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Abstract 

This article covers the inventory management of healthcare supplies problem. Based on the 

mathematical programming model set out by [1], a causal model and a flow chart were developed to 

outline the simulation model, which was to be later applied to a highly specialized medical institution 

that performs high-risk heart surgery, such as catheterizations and angioplasties. With this simulation 

model, a purchases plan with 21 healthcare supplies was obtained that contemplates all the problem’s 

restrictions: purchasing policy (safety stock, available budget); the warehouse’s physical reality 

(warehouse capacity); characteristics of supplies (useful life, service level); and suppliers (price, 

capacity and size of lots or rounding value). Different indicators were also considered, such as service 

levels, costs of purchases, stockouts costs and inventory maintenance costs. The results obtained with 

the simulation model came very close to the mathematical programming results, but the computing 

times were considerably shorter. 
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1. INTRODUCTION 

Given the high service level required to cover the critical lack of supplies in health care, many 

institutions manage a high inventory level [2]. Nonetheless, this does not often prove a 

suitable solution in all cases because supplies can expire and their administration to patients 

can pose a potential hazard [3]. According to [4], another relevant healthcare supplies 

management factor in a health institution is its high cost, which is especially due to its 

characteristics, controls and storage requirements. Inventory management in this context is a 

complex problem in which the importance of service level, and the characteristics of supplies, 

like high costs and expiry, stands out [5]. This article covers the inventory management 

problem of a highly specialized medical institution that performs high-risk heart surgery, such 

as catheterizations and angioplasties. Institutions of this kind have to highly concentrate 

human resources and materials for few patients with a critical life status who require specific 

procedures. 

      This paper addresses the inventory management for supplies required in high-risk heart 

surgeries and the potential impact to patients from a simulation model, which can reflect a 

suitable degree of realism and accuracy in describing the system and is capable of robustly 

and efficiently providing scenarios or what-if and sensitivity analyses [6-9]. Based on the 

mixed integer linear programming (MILP) model proposed by [1], a new simulation model 

was developed based on system dynamics for the inventory management of a highly 

specialized medical institution in order to provide a better understanding and evaluation of the 

problem under study. The aim was to draw up a purchases plan for all the supplies employed 

during high-risk heart surgery procedures at a minimum cost met the budget, service level, 
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storage space limitations, and other restrictions associated with healthcare supplies and 

suppliers, such as expiry and delivery lot size. Another aim was to compare the simulation 

results with those obtained with the mathematical programming model by [1] to assess the 

pros and cons of the different approaches herein considered. 

      The main contribution of this paper is that it provides a new application of optimization 

simulation modelling based on system dynamics for inventory management in healthcare 

supplies. Generally speaking, the combination of optimization and simulation modelling 

based on system dynamics can considerably improve the decision-making processes in terms 

of obtaining, understanding and evaluating optimal solutions. More specifically, the proposed 

model can be considered a useful tool for improving performance in a healthcare supply chain 

as regards service levels, safety stocks, warehouse capacities, and their corresponding total 

costs. Other supply chain simulation models can be found in [10-14]. 

      The rest of the article is as follows: Section 2 is a literature review on the theme; Section 3 

considers the case study; Section 4 describes the simulation model with a causal diagram and 

a flow chart; Section 5 analyses the results from the different simulated scenarios and 

compares them with the mathematical programming model results; Section 6 offers the 

conclusions and possible future research lines. 

2. LITERATURE REVIEW 

Supply chain (SC) simulation helps explain how some controllable or uncontrollable factors 

affect SC performance. This allows improvements to be developed and validated, different 

alternatives to be reproduced and validated without affecting the real world, benefits to be 

quantified, and all or part of the complex system to be understood [15]. System dynamics [16] 

is based on industrial dynamics, as proposed by Forrester [17]. Größler et al. [18] demonstrate 

the usefulness of system dynamics as a structural theory and its models are taken as a content 

theory of operations management. In this way, content theories are defined as those 

containing hypotheses about a system’s elements, while structural theories make statements 

about the causal relations between a system’s elements and how they can be configured. 

Furthermore, system dynamics can be used to manage operations to explain, analyse and 

understand certain phenomena which, despite their existence being known, are not adequately 

considered, such as backlogs, feedback cycles and accumulation processes. 

