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Abstract

The composition operators defined on little Bloch spaces, Bergman
spaces, Hardy spaces or little weighted Bergman spaces of infinite type,
when well defined, are shown to be mean ergodic if and only if they
are power bounded if and only if the symbol has an interior fixed
point. For these operators uniform mean ergodicity is equivalent to
quasicompactness in the sense of Yosida and Kakutani.
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1 Introduction, notation and preliminaries

1.1 Introduction

We defer to Subsection 1.2 for notation, definitions and basic facts.
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The properties of the composition operator acting between various spaces
of holomorphic functions have been thoroughly studied, especially relating
the properties of Cϕ to those of ϕ. See the books of Cowen and McCluer [14]
and Shapiro [28]. We study power boundedness, mean ergodicity and uniform
mean ergodicity for composition operators defined in these spaces. This line
of research was first studied by Bonet and Domański [9] when they studied the
operator acting on H(U), with U a domain in a Stein manifold. Later Wolf
[30] considered the composition operator on the general weighted Bergmann
spaces of infinite order H∞v (D). Bonet and Ricker [12] characterized the
power boundedness and mean ergodicity of the multiplication operator on
the general weighted Bergman spaces of infinite type H∞v (D) and H0

v (D).
More recently, Beltrán-Meneu et al [5, 6] studied the ergodic properties of
the composition operator on A(D) and on H∞(D) as well as of weighted
composition operators on H(D). Arendt et al [1] extended the results of
[5] to the convergence of the sequence of powers of operators besides the
Cesáro means, including A(D), H∞(D) and also the Wiener algebra W (D).
The article [2] by the same authors was presented to us after preliminary
submission and is quite related to ours, see Remark 3.13. Also during the
process we have noticed the existence of [17], where the mean ergodicity and
uniform mean ergodicity of composition operators on the Hardy spaces Hp,
1 ≤ p <∞ is characterized, independently of both [2] and this paper.

Some of the spaces we focus on share some analogies with A(D) and
H∞(D). In this note we consider composition operators on Bp, B0

p (Bloch
spaces of order p ≥ 1), Hv, H

0
v (weighted Bergman space of infinite order, for

appropriate weights v), Ap (Bergman space of order p ≥ 1) and Hp (Hardy
space of order p ≥ 1). We prove

Theorem 1. Let v be a convenient weight and p ≥ 1. Let X0 stand for H0
v ,

B0
p, A

p or Hp and let X stand for Hv or Bp. Let ϕ : D −→ D be holomorphic.
Then the following assertions hold:

(i) Cϕ ∈ L(X0) is power bounded if and only if it is mean ergodic, and if
and only if ϕ is elliptic.

(ii) Cϕ ∈ L(X) is power bounded if and only if ϕ is elliptic.

(iii) if Cϕ ∈ L(X0) and ϕ has a Denjoy-Wolff point z0 ∈ D, then (Cn
ϕ)n

converges weakly to Cz0 on X0, and consequently Cϕ is mean ergodic.
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Considering the spaces A(D) and H∞(D), summarizing the results of
[5] and [1] we get the following characterization for uniformly mean ergodic
composition operators. In H∞(D) uniform mean ergodicity is equivalent to
mean ergodicity for power bounded operators because it is a Grothendieck-
Dunford-Pettis space and composition operators on it have norm 1.

Theorem A: Let ϕ : D −→ D be (uniformly continuous and) holomorphic.
Then Cϕ : H∞(D) −→ H∞(D) (Cϕ : A(D) −→ A(D)) is uniformly mean
ergodic if and only if either ϕ is equivalent to a rational rotation or one of
the following equivalent conditions is satisfied:

(i) There exists z0 ∈ D such that limϕn(z) = z0 uniformly on D.

(ii) There exists n0 ∈ N such that ‖Cn0
ϕ ‖e < 1.

(iii) There exists n0 ∈ N such that Cn0
ϕ is a compact operator.

(iv) There exists z0 ∈ D such that ‖Cn
ϕ − Cz0‖ → 0, where Cz0(f) = f(z0).

Following Yosida and Kakutani [36] we call the operators satisfying condi-
tion (ii) of Theorem A quasicompact. In our work on Bloch spaces, weighted
Bergmann spaces of infinite type, Bergman spaces and Hardy spaces (in these
last two cases restricting to univalent symbols), we prove in Theorem 3.8
that uniform mean ergodicity of composition operators whose symbol is not
equivalent to a rational rotation can be characterized by having an interior
Denjoy–Wolff point together with condition (ii), which is equivalent to (iv)
in Theorem A above as a consequence of [1, Theorem 3.4]. We provide ex-
amples showing that conditions (i) an (iii) are sufficient but not necessary.
Briefly, the converse of the Yosida–Kakutani Mean Ergodic Theorem is also
true in the spaces we consider, but here the condition of T n being compact
for some n ∈ N is only sufficient.

