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PMP and Climate Variability and Change 1 

Jose D. Salas1, Michael L. Anderson2, Simon M. Papalexiou3, 4, and Felix Frances5 
2 

Abstract  3 

A state-of-the-art review on the Probable Maximum Precipitation (PMP) as it relates to climate 4 

variability and change is presented. The review consists of an examination of the current practice 5 

and the various developments published in literature.  The focus is on relevant research where the 6 

effect of climate dynamics on the PMP are discussed as well as statistical methods developed for 7 

estimating very large extreme precipitation including the PMP. Often confusion arises on the 8 

interpretation of extreme events without considering the effect of low frequency components of 9 

the climate system, their probabilistic nature that may be described by heavy-tail models, and the 10 

effect of the uncertainty of several factors determining them, such as atmospheric moisture, its 11 

transport into storms, wind, and their future changes.  The review examines these issues as well as 12 

the underlying historical and proxy data.  In addition, we summarize the procedures and guidelines 13 

established by some countries (e.g. USA, Australia, Canada, UK, EU, and others), states (e.g. 14 

California, Quebec), and the current manual of the World Meteorological Organization for 15 

estimating the PMP.  In doing so, we paid attention whether the current guidelines and research 16 

published literature take into consideration the effects of the variability and change of climatic 17 

processes and the underlying uncertainties.   18 
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Introduction  29 

The evaluation and design of some hydraulic structures such as spillways, flood defenses, and 30 

protection of nuclear power plants, whose failure may cause the loss of human lives and significant 31 

damages to property and the environment are generally based on extreme events of  precipitation 32 

and flow that have very small likelihood of occurrence.  Before the 1950’s concepts and methods 33 

were developed such as the maximum possible precipitation (MPP), which gave the impression 34 

that such quantity (and correspondingly the ensuing flood), would never be exceeded and 35 

consequently the structures designed based on them would have zero risk of failure.  However, as 36 

additional data of extreme occurrences were collected, it became clear that modifications needed 37 

to be made and eventually the MPP was abandoned and replaced by the probable maximum 38 

precipitation (PMP) and the corresponding probable maximum flood (PMF), which should be 39 

understood as being quantities with very small chance of being exceeded. Thus, the PMP definition 40 

which has been widely accepted in literature is: “theoretically the greatest depth of precipitation 41 

for a given (storm) duration that is physically (meteorologically) possible over a given size storm 42 

area at a particular geographical location at a certain time of the year” (WMO 1986, 2009). The 43 

referred definition and PMP estimates have “no allowance made for long-term climatic trends”. 44 

PMP is a theoretical concept but can be estimated. It is one of the inputs used to determine the 45 

PMF. Thus, various methods have been developed to determine the PMP and PMF.  In this review 46 

we focus on methods related to the PMP. They are generally described in some detail in the World 47 

Meteorological Organization (WMO) manuals (e.g. WMO 2009), which include: (1) the local 48 

method (local storm maximization model), (2) the transposition method (storm transposition 49 

model), (3) the combination method (temporal and spatial maximization of storm), (4) the 50 

inferential method (theoretical model), (5) the generalized method, and (6) the statistical method. 51 

The first five are based on physical hydrometeorological laws while the last one is based on 52 
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statistical laws.  In addition, the referred WMO manual includes applications for some countries 53 

such as US, Canada, China, Australia, India, and basins located in orographic and tropical regions.  54 

Furthermore, several countries developed their own manuals for estimating PMP and PMF even 55 

though the referred WMO manual has been the primary guide.  And in some cases, updates have 56 

been made as more data became available, more applications and experience gained, and the 57 

estimation methods improved. The referred hydrometeorological and statistical methods are 58 

further reviewed in the following sections considering climate variability and change and the 59 

sources and methods to account for uncertainties. 60 

Since the last decades of the 20th Century advances have been made on our understanding of 61 

the dynamics of the climate system, its natural variability, and the occurrence and effects of large 62 

scale low and high frequency phenomena such as ENSO, PDO, AMO, NAO, and others.  63 

Depending on the location of the earth, the effect of these systems on extreme precipitation can be 64 

substantial.  In some cases, precipitation data of a given region may be available during say a 30-65 

yr period coinciding with a cold state of the AMO, and consequently the precipitation extremes 66 

and PMP estimates based on data during such period would be bias downward. Furthermore, it 67 

also has become clear the effect of human interference on the environment and on the climate 68 

system, enhancing its natural variability (e.g. global warming) and causing changes on 69 

hydrometeorological processes and the various components of the hydrological cycle thereby 70 

intensifying extreme events.  71 

The main objective of this paper has been to review literature on the various methods for 72 

estimating the PMP and focus on what is being done to consider the effect of climate variability 73 

and change on extreme events such as the PMP. The occurrence of such large extreme events is a 74 

complex process and consequently the methods developed to estimate them involve several 75 
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sources of uncertainties. The Hydrometeorological and Statistical methods that are available for 76 

estimating the PMP are reviewed in the following two sections. The Statistical Methods section 77 

includes two subsections, namely, the Traditional Statistical Method (due to Hershfield) and 78 