      Jahangirian et al. [19] presented a literature review to provide the role that simulation 

techniques play in manufacturing and businesses. One result indicated that although the most 

popular technique was discrete event simulation, it implies less commitment by those 

involved than other techniques like system dynamics or business games. This might have 

something to do with the long usage time involved, whereas system dynamics appears more 

appealing given the ease with which standard conceptual modelling techniques are used that 

enrich brainstorming. This review also stressed that simulation techniques are extremely 

useful for other areas like SC management, strategy and knowledge management, among 

others, and also for classic applications like programming and process engineering. Finally, it 

confirmed that the simulation literature is very wide-ranging with both techniques and 

applications, and it unveiled a trend toward empirical studies instead of methodological 

studies, which is an indication of the discipline’s maturity. Discrete event simulation and 

system dynamics are two widespread modelling approaches used to support decision making 

in SCs’ logistics and management [20, 21]. The literature review indicated that there were no 

differences in the modelling approach to be used when making (strategic or tactic/operational) 

decisions. Both simulation approaches have been used for SC and logistics problems to model 

most of the contemplated problems, albeit to different extents. Inventory management is one 

of the main SC management problems. 
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      Nowadays in some developing countries, working to control diseases is negatively 

influenced by SC problems. Lack of supplies of certain medicines can interrupt treatment, 

change diets, enhance resistance to their effectiveness and increase patients’ death rates (Bam 

et al. [22]). Asamoah et al. [23] analysed a pharmaceutical SC to find deficiencies in the use 

of information technologies, which brought about backlogs and hindered the system. The 

main consequence was interrupted supplies and more deliveries were delayed. Onar et al. [24] 

sustain that making improvements to inventory management is one of the main areas to pay 

attention to in health care, where priority challenges include uncertainty in demand and 

limited human resources. Unclear demand and inventory can have serious consequences for 

both patient care and a hospital’s economy. When medicines are lacking, emergency 

deliveries come into play at a higher cost, and this situation can also interrupt a patient’s 

recovery process [25, 26]. In addition, the healthcare industry affects economic development 

and society’s well-being [26]. In this context, one of the SC’s characteristics in the health 

sector is the dominant position occupied by the world’s manufacturers of healthcare supplies. 

Shou [27] identified the main SC healthcare management problems: performance, cutting 

costs, inventory management, the bullwhip effect, quality, security and innovation. It was 

estimated that the costs of purchasing healthcare supplies represent 25 % of a hospital’s total 

costs, which can lower with improved SC efficiency. Moreover, one of the tools employed to 

analyse the interaction between organizations was system dynamics because it adapts to this 

type of highly complex SC. Other employed research methods and tools included case 

studies, surveys and meta-analyses. According to Onar et al. [24], over the last two decades, 

more importance has been attached to healthcare management in the literature. These authors 

classified problems and their solution techniques to identify the general healthcare 

management framework. The most widely used technique was simulation, whose objective in 

this context was to reproduce real-world systems over time based on repeated testing. 

Simulation was often used for epidemiological, molecular, pharmacological and disease 

modelling, and also as training programs to address security and quality, to develop 

evaluation standards for competences and education, and for virtual reality. Although 

considerable research about operations management in the pharmaceutical sector exists, very 

few research works have applied a system dynamics approach [28]. Onar et al. [24] maintain 

that it allows complex health, SC and disease progression problems to be modelled. Among 

healthcare SC problems, the work by [29] stands out, which sequentially presented three 

service levels without inventories and analysed the bullwhip effect and its services-related 

costs. Kochan et al. [25] used system dynamics to analyse conventional hospital SC 

performance and another SC that shared cloud-based information. This study’s findings 

showed that exchanging information in the cloud increased the visibility of the inventory and 

demand in these SCs which, in turn, reduced the variation and averages of the inventory and 

delivery times, and improved customer service and forecasts at all levels. The inventory level 

of traditional SCs was considerably variable, particularly upstream of the manufacturer’s 

level, which was caused by the bullwhip effect. Some of the proposed model’s main 

considerations are: pending orders which could not be served during the same period, not 

taking into account the supplier’s capacity restrictions, and both demand and lead time 

following a normal distribution. Bam et al. [22] quantitatively assessed the effectiveness of 

different SC policies scenarios to reduce scarcity and the costs of managing a given medicine 

in terms of reliability, capacity to respond and speed by following the reference SCOR 

(supply chain operation reference) framework. Tsolakis and Singh [28] developed a 

simulation model based on system dynamics to study the inventory management policies of 

“green” chemists employing renewable chemical raw materials. Wang et al. [30] presented an 

alternative inventory management model for an SC in a hospital, which was implemented 

using the system dynamics approach and based on Goldratt’s Theory of constraints. Behzad et 
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al. [31] also used system dynamics to model a hospital in-house services SC to calculate 

mistaken deliveries of medicines to patients. 