1.2 Notation and preliminaries

If X is a Banach space we denote the space of continuous and linear op-
erators from X to itself by L(X). The space L(X) is endowed with the
operator norm, unless explicitly mentioned. Recall the concepts of the spec-
trum σ(T,X) (we write σ(T ) if the space on which T acts is clear) of an
operator T ∈ L(X) on a Banach space X (the set of those λ ∈ C such
that T − λI is not invertible), the point spectrum σp(T ) (the set of λ ∈ C
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such that T − λI is not injective) and the approximate spectrum σap(T ) (the
set of λ ∈ C for which there is (xn)n ⊂ X, with ‖xn‖ = 1, such that
limn ‖T (xn)−λxn‖ = 0). It is well known that σp(T ) ⊆ σap(T ) ⊆ σ(T ). The
spectral radius of T is defined as r(T ) := sup{|λ| : λ ∈ σ(T )}. Furthermore,
if K(X) ⊂ L(X) denotes the set of compact operators on X, then the essen-
tial norm ‖T‖e := inf{‖T −K‖ : K ∈ K(X)} defines indeed a norm on the
Calkin algebra L(X)/K(X). Denote by re(T ) the essential spectral radius,
i.e. the spectral radius of the projection of the operator T to L(X)/K(X).
We write re(T,X) if we need to stress the space X.

Given an operator T ∈ L(X) we say that it is power bounded if the set
of its iterates is uniformly bounded, i.e. supn∈N ‖T n‖ < ∞. The operator
is called mean ergodic (resp. uniformly mean ergodic) if the sequence of its
Cesàro means

T[n] =
1

n

n∑
m=1

Tm

converges in the strong operator topology (resp. in the operator norm topol-
ogy). Yosida [34] characterized mean ergodicity of power bounded operators
on Banach spaces as those operators T ∈ L(X) satisfying that (T[n](x)) is rel-
atively weakly compact in X for every x ∈ X. The condition of power bound-
edness can be relaxed (see e.g. [36, Theorem 1], [27, Theorem 1.3],[35],[18]).
As a consequence of the aforementioned Mean Ergodic Theorem, one deduces
that a power bounded operator T such that (T[n])n converges in the weak op-
erator topology is mean ergodic.

Further, Yosida and Kakutani in [36] proved the Yosida–Kakutani Mean
Ergodic Theorem which states that a power bounded quasicompact operator
is already uniformly mean ergodic.

The necessity of the condition in the next theorem is due to Dunford [16,
Theorem 3.16] and the sufficiency goes back to Lin [19]. The result connects
spectral properties with the uniform mean ergodicity. In [18, Theorem 2.7]
it is stated for power bounded operators.

Theorem 1.1 (Dunford–Lin) An operator T on a Banach space X is uni-
formly mean ergodic if and only if both (‖T n‖/n)n converges to 0 and either
1 ∈ C\σ(T ) or 1 is a pole of order 1 of the resolvent RT : C\σ(T ) −→ L(X),
RT (λ) := (T − λI)−1. Consequently if 1 is an accumulation point of σ(T ),
then T is not uniformly mean ergodic.

The following result permits us to show that condition (c) in [1, Propo-
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sition 3.1] can be substituted by power boundedness. Notice that re(T ) < 1
holds precisely when T is quasicompact. Indeed, if T is quasicompact, there

is n0 ∈ N such that ‖T n0‖e < ρ < 1. Then ‖T n0k‖
1

n0k
e ≤ ρ

1
n0 < 1 for each

k ∈ N. Since the limit re(T ) = limn ‖T n‖1/n
e exists, we get re(T ) < 1. The

other implication is trivial.

Proposition 1.2 The following conditions are equivalent for T ∈ L(X):

(a) (T n)n converges in L(X) to a finite rank projection P .

(b) T is power bounded, quasicompact and σp(T ) ∩ ∂D ⊆ {1}.

(c) re(T ) < 1, σp(T ) ∩ ∂D ⊆ {1} and if 1 is in the spectrum then it is a
pole of order 1 of the resolvent RT .

Proof. The equivalence between (a) and (c) is [1, Proposition 3.1] . If (a) is
satisfied then T is power bounded and quasicompact. Hence the equivalence
between (a) and (b) is due to [36, Theorem 3.4, Corollary (ii), (iii)]. 2

Our interest falls on composition operators defined on Banach spaces of
analytic functions on the disc. Let D denote the open unit disk of the complex
plane C and H(D) the space of all holomorphic functions on D with the
topology τc of uniform convergence on compact sets. Given a holomorphic
function ϕ : D −→ D, the composition operator Cϕ : H(D) −→ H(D) is
defined by Cϕf = f ◦ϕ. Let X ↪→ H(D) be a Banach space with continuous
inclusion. A holomorphic self map ϕ : D −→ D is said to be a symbol
for X if Cϕ(X) ⊂ X. As a consequence of the Closed Graph Theorem
this is equivalent to Cϕ ∈ L(X). Since clearly Cn

ϕ = Cϕn , where ϕn :=

ϕ◦
(n)
· · · ◦ϕ, the study of the iterates of the operator shifts to the study of

the iterates of the symbol ϕ. The behaviour of ϕ and its iterates has been
deeply investigated and it has great importance in our study. The self-map
ϕ is called elliptic if it has a fixed point p. In this case, by the Schwarz
Lemma, |ϕ′(p)| ≤ 1. Furthermore, if |ϕ′(p)| = 1, then ϕ is called an elliptic
automorphism. The holomorphic automorphism of the disk φp(z) := (p −
z)/(1 − pz) interchanges the fixed point p of ϕ with 0 and Φ = φp ◦ ϕ ◦ φp
defines a holomorphic function with fixed point 0 with the property that
CΦ = CφpCϕCφp has the ergodic properties of Cϕ. When ϕ is an elliptic
automorphism, then Φ(z) = λz. In this case Φ is called rational rotation
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if there exists n ∈ N such that λn = 1 and it is called irrational rotation
otherwise.

