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A new formulation of the PLS-regression model inversion-based optimization problem 

is proposed that allows, using happenstance data: i) optimizing quality attributes defined 

as linear combinations of variables; ii) sequentially obtaining new solutions without 

having to actively modify the constraints imposed on them, iii) avoiding the need to 

define arbitrarily low/high values as desired ones for each quality attribute for their 

minimization/maximization, and iv) obtaining a wider range of sets of inputs that 

guarantee the desired values for the quality attributes. 
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Abstract 

Latent Variable Regression Model (LVRM) inversion is a relevant tool for finding, if 

they exist, different combinations of manufacturing conditions that yield the desired 

process outputs. Finding the best manufacturing conditions can be done by optimizing 

an appropriately formulated objective function using nonlinear programming. To this 

end, different formulations of the optimization problem based on LVRM inversion have 

been proposed in the literature that allow the use of happenstance data (e.g. historical 

data) for this purpose, present lower computational costs than optimizing in the space of 

the original variables, and guarantee that the solution will conform to the correlation 

structure of available data from the past. However, these approaches, as presented, 

suffer from some limitations, such as having to actively modify the constraints imposed 

on the solution to achieve different sets of conditions to those available in the LVRM 

calibration dataset, or the lack of a standardized approach for optimizing a linear 

combination of variables. Furthermore, when minimizing or maximizing one or more 

outputs, a severe handicap is also present related to the definition of arbitrarily low or 

high ‘desired’ values. This paper aims at tackling all of these issues. The resulting 

proposed formulation of the optimization problem is illustrated with three case studies. 

Keywords: Partial Least-Squares (PLS); Latent Variable modelling; Latent Variable 

model inversion; Optimization in the latent space; Quality by design (QbD) 

1. Introduction 

The Quality-by-Design (QbD)1,2 initiative promotes the implementation of science-

based methodologies to deliver products that meet the desired specifications while 

increasing the flexibility and robustness of the processes. This is done by allowing 

changes in materials and processing conditions without negatively affecting the outputs’ 
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quality. In this context, process optimization can be understood as the identification, 

through whatever means, of different sets of conditions that belong to the so-called 

design space (DS), defined as “the multidimensional combination and interaction of 

input variables (e.g., material attributes) and process parameters that have been 

demonstrated to provide assurance of quality”3. 

Model-based process optimization requires building a causal model that relates changes 

in the process inputs (e.g. raw materials properties, processing conditions, etc.) with 

those in the process outputs (e.g. critical quality attributes, productivity, profitability, 

etc.). Although deterministic models based on first principles are always desirable for 

this purpose, insufficient knowledge and/or resources required to properly construct 

them makes their use infeasible in practice in most cases. Empirical, i.e. data-driven, 

models are often built instead4,5. Nevertheless, in order to use them for optimization, the 

data used to construct them must be appropriate to guarantee causality6. When classical 

linear regression or machine learning models are resorted to, independent variation in 

the inputs is required. This implies that data from design of experiments (DOE)7 must 

be gathered. Due to the usually large amount of inputs and outputs involved this 

requires extensive experimentation that is infeasible in practice. 

Alternative methods based on latent variables (LV), such as partial least squares (PLS) 

regression-based techniques, allow analysing large datasets with highly correlated and 

low signal-to-noise ratio data. This makes them especially useful to deal with big data in 

the implementation of the Industry 4.0 paradigm, when happenstance data (e.g. 

“routine” data coming not from a DOE but from daily production, and therefore not 

causal in nature) are collected. PLS not only models the relationship between the input 

(X) space and the output (Y) space, but also provides models for both spaces. This gives 
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PLS models two powerful properties: uniqueness and causality in the latent space no 

matter if data come from either DOE or daily production8–10. Therefore, it can be used 

in process optimization to find the combinations of input variables that are consistent 

with their past correlation structure and also guarantee the desired output values.  

In order to apply the QbD initiative, two distinct strategies have been proposed in the 

literature: i) defining or estimating the DS as a whole, and; ii) solving an optimization 

problem in an attempt to obtain single sets of process conditions within the DS. 

The first of these strategies, when resorting to LV-based methods, relies on the so-called 

null space (NS), i.e. the subspace in the latent space within which the prediction of the 

outcome variables 𝐲 does not vary11,12, for which the uncertainty in its definition can 

also be accounted for13–16. Due to the nature of data-driven approaches, it is unadvisable 

to extrapolate any results provided by the model outside of the so-called knowledge 

space (KS), i.e. the regions constituted by the set of historical products that have already 

been manufactured17,18. Additional constraints on e.g. process operating conditions may 

also be accounted for in order to further delimit a portion of the DS inside the KS within 

which products of the desired quality may still be produced while meeting such 

constraints16. 

As for the second strategy, solving an optimization problem where the same constraints 

are considered allows obtaining individual sets of operating conditions that guarantee 

the desired outputs (i.e., samples expected to be within the DS, inside the KS, and meet 

all other restrictions). Such problem may be formulated in the space of the original 

variables and imposing an upper limit on the acceptable Euclidean distance to the latent 

subspace of a previously fitted latent variable regression model (LVRM), so that any 

solution (i.e., values for the input variables) obtained abides, to an extent (but not 
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strictly), by the correlation structure found by such LVRMi. This formulation, however, 

suffers from high computational cost and may be even infeasible in practice as the 

number of input and output variables increases. Accordingly, an optimization problem 

in the space of the latent variables can be formulated, significantly reducing the 

computational cost. However, such approach provides solutions that necessarily abide 

by the correlation structure found by the LVRM, therefore losing the flexibility of 

accepting small changes on the correlation structure among variables. This limitation, 

already discussed in the literature19, can be solved with a two-step optimization 

process20, where the optimization problem is solved in the latent space as a first step, 

and then the solution is used as a starting point for the optimization problem in the 

original space, providing some degrees of freedom to obtain more flexible solutions. 

The formulation of the aforementioned approach, however, still presents some 

limitations that make it unfit in some scenarios:  

i) when a quality attribute of interest can or should be expressed as a linear 

combination of variables, no standardized approach to optimize it has yet 

been proposed. This may happen, for example, when the quality attribute of 

interest itself (e.g. concentration of the main component in a blend product) 

is poorly explained by the model, but this is not the case for the variables 

from which it can be calculated (e.g. amount of the main component and 

total amount of the resulting blend)16. As an additional example, suppose 

that the (quality) attribute of interest is the income generated by selling 

																																																								
i Note that this is not the same as optimizing via e.g. Machine Learning techniques in 
the space of the original variables and without resorting to LV-based techniques. In 
such case, causality cannot be inferred and there is no guarantee that the solution would 
respect the correlation structure of the data used to fit the model, leading to infeasible 
solutions	



	 7	

several products. This income may be expressed as a linear combination 

between the amount of each single products and the relevant selling price;  

ii) if new solutions in successive optimizations, or solutions different from 

already available observations are desired, current formulations require 

actively modifying either the hard constraints imposed on the solution or the 

weight given to each term in the objective function;  

iii) given the way the objective function is usually formulated, ‘desired values’ 

for the variables included in the objective function must be defined, such 

that the value of the objective function will be optimized if/when such values 

are achieved for the solution. However, no standardized approach has yet 

been offered to define such ‘desired values’ when the goal of the 

optimization problem is to minimize/maximize them, especially if no 

feasible or known minimum/maximum values are known. 