      It can be concluded that SCs in the healthcare sector is a relevant topic given its 

complexity and importance in the patient service level. However, despite different authors 

stating that the system dynamics approach is apt for modelling this SC type, very few articles 

conducted in the healthcare domain have been published to date. For all these reasons, it can 

be concluded that generating works that experiment with system dynamics is a need to model 

SCs in the healthcare sector in real case studies where it is possible to benefit from the 

positive aspects of this simulation methodology. 

3. PROBLEM DESCRIPTION 

The case study is based on a highly specialized medical institute (HSMI) of cardiology. 

Highly specialized medicine can be defined as that which requires a very high concentration 

of human and material resources for few patients. Life or functional prognosis is at stake, thus 

welfare excellence is sought. At the HSMI, and based on an annual budget, purchases are 

ordered on a 3-monthly basis for the following period and are placed with a set of suppliers 

whose “ranking” or priority follows the lower cost unit criterion. This order must be 

respected, and the next supplier can be selected if, and only if, the previous supplier’s 

capacity is exhausted. Supplies can be served by either a single supplier or up to four 

suppliers, depending on the supply and each supplier’s capacity. In turn, the suppliers 

establish a purchasing lot, also known as the “rounding value”, derived from the units 

contained in a box. If supplies are lacking at the time of surgery, an emergency supply is 

obtained directly from the supplier or a substitute supply is employed. If this option is not 

possible, the patient is sent to another HSMI, which means the income that the hospital 

receives for surgery is lost and patient transfer costs are incurred, and it also poses more risks 

for the patient’s health. 

      The problem of managing specialized medicine inventories consists in determining for 

each period how must of each supply to order and from which supplier to meet demand by 

minimizing costs. According to each supply’s critical status, supplies are classified as vital, 

essential or desirable (VED). Each category has its defined service level, along with costs to 

use the safety stock as urgent purchases are made to replace it, which are not included in the 

budgeted expenditure. If the safety stock is used, it is considered an inventory stockout. Given 

the nature of this problem, no possible backlog exists. The annual budget cannot be 

accumulated and must be distributed into four 3-monthly periods during which purchases are 

made and the inventory cost is included in accountancy, which is stored in a limited space. 

Arrival of patients and the supplies used for each surgical procedure are considered known, 

but the safety stock contemplates possible variations in a real situation. As these supplies 

expire, a rule is set for FEFO (first expired, first out) use. The supplier sets a lot size or 

rounded quantity and a maximum supply capacity for each supply, which are instantly served. 

The model establishes two auxiliary periods: the first to set the baseline values, and the 

second to assign a usage period to the supplies not purchased so they can be used in the 

analysed horizon. 

4. SIMULATION MODEL 

It is worth stressing the differences with the mathematical programming model [1] to later 

compare the obtained results. A budget is considered for the whole planning horizon, and not 

on an annual basis. To simulate the supply’s expiry constraint, maximum demand was 

calculated until this period and was multiplied by its useful life. This limits the purchases to 
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the maximum amount that could be used before expiring. Stockout costs derive from the 

demand that cannot be served and that which is served as part of the safety stock. Although all 

supplies are simulated, only one supplier is considered. This is due to the pre-set priority 

order, which must be followed according to the list of suppliers, and it is only possible to 

move on to the next supplier if the previous supplier’s capacity is exceeded. Hence this can be 

considered a trivial constraint and such simplification in the model only affects dividing the 

total purchase volume of each period according to the list of suppliers. We now move on to 

identify the elements making up the flow chart, divided into type of variable, e.g. level, flow 

or auxiliary, where index i denotes supply. Table I provides the employed notation, while the 

next sections set out the equations. 

Table I: Nomenclature for the flow chart. 

Level variables 

𝐼𝐶 Accumulated cost incurred by inventory maintenance 

𝐼𝑊𝑖 Inventory of supply 𝑖 
𝑂𝐶 Accumulated cost of purchases made 

𝑆𝐿 Accumulated service level 

𝑆𝑂𝐶 Accumulated cost incurred by stockout 

Flow variables 

𝐷𝑆𝑖 Served demand of supply 𝑖 
𝐹𝑂𝑖 End purchases of supply 𝑖 

Auxiliary variables 

𝐴𝐵𝑖 Budget available for the purchases of supply 𝑖 
𝐴𝑇𝐶 Total accumulated costs 

𝐵 Budget 

𝐵𝑈 Budget used up to the period 

𝐶𝑂𝑖 Capacity used per supply 𝑖 
𝐶𝑅𝑖 Available warehouse capacity for the purchases of supply 𝑖  
𝐷𝑖 Demand of supply 𝑖 