The results shown in this paper depend deeply on the well known Denjoy-
Wolff Theorem (see [32, 31, 33, 15]). If ϕ : D −→ D is holomorphic and not
an elliptic automorphism, then there exists a unique point p ∈ D (called
the Denjoy-Wolff point of ϕ) such that the sequence (ϕn)n of the iterates
converges to p uniformly on compact sets of D. If the Denjoy-Wolff point of
ϕ is in D, it is clearly also a fixed point and as stated before, we may always
consider it is 0. If it is on the boundary of D, then, using a rotation, we may
consider it is 1 for simplicity.

The next classical result is due to Koenigs and related to the Schroeder
equation. We state a particular case of this theorem, which in fact char-
acterizes completely the point spectrum from a functional analytic point of
view.

Theorem 1.3 (Koenigs) Let ϕ : D −→ D be holomorphic with a Denjoy-
Wolff point z0 ∈ D. Then σp(Cϕ, H(D)) ∩ ∂D = {1}.

We consider composition operators on classical spaces of holomorphic
functions on the unit disc. In particular, Bloch spaces of order p ≥ 1,
weighted Bergman spaces of infinite order, for appropriate weights, Bergman
spaces of order p ≥ 1 and Hardy spaces of order p ≥ 1.

For p > 0, the space of Bloch functions or Bloch space of order p is

Bp := {f ∈ H(D) : ‖f‖Bp := sup
z∈D

(1− |z|2)p|f ′(z)| <∞}.

It is a Banach space when endowed with the norm ‖f‖ := |f(0)| + ‖f‖Bp .
The closed subspace

B0
p := {f ∈ H(D) : lim

|z|→1
(1− |z|2)p|f ′(z)| = 0}

is called the little Bloch space of order p and is also a Banach space with the
norm ‖ · ‖. The spaces B1 and B0

1 are nothing but the classical Bloch spaces
B and B0 respectively.

All these spaces are continuously included in H(D). It holds Cϕ ∈ L(Bp)
for every ϕ : D −→ D analytic, with ‖Cϕf‖Bp ≤ ‖f‖Bp as a consequence of
the Schwarz-Pick Lemma. On the other hand C0

ϕ := Cϕ|B0p ∈ L(B0
p) if and

only if ϕ ∈ B0
p.
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We restrict our study to Bloch spaces of order p ≥ 1 as each Bp with
0 < p < 1 is a space of Lipschitz functions and hence included in A(D), see
[37].

A continuous function v : D −→]0,∞[ is called a weight. Associated to a
weight v the weighted Bergman spaces of infinite type are defined as follows

Hv := {f ∈ H(D) : ‖f‖v := sup
z∈D

v(z)|f(z)| <∞},

H0
v := {f ∈ H(D) : lim

|z|→1
v(z)|f(z)| = 0}.

Both of these are Banach spaces with the norm ‖ · ‖v. A weight v is called
typical if v is radial (i.e. v(z) = v(|z|)), decreasing (i.e. v(z) ≤ v(w) if
|z| ≥ |w|) and satisfies lim|z|→1 v(z) = 0.

A composition operator Cϕ is well-defined and continuous on each of Hv

and H0
v whenever v is a typical weight satisfying the Lusky condition, that

is, that

inf
n∈N

v̂(1− 2−n)

v̂(1− 2−(n−1))
> 0,

where v̂(z) := 1
‖δz‖H∗

v

(z ∈ D) is the associated weight, see [10, Theorem 2.3].

For p ≥ 1, the Bergman space of order p is

Ap := {f ∈ H(D) : ‖f‖pAp :=

∫
D
|f(z)|pdA(z) <∞},

where dA is the normalized Lebesgue measure on D. This is a Banach space
with the norm ‖ · ‖Ap .

For p ≥ 1, the Hardy space of order p is

Hp := {f ∈ H(D) : ‖f‖pHp := lim
r→1−

∫
D
|f(reiθ)|pdθ <∞},

which is a Banach space with the norm ‖ · ‖Hp .
For every ϕ : D −→ D analytic the operator Cϕ is in L(Ap) and L(Hp)

(see [14]).

2 Ergodic theorems on general Banach spaces

of analytic functions

We consider the following conditions on a Banach space X continuously
embedded in H(D).
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(PB1) Automorphisms are symbols for X.
(PB2) If α ∈ ∂D then there is f ∈ X such that limz→α Re f(z) = +∞.

(PB3) For each symbol ψ of X with ψ(0) = 0, the operator
Cψ : X → X is power bounded.

(ME) If (fn)n is a bounded sequence in X which is pointwise open
convergent to f ∈ X then (fn)n is weakly convergent to f .

(UME) B(0, re(Cψ)) ⊆ σ(Cψ) for each symbol ψ with Denjoy-Wolff
point 0 ∈ D.

Remark 2.1 Since X ↪→ H(D) and this space is Montel (even nuclear), the
topology of pointwise convergence and the compact–open topology coincide
on bounded sets. Hence condition (ME) above is in fact equivalent to re-
quiring any bounded sequence (fn) in X to be weakly convergent whenever
it converges in the compact–open topology.

In this section we give results of power boundedness, (uniform) mean
ergodicity and asymptotic behaviour of the powers of composition operators
related to these conditions. Spaces satisfying these conditions are considered
in Section 3.