This paper aims at providing an alternative, more general formulation of the 

optimization problem in the space of the latent variables that also accounts for these 

three issues. Section 2 introduces one of the most common formulations of the 

optimization problem in the latent space as proposed in the literature. This will be used 

as a basis for the new proposed formulation. Section 3 is divided in three different 

subsections where the optimization problem is subsequently reformulated to tackle the 

three aforementioned limitations and illustrates the usefulness of the proposal with three 

different case studies. Conclusions are presented in Section 4.  

2. Optimization in the latent space  

Partial Least Squares (PLS) regression21 is among the most used latent variable-based 

methods to build data-based models for optimization. It models the inner relationships 
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between the matrices of inputs X [N×M] and outputs Y [N×L] in order to predict Y 

from the A-dimensional subspace of the latent variables associated to X, such that its 

covariance with Y is maximised. This model structure can be expressed as21: 

𝐗 = 𝐓 · 𝐏! · 𝐃𝐬𝐗 + 𝟏 ·𝐦𝐗
! + 𝐄

𝐘 = 𝐓 · 𝐐! · 𝐃𝐬𝐘 + 𝟏 ·𝐦𝐘
! + 𝐅

𝐓 = 𝐗− 𝟏 ·𝐦𝐗
! · 𝐃𝐬𝐗

!! ·𝐖 · 𝐏! ·𝐖 !! = 𝐗− 𝟏 ·𝐦𝐗
! · 𝐃𝐬𝐗

!! ·𝐖∗
 (1) 

being T [N×A], P [M×A] and E [N×M] the X scores, loadings and residuals matrices, 

respectively; 𝐐 [L×A] and F [N×L] the respective Y loadings and residuals matrix, and 

𝐖 [M×A] the weighting matrix, such that 𝐴 ≤ 𝑟𝐗, 𝑟𝐗 being the rank of X; 𝐦𝐗 and 𝐦𝐘 

the [M×1] and [L×1] column vectors of centring factors for the inputs and outputs, 

respectively; 𝐃𝐬𝐗 and 𝐃𝐬𝐘 the [M×M] and [L×L] diagonal matrices with the scaling 

factors applied to the input and output variables, respectively, before fitting the PLS-

regression  model; and 𝟏 a vector of ones. 

If at least one feasible combination of inputs exists that leads to the desired outputs, 

Latent Variable Regression Model Inversion (LVRMI) can be used to obtain a 

combination of inputs that, according to the model, guarantees the desired outputs. If 

more than one combination exists, the so-called Null Space (NS), i.e. the projection 

onto the latent space of all the combinations of inputs theoretically guarantying the 

desired outputs, can also be defined11,12. This definition of the NS was also extended to 

quality attributes defined as linear combinations of other variables16.  

Alternatively, or in order to find the best feasible combination of inputs, an optimization 

problem in the latent variables space can be resorted to13, formulated as follows: 
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min
𝛕

𝑔! · 𝐲!"# − 𝐲!"# ! · 𝚪 · 𝐃𝐬𝐘
!! · 𝐲!"# − 𝐲!"# + 𝑔! ·

𝜏!!

𝑠!!

!

!!!
s. t.
 𝐲!"# = 𝐃𝐬𝐘 · 𝐐 · 𝛕+𝐦𝐘

𝐱!"# = 𝐃𝐬𝐗 · 𝐏 · 𝛕+𝐦𝐗

𝑇𝛕! = 𝛕! · 𝚲!! · 𝛕 ≤ 𝑇!"#!
𝐀𝛕 · 𝛕 ≤ 𝐝𝛕
𝐅𝛕 · 𝛕 = 𝐟𝛕

	

		

(2) 

Where 𝛕 is the score vector solution, 𝚪 is a [L×L] diagonal matrix where the l-th 

element in the diagonal represents the weight given to achieving the desired value for 

the l-th output variable (such that the sum of the absolute values of the diagonal 

elements is one); 𝑔! and 𝑔! are the weights given to each term in the objective function 

when solving the optimization problem; 𝐱!"# and 𝐲!"# are the vectors of inputs and 

outputs, respectively, predicted by the PLS model given 𝛕;	𝚲!! is the [A×A] diagonal 

matrix containing the inverse of the A variances of the scores (𝑠!!) associated to the 

LVs; 𝐀𝛕 and 𝐝𝛕 (and 𝐅𝛕 and 𝐟𝛕) are a matrix and a vector used to define inequality (and 

equality) hard constraints on the latent variables, respectivelyii. Confidence limits 𝑇!"#!  

and 𝑆𝑃𝐸!"# can be accounted for22 but, in this case, since any 𝐱!"# obtained from 𝛕 

will fall exactly within the model subspace, its SPE will be zero, i.e. 𝑆𝑃𝐸𝐱!"# = 0. 

Therefore, no constraint on 𝑆𝑃𝐸𝐱!"# needs to be defined.  

Note that, in this formulation, two different kinds of constraints are considered. ‘Hard 

constraints’, defined outside of the objective function, are restrictions that determine the 

envelope of the subspace of acceptable solutions for the optimization problem, but do 

not otherwise favour any potential solution over the rest. On the other hand, terms in the 

objective function are ‘soft constraints’, as they favour solutions being close to (or far 

																																																								
ii	Restriction on the inputs/outputs can also be transferred to the latent space to be 
expressed as restrictions on the latent variables16	
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from) specific regions inside this subspace, but do not affect the shape or size of the 

region of acceptable solutions. 

This formulation presents a series of limitations: 

1. It does not allow the proper optimization of any quality attribute, 𝑑!, that can be 

expressed as a linear combination of outputs, i.e. 𝑑! = 𝐚!! · 𝐲. This is because 

the soft constraints in the objective function associated to outputs (Y) and/or 

inputs (X) are imposed on each individual variable (i.e. not linear combinations 

of them). While modifying the weight given to the soft constraints associated to 

achieving the desired values for these variables may seem like a proper approach 

to bypass this issue, however, such is not the case (this is explained in more 

depth in Section 3.1 and demonstrated in the Appendix). 

