
angiogenesis, vasculogenesis and cancer metastasis [112]. Vasculogenesis is the process by which early
capillary-like networks form in vivo during adulthood through recruitment of endothelial progenitor
cells (EPCs) from BM [113]. Following the formation of a primary network, expansion and sprouting
occur from existing vessels by the process termed as angiogenesis, which is key in solid tumor growth,
and activated by hypoxic environments or shear flow [112]. This mechanical stimulus also modulates
the process of arteriogenesis, a maturation step that contributes to arterio-venous differentiation [113].
Many in vitro models are now enabled by microfluidic-based techniques and flexible polymers such as
PDMS that can produce well-defined micro-scale geometries. One of the important aspects dealt with
in this review is that in vivo vascular organization depends on the surrounding microenvironment,
as seen in vessels aligned parallel to muscle, radially in the retina and highly branched in the lungs [112].
The in vitro patterning of the substrate or the composition of ECM mimicry used to develop the
micro vessels influence their organization [114], even systemic factors, such as media flow, may affect
network morphology and function [115]. Two options arise as dominant strategies for vascularization
of engineered tissues in vitro: scaffold-based strategies using naturally derived and synthetically
generated tube-like structures for guided vessel formation vs. the naturally formed cell-based strategies
that rely on endothelial angiogenesis and vasculogenesis to form perfuseable networks [112]. ECs, EPCs,
human dermal microvascular endothelial cells (HDMEC) or human umbilical vein endothelial cells
(HUVECs), among others, have been used in in vitro angiogenesis and vasculogenesis models, always
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with a supporting ECM component and proper soluble environment to enhance their attachment and
function [112,113,116]. However, as MSCs and other stromal cells have been shown to interact with
endothelial lineage cells during neovascularization, MSCs have been co-implanted with human ECs,
improving vascular tissue formation [117,118]. The most successful models of healthy or malignant BM
reviewed in this article in terms of vascularization are those in which complexity has been engineered
by implantation in vivo in mice. Although the human vasculature structure and perivascular BMN
can be resembled in humanized structures implanted in mice [80], these approaches are again limited
by their uncertainty as to the specific role of mouse vasculature and the cytokines supplied by the
mouse system to these humanized implanted structures. Focusing on non-solid tumors, different
authors have reported altered angiogenesis in association with different hematological malignancies.
Laroche et al. reported that the number of arterioles and capillaries increased in myeloma from its
initial stages according to the gravity of the disease [119]. Increased BM angiogenesis and increased
levels of associated factors, such as VEGF, have also been described in relation to AML, ALL, B-CLL or
CML, among others, leading to the development of therapeutic applications based on disruption of
this mechanism [120].

The remaining question concerning vascularization is thus whether there is an effective
animal-independent cell-guided way to biomimetically vascularize human engineered models, or in
its absence, whether it is preferable to sacrifice the complex vascular biomimetic networks and replace
them with gradients and an unstructured or artificially conditioned cellular and soluble factors from
vessels [68] in order to maintain fully human models. This is the case of in vitro models of hematological
malignancies such as the MM model in De la Puente et al., which fully preserve humanization and
recapitulate the polarized BM niche structure with the generation of biochemical gradients, showing a
more hypoxic vs. a more normoxic niche with more endothelial cells (Figure 4c) [76,121]. The present
authors believe that recent advances in the field of in vitro vascularization, particularly the intention to
provide better support to organ-on-a-chip approaches, will sooner or later contribute to the compatibility
of human engineered vessels with native-like characteristics.

6.3. Compartmentalization

The more naïve bio-inspired setups summarized in Table 2 and some of the approaches in Table 3
contain several models that represent compartmentalization as a key factor in inducing mimicry. Diverse
methods are used to create different functional zones, e.g., including structured compartments [21],
differential matrix regions such as suspension vs. solid compartment [69,73], co-culture of different
cells [70] or generation of biochemically different areas by gradients [72]. However, the combinatorial
approaches are the most commonly used [74–76]. When moving forward towards the reviewed
cell engineered approaches [65,77,78] it appears that in vivo-mediated vascularization, native ECM
remodeling or including different cell types in the engineered models will indirectly lead to better
functional compartmentalization than the initial design. Therefore, compartmentalization seems
necessary to mimic functional BMN differentiation either by directly including it in the model or by
indirect cell-mediated remodeling (Box 5). This has led the authors to consider the possible future role
of bottom-up tissue engineering strategies in functional artificial BMN modeling, as this field aims to
engineer complex tissues by the modular assembly of different living building blocks into customized
architectures [122].