Proposition 2.2 Let X be a Banach space continuously embedded in H(D)
and containing the constants. Assume (PB1)–(PB3) hold for X. Let ϕ be
a symbol for X. Then Cϕ : X −→ X is power bounded if and only if ϕ is
elliptic.

Proof. If ϕ is not elliptic, then it has a Denjoy-Wolff α in the boundary. Take
f as in (PB2). We have that (δ0(Cn

ϕ(f)))n is not bounded since

lim
n→∞

ReCϕn(f)(0) = +∞, (2.1)

and therefore (Cn
ϕ(f))n is not bounded.

Assume now ϕ to have an interior fixed point. (PB1) implies that there
is φ : D −→ D automorphism and (a symbol) ψ : D −→ D with ψ(0) = 0
such that ϕ = φ−1 ◦ ψ ◦ φ. Hence power boundedness is a consequence of
(PB1) and (PB3). 2
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Remark 2.3 In Proposition 2.2, the condition (PB2) can be relaxed to
(PB2-) For each α ∈ ∂D there exists f ∈ X so that limz→α |f(z)| = +∞.
We use the full assumption of (PB2) in Proposition 2.6.(i).

Corollary 2.4 Let X be a Banach space satisfying (PB1) and (PB3). Then
for any symbol ϕ of X that has an interior Denjoy-Wolff point and for which
Cϕ is quasicompact we have that Cϕ is uniformly mean ergodic.

Proof. The conditions (PB1) and (PB3) ensure that Cϕ is power bounded.
The conclusion now follows from the Yosida–Kakutani Mean Ergodic Theo-
rem. 2

Now we consider the mean ergodicity of Cϕ giving a characterization in
the case when the symbol is an elliptic automorphism.

Proposition 2.5 Let X be a Banach space continuously embedded in H(D)
and containing the constants. Further assume (PB1) and (PB3) hold for X.
Let ϕ be an elliptic automorphism with fixed point z0 ∈ D which is a symbol
for X. Then

(i) if ϕ is equivalent to a rational rotation, then Cϕ is uniformly mean
ergodic with (Cϕ)[n] −→ 1

k
(Cϕ + · · ·+ Ck

ϕ) for some k ∈ N,

(ii) if ϕ is equivalent to an irrational rotation, then Cϕ is not uniformly
mean ergodic,

(iii) if ϕ is equivalent to an irrational rotation and X contains the polyno-
mials as a dense subspace, then Cϕ is mean ergodic, with (Cϕ)[n]f −→
Cz0f , where Cz0(f) = f(z0).

Proof. We may restrict ourselves to the case when ϕ(z) = λz is a rotation.
If it is a rational rotation, i.e., there exists k ∈ N such that λk = 1, then Cϕ
is periodic with period k (take the smallest k). Then, (see [5, Theorem 2.2]
and [30, Proposition 18])

lim
n→∞

∥∥∥∥∥(Cϕ)[n] −
1

k

k∑
j=1

Cj
ϕ

∥∥∥∥∥ = 0.
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In case ϕ(z) = λz and λn 6= 1 for every n ∈ N, we proceed as in [5,
Theorem 2.2 (ii)] to see that the operator is mean ergodic. Let fk(z) := zk,
with k ∈ N, k 6= 0, then

‖((Cϕ)[n]fk)(z)‖ =

∥∥∥∥∥ 1

n

n∑
j=1

λjkzk

∥∥∥∥∥ ≤ 2

n|1− λk|
‖fk‖,

and limn(Cϕ)[n] = C0 on the monomials. For k = 0, we have (Cϕ)[n](1) =
I(1) = 1. Since we are assuming (PB1) and (PB3), the sequence (Cϕ)[n] is
equicontinuous. By density, we deduce the mean ergodicity of Cϕ.

Finally we see that α ∈ σap(Cϕ) ⊂ σ(Cϕ) for all α ∈ ∂D. The hypothesis
on λ yields that there exists an increasing sequence (nk)k ⊂ N such that
λnk → α as k →∞. Let gn := fn/‖fn‖. We have

‖Cϕgnk
− αgnk

‖ =
1

‖fnk
‖
‖λnkfnk

− αfnk
‖ = |λnk − α|,

which converges to 0 as k → ∞. This shows that ∂D ⊂ σap(Cϕ). Then 1
is an accumulation point of the spectrum and by Theorem 1.1, Cϕ is not
uniformly mean ergodic. 2

Proposition 2.6 Let X be a Banach space continuously embedded in H(D)
and containing the constants. Assume (PB1) and (PB3) hold for X. Let ϕ
be a symbol for X. Then we have:

(i) If (PB2) holds for X and Cϕ is mean ergodic, then ϕ is elliptic.

(ii) If ϕ is elliptic and X satisfies (ME) and contains the polynomials as
a dense subspace, then Cϕ is mean ergodic. In case ϕ has a Denjoy-
Wolff point z0 ∈ D, then we even have that (Cn

ϕ)n converges to Cz0 in
the weak operator topology.