2. Obtaining new solutions in subsequent optimizations and/or solutions that span 

previously unexplored areas of the knowledge space will rely on changes in the 

hard constraints imposed on these solutions (on the inputs, outputs, or any 

combination of them) and/or in the weight given to each term in the objective 

function. Defining such new constraints may not be overly complicated if done 

in two- or three-dimensional latent spaces, where the unexplored areas of the 

process can be easily visualized. However, doing so in higher-dimensional latent 

spaces may prove a challenge. 

3. There is no standardized approach to tackle the problem of trying to maximize 

or minimize one or more outputs/quality attributes. 

4. Furthermore, the optimization problem as formulated in the literature13 does not 

consider as hard constraints the bracketing of the DS 14 or the subspace most 

likely to contain the DS, also referred to as ‘experiment space’16. 
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5. Lastly, none of the soft constraints in the objective function account for the 

effect of the leverage on the uncertainty in the DS estimation, i.e. any two given 

sets of scores located at the same Euclidean distance from the NS in the latent 

space will be equally penalized by the first term in the objective function. 

These limitations will be addressed in the following sections. 

3. Proposed formulation for the optimization in the latent space  

While estimating the DS and solving an optimization problem are usually presented as 

different approaches to achieve a similar goal, there are some similarities between them 

that are worth considering. More importantly, identifying the facets of the envelope of 

the subspace of the KS most likely to contain the DS allows their use as hard constraints 

in the optimization problem.  

Additionally, there is a very close relationship between the definition of the NS, as a 

necessary step to estimate the DS, and the objective function in the optimization 

problem. Regarding this, the first addend in the objective function in Eq. 2, 𝐲!"# −

𝐲!"# ! · 𝚪 · 𝐃𝐬𝐘
!! · 𝐲!"# − 𝐲!"# , is a weighted sum of quadratic distances between the 

expected values of the outputs of the optimization solution and the corresponding 

desired values, with the l-th element in the diagonal matrix 𝚪 being the weighting factor. 

Therefore, each of these quadratic distances is related to the distance between the 

optimization solution 𝛕 and the NS corresponding to the desired value for the l-th output 

variable; they are not related to the distance to the subspace (if it exists) corresponding 

to all combinations of inputs theoretically leading to the desired values for all of the 

outputs. That is to say, the way the first addend in the objective function in Eq. 2 is 

formulated does not make use of the concept of the NS presented by Jaeckle & 

MacGregor11 (also referred to as ‘combined pseudo-NS’ by García-Muñoz et al.12), but 
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(implicitly) to the L different NS as referred to by García-Muñoz et al.12. Nonetheless, 

an equivalence exists between assessing the differences between the expected and 

desired values for each output, and evaluating the distance between 𝛕 and each of the 

corresponding NSs. This relationship will be considered in the next sections for the 

reformulation of the optimization problem. 

Note also that, if the NSs for the desired values for all outputs intersect, at least a 

solution meeting all the desired values for the L output variables, 𝐲!"#, exists. If this 

intersection results in a subspace of dimension higher than zero (i.e. a line, plane or 

hyper-plane), then such intersection is coincident with, or very close to, the NS as 

defined by Jaeckle & MacGregor11, or combined pseudo-NS by García-Muñoz et al.12, 

depending on the number of latent variables used to fit the LVRM. The solution 𝛕 of the 

optimization problem as formulated in Eq. 2 does not necessarily lead to 𝐲!"# even in 

this scenario. As long as 𝑔! > 0 in Eq. 2, 𝛕 will be ‘displaced’ from the intersection of 

all NSs in a direction that minimizes 𝑇𝛕!, even if some sets of scores in this subspace 

meet all of the hard constraints imposed on the solution of the optimization problem. 

This is because the greater 𝑔! is with respect to 𝑔!, the more 𝛕 is ‘pushed’ towards the 

centre of projection and farther away from the desired values for the outputs. 

    3.1. Optimization of a linear combination of variables 

    3.1.1. Theoretical framework 

The l-th NS can be defined as the subspace constituted by all combinations of inputs 

that, according to the PLS-regression model, guarantee the desired value 𝑦!"#,! for the l-

th output variable, but not necessarily the rest, such that a [L×1] vector 𝐲!"! , 

corresponding to a set of scores 𝛕!"! on the l-th NS, meets that16: 
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𝐨!! · 𝐲!"! = 𝐨!! · 𝐃𝐒𝐘 · 𝐐 · 𝛕!"! +𝐦𝐘 = 𝑦!"#,! (3) 

where 𝐨! is the [L×1] vector whose l-th element is 1, and the rest are zeros. 

Reorganizing terms, Eq. 3 provides the equation of a hyper-plane of the form: 

𝑣!,! + 𝑣!,! · 𝜏!"!,!

!

!!!

= 0 ; 𝐯! = [𝑣!,!, 𝑣!,!,… , 𝑣!,!]!

𝑣!,! = 𝐨!! ·𝐦𝐘 − 𝑦!"#,!
𝐯! = 𝐐! · 𝐃𝐒𝐘 · 𝐨!

 (4) 

And when applied to all L output variables: 

𝐯! + 𝐕 · 𝛕!" = 𝟎

𝐯! =

𝑣!,!
𝑣!,!
⋮
𝑣!,!

= 𝐦𝐘 − 𝐲!"#   ;    𝐕 =

𝐯!!

𝐯!!
⋮
𝐯!!

= 𝐃𝐒𝐘 · 𝐐
 (5) 

𝐲!"# being the [L×1] column vector with 𝑦!"#,! as its l-th element, and 𝛕!" a set of 

scores in the intersection of the L NS (if it exists). 

Note that, from Eq. 2 and Eq. 5, one can conclude that 𝐲!"# − 𝐲!"# = 𝐯! + 𝐕 · 𝛕. More 

generally, consider R quality attributes of interest, such that the r-th one is 𝑑! = 𝐚!! · 𝐲. 

Then, for a set of scores 𝛕!" in the intersection of the R NS associated to the desired 

values for all R quality attributes16:  

𝐯! + 𝐕 · 𝛕!" = 𝟎

𝐯! =

𝑣!,!
𝑣!,!
⋮
𝑣!,!

= 𝐀! ·𝐦𝐘 − 𝐝!"#   ;    𝐕 =

𝐯!!

𝐯!!
⋮
𝐯!!

= 𝐀! · 𝐃𝐒𝐘 · 𝐐
 (6) 

where	𝐀! is a [R×L] matrix with 𝐚!! as its r-th row, and 𝐝!"# a [R×1] column vector 

whose r-th element is 𝑑!"#,!. Therefore, a more general formulation of Eq. 2 to account 

for linear combinations of variables (in this case, quality attributes defined as linear 

combinations of outputs) can be seen in Eq. 7. 
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min
𝛕

OF! 𝑔!",𝑔!, 𝛕

OF! 𝑔!",𝑔!, 𝛕 =𝑔!" · 𝐯! + 𝐕 · 𝛕 ! · 𝚪! · 𝐃𝐬𝐝
!! · 𝐯! + 𝐕 · 𝛕 + 𝑔! ·

𝜏!!