Box 5. Compartmentalization.

“Either by direct inclusion in the model by means of different design parameters or by indirect cell-mediated
remodeling, compartmentalization seems necessary for functional differentiation of BMN”.

6.4. Stemness Maintenance Vs. Differentiation Balance

Another distinctive aspect of BMN is the balance between differentiation and maintenance of
pluripotency, which is the key regulator of healthy and malignant BM niches (Section 5). Tumor cells
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interact with many cell types in their environment, especially in hematological malignancies, and in a
trustworthy model these cell types have to coexist, as in in vivo conditions. How can pluripotent or
multipotent cells be maintained at the same time as their differentiated counterparts and the production
of trophic and regulatory factors? (Box 6). Ex vivo expansion of HSCs has been widely studied, mainly
for its implications in hematopoietic cell transplantation (HCT) and generating red blood cells ex
vivo. Uncommitted primitive cells are needed to efficiently repopulate the BM in HCT, which is still
challenging since HSCs outside their niche tend to differentiate or become senescent [123]. The in vivo
regulation of HSC self-renewal and differentiation is the reference pursued. Biomimetic co-cultures
provide biological cues that liquid cultures, in the absence of stromal cells, barely replicate. Some
studies maintain that the main factors that support HSC expansion rely on direct cell-cell interactions
with different BMN-forming cells, while for others direct contact is not required, so that soluble factors
play a key role in HSC fate. However, in agreement with [123], we believe that the interplay between
soluble factors and direct ECM and BMN-forming cell interactions allows niche cues to efficiently
regulate HSC fate. The choice of culture medium is crucial to determine HSC fate in vitro. Most
approaches use supraphysiological concentrations of different HSC-supportive cytokines such as
SCF, TPO, ANG-1 or IL-6 directly added to the medium and/or secreted by the BMN-forming cells
in the model. ECM components, such as FN, COL, laminin or proteoglycans help to regulate HSC
fate by binding the growth factors produced by BMN-forming cells, favoring cell co-localization and
biological cues. Exploiting ECM’s ability to retain bioactive factors, Mahadik et al. bound SCF to a
gelatin-based hydrogel to increase its bioactivity [124]. Diffusion control of nutrients, oxygen and
cytokines by the ECM can also lead to gradients that could provide regulatory cues to HSCs [72].
Nevertheless, the presence of stromal cells seems to be key to promoting HSC self-renewal in vitro.
Gottschling et al. showed that the presence of MSC was enough to ensure self-renewal, while the
activation of β1-integrins by FN was not [125]. Different types of bioreactors have been used for
HSC expansion ex vivo, including stirred tank suspension, perfusion chambers, fixed beds, airlift or
hollow fiber reactors [123]. However, most of these rely on suspension cultures unable to maximize
cell-cell and cell-ECM contact. The design of bioreactors coupled with biomaterial approaches has
overcome this issue, such as that proposed in Sieber et al., whose 3-D co-culture model based on a
hydroxyapatite-coated zirconium oxide scaffold with human BM MSC inserted in a microfluidic device
was able to support long-term HSCs [74].