Proof. If ϕ were not elliptic, it would have a boundary Denjoy-Wolff α. Take
f as in (PB2). From (2.1) it also follows

lim
n→∞

Re ((Cϕ)[n]f)(0) = +∞,

and hence ((Cϕ)[n](f))n is not a bounded sequence in X and Cϕ is not mean
ergodic. This shows (i).
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Now assume that (ME) holds and that ϕ is elliptic. If ϕ is a rotation
the mean ergodicity follows from Proposition 2.5. If z0 is the Denjoy–Wolff
point of ϕ then Cn

ϕ(f) converges pointwise to f(z0) for every f ∈ X. Since
condition (PB1) holds, we have that Cn

ϕ(f) is a bounded sequence in X for
each f ∈ X. Furthermore, (ME) ensures that Cn

ϕ(f) converges weakly to
f(z0) for every f ∈ X. Apply the Mean Ergodic Theorem [27, Theorem 1.3]
to obtain (ii). 2

Remark 2.7 Summarizing the results of Proposition 2.2, Proposition 2.5
and Proposition 2.6, we obtain that in a Banach space X continuously em-
bedded in H(D), containing the polynomials as a dense subspace and satisfy-
ing the conditions (PB1)–(PB3) and (ME) the operator Cϕ is power bounded
if and only if it is mean ergodic, and if and only if ϕ is elliptic.

Theorem 2.8 Let X be a Banach space continuously embedded in H(D) and
containing the constants. Assume (PB1)–(PB3) and (UME) hold for X. Let
ϕ be a symbol for X. Then Cϕ is uniformly mean ergodic if and only if either

(i) ϕ is similar to a rational rotation, or

(ii) z0 ∈ D is the Denjoy–Wolff point of ϕ and Cϕ is quasicompact, or,
equivalently, limn ‖Cn

ϕ − Cz0‖ = 0.

Proof. If ϕ is not elliptic then neither (i) nor (ii) hold, and since X satisfies
(PB2) by Proposition 2.6.(i) we have that Cϕ is not mean ergodic, either.
So we may assume ϕ is elliptic, and by (PB1) that ϕ(0) = 0. Now, since X
satisfies (PB1)–(PB3), by Proposition 2.2 the operator Cϕ is power bounded.

Notice that Cϕ is uniformly mean ergodic whenever (i) ϕ is equivalent
to a rational rotation or (ii) the operator Cϕ is quasicompact. Indeed if
ϕ is similar to a rational rotation, then Cϕ is uniformly mean ergodic by
Proposition 2.5.(i). On the other hand, if Cϕ is quasicompact then Cϕ is
uniformly mean ergodic due to Yosida–Kakutani Mean Ergodic Theorem.

Finally assume Cϕ is uniformly mean ergodic. It remains to show that
either (i) or (ii) hold. If ϕ is an automorphism, then by Proposition 2.5.(i)
and Proposition 2.5.(iii) the symbol ϕ is equivalent to a rational rotation. So
we may assume that ϕ is an elliptic non-automorphism. Since Cϕ is power
bounded we have

‖Cn
ϕ‖e ≤ ‖Cn

ϕ‖ ≤M,
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for some positive constant independent of n. Hence by the spectral radius
formula for the Calkin algebra we get re(Cϕ) ≤ 1. Now, if re(Cϕ) = 1, then

B(0, 1) ⊆ σ(Cϕ) by the assumption (UME) on X and 1 is an accumula-
tion point of σ(Cϕ), contradicting that Cϕ is uniformly mean ergodic by the
Dunford–Lin Theorem 1.1. So we must have re(Cϕ) < 1, that is, that Cϕ is
quasicompact.

The equivalence in (ii) follows from Proposition 1.2 and Theorem 1.3. 2

3 Ergodic theorems on concrete spaces

In this section we apply the results of Section 2 to some classical spaces of
holomorphic functions on the unit disk D. We first study whether the spaces
satisfy the properties defined in Section 2. These results are summarized
below.

Hv H0
v Bp B0

p, p > 1 B0
1 Ap, p > 1 A1 Hp, p > 1 H1

(PB1) X X X X X X X X X
(PB2) ∗ ∗ X X ? X X X X
(PB3) X X X X X X X X X
(ME) 7 X 7 X X X 7 X ?

(UME) X X X X X ∗∗ ∗∗ ∗∗ ∗∗

∗: (PB2) holds if v is convenient (Definition 3.2).
∗∗: (UME) holds if ψ is univalent.

Lemma 3.1 The properties (PB1) and (PB3) hold for the following spaces:

(1) Hv and H0
v , for a typical weight v satisfying the Lusky condition,

(2) Bp and B0
p, for p ≥ 1,

(3) Ap and Hp, for p ≥ 1.

Proof. The fact that ‖Cψ‖ ≤ 1 if ψ(0) = 0 follows for Hv and H0
v from

the formulas for Cψ for typical weights (see [10]). For the Bloch spaces it
follows from the Schwarz-Pick lemma (see [23]). The case of Ap and Hp is a
consequence of Littlewood subordination principle [20, 14]. 2

We introduce a subset of typical weights in order to state our results for
a wide class of these spaces.
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Definition 3.2 A typical weight v is said to be convenient if it satisfies the
Lusky condition and there exists f ∈ H0

v such that limz→1 Re (f) = +∞.

We remark that all the standard weights vp(z) = (1 − |z|)p satisfy that
f(z) = log(1 − z) ∈ H0

vp , and also the Lusky condition, hence they are
convenient. Also if v is a typical weight satisfying the Lusky condition with
v = O(vp) as |z| → 1 then v is convenient.

Lemma 3.3 The property (PB2) holds for the following spaces:

(1) Hv and H0
v , for a convenient weight v,

(2) Bp, for p ≥ 1,

(3) B0
p, for p > 1,

(4) Ap and Hp, for p ≥ 1.