𝑠!!

!

!!!
s. t.
𝐯! = 𝐀! ·𝐦𝐘 − 𝐝!"#
𝐕 = 𝐀! · 𝐃𝐒𝐘 · 𝐐
𝐲!"# = 𝐃𝐬𝐘 · 𝐐 · 𝛕+𝐦𝐘

𝐱!"# = 𝐃𝐬𝐗 · 𝐏 · 𝛕+𝐦𝐗

𝑇𝛕! = 𝛕! · 𝚲!! · 𝛕 ≤ 𝑇!"#!
𝐀𝛕 · 𝛕 ≤ 𝐝𝛕
𝐅𝛕 · 𝛕 = 𝐟𝛕

	 (7) 

where 𝚪! is a [R×R] diagonal matrix where the r-th element in the diagonal represents 

the weight given to achieving the desired value for the r-th quality attribute (such that 

the sum of the absolute values of the diagonal elements is one); 𝐃𝐬𝐝
!! is the [R×R] 

diagonal matrix with 𝑠!!
!! as its r-th element; and 𝑠!!

!  is calculated as in Eq. 8: 

𝑠!!
! = 𝐚!! · 𝐒𝐲 · 𝐚!

𝐒𝐲 =

𝑠!!
! cov 𝑦!,𝑦!

cov 𝑦!,𝑦! 𝑠!!
! ⋯ cov 𝑦!,𝑦!

cov 𝑦!,𝑦!
⋮ ⋱ ⋮

cov 𝑦! ,𝑦! cov 𝑦! ,𝑦! ⋯ 𝑠!!
!

𝑠!!
! =

𝑦!,! − 𝑦!
!!

!!!

𝑁 − 𝑑𝑓

cov 𝑦! ,𝑦!! =
𝑦!,! − 𝑦! · 𝑦!,!! − 𝑦!!!

!!!

𝑁 − 𝑑𝑓

 (8) 

The relevance of this formulation lies in the fact that, in most cases, there is no direct 

equivalence between: i) optimizing (e.g. maximizing or minimizing, or achieving a 

desired value) 𝑑! itself and; ii) optimizing the different 𝑦! and defining 𝚪! as a diagonal 

matrix with its diagonal somewhat related to 𝐚! (see Appendix). 

Furthermore, as illustrated in one of the case studies presented by Palací-López et al.16, 

it is not always possible/practical to build a PLS-regression model that properly predicts 
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the quality attribute of interest, but it adequately predicts other output variables such 

quality attribute can be expressed as a linear combination ofiii. 

To better illustrate the importance of properly formulating the optimization problem 

when linear combinations of variables are involved, consider the case study in the 

following section (Section 3.1.2). 

    3.1.2. Case Study 1 

For this case study, data from a petrochemical process was used. The data set consists of 

a matrix with 2075 hourly measurements made on 135 input variables corresponding to 

processing conditions and 10 output variables related to the percentage of throughput of 

different products with respect to the total amount. Furthermore, all output variables are 

strongly correlated among each other and must meet a hard equality constraint that 

involves all of them, such that 𝑦!!"
!!! = 1 and 0 ≤ 𝑦! ≤ 1 ∀ 𝑙 = 1, 2,… ,10. 

After a cross validation exercise to select the optimum number of latent variables, a 

PLS-regression model with 𝐴 = 14 LVs was fitted capable of explaining ~75.5% of the 

variability of the inputs and ~77.7% of the variability of the outputs. In this case, the 

quality attribute of interest represents the expected revenue generated by the process per 

mass unit of products produced, and can be expressed as a linear combination of the ten 

outputs, 𝑑 = 𝐚! · 𝐲 (where the prices in 𝐚 may vary on a daily or weekly basis), and its 

maximum observable value was 𝑑!"#!"# = 171.58. 

In this example, 4 of the 135 inputs are required to meet specific values in the solution. 

Given these constraints, the maximum observed value for the quality attribute of interest 

																																																								
iii	Although not addressed in this paper, the extension of the formulation of the objective 
function in Eq. 7 and Eq. 8 to include input variables (and linear combinations of them) 
is straightforward.	
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was 𝑑!"#!"#
∗ = 159.34. Then, the optimization problem is solved following two distinct 

approaches: 

i. Using the formulation in Eq. 2, with 𝑔! = 𝑔! = 1, 𝑦!"#,! = 1 ∀ 𝑙 = 1,2,… 10, 

and 𝚪 having in its diagonal the 𝑎!  coefficients of the linear combination of 

output variables.  

ii. Using the formulation in Eq. 7, with 𝑔!" = 𝑔! = 1, 𝑑!"# = 175 (i.e. above the 

maximum observed value in the whole historical dataset). 

In both scenarios hard constraints are imposed so that the solution does not fall outside 

of the Hotelling 𝑇! 95% confidence hyperellipsoid, the values for the input variables 

remain within historical limits, and the 4 of them which must take specific values 

satisfy these restrictions. Figure 1 shows the results from both approaches, with the 

observations coloured according to the value of the quality attribute of interest, 

expressed as 𝑑 = 𝐚! · 𝐲. 

[Figure 1] 

The first thing to note from Figure 1 is that, as expected, the solutions obtained from 

both approaches (Eq. 2 and Eq. 7) are not the same. Furthermore, for the first approach,  

𝑑!"# = 160.577 (black square in Figure 1), with the solution being slightly away from 

the cluster of high values for the quality attribute that can be seen in the upper right part 

of the ellipsoid, while for the second approach, 𝑑!"# = 164.832 (black circle in Figure 

1), and the corresponding set of scores is located much closer to such cluster. This 

highlights the relevance of properly formulating the optimization problem when linear 

combinations of variables are involved in the objective function. 

    3.2. Optimization for exploration in the latent space 

    3.2.1. Theoretical framework 
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As mentioned in Section 2, the second limitation of the optimization formulation in Eq. 

2 is the need to actively modify the soft and/or hard constraints (or the weight given to 

the former in the objective function). This is important in order to guarantee that 

different iterations will provide solutions different to previous ones, or to already 

available observations in the calibration dataset used to fit the PLS-regression model. 

Furthermore, when the optimization approach is used to perform new experiments (e.g., 

in unexplored areas of the KS), an additional issue must be considered: the first term in 

the objective function favours/penalizes equally acceptable solutions at the same 

distance (in the latent space) from the NS. However, the limits of the NS confidence 

region are non-linear (and, in particular and as an approximation, of the form presented 

by Palací-López et al.16) due to the prediction error varying with the leverage associated 

to each set of inputs/scores. Then it makes sense for exploratory purposes to penalize 

less solutions equally close to the NS, but with higher leverage, and vice versa. 