Statistical Alternatives. In the referred sections and subsections, the extensions, improvements, 79 

applications, and the studies made for considering the effects of climate variability and change and 80 

accounting for uncertainties are included. Next is a section summarizing the guidelines and studies 81 

available in some countries.  The final section includes some comments and remarks.        82 

PMP Based on Hydrometeorological Methods  83 

A number of methods exist to quantify the PMP.  The origins of these methods often start with 84 

observed extreme precipitation events and explore the meteorological conditions surrounding the 85 

event.  Precipitation processes related to PMP estimates in the United States (US) are described in 86 

the US Weather Bureau’s Technical Paper 38, hereafter referred as TP38, (Weather Bureau 1960) 87 

including atmospheric moisture, dewpoint temperature, lifting and cooling processes, horizontal 88 

convergence, and orographic processes.  Guidelines for PMP estimation are provided by the US 89 

Weather Bureau and subsequently by the US National Weather Service in its hydrometerological 90 

report (HMR) series.  Tomlinson and Kappel (2009) provide an overview of the development of 91 

the HMR series. A graphic showing the latest reports and their regional coverage for the US is 92 

shown in Fig.1. Note the regionalization of the reports and the specialized storm spatial extents for 93 

the mountainous areas in western North Carolina and neighboring states.  94 

In HMR 36 (US Weather Bureau 1969), the guidelines for probable maximum precipitation 95 

computations are presented for California.  In a companion volume, HMR 37 (Weaver 1962), the 96 

meteorology of major flood producing storms are discussed noting different characteristics of 97 

storms that produce extreme precipitation for California and the west coast of the United States.  98 
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HMR 36 was later updated to HMR 58 for PMP computations and a companion volume HMR 59 99 

for probable maximum flood computations.  The HMR guidelines discuss both large-scale frontal-100 

type storms as well as more localized downpours from convective events.  Guidance is provided 101 

to scale the precipitation for area to create a basin-average precipitation depth for a given basin 102 

area over a given time period ranging from 1 to 72 hours.  East of the Continental Divide, 103 

precipitation extremes are associated with convective events of anomalous strength or duration.  104 

These convective events can arise from landfalling tropical systems like hurricanes or from 105 

summer convective activity that does not move off from a given location.  Figure 1 shows the 106 

HMR documents that treat the estimation of these types of extremes. 107 

  108 

Fig. 1. Map of the US indicating the various regions and states where 109 

the HMRs apply for estimation of PMP and PMF  110 

(source: (https://www.nws.noaa.gov/oh/hdsc/studies/pmp.html)) 111 

 112 
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A common approach for exploring PMP estimates is working from an observed extreme.  113 

The characteristics of that extreme event like those described in TP38 are explored for limiting 114 

conditions to the amount of precipitation. Explorations can be made to determine if relaxing those 115 

limiting conditions results in a higher amount of precipitation.  To expand the population of 116 

extreme events, some studies have looked at transposing nearby storms over the desired study 117 

location.  Such transpositions should be examined for meteorological consistency for consideration 118 

in the expanded population.  Extrapolation of individual variables for maximizing possible 119 

precipitation can be difficult given the nonlinear nature of atmospheric processes and their 120 

interactions in precipitation generation.  121 

An alternative approach to represent the nonlinear processes governing storm formation 122 

and associated precipitation processes is the use of atmospheric models. The scale of the simulation 123 

matters both for convective versus larger-scale, frontal storm structures.  Interaction with 124 

topography through orographic processes is also important to simulate.  Precipitation 125 

parameterization and cloud physics parameterization choices are also important.  Abbs (1999) used 126 

a numerical model of the atmosphere to evaluate assumptions used in PMP analyses.  Parzybok 127 

and Tomlinson (2006) explore the use of Geographic Information Systems and radar data in site-128 

specific analyses of PMP.  Ohara et al. (2011) describe a method for maximizing precipitation over 129 

a select watershed in California.  In more location-specific analyses, Ishida et al. (2014) used a 130 

method called boundary condition shifting to realign a number of California’s historical extreme 131 

storms to pass over selected watersheds.