Proof. The case of (1) is clear by the definition of convenient weight. For the
rest of cases note that f(z) = log(1− z) is in all of the spaces considered.

2

Lemma 3.4 The property (ME) holds for the following spaces:

(1) H0
v , for a typical weight v satisfying the Lusky condition,

(2) B0
p, for p ≥ 1,

(3) Ap and Hp, for p > 1.

Proof. (1) By means of g 7→ vg, H0
v is isometric to a subspace of C(D̂), where

D̂ is the Alexandroff compactification of D. We denote by H this subspace,
which is formed of functions vanishing at infinity. Therefore, if (fn)n ⊆ H0

v

is pointwise convergent to f in D then (vfn)n is a bounded sequence in

C(D̂) which is pointwise convergent in D̂ to vf ∈ H. For every functional

u ∈ C(D̂)∗ there is a finite Radon measure µ on D̂ such that u(g) =
∫
D̂ gdµ

for every g ∈ C(D̂). Lebesgue’s dominated convergence theorem implies

that (vfn)n is weakly convergent to vf in C(D̂), and hence (fn)n is weakly
convergent to f in H0

v .
(2) Let us now consider the case of B0

p. Assume (fn)n ⊆ B0
p is pointwise

convergent to f in D. Since B0
p ↪→ (H(D), τc), we get that (fn)n is relatively
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compact in H(D) and hence (fn)n is actually convergent to f in (H(D), τc).
We have the isometric identification B0

p = H0
vp ⊕l1 C, g 7→ (g′, g(0)). Since

(fn)n is τc convergent to f and the diferentiation operator g 7→ g′ is contin-
uous on (H(D), τc) we get that (f ′n)n is a bounded sequence in H0

vp which is
pointwise convergent to f ′. Thus we conclude by the previous case that (f ′n)n
is weakly convergent to f ′. Since (fn(0))n converges to f(0) by hypothesis,
the isometric identification gives us that (fn)n is weakly convergent to f in
B0
p.

(3) When p > 1 the spaces considered are reflexive and therefore (ME)
holds since the pointwise topology in D is Hausdorff and bounded sets are
relatively weakly compact in reflexive spaces. 2

Lemma 3.5 The property (UME) holds for the following spaces:

(1) Hv and H0
v , for a typical weight v satisfying the Lusky condition,

(2) Bp and B0
p, for p ≥ 1,

(3) Ap and Hp, for p ≥ 1, whenever ψ is univalent.

Proof. It is a consequence of the spectral radii formulas given in [4, 11, 13, 24],
which, summarized, are

σ(Cψ, X) = B(0, re(Cψ)) ∪ {ψ′(0)n : n ∈ N ∪ {0}},

where X is any of the above spaces and ψ any symbol of X with Denjoy–
Wolff point 0. 2

Proposition 3.6 Neither A1, Bp for p ≥ 1, nor Hv for any typical weight v
satisfy the property (ME).

Proof. For v(z) := (1− |z|) it follows from [29] that (H0
v )∗ = A1 and (A1)∗ =

Hv. Via the dual pairing defined in [29] we have that, for w ∈ D, the
evaluations δw can be identified with Kw(z) = 2

(1−wz)2 , and Kw is in H0
v .

The topology of pointwise convergence is then a Hausdorff topology weaker
than the weak∗ topology. Hence these topologies agree on bounded sets of
A1. From this we conclude that the bounded sequences (fn) in A1 which are
pointwise convergent to some f ∈ A1 are precisely those which are weak∗–
convergent. This set of sequences is strictly contained in that of (bounded)
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sequences which are weakly convergent because H0
v is not a Grothendieck

space, since it is separable and not reflexive.
The case for Hv and Bp is similar, and both are analogous to that of A1.

We only give the proof for Hv. In [8] it is shown that the subspace X of
H∗v formed by functionals which are continuous on the unit ball Bv of Hv for
the compact–open topology satisfies X∗ = Hv. X contains the span of the
evaluations H := {δz : z ∈ D} as a separable subspace which is separating
in Hv, i.e. H is dense in X. Hence the bounded sequences in Hv which
are pointwise (σ(Hv, H)-) convergent are precisely those which are weak∗–
convergent, and X is not a Grothendieck space since it is separable and not
reflexive. 2

Theorem 3.7 Let v be a convenient weight and p ≥ 1. Let X0 stand for H0
v ,

B0
p, A

p or Hp and let X stand for Hv or Bp. Let ϕ : D −→ D be holomorphic.
Then the following assertions hold:

(i) Cϕ ∈ L(X0) is power bounded if and only if it is mean ergodic, and if
and only if ϕ is elliptic.

(ii) Cϕ ∈ L(X) is power bounded if and only if ϕ is elliptic.

(iii) if Cϕ ∈ L(X0) and ϕ has a Denjoy-Wolff point z0 ∈ D, then (Cn
ϕ)n

converges weakly to Cz0 on X0, and consequently Cϕ is mean ergodic.

Proof. We do not know whether B0 = B0
1 satisfies (PB2). Also, property

(ME) does not hold for A1 and we do not know if it holds for H1. For
the rest of spaces apply Remark 2.7, Proposition 2.1 and assertion (ii) of
Proposition 2.6.

For B0 recall that B∗∗0 = B and (Cϕ|B0)
∗∗ = Cϕ|B with ‖Cϕ|B0‖ = ‖Cϕ|B‖.