𝐷𝑁𝑆𝑖 Unserved demand of supply 𝑖 
𝐼𝐶𝑃 Inventory cost per period 

𝐼𝐼𝑖 Initial inventory of supply 𝑖 
𝐼𝑉𝑖 Price of supply 𝑖 

𝐼𝑉𝑂𝑖 Volume of supply 𝑖 
𝑀𝐷𝑖 Maximum quantity used to date of supply 𝑖  

𝑀𝐷𝐷𝑈𝐿𝑖 Maximum quantity that can be used during the useful life of supply 𝑖  
𝑀𝑃𝑖 Minimum quantity that must be purchased to fulfil the safety stock policy of supply 𝑖 

𝑀𝑆𝐿𝑖 Minimum service level of supply 𝑖 
𝑃𝐶𝑖 Supplier’s replenishment capacity for supply 𝑖 
𝑃𝐶𝑃 Purchases cost per period 

𝑃𝑃𝑅𝑖 Quantity to purchase of supply 𝑖 to fulfill the supplier’s constraints 

𝑃𝑃𝑊𝐶𝑅𝑖 Purchases that can be paid without bearing in mind the capacity constraint of supply 𝑖 
𝑃𝑅𝑉𝑖 Quantity to purchase of supply 𝑖 to fulfill the supplier’s rounding value constraint 

𝑅𝑆𝐿 Real service level of the period 

𝑅𝑆𝐿𝐼𝑖 Real service level of the period for supply 𝑖 
𝑅𝑉𝑖 The supplier’s rounding value for supply 𝑖 

𝑆𝑂𝐶𝑃 Stockout cost per period 

𝑆𝑆𝑖 Safety stock of supply 𝑖 
𝑇𝐶𝑃 Total costs per period 

𝑈𝐼𝐶𝑖 Unit cost of the inventory of supply 𝑖 
𝐹𝑇 Final planning time 

𝑈𝐿𝑖 Useful life of supply 𝑖 
𝑈𝑆𝑂𝐶𝑖 Unit cost of the stockout of supply 𝑖 
𝑈𝑆𝑆𝑖 Safety stock used of supply 𝑖 
𝑊𝐶 Warehouse capacity 

 

Level variables 

𝑂𝐶 (𝑡) =  ∫ [∑ 𝐹𝑂𝑖(𝑡) ∗ 𝐼𝑉𝑖(𝑡)𝑖 ]
𝑡

𝑡0
𝑑𝑡;  𝑂𝐶 (𝑡0) = 0      (1) 

𝐼𝐶 (𝑡) =  ∫ [∑ 𝐼𝑊𝑖(𝑡) ∗ 𝑈𝐼𝐶𝑖(𝑡) 𝑖 ] 𝑑𝑡;  𝐼𝐶 (𝑡0) = 0 
𝑡

𝑡0
      (2) 
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𝑆𝑂𝐶(𝑡) =  ∫ [∑ 𝑈𝑆𝑂𝐶𝑖(𝑡) ∗ 𝐷𝑁𝑆𝑖𝑖 (𝑡) + 𝑈𝑆𝑆𝑖(𝑡) ∗ 𝑈𝑆𝑂𝐶𝑖(𝑡)]
𝑡

𝑡0
𝑑𝑡;  𝑆𝑂𝐶 (𝑡0) = 0   (3) 

𝐼𝑊𝑖(𝑡) =  ∫ [FO𝑖(𝑡) −  𝐷𝑆𝑖(𝑡)]𝑑𝑡; 𝐼𝑊𝑖  (𝑡0) = 𝐼𝐼𝑖   ; ∀𝑖
𝑡

𝑡0
        (4) 

𝑆𝐿(𝑡) =  ∫ [
𝑅𝑆𝐿(𝑡)

𝑇𝐹
] 𝑑𝑡;  𝑆𝐿 (𝑡0) = 0

𝑡

𝑡0
        (5) 

Flow variables 

𝐹𝑂𝑖(𝑡) = 𝑀𝑖𝑛(𝑚𝑖𝑛 (𝑃𝑃𝑊𝐶𝑅𝑖(𝑡) , 𝐶𝑅𝑖(𝑡)), 𝑀𝐷𝐷𝑈𝐿𝑖(𝑡);         (6) 

𝐷𝑆𝑖(𝑡) =  {

𝐷𝑖(𝑡) < 𝐼𝑊𝑖(𝑡) + 𝐹𝑂𝑖(𝑡), 𝐷𝑖  (𝑡)

{
𝐷𝑖(𝑡) ∗

𝑀𝑆𝐿𝑖

100
< 𝐼𝑊𝑖(𝑡) +  𝐹𝑂𝑖(𝑡), 𝐷𝑖(𝑡) ∗ 𝑀𝑆𝐿𝑖

if not, 0

 ; ∀𝑖  (7) 

Auxiliary variables 

𝑀𝑃𝑖(𝑡) = {  if not,   0                                     
if 𝐼𝑊𝑖(𝑡)<(𝑆𝑆𝑖 +𝐷𝑖(𝑡)),𝐷𝑖(𝑡) +𝑆𝑆𝑖− 𝐼𝑊𝑖(𝑡),

i            (8) 

𝑃𝑅𝑉𝑖(𝑡) = {

if MP𝑖(𝑡) = 0, 0
 

if not, 𝐼𝑁𝑇𝐸𝐺𝐸𝑅 (
MP𝑖(𝑡)−0.1

𝑅𝑉𝑖
+ 1) ∗ 𝑅𝑉𝑖

 ; ∀𝑖           (9) 

𝑃𝑃𝑅𝑖(𝑡) =  {
if 𝑃𝑅𝑉𝑖(𝑡) > 𝑃𝐶𝑖 , 𝑃𝐶𝑖 ,

 
if not, 𝑃𝑅𝑉𝑖  (𝑡)

 ; ∀𝑖       (10) 

𝑃𝑃𝑊𝐶𝑅𝑖(𝑡) =  {
if 𝑃𝑃𝑅𝑖(𝑡) ∗ IV𝑖  < 𝐴𝐵𝑖(𝑡), 𝑡ℎ𝑒𝑛 𝑃𝑃𝑅𝑖(𝑡)

 
if not, 0

 ; ∀𝑖           (11) 

𝐶𝑂𝑖(𝑡) = 𝐼𝑊𝑖(𝑡) ∗ 𝐼𝑉𝑂𝑖  ; ∀𝑖            (12) 

𝑀𝐷𝐷𝑈𝐿𝑖(𝑡) =  𝐼𝑁𝑇𝐸𝐺𝐸𝑅 (
𝑀𝐷𝑖(𝑡)∗𝑈𝐿𝑖−0.1

𝑅𝑉𝑖
+ 1) ∗ 𝑅𝑉𝑖  ; ∀𝑖       (13) 

𝑃𝐶𝑃(𝑡) =  ∑ 𝐹𝑂𝑖(𝑡) ∗ 𝐼𝑉𝑖𝑖           (14) 

𝐼𝐶𝑃(𝑡) =  {
if 𝑡 = 0, 0

if not, ∑ 𝐼𝑊𝑖(𝑡) ∗ 𝑈𝐼𝐶𝑖𝑖  
     (15) 

𝑆𝑂𝐶𝑃(𝑡) =  ∑ (𝑈𝑆𝑂𝐶𝑖 ∗ 𝐷𝑁𝑆𝑖(𝑡) + 𝑈𝑆𝑆𝑖(𝑡) ∗ 𝑈𝑆𝑂𝐶)𝑖        (16) 

𝐴𝑇𝐶 =  𝑂𝐶(𝑡) +  IC(𝑡) +  𝑆𝑂𝐶(𝑡)    (17) 

𝑇𝐶𝑃(𝑡) =  𝑃𝐶𝑃(𝑡) +  𝐼𝐶𝑃 (𝑡) +  𝑆𝑂𝐶𝑃(𝑡)         (18) 

𝑀𝐷𝑖(𝑡) =  𝑀𝐴𝑋 (𝑆𝑀𝑂𝑂𝑇𝐻𝐼 ( 𝑀𝐷𝑖 , 1, 𝐷𝑖  (1)), 𝐷𝑖  (𝑡)) ; ∀𝑖        (19) 

𝑈𝑆𝑆𝑖(𝑡) = {
if 𝐼𝑊𝑖(𝑡) < 𝑆𝑆𝑖 , 𝑆𝑆𝑖 − 𝐼𝑊𝑖(𝑡) 

if not, 0
 ; ∀𝑖            (20) 

𝑅𝑆𝐿(𝑡) =  𝑋𝐼𝐷𝑍 (∑ 𝐷𝑆𝑖𝑖 (𝑡), ∑ 𝐷𝑖𝑖 (𝑡),1)        (21) 