The issue of the differentiation vs. stemness balance is of interest not only for HSCs, blood and
immune cells, but also for MSCs and osteolineage cells of varying maturity. Several approaches
incorporate MSCs and pre-differentiated OBs in the model to cover this heterogeneity, although
a dynamic balance between MSC expansion and OB differentiation would be of great interest.
Maintaining MSC stemness ex vivo is also still a challenge, some microcarrier bioreactors have
been used as large-scale production systems [126], although TERM approaches do not yet seem to
have incorporated the dynamic balance between MSCs and OBs differentiation in BMN modeling.
The initial steps have been taken, as there are many osteogenic scaffolds that efficiently generate
well-differentiated OBs from initially seeded MSCs. However, the long-term co-existence of OBs,
osteocytes and primitive MSCs seems to be difficult to regulate, as mature osteolineage cells seem to
promote osteogenic MSC differentiation and lead to progenitor exhaustion [127]. Osteogenic media
are commonly used in in vitro approaches, however, when considering co-cultures with HSCs or even
with blood cancer cells such as MM cells, the use of osteogenic media should be rethought, since some
of the soluble factors necessary for osteogenic differentiation of MSC could alter other cells included
in the model. For example, dexamethasone is a commonly used anti-MM treatment (although the
concentrations used in osteogenic media are 10 times lower [128]). The main problem concerning
the use of specific conditioned media to promote specific phenotypic cell commitment in an ideal
BM model is how to control the different effects of this media in different zones, thus allowing the
coexistence of undifferentiated and mature cells. As this localized activation of cell differentiation
does not seem to be possible by means of inductive media, we believe that TERM approaches have
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been shown to be efficient enough to induce differentiation in specific areas of the model and promote
pluripotency in others. Anderson et al. reviewed specific aspects of scaffolding material design to
rationally target MSC cell fate [129]. Mechanotransduction is the process by which MSCs turn an
adherent stimulus into a cellular response able to determine cell fate. For cells to adhere to a synthetic
surface, the material has to replicate an ECM motif or absorb ECM proteins, so that by controlling the
ability of a material to allow cell adhesion, the subsequent activation of different signaling pathways
that control stem cell fate can also be defined [129]. There are important design parameters for
this purpose: material chemistry, stiffness and nanotopography are known as the material/surface
interface “triangle”, as their variations control the scaffold’s interactions with MSCs by conditioning
the formation of focal adhesions. Binding the cell through focal adhesions to adhesive ligands on
the materials creates tension and activates signaling that controls cell behavior and stem cell fate.
Chemical functionality can be used to produce high or low adhesive areas for the cells to respond to
stiffness, which affects their ability to create tension through focal adhesions. Topography can present
the adhesion ligands to the cells in either a favorable or unfavorable way, again affecting adhesion and
subsequent tension and signaling [129]. The chemistry of the surface and its conditioning of matrix
protein deposition, which in turn regulates the presentation of cell adhesion motifs to cells, can be
finely tuned with techniques such as dip pen nanolithography (DPN) to apply a surface chemistry to a
precise substrate on the nanometer scale. For example, Curran et al. set out to optimize an arrangement
of dots of “chemistry” to manipulate MSC behavior by creating specific patterns of -CH3, -NH2, -CO,
and -CO2. They found that the functionalized -CH3 surface maintained stem cell markers while -NH2

dots increased adhesion and osteogenesis [130]. Precise control of chemical functionality in 3D is still
challenging, however ongoing progress in nanofabrication techniques promises to make significant
contributions in the near future [129]. ECM topography in vivo presents a native composition that
provides the cells with behavioral cues. in vitro, the topographical cues influence on stem cell behavior
has also been proved and explored by many scientists as a tool to manipulate MSC fate. Dalby et
al. developed MSC growth substrates with random or highly ordered patterns and observed that
osteogenesis increased in the disordered patterns as efficiently as in inductive media [131]. However,
these studies imply a 2D character and a “static” nature, in the sense that they include a configuration
of the material oriented to promoting a single effect on the cell fate (self-renewal or differentiation).
While the stem cell niche and the BMN are dynamic microenvironments in which the balance between
stemness and differentiation is regulated by the demand. Next-generation materials able to support
self-renewal and differentiation with spatiotemporal control have attracted significant interest in
recent years. For example, stimuli-respondent materials in which a cytocompatible stimuli such as
light triggers material changes leading to alterations in cellular behavior, together with advances
and tridimensional implementation of microfabrication techniques, will address the future need for
niche-mimicking materials [129].

Box 6. Stemness maintenance vs. differentiation balance.

“In hematological malignancies, tumor cells interact with many cell types ( . . . ). How to maintain in culture
pluripotent cells at the same time as their differentiated counterparts? TERM approaches have shown to be
efficient enough to, in a localized and differential manner, induce differentiation in specific areas of the model
and promote pluripotency in others”.