When both of these concerns are accounted for, the following optimization problem can 

be formulated: 

min
𝛕

OF! 𝑔!",𝑔!",𝑔!,𝑔!, 𝛕

OF! 𝑔!",𝑔!",𝑔!,𝑔!, 𝛕 =
 

OF! 𝑔!",𝑔!, 𝛕 + 𝑔!! · 𝐝𝐍𝐒! 𝛕,𝐍𝐒 · 𝚪! · 𝐝𝐍𝐒 𝛕,𝐍𝐒 +
+𝑔! · 𝑑!! 𝛕,𝐓

s. t.
𝐯! = 𝐀! ·𝐦𝐘 − 𝐝!"#
𝐕 = 𝐀! · 𝐃𝐒𝐘 · 𝐐
𝐲!"# = 𝐃𝐬𝐘 · 𝐐 · 𝛕+𝐦𝐘

𝐱!"# = 𝐃𝐬𝐗 · 𝐏 · 𝛕+𝐦𝐗

𝑑!"! 𝛕,NS! = !!,!!𝐯!!·𝛕
!!!"#,!

≤ 𝑡!!!,!!
   ∀ 𝑟 ∈  1, 2,… ,𝑅

𝑇𝛕! = 𝛕! · 𝚲!! · 𝛕 ≤ 𝑇!"#!
𝐀𝛕 · 𝛕 ≤ 𝐝𝛕
𝐅𝛕 · 𝛕 = 𝐟𝛕

		 (9) 
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where 𝚪! holds the same meaning as in Eq. 7; 𝑔!! and 𝑔! are the weights given to each 

of the new added terms in the objective function; 𝐝𝐍𝐒 𝛕,𝐍𝐒  is a [R×1] vector with 

𝑑!"! 𝛕,NS!  as its r-th element, which is a measure of the distance from the projection 

𝛕 of the solution to the r-th NS weighted by the inverse of the estimated standard 

deviation of the r-th linear combination of outputs for 𝐱!"#  (instead of the r-th 

diagonal element in 𝐃𝐬𝐝
!!), 𝑠!!"#,!, estimated as16:  

𝑠!!"#,! = 𝐚!! · 𝐒𝐟 · 𝐚! · 1+ ℎ!"# +
1
𝑁

𝐒𝐟 =

𝑠!!
! cov 𝑓!, 𝑓!

cov 𝑓!, 𝑓! 𝑠!!
! ⋯ cov 𝑓!, 𝑓!

cov 𝑓!, 𝑓!
⋮ ⋱ ⋮

cov 𝑓! , 𝑓! cov 𝑓! , 𝑓! ⋯ 𝑠!!
!

𝑠!!
! =

𝑦!,! − 𝑦!,!
!!

!!!

𝑁 − 𝑑𝑓

cov 𝑓! , 𝑓!! =
𝑦!,! − 𝑦!,! · 𝑦!,!! − 𝑦!,!!!

!!!

𝑁 − 𝑑𝑓

 (10) 

and 𝑑!! 𝛕,𝐓  is the inverse of the squared statistical distance from the projection 𝛕 of 

the solution to the closest already available sample in the calibration dataset 𝐗 with 

projection 𝐓 in the latent subspace, calculated as: 

𝑑!! 𝛕,𝐓 =
1

min 𝛕− 𝛕! ! · 𝚲!! · 𝛕− 𝛕! + 𝑐𝑜𝑛𝑠𝑡  ∀ 𝑛 𝜖 1,2,… ,𝑛  (11) 

𝑐𝑜𝑛𝑠𝑡 being a small positive real number introduced in order to avoid 𝑑!! 𝛕,𝐓  going 

to infinity, which may cause computational issues. 

The hard constraints on 𝑑!"! 𝛕,NS!  guarantee that the solution will also fall within the 

confidence region (for a given confidence level) of the NS associated to the desired 

value for the r-th quality attribute, as defined by Palací-López et al. 16.  
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It must also be noted that the terms of the objective function weighted by 𝑔!! and 𝑔!! 

both penalize solutions farther away from the NS, but do so in different ways. At the 

same time, 𝑑!! 𝛕,𝐓  guarantees that any solution obtained from the optimization will 

not be coincident or too close to an already available calibration observation. 

One of the main disadvantages of this optimization approach is that the solution 

achieved may change substantially depending not only on the constraints imposed, but 

also on the weight given to each of the terms in the objective function 

OF 𝑔!",𝑔!",𝑔!,𝑔!, 𝛕 , even when there is only one quality attribute. 

To illustrate this, consider the example in the following section (Section 3.2.2). 

    3.2.2. Case Study 2: general assessment of the new objective function 

For this case study, consider the following polynomial model defining a hypothetical 

input-output causal relationship14,16: 

𝑦 = −21+ 4.3 · 𝑥! + 0.022 · 𝑥! − 0.0064 · 𝑥! + 1.1 · 𝑥! − 0.12 · 𝑥!
s. t. 𝑥! = 𝑥!!  ;   𝑥! = 𝑥!!  ;   𝑥! = 𝑥! · 𝑥!

 (12) 

where 𝑦 represents the ‘quality attribute of interest’ expressed as a function of the input 

variables 𝑥!, 𝑥!, 𝑥!, 𝑥! and 𝑥!. 

Six observations are generated following the model in Eq. 12, and according to a two-

level full factorial design on 𝑥! and 𝑥!, with a replicate centre point. Random Gaussian 

noise with 5% of the variability of each variable in the dataset is then added to 𝑥!, 𝑥!, 

𝑥! and 𝑦. Then, a PLS-regression model is fitted with 2 LVs. 

Given the (arbitrarily defined) desired value for the output to be 𝑦!"# = 204.86, Figure 

2 presents the values that the objective function in Eq. 9 takes when weight equal to 1 is 

given to one of the terms in it, and 0 to the rest, at each point in the latent space. This 

highlights the different contribution to each of the terms in the objective function, and 
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allows assessing the effect of different weights being given to each one (𝑔!!, 𝑔!!, 𝑔! 

and 𝑔!) prior to the optimization. 

[Figure 2] 

In Figures 2.a and 2.c the contributions of each term in the OF as formulated in Eq. 9 is 

assessed. It can be seen how these terms’ contributions to the OF have similar order of 

magnitude if close to the centre of projection. Since during the optimization the lowest 

value for the OF is desired, the term corresponding to OF 1,0,0,0  penalizes solutions 

farther away from the NS (for 𝑦!"# = 204.86 ), while the term associated to 

OF 0,0,1,0  favours solutions with lower Hotelling 𝑇𝛕!.  