These equalities also hold for the iterates and the Cesàro means. Let us
denote C0

ϕ when the operator is considered on B0. If C0
ϕ is power bounded,

then also Cϕ is and hence ϕ is elliptic by assertion (ii) with X = B. The
converse of assertion (i) follows from (PB3). If C0

ϕ is mean ergodic, then
(‖(C0

ϕ)[n]‖)n = (‖(Cϕ)[n]‖)n is a bounded sequence, and therefore by the
proof of Proposition 2.6.(i), we get that ϕ is elliptic. Conversely, if ϕ has a
Denjoy–Wolff point, then (iii) follows from Proposition 2.6.(ii).

For A1 and H1, since (PB1), (PB2) and (PB3) hold we can apply Propo-
sition 2.2, Proposition 2.5 and Proposition 2.6 to get (i). We show (iii). The
continuous inclusions A2 ↪→ A1 and H2 ↪→ H1 have dense range, therefore
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(Cn
ϕ)n is an equicontinuous sequence which is convergent to Cz0 in the weak

operator topology on a dense subspace. Thus (Cn
ϕ)n also converges in the

weak operator topology to Cz0 in L(A1) and L(H1). 2

Theorem 3.8 Let X0, X and ϕ be as in Theorem 3.7. Further assume ϕ
to be univalent if X0 = Hp or X0 = Ap. Then the following assertions hold:

(i) Cϕ ∈ L(X0) is uniformly mean ergodic if and only if either ϕ is equiv-
alent to a rational rotation or ϕ has a Denjoy-Wolff point z0 ∈ D and
Cϕ is quasicompact. In this last case we even have limn ‖Cn

ϕ−Cz0‖ = 0.

(ii) Cϕ ∈ L(X) is uniformly mean ergodic if and only if it is mean ergodic
if and only if either ϕ is equivalent to a rational rotation or ϕ has a
Denjoy-Wolff point z0 ∈ D and Cϕ is quasicompact. In this last case
we even have limn ‖Cn

ϕ − Cz0‖ = 0.

Proof. For (ii), Lotz proved in [21] that when X is a Grothendieck Banach
space which satisfies the Dunford Pettis property (a GDP space) then mean
ergodicity and uniform mean ergodicity are equivalent concepts. The spaces
Hv and Bp are isomorphic to either l∞ or H∞ by [22, Theorem 1.1], and are
therefore GDP spaces.

The rest of the statements follow directly from Lemmata 3.1, 3.3, 3.5 and
Theorem 2.8. 2

Observation 3.9 Notice that for every power bounded operator T we have
re(T ) ≤ 1 and ‖T

n‖
n

converges to 0. So, by the Dunford–Lin Theorem 1.1, any

power bounded operator T whose spectrum contains B(0, re(T )) is uniformly
mean ergodic if and only if re(T ) < 1.

Corollary 3.10 Let v be a convenient weight and p ≥ 1. Let ϕ : D −→ D
be holomorphic. The following assertions hold:

(i) Cϕ is mean ergodic on Hv if and only if Cϕ is uniformly mean ergodic
on Hv if and only if Cϕ is uniformly mean ergodic on H0

v .

(ii) If ϕ ∈ B0
p, then Cϕ is mean ergodic on Bp if and only if Cϕ is uniformly

mean ergodic on Bp if and only if Cϕ is uniformly mean ergodic on B0
p.

16



Example 3.11 Next we show examples of composition operators on Hvp

and Bp which are uniformly mean ergodic but such that none of its iterates
is compact. Compare this with condition (iii) in Theorem A to see the
difference with H∞(D) and A(D).

Let us consider Cϕ : Hvp −→ Hvp for ϕ(z) = az+ (1− a)z2 for 0 < a < 1.
From [10], since 0 is a fixed point, it follows ‖Cϕ‖ = 1. From [25, Theorem
2.1] we get

‖Cϕn‖e = lim
z→1

(
1− |z|

1− |ϕn(z)|

)p
=

(
1

ϕ′(1)n

)p
=

1

(2− a)np
.

Hence 0 < ‖Cϕn‖e < 1 for each n ∈ N. This yields that Cϕ is quasicompact
but Cϕn is not compact for any n ∈ N.

Corollary 10 in [4] gives that Cϕ : Bp −→ Bp for ϕ(z) = sz/(1− sz) also
satisfies 0 < ‖Cϕn‖e < 1 for each n ∈ N.

We can also provide an extension of [1, Theorem 10, Theorem 12], where
it is proved that if ϕ has an interior Denjoy-Wolff point then the sequence
of iterates (Cn

ϕ)n is convergent in L(Hp) if and only if ϕ is not inner for
1 ≤ p <∞. We see below that for the Hardy case we can drop the hypothesis
of ϕ being univalent in Theorem 3.8 (i). Also this Theorem extends [17,
Theorem 8].

Theorem 3.12 Let 1 ≤ p < ∞. Let ϕ : D −→ D be holomorphic and not
an elliptic automorphism. Then Cϕ ∈ L(Hp) is uniformly mean ergodic if
and only if ϕ has a Denjoy–Wolff z0 in D and is not inner, and if and only
if ‖Cn

ϕ − Cz0‖ −→ 0.

Proof. By Proposition 2.6 (i) we restrict ourselves to the case when ϕ has an
interior Denjoy Wolff point, which we can as usual assume to be 0. If ϕ is
not inner the sequence of iterates is norm convergent by [1, Theorem 12].