6.5. Cell Culture Media Renewal and Composition

Although culture media renewal is usually considered as routine in in vitro cultures, apart from
its role as a supplier of nutrients and externally selected regulatory factors, a common problem in
both static and bioreactor cultures is that this renewal may remove secreted factors essential for the
relationship of the different cells in the culture system. We hypothesize that the effect of reducing active
component concentration by renewing media can interfere with physiological behaviour. The dynamics
and time lapses required for these processes have not yet been clearly established. However, the effect
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of soluble factor dilution has been reported in particular applications; for example, spontaneous in vitro
HSC differentiation was avoided by diluting secreted differentiation signals via proportional volume
to cell number ratio [132]. Some studies on the use of conditioned media for several applications
and culture duration for conditioned media generation from different stem cells found that culture
conditions could vary from 16 h to 5 d [133]. The timelines of some mammalian cellular processes
could help in understanding the timelines in which cells grow and communicate. For example in a
human HeLa cell, diffusion of a protein across a cell will take 10 s in a 10 µm cell, while transcription of
a 10 kbp gene takes approximately 10 min, and 1 min to translate a 300 aa protein [134]. This means
that a cells’ ability to reconstitute the removed soluble factors from the culture media is probably
within these orders of magnitude. Some cellular responses to different stimuli may also be in the same
order and are thus probably altered to some extent by medium renewal, e.g., the on-switch of apoptosis
in HeLa cells, which has been reported to take between 9 and 29 min [135].

6.6. Towards Personalized Medicine

Research has shifted from gold standard treatments for a given cancer to finding solutions for
patient-specific cancer subtypes or, in other words, personalized medicine [136]. Drug effectiveness
differs greatly between individuals, a cure for one patient can be ineffective or harmful to another.
When modeling hematological malignancies, the challenge lies in reproducing cell-cell and cell-ECM
interactions in a 3D environment to regulate the signaling pathways leading to drug-resistance.
However, inter-patient heterogeneity has driven the need for personalized medicine as individual
tumors have different gene expression profiles, tumor microenvironments and behavior even within
the same cancer subtype [136]. The challenge of recreating niche interactions leading to drug resistance
has advanced to reproducing inter-patient differences in the model (Box 7). Personalized cancer
therapy has historically focused on profiling tumor DNA, RNA, or protein as molecular biomarkers
to predict patient response. However, these methods have not been able to predict therapeutic
response [136], while functional assays based on integrating tumor cells into chemosensitivity and
resistance assays have become a complementary method [137]. In 2017, Snijder et al. evaluated the
effect of ex vivo drug sensitivity screening on the treatment of patients with refractory hematological
malignancies using the Pharmacoscopy automated immunofluorescence microscopy-based platform
on 48 patients, 17 of whom received treatment guided by this approach. Comparison of the benefit
of Pharmacoscopy-guided treatment with the effect of previous treatments in the same patients
showed a marked improvement in progression-free survival with the former, providing evidence
of the promise of drug-response profiling in haemato-oncology [138]. Similar studies have served
as the proof-of-concept of how phenotypic screening approaches to different blood cancers such as
AML [139] or MM [140,141] could improve the selection of the right drug for the right patient at the
right time. Although these approaches are still simplistic in terms of BMN mimicry, some of them
include co-culture with BM stromal cells and ECM components like COL [141]. However, the most
important factor is that they have been the pioneers in introducing multidisciplinary 3D biomimetic
models that reproduce tissue architecture to revolutionize the clinical management of cancer patients.
Certain types of blood cancer such as MM would greatly benefit from these advances, as it is a treatable
but incurable malignancy in which all the patients eventually relapse and the choice of their treatment
now relies on clinical acumen instead of empirical personalized data [141].

Personalized drug resistance assays have thus shown promise, although they still remain
extremely simplistic compared with BMN harboring cancer in vivo [136,142]. TERM engineered
biomimetic models are rapidly progressing. Microscale models can provide unique functionality and
controllability (e.g., enhanced spatial and temporal controls) and are emerging as practical tools to
investigate tumor-stroma interactions [143]. Improvement of 3D substrate production techniques
and their use for stem cell fate regulation [129,144], even on patient-derived ECM as scaffolding
materials [14] and advancement in microscopy, flow cytometry and different evaluation techniques
led the way to integrating patient samples into these in vitro models to assess therapeutic response
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in biomimetic devices and overcome the limitations of immortalized cell lines. The latter are highly
selected populations that do not reflect the heterogeneous tumor genetic and functional variability.
Patient-derived primary cells would overcome this disadvantage, although their use is hindered
by issues of patient sample acquisition, variability and the difficulties associated with their culture.
Integrating patient cells requires that part of the sample, which would ordinarily go to pathology, which
is not always possible, is specially challenging in the case of hematological cancers in which extra mL
of BM aspirate should be extracted. Secondly, it is difficult to transfer the sample from the operating
theatre to the in vitro platform while maintaining cellular viability. The most questionable aspect of
this process is that the sample usually needs processing, which introduces additional variations in
tissue architecture, microenvironment and cell selection. In addition, cells often undergo changes when
removed from their natural environment (primary cells easily become senescent, and have a limited
availability and lifespan). These are well known unsolved problems that hamper the development,
optimization and validation of new assay platforms [136]. We also consider that other issues not widely
included in the literature produce uncertainty and complicate the incorporation of primary cells into
hematological malignancy models, as there are questions regarding the timing of cell expansion before
seeding into the models, types of cells and number or proportions of cells. For example, how long
does it take for a tissue sample from a patient to have the required number of cells of all the relevant
types in a culture to be able to carry out drug resistance tests and get statistically significant results?
Does a BMN aspirate from a patient efficiently represent the proportions of key niche cells such as
MSCs or HSCs?