On the other hand, the contribution of the new proposed terms can be evaluated. Figure 

2.b, with OF 0,1,0,0 , corresponds to 𝑑!"! 𝛕,NS! . This term favours solutions close to 

the NS (in a similar manner as OF 1,0,0,0 ), but penalizes solutions farther away from 

the NS much more heavily. Furthermore, solutions closer to points in the NS with a 

higher leverage (and therefore higher uncertainty in the prediction) are less penalized 

when compared to those close to points in the NS with a lower leverage, which implies 

that this term will allow a wider area for the exploration of different solutions where the 

predictions are less reliable. Figure 2.d assesses the impact of the new proposed term on 

the OF, through OF 0,0,0,1 , which penalizes solutions close to the projection onto the 

latent subspace of already available observations in the calibration dataset. 

Figure 2.e corresponds to OF 1,0,1,1 , the sum of the terms plotted in Figure 2.a, Figure 

2.c and Figure 2.d. Since the contributions of OF 1,0,0,0  and OF 0,0,1,0  are of a 

similar order of magnitude close to the centre of projection, there are solutions farther 

away from the NS that are equally optimal (with this formulation of the OF) to solutions 

closer to it if 𝑔!! and 𝑔! are given the same values. Finally, Figure 2.f corresponds to 
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OF 0,1,1,1 , that is, the sum of the terms plotted in Figure 2.b, Figure 2.c and Figure 

2.d. In this case any solution will fall, even without hard restrictions, closer to the NS 

than if the weights given to each term were those corresponding to Figure 2.e, even if 

𝑔!! and 𝑔! are given the same values. This serves to illustrate the importance of giving 

the appropriate weight to each term in the objective function to guarantee that more 

desirable solutions are achieved 

    3.2.3. Case Study 2 (cont): solving the optimization problem with different 

weighting terms. 

To better illustrate the usefulness of the new terms, consider the same dataset simulated 

in the previous section 3.2.2. Then, the optimization formulation in Eq. 9 is used ten 

consecutive times to obtain ten different sets of inputs, given 𝑦!"# = 204.86, hard 

constraints on the inputs so that their values in the solution are not below the minimum 

observed ones nor above the maximum observed ones in the calibration dataset, and a 

hard constraint on the Hotelling 𝑇𝛕! so that it does not fall outside of the Hotelling 𝑇𝛕! 

confidence hyperellipsoid. Four variations of the optimization formulation in Eq. 9 are 

used as enumerated in Table 1: 

[Table 1] 

Figure 3 shows the results from these four scenarios. 

[Figure 3] 

Solving the optimization problem when 𝑔! = 0 more than once (even accounting for 

previous results) will always return almost indistinguishable solutions (apparently, a 

single circle in both plots). However, a different one will be obtained each time the 

problem is solved when 𝑔! = 1 (ten different squares in both plots). 
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When comparing Figure 3.a with Figure 3.b, on the other hand, it is possible to assess 

the difference in using 𝑔!" = 1  and 𝑔!" = 0  (Figure 3.a) vs 𝑔!" = 0  and 𝑔!" = 1 

(Figure 3.b). While in the first case the weight of the term associated to the Hotelling 𝑇𝛕! 

is of a similar magnitude to the term associated to achieving 𝑦!"#, in the second case 

the Hotelling 𝑇𝛕!  term does not influence the solution obtained as much. As a 

consequence, one of the solutions in Figure 3.a for 𝑔! = 1 is far enough from the NS to 

be located outside of its confidence region (and, as a consequence, outside of the 

experimental region16, shown in grey in Figure 3), while this is not the case in Figure 

3.b. Also, in Figure 3.a the solution(s) of the optimization problem for 𝑔! = 0 is closer 

to the centre of projection than to the NS, while the opposite is true in Figure 3.b. 

Finally, Figure 3 also illustrates how a portion of the NS (the segment within the grey 

area) meets all of the hard constraints imposed on the solution. This also highlights the 

importance of assessing: 

i) if a more convenient formulation of the optimization problem would require 

dismissing the terms associated to soft constraints on the quality attributes in 

the objective function (i.e. 𝑔!! = 𝑔!! = 1) and imposing, instead, hard 

constraints on them, such that the solution will be exactly on the NS and 

with smallest leverage (and therefore a narrower prediction confidence 

interval for the prediction of the quality attribute/s); 

ii) if the prediction error is not of concern at this stage, thus considering all the 

combinations of inputs/scores on the NS as ‘equally good’ solutions (which 

would, in fact, require defining this subspace instead of solving the 

optimization problem). 

    3.3. Tackling the minimization/maximization problem 
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    3.3.1. Theoretical framework 

As illustrated in Figure 2, the first term in the objective function of the optimization 

problem as formulated in Eq. 9 penalizes solutions far away from the hyperplanes 

defined by the NS corresponding to a vector of ‘desired values’ for the considered 

outputs/quality attributes. This may present some issues when such ‘desired value’ is 

not a specific one, but instead the value for the corresponding quality attribute is to be 

minimized or maximized.  

One possible approach may consist on defining such ‘desired values’ as the 

minimum/maximum feasible ones if known, or as arbitrarily low/high values otherwise. 

To illustrate why such approach may not be the most appropriate, consider a scenario 

for which the information in Table 2 is	 available concerning two hypothetical output 

variables 𝑦!  and 𝑦! , for their average, minimum and maximum values and their 

standard deviation in the calibration dataset used to fit the PLS-regression model, as 

well as their minimum and maximum feasible values. 

[Table 2] 

Consider now three different scenarios: 

1. Both 𝑦! and 𝑦! are to be maximized. If the vector of desired values for the 

outputs is defined as 𝐲!"#! = 1000 120 , the difference between 𝒚!"#,! and 

the maximum observed value for 𝑦!  is ~556 standard deviations, while the 

difference between 𝑦!"#,! and the maximum observed value for 𝑦! is less than 3 

standard deviations. Therefore, defining 𝚪! = 𝐈!, 𝐈! being the [2×2] identity 

matrix, makes it look like the same importance is being given to achieve the 

‘desired’ (i.e. maximum) value for both outputs. However, accomplishing this 

goal for the first output is being given ~189 times as much weight as achieving it 
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for the second one. This will only not be a problem when the combinations of 

inputs (e.g. process conditions) that maximize both 𝑦! and 𝑦! are the same. 

2. Both 𝑦! and 𝑦! are to be minimized. In this case, if the vector of desired values 

for the outputs is defined as 𝐲!"#! = 30 0 , the difference between 𝑦!"#,! and 

the minimum observed value for 𝑦!  is ~8.8 standard deviations, while the 

difference between 𝒚!"#,!  and the minimum observed value for 𝑦!  is ~26.5 

standard deviations. In contrast to the previous scenario, when 𝚪! = 𝐈! the goal 

of minimizing 𝑦! is being given roughly 3 times the weight given to minimizing 

𝑦!. Again, this will only not be a problem when the combinations of inputs that 

minimize both 𝑦! and 𝑦! are the same. 