𝑅𝑆𝐿𝐼𝑖(𝑡) =  𝑋𝐼𝐷𝑍 (𝐷𝑆𝑖(𝑡), 𝐷𝑖(𝑡),1) ; ∀𝑖        (22) 

𝐴𝐵𝑖(𝑡) =  𝑀𝐴𝑋 (𝐵 − 𝐵𝑈(𝑡) − (𝐹𝑇 −  𝑡) ∗ ∑ (𝑆𝑆𝑖𝑖 ∗ 𝑈𝐼𝐶𝑖 , 0) ; ∀𝑖  (23) 

𝐵𝑈(𝑡) =  𝑂𝐶(𝑡) + 𝐼𝐶(𝑡)         (24) 

𝐷𝑁𝑆𝑖(𝑡) =  𝐷𝑖(𝑡) − 𝐷𝑆𝑖(𝑡) ; ∀𝑖              (25) 

𝐶𝑅𝑖(𝑡) =
𝑊𝐶− ∑ 𝐶𝑂𝑖(𝑡)𝑖

𝐼𝑉𝑂𝑖
 ; ∀𝑖          (26) 

      In order to validate the proposed model, the results obtained with the MILP model were 

compared using the same input data. The MILP model was coded in AMPL and was solved 

with version 12.6.3.0 of the CPLEX software in a PC Intel Core i7 5960X 3.50GHz, with 16 

CPUs, 64 GB of RAM (DDR4-2133) and in the CentOS 7 operating system. The optimum 

solution was found after 7,460 seconds. As mentioned in the simplifications section, the 

budget in the simulation model was considered for the complete planning horizon and not 
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annually. This is comparable to one of the sensitivity scenarios considered by [1], in which 

the annual budget was increased by 25 % to relax the problem, which means that the budget is 

no longer a limiting variable. In this case, the optimum solution came after 550 seconds and it 

was used to make the comparison. The running time of the simulation model run with 

Vensim® was less than 1 second and was, thus, practically null. It was run on an Intel Core 

processor i5 4210U 2.4 GHz, with 8 GB of RAM and in a 64-bit operating system. Table II 

compares the costs of the solutions. It shows how the total difference was almost negligible 

(0.02 %), which was given by a lower inventory cost (1.2 %), but with much higher stockout 

costs (369 %). 

Table II: Comparing costs. 

Concept MILP model (€) Simulation model (€) 
Purchases cost 25,465.179 25,468.599 

Stockout cost 4,158 19,494 

Inventory cost 993,830 981,544 

Total 26,463.167 26,469.637 

      Table III shows the purchases, the employed safety stock (which is the equivalent to the 

quantity of stockouts in the MILP model) and the inventory for each period according to the 

approaches followed in the employed modelling. As expected, and in accordance with the 

increase in costs, there were more stockouts during periods 4 and 5. This was due to the 

purchases of two supplies being limited by the supplier’s capacity. In the MILP model, when 

it was not necessary to purchase the maximum capacity during certain periods, this quantity 

was purchased to avoid using the safety stock during later periods. In the simulation model, 

only the minimum amount required for this period was purchased. 

Table III: Comparison in units according to the followed modelling approach. 

S
im

u
la

ti
o

n
 

m
o

d
el

 Period 1 2 3 4 5 6 7 8 Total 

Purchases (𝐹𝑂) 2,838 3,145 3,663 3,522 3,088 3,653 3,309 3,804 27,022 

Used safety stock (𝑈𝑆𝑆) - - - 18 20 - - - 38 

Inventory (𝐼𝑊) 1,283 1,328 1,303 1,268 1,263 1,318 1,288 1,308 10,359 

M
IL

P
 

m
o

d
el

 Purchases (𝐹𝑂) 2,867 3,196 3,643 4,000 2,585 3,642 3,309 3,796 27,038 

Used safety stock (𝑈𝑆𝑆) - - 9 1 - - - 1 11 

Inventory (𝐼𝑊) 1,357 1,358 1,312 1,298 1,363 1,322 1,342 1,310 10,662 

5. EVALUATION OF RESULTS 

The main variables used to analyse the results were purchases, inventory and served demand. 

Overall, fewer purchases had to be made to fulfil the safety stock policy than those made 

given the supplier’s restrictions, and the budget and available warehouse space also lowered. 

However, this was not the case during all the periods, as seen in Table IV. There were 

basically two reasons for this: on the one hand, the supplier’s capacity constraint, which limits 

purchases, which means having to purchase less than what is needed and to use part of the 

safety stock; on the other hand, the supplier’s rounding value involves purchasing the next 

multiple, and thus incurring “excess.” 

Table IV: Final orders with no constraints per period. 

Time period 1 2 3 4 5 6 7 8 Total 

Purchases according to 

policy (no restrictions) - 𝑀𝑃 
2,793 3,125 3,678 3,542 3,053 3,648 3,284 3,804 26,927 

Final Orders - 𝐹𝑂 2,838 3,145 3,663 3,522 3,088 3,653 3,309 3,804 27,022 

Difference 45 20 -15 -20 35 5 25 - 95 
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      This purchases plan affects the inventory level by rendering it necessary to use part of the 

safety stock during periods 4 and 5. As a result, 100 % demand is served, with a 100 % service 

level during all the time periods. For the planning horizon, costs rise to €26,469.637, where 

purchases is the biggest component in terms of cost (96 %), inventory €981,544 (3,7 %) and 

safety stock uses €19,494 (0,1 %). 

      The sensitivity analyses were carried out with the “Monte Carlo simulation” tool of 

Vensim®. The parameters to analyse were safety stock (SSi) and capacity (PCi). For them, a 

maximum and a minimum value were selected (-20 to 20 % for SSi and -50 to 50 % for PCi), 

respectively), and uniform random distribution was chosen to generate the values to be used 

while running 200 simulations. There are several reasons why the suppliers’ capacity may be 

affected. Some have to do with technological changes, negotiations, changes made to other 

customers’ orders, disruptions in the SC due to natural disasters or other events. When 

analysing the results obtained with variation in capacity, the impact on total costs was much 

stronger for the simulations with a lower capacity than the real capacity. This was due to the 

high cost involved in not serving or in using the safety stock to perform this, as observed 

when comparing the baseline (in blue) in Fig. 1, where the safety stock can be seen. The 

yellow strip represents 50 % of the results, green 75 %, blue 95 % and grey 100 %. 

 

Figure 1: Safety stock in the sensitivity analysis with variation in the supplier’s capacity. 

      Regarding variation in the parameter safety stock per supply, the immediate impact 

appeared on the inventory level. One noteworthy aspect was that demand was met in all the 

simulated scenarios, despite it sometimes being necessary to use part of the safety stock. This 

suggests that changes to this parameter, which depends on the HSMI’s management, can offer 

economic improvements without them affecting the service level. 

      In both the MILP and simulation models, demand is assumed to be known. However, 

given the problem’s characteristics where most of the patients resorted to HSMI when an 

emergency situation arose, it was impossible to accurately know the demand of supplies until 

they were actually required. Hence the interest in observing the model results when varying 

demand per supply. In order to consider demand to be a uniform normal probability 

distribution, a statistical analysis was carried out to determine the minimum, maximum, mean 

and standard deviation values. It is important to stress that for the performed Monte Carlo 

simulation, 400 simulations were run in this case, which is twice the number than in previous 

sections, and the baseline scenario it is the first case with random demand, i.e., not the same 

as the original problem. The sensitivity analyses revealed that the model was consistent 

without it performing strangely. 
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      With Vensim®, optimization can be used to validate the estimated parameters 

(calibration) or to select the best policy among several alternatives (optimized policy), where 

the latter corresponded to our case study. To do so, it is necessary to predefine what is 

understood by a good result (outcome measure) and which parameters could vary, and at what 

magnitudes, to obtain the “best result”. Next the intention was to find the best safety stock 

configuration for the inventory management problem of specialized healthcare supplies using 

two optimization events: first, by taking the total costs as the only outcome measure 

(optimization 1); next, by also measuring the impact on the quantity of stockouts by attaching 

more importance to it (optimization 2). To suitably perform optimization, it is necessary to 

modify the model and create a random variable that represents real demand per supply. This 

means that the demand employed in the former model is only useful for forecasting; that is, 

purchase orders are placed without knowing what demand is exactly. Moreover, the “real 

demand per supply” is that which uses the inventory and measures the service level, and is 

modelled by a random variable with normal distribution according to the characteristics of 

real demand. Therefore, by using 2,214 simulations, the “optimum” safety stock is 

determined. Despite the total costs being 4.5 % lower, part of demand is not met during four 

periods, which could pose serious problems for the patient’s health. Therefore, a new 

optimization of both total costs and unserved demand was carried out by varying the safety 

stock. In this case, and after 2,251 simulations, a safety stock value was obtained that made 

the total costs “optimum” and all demand was served. The total costs were only 0.46 % higher 

than in the previous scenario, which was an improvement on the baseline 4.1 %. Thus, total 

costs to serve complete demand in the baseline scenario were € 30,529.061, for optimization 1 

were € 29,146.164 and for optimization € 29,280.011.This proves the strength of the proposal 

to solve a static problem with results nearly to the optimal with minor computational times 

but also to solve a dynamic problem reaching desired results in this case in terms of service 

levels and total costs. Here, it is important to highlight the complementary usefulness of 