Despite the progress made, it is undeniable that choosing the right cancer treatment is difficult
because of limited tools, money and time [136]. Important steps have been taken, as some authors
have convincingly resembled acquired drug resistance in vitro with cell lines [76,102], but some issues
need to be addressed until optimized models allow routine patient-specific drug testing studies.
Personalization means that the model must consider inter-patient differences in drug response. In the
authors’ opinion interactions between tumor cells and the cellular and non-cellular components of the
biological niche play a key role in determining these differences. This means that personalization is a
key step towards obtaining the perfect blood cancer model. They also believe that the cells themselves,
acting as the last-resort architects of the particular extracellular environment provided by the 3D
biomimetic model, improve the inter-individual specificity of the biological niche and this cannot be
artificially reproduced.

Box 7. Towards personalized medicine.

“The challenge lies in reproducing in a 3D environment the cell-cell and cell-ECM interactions which regulate
the signaling pathways leading to drug-resistance ( . . . ). Personalization means that the model must consider
inter-patient differences in drug response, thus the challenge lies in reproducing differences from patient to
patient ( . . . ), in integrating patient samples in models to assess therapeutic response in biomimetic devices,
and overcome the limitations of immortalized cell lines”.

7. Conclusions

This review combines information from different fields with the aim of providing an
interdisciplinary view of the biological context and design principles for in vitro models of blood
cancers with BM homing. The BMN is a complex cellular and non-cellular microenvironment and an
important factor in tumor progression and drug resistance. The use of more physiologically relevant
cultures would improve in vitro model prediction of drug response and should therefore be further
explored. This model would ideally incorporate all the tumor components and microenvironment, with
a trade-off between complexity and physiological relevance with reproducibility, ease of use and cost.
Some authors recommend the simple incorporation of specific elements of the in vivo environment into
models to better evaluate the response of a given therapy. However, TERM strategies are now available
and there are a wide range of aspects of the ideal BM model in which the degree of mimicry should
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be further explored, such as vascularization, architecture or cell fate regulation by the biomaterials.
One of the challenges still to be addressed is the development of complex models based entirely on
human cells, which would provide a powerful platform for basic research and clinical translation.
In our view, most attempts at modeling blood cancers have involved “deconstructing rather than
reconstructing” the complexity of native BM. Although this has limited the contributions, at the same
time it has made it possible for the models to advance clinical and basic research, and more dynamic
and biomimetic TERM strategies are now emerging for blood cancer modeling.
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PDMS Poly(dimethyl siloxane)
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PGE2 Prostaglandin E2
PKCβ Protein kinase C beta
PU Polyurethane
PVA Polyvinyl alcohol
Rarγ Retinoic acid receptor γ
Rb Retinoblastoma
ROS Reactive oxygen species
sBMN Sinusoidal bone marrow niche
SCF Stem cell factor
sEC Sinusoidal endothelial cell
SEM Scanning electron microscopy
SNS Sympathetic nerve fiber
T-ALL T cell acute lymphoblastic leukemia
TERM Tissue Engineering and Regenerative Medicine
TGF-β Transforming growth factor beta
TIE-2 Angiopoietin receptor
TNF Tumor necrosis factor
TNKP T-natural killer cell progenitor
TPO Thrombopoietin
UC Umbilical cord
VCAM-1 Vascular adhesion molecule 1
VEGF-A Vascular endothelial growth factor A
WHO World Health Organization
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