3. 𝑦! is to be minimized/maximized, and 𝑦! is to take a specific desired value, or 

vice versa. A similar issue to that in the two previous cases occurs here, to a 

higher or lower extent depending on which variable is to be 

minimized/maximized, and the desired value for the other one. 

It can then be concluded that this way of defining 𝐲!"# (or 𝐝!"#) may be inadequate in 

most cases, especially if a feasible minimum or maximum is not known or defining one 

does not make sense from a practical point of view (in which case an arbitrarily low or 

high value would be set). To understand how common these scenarios can be, consider 

that 𝑦! and 𝑦! may represent a temperature, pressure, mass or volume of production, or 

yield, just to mention some examples. It is easy to see how these variables present 

values that are usually orders of magnitude apart from each other on average, or whose 

variability significantly differ from one another.  

The proposed approach takes into account that any solution of the optimization problem 

as formulated in Eq. 9 may be not valid (optimality aside). In particular, no solution 
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outside of the Hotelling 𝑇! confidence hyperellipsoid, for a given confidence level, will 

be accepted, independently of any other restrictions imposed on the inputs or outputs or 

the feasible minimum or maximum values for any variable. Therefore, not accounting 

for additional constraints, the lowest and highest predicted values for a quality attribute 

according to the PLS-regression model will be those for two sets of scores located on 

opposite extremes of the Hotelling 𝑇! confidence hyperellipsoid. To identify them, 

consider that the vector 𝐯! orthogonal to the NS associated to any given value of the r-

th quality attribute, and defined as the transpose of the r-th row of 𝐕 in Eq. 6, provides 

the direction of maximum variability for such attributeiv. Consider also that the equation 

of the Hotelling 𝑇! confidence hyperellipsoid can be written as: 

𝛕! ·
𝚲!!

𝑇!"#!
· 𝛕 = 1 (13) 

And, 𝚲!! being a diagonal matrix, the vector normal to such hyperellipsoid on a point 

𝛕!! on its surface, 𝐧𝛕!!, is the same as the vector orthogonal to the hyperplane that is 

tangent to such hyperellipsoid at that point23. Therefore: 

𝐧𝛕!! =
2
𝑇!"#!

· 𝚲!! · 𝛕!! (14) 

If 𝛕!! is the set of scores associated to the combination of inputs theoretically (i.e. 

according to the PLS-regression model) guaranteeing the maximum achievable value 

for the r-th quality attribute without reaching outside of the Hotelling 𝑇! hyperellipsoid 

for a given confidence level, then 𝛕!! is a point that is located simultaneously on such 

hyperellipsoid, and on the NS associated to the maximum achievable value for the r-th 

quality attribute, which will be the hyperplane tangent to the hyperellipsoid at 𝛕!!. 
																																																								
iv	As	 discussed	 in	 16,	 since	𝐯! 	is	 a	 vector	 orthogonal	 to	 the	 r-th	 NS,	 it	 is	 also	
orthogonal	 to	 all	 directions	 of	 null	 variability	 for	 the	 r-th	 quality	 attribute,	 and	
therefore	provides	its	direction	of	maximum	variability	
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Therefore, 𝐧𝛕!!  and 𝐯!  will be two vectors that are parallel to each other and, as a 

consequence: 

𝐧𝛕!!

𝐧𝛕!!
! · 𝐧𝛕!!

=
𝐯!
𝐯!! · 𝐯!

𝛕!!
! ·
𝚲!!

𝑇!"#!
· 𝛕!! = 1

 (15) 

On the other hand, if 𝛕!! is the set of scores associated to the combination of inputs 

theoretically guaranteeing the minimum achievable value for the r-th quality attribute 

without reaching outside of the Hotelling 𝑇! hyperellipsoid for a given confidence 

level, then: 

𝐧𝛕!!

𝐧𝛕!!
! · 𝐧𝛕!!

=
−𝐯!
𝐯!! · 𝐯!

𝛕!!! ·
𝚲!!

𝑇!"#!
· 𝛕!! = 1

→ 𝐧𝛕!! = −𝐧𝛕!! → 𝛕!! = −𝛕!! (16) 

Eq. 15 and Eq. 16 can then be solved to obtain 𝛕!! and 𝛕!!, and from them the maximum 

and minimum achievable values for the r-th quality attribute while inside the Hotelling 

𝑇! confidence hyperellipsoid, respectively. The PLS-regression model is then used to 

predict the values for the outputs or quality attributes of interest for the sets of scores 𝛕!! 

and 𝛕!!. These values can be used as the r-th element of 𝐝!"# in the optimization 

problem formulated in Eq. 9. While using them does not necessarily guarantee that 

balanced weightings are implicitly given to the goals of maximizing/minimizing each of 

the quality attributes, the procedure to define them does not depend on any “feasibility 

constraints” or on the decision of the person resorting to the optimization problem as 

formulated in Eq. 9 to give them arbitrarily large/small values. Incidentally, if a single 

quality attribute is considered for the optimization, and if 𝛕!! or 𝛕!! meet all other hard 
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constraints imposed on the solution of the optimization algorithm, these scores can be 

considered the solution of the algorithm itself when no soft constraint is imposed on its 

Hotelling 𝑇𝛕! (i.e. 𝑔! = 0). 

    3.3.2. Case Study 3 

To better illustrate the impact of defining the ‘desired values’ one way or the other (i.e. 

setting them to the minimum/maximum feasible ones vs using the proposed approach), 

data were simulated following the procedure explained by Arteaga & Ferrer24,25 to 

generate multivariate normal data. Fifty observations with six variables (four considered 

as inputs (𝑥!) and two as outputs (𝑦!)) following the correlation structure shown in 

Table 316 were simulated. 

[Table 3] 

Then, the data corresponding to variables 𝑦! and 𝑦! were transformed to have mean and 

standard deviation equal to the hypothetical dataset in Table 2. For graphical 

representation purposes a PLS-regression model fitted with two LVs 

(R2(𝐗,2LV)=0.642; Q2(Y,2LV)=0.858) is chosen. Scenarios 1 and 2 presented below 

Table 2 are solved first using as 𝑦!"#,! and 𝑦!"#,! the maximum (for scenario 1) and 

minimum (for scenario 2) feasible values shown in Table 2, and then with the approach 

presented in this paper. Figure 4 presents the different results obtained in both cases. 