Let us assume that ϕ is inner. If ϕ is univalent, since ϕ(0) = 0, then
ϕ is an elliptic automorphism ([14, Corollary 3.28]). If ϕ is not univalent,
then σ(Cϕ) = σe(Cϕ) = D (see [14, Theorem 7.43]), thus Cϕ is not uniformly
mean ergodic by Theorem 1.1. 2

Remark 3.13 We have been informed that in [2] Arendt, Chalendar, Kumar
and Srivastava have obtained independently some results presented by us and
also others very related to ours. They prove there that whenever 0 is the
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Denjoy-Wolff point of ϕ, the composition operators Cϕ acting on Hvp , on
H0
vp , where vp(z) = (1 − |z|2)p, on Bp, for p > 1, and also on a weighted

Bergman space Ap satisfy re(Cϕ) < 1. Then from our Theorem 3.8 we can
conclude (as they do in [2] even for weighted Bergman spaces Apβ) that in
these cases Cϕ is mean ergodic if and only if Cn

ϕ converges in norm to C0.
We see below that the situation differs in H0

v for a typical weight v, and also
for Bloch spaces.

Proposition 3.14 Let ϕ : D −→ D be holomorphic with ϕ(0) = 0. Assume
ϕ is not a rotation and ϕ([0, 1)) ⊆ [0, 1). Further assume the restriction
g(x) := ϕ|[0,1)(x) admits a continuous extension to 1, with g(1) = 1, which is
left differentiable at 1 and such that g′ is left continuous at 1. The following
assertions hold:

(i) For t > 0 and v(z) := (1− log(1− |z|))−t, we have re(Cϕ, H
0
v ) = 1.

(ii) If, in addition, ϕ ∈ B0, then re(Cϕ,B) = re(Cϕ,B0) = 1.

Proof. We show ‖Cn
ϕ‖e = 1 for each n ∈ N, which forces re(Cϕ) = 1. If

ϕ satisfies the assumptions, so do its iterates ϕn. Hence, we only write the
computation for ‖Cϕ‖e = 1.

First we prove (i). Consider Cϕ : H0
v −→ H0

v . By [26, Theorem 2.1],
‖Cϕ‖e = lim sup|z|→1− v(z)/ṽ(ϕ(z)), where ṽ is the so-called associated weight.
However by [7, Corollary 1.6], we have v = ṽ. Therefore, using L’Hôpital’s
rule

1 ≥ ‖Cϕ(z)‖e = lim sup
|z|→1−

v(z)

v(ϕ(z))

≥ lim
x→1−

(
1− log(1− x)

1− log(1− g(x))

)−t
=

(
lim
x→1−

1− g(x)

g′(x)(1− x)

)−t
= 1.

In order to prove (ii), we use [25, Proposition 2.2],

1 ≥ ‖Cϕ(z)‖e = lim sup
|ϕ(z)|→1−

1− |z|2

1− |ϕ(z)|2
|ϕ′(z)| ≥ lim

x→1

1− x2

1− g(x)2
g′(x) = 1.

2
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Corollary 3.15 Let v(z) := (1−log(1−|z|))−t and let ϕ(z) := az+(1−a)zn,
0 ≤ a < 1. Then Cn

ϕ converges weakly to C0 (hence is mean ergodic) on H0
v

and on B0, but Cϕ is not uniformly mean ergodic on these spaces. Therefore
it is neither mean ergodic on Hv nor on B.

The Corollary above contradicts [30, Theorem 10], since ϕ has an attract-
ing fixed point, but Cϕ is not uniformly mean ergodic.

The next example shows that we can easily get mean ergodic operators
on B0 whose sequence of iterates converges weakly but not pointwise.

Example 3.16 Let en(z) := zn. Then

‖en‖B = sup
0<x<1

nxn−1(1− x2) =

(
n− 1

n+ 1

)n−1
2 2n

n+ 1
.

This implies that, for ϕ(z) := e2(z) = z2, by Proposition 3.14, we have

sup
z∈D

1− |z|2

1− |ϕ(z)|2
|ϕ′(z)| = 1,

but Cϕ : B0 −→ B0 is not an isometry since 1 = ‖e1‖B 6= ‖Cϕ(e1)‖B =
‖e2‖B = 4

3
√

3
. Then neither Cϕ : B −→ B is an isometry. This shows that

[3, Theorem 1.1] is not correct. Neither are the results in Section 3 of [2]
stemmed from this wrong assertion, particularly [2, Theorem 3.11, Proposi-
tion 3.12]. Here by Theorem 3.7, Cn

ϕ converges weakly to C0. However the
operator Cϕ is not uniformly mean ergodic by Theorem 3.8, since re(Cϕ) = 1
by Proposition 3.14. Furthermore Cn

ϕ does not converge pointwise, since
limn→∞C

n
ϕ(e1) = 0 weakly but

lim
n→∞

‖Cn
ϕ(e1)‖B = lim

n→∞
‖ϕn‖B = lim

n→∞
‖e2n‖B =

2

e
.

The following question arises naturally from the given examples.

Problem Is there any self map ϕ with Denjoy Wolff point 0 such that the
operator Cϕ on H0

v , for some typical weight v, or on B0 satisfies ‖Cϕ‖e = 1
but re(Cϕ) < 1?
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