MILP and simulation models in order to provide a better understanding of a problem through 

scenarios simulation at minimum computational times. Finally, it is important to highlight that 

the proposed model can be easily extended to any number of healthcare supplies and time 

periods. More details on the flow chart, reference MILP model, input data and output data can 

be found in: https://cigip.webs.upv.es/docs/2020_IJSIMM_Buschiazzo_et_al_metadata.pdf 

5. CONCLUSIONS 

This paper has proposed a simulation model for the inventory management problem in a 

highly specialized medical institution, which is an interesting topic given its complexity and 

the importance attached to patients’ service level. Based on the work by [1], a simulation 

model that included the main problem characteristics was created and validated. The obtained 

result is slightly lower than the optimization result (total costs rose by 0.02 %), but the 

execution involved a practically null solution time, as opposed to 550 seconds. The analysis 

of the results led to a purchases plan that met demand during all the periods. Then several 

sensitivity analyses were carried out by individually and simultaneously varying some 

parameters, like safety stock and capacity. Varying the total costs revealed the importance of 

suitably managing these parameters. Another problem model was used which considered 

random demand to analyse its impact on the results which, along with the sensitivity analyses 

herein performed, proved a very useful tool. Managerial implications from this analysis are 

related to, for example, obtaining the quantity to be purchased for each supply that is needed 

to cover random demand at the desired confidence interval. This allows the possible 

requirements to cover a given random demand to be anticipated. For instance, increase the 

budget if analysing costs, adjust capacity when analysing the inventory level, negotiate 

https://cigip.webs.upv.es/docs/2020_IJSIMM_Buschiazzo_et_al_metadata.pdf
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changes with suppliers or “anticipate purchases” whenever necessary. It is also possible to 

analyse the risk level at which the service level is not met. There is only one scenario in 

which demand is not met. Although probability is very low (1 case in 400 simulations), it is 

worth studying the case and seeking alternatives to avoid this happening by bearing in mind 

the critical lack status of the healthcare supply in question because it could involve a patient 

dying. 

      The main scientific original contribution to the simulation modelling field is oriented to 

provide a reproducible model able to anticipate possible requirements in the SC configuration 

and to analyse the expected service level according to the desired confidence interval. Along 

the same lines, the safety stock per supply was optimized to minimize the total costs. As this 

solution did not meet demand during certain periods, further optimization was carried out to 

weight the service level by attaching more importance to it. In this case, another combination 

of safety stock values was obtained which met 100 % demand and involved increase in costs 

of only 0.46 %. Other important contributions of the proposal herein presented are that it 

helped to explain and understand the SC and, in turn, involves a shorter running time to obtain 

a purchases plan compared to the MILP model. Thus it was possible to easily manage limited 

resources, such as money or warehouse capacity, and to make future service level estimations 

using confidence intervals. This allowed savings to be quantified when changes were made to 

some parameters that depend on the organization, e.g. safety stock, or involved previously 

negotiating with suppliers, e.g., rounding value. The possibility of experimenting with 

different strategies or alternatives and observing not only the economic impact, but also the 

direct impact on the service level, is stressed because if this aspect is tested in the real world, 

it could seriously affect patients’ health. Finally, it is important to highlight the contribution 

of this paper on the case we have modelled and the potential impact on healthcare services 

providers, patients and society. 

      Several possible future research lines emerged while this work was underway. For 

example, the model could include other characteristics of SCs with randomness or 

uncertainty, such as variable lead times and suppliers’ service level. This proposal could be 

applied to other similar SC by including more participants and bearing in mind other 

characteristics, such as quality, trust and lead times. Optimization could be sought by varying 

other parameters that the SC controls to improve its overall performance. To this end, other 

performance indicators would have to be included in the model to allow SC management. 

Finally, it would be interesting to conduct other works about healthcare SCs that use the 

advantages of system dynamics and which prioritize the involved patients by contributing to 

people’s health. 
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