[Figure 4] 

Figure 4 shows clearly what is expected to happen when using the minimum (or 

maximum) feasible values for the corresponding output variables, i.e. the solution being 

conditioned by the differences in variability and ‘desired values’ for each variable with 

respect to the minimum or maximum ones in the calibration dataset. On the other hand, 

using the proposed approach to define 𝐲!"# to tackle the minimization/maximization 
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problem leads to intermediate solutions that do not minimize/maximize any of the two 

outputs, which makes sense given that the weight given to achieving such values is the 

same (i.e. 𝚪! = 𝐈!) and both goals compete with each other. Therefore, this approach 

guarantees that the importance given to getting the ‘desired values’ for the 

minimization/maximization problem remains as indicated by 𝚪!. 

4. Conclusions 

This paper focused on three important limitations of the PLS-regression model-based 

optimization approach in the latent space. Namely, the lack of a formulation that allows 

a standardized approach to: 

1. Optimizing any quality attribute that can be expressed as a linear combination of 

outputs. 

2. Obtaining new solutions in subsequent optimizations and/or solutions that span 

previously unexplored areas of the knowledge space without relying on changes 

in the hard or soft constraints imposed on these solutions (on the inputs, outputs, 

or any combination of them). 

3. Tackling the issue of trying to minimize/maximize one or more quality attributes 

using the quadratic formulation without unintentionally giving too much/too 

little weight to doing so for one or more quality attributes with respect to others. 

As illustrate by the results presented, the proposed formulation of the optimization 

problem allows efficiently solving all of these limitations, which are present in some of 

the most similar formulations in the literature13.  

Furthermore, the inclusion of both soft and hard constraints related to the confidence 

region of the NS is also proposed, mainly for exploratory purposes, in order to 

acknowledge the increase in the uncertainty in the definition of the NS with the leverage 
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along its extension. The optimization problem, formulated this way, may help in 

obtaining a wider range of sets of inputs that guarantee the desired values for the quality 

attributes of interest (or close to them) in a systematic way. While not addressed in this 

paper, and left for future work, such approach may help to improve the estimation of the 

DS by gathering more samples within the subspace of the KS where the DS is expected 

to be located. 

As with past formulations in the literature, the one proposed in this paper resorts to 

quadratic programming and will occasionally suffer from issues such as non-

convergence and the presence of local minima. Future work will attempt to alleviate 

these limitations.  
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Appendix. Optimization of a linear combination of outputs 

Consider any set of output variables 𝐲!"! for which the desired value for the r-th quality 

attribute of interest, 𝑑! , is met, that is 𝐚!! · 𝐲!"! = 𝑑!"#,!. The first term in the objective 

function in the optimization problem as formulated by Tomba et al. 13 is expressed as a 

function of 𝐲!"# and 𝐲!"#, and not 𝐚!! · 𝐲!"# and 𝑑!"#,! (see Eq. 2). To evaluate the 
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adequacy of this formulation when the r-th quality attribute is taken into account, 

instead of one or more outputs, consider the following objective function: 

min
𝛕

𝑔! · 𝐚!! · 𝐲!"# − 𝑑!"#,!
! · γ! · 𝑠!!

!! · 𝐚!! · 𝐲!"# − 𝑑!"#,! + 𝑔! ·
𝜏!!

𝑠!!

!

!!!

 (A.1)  

Where γ! is a scalar that represents the weight given to achieving the desired value for 

the r-th quality attribute of interest, such that the sum of the absolute values for the 

weights given to achieving the desired values for each quality attribute is one (if only 

one quality attribute is considered, as in this case, then γ! = 1); and 𝑠!!
!! is the inverse 

of the estimated variance for the r-th quality attribute from the observations in the 

calibration dataset. 

For the objective functions in Eq. 2 and Eq. A.1 to be equivalent, the first term in each 

of them must be so. This first term in Eq. A.1 can be reformulated as: 

𝐲!"# − 𝐲!"!
! · γ! · 𝐚! · 𝑠!!

!! · 𝐚!! · 𝐲!"# − 𝐲!"!  (A.2)  

where 𝐲!"! is any set of outputs that meets that 𝐚!! · 𝐲!"! = 𝑑!"#,!. When 𝐲!"! in Eq. 

A.2 coincides with 𝐲!"# in Eq. 2, then: 

𝚪 · 𝐃𝐬𝐘
!! = γ! · 𝐚! · 𝑠!!

!! · 𝐚!! (A.3)  

It must be noted, however, that the estimated variance for the quality attribute from the 

observations in the calibration dataset, 𝑠!!
! , is calculated as: 
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𝑠!!
! = 𝐚!! · 𝐒𝐲 · 𝐚!

𝐒𝐲 =

𝑠!!
! cov 𝑦!,𝑦!

cov 𝑦!,𝑦! 𝑠!!
! ⋯ cov 𝑦!,𝑦!

cov 𝑦!,𝑦!
⋮ ⋱ ⋮

cov 𝑦! ,𝑦! cov 𝑦! ,𝑦! ⋯ 𝑠!!
!

𝑠!!
! =

𝑦!,! − 𝑦!
!!

!!!

𝑁 − 𝑑𝑓

cov 𝑦! ,𝑦!! =
𝑦!,! − 𝑦! · 𝑦!,!! − 𝑦!!!

!!!

𝑁 − 𝑑𝑓

 (A.4)  

𝑦! and 𝑦!,! being, respectively, the average and n-th measured value for the l-th output 

of the model calibration dataset, and 𝑑𝑓 the degrees of freedom consumed by the 

model. Therefore: 

𝚪 = γ! · 𝐚! · 𝐚!! · 𝐒𝐲 · 𝐚!
!! · 𝐚!! · 𝐃𝐬𝐘

!  (A.5)  

 

Since 𝚪 in the objective function in Eq. 2 is defined as a diagonal matrix of weightings, 

the objective function in Eq. 2 and the one formulated in Eq. A.1 will only be 

equivalent, with 𝚪 remaining a diagonal matrix, if the outputs are uncorrelatedv. 
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Table 1.Case Study 2 (cont): values given to the weighting terms 

in the objective function in four optimization problem scenarios	

 𝑔!" 𝑔!" 𝑔! 𝑔! 

i) 1 0 1 0 

ii) 1 0 1 1 

iii) 0 1 1 0 

iv) 0 1 1 1 
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Table 2. Characterization of a hypothetical Y dataset with two 

output variables 

Variable	
Dataset	 Feasible	

Mean	 Std.	dev	 Minimum	 Maximum	 Minimum	 Maximum	

𝑦!	
50	 1.7	 45	 55	 30	 1000	

𝑦!	 95	 3.4	 90	 110	 0	 120	
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Table 3. Case Study 3: Correlation matrix used to generate the 

dataset 

 𝑥! 𝑥! 𝑥! 𝑥! 𝑦! 

𝑥! 0.45 
 

   

𝑥! 0.54 0.50 
 

  

𝑥! 0.30 0.55 0.70 
 

 

𝑦! 0.50 -0.10 -0.15 0.20  

𝑦! -0.30 0.34 0.50 -0.15 -0.70 

 

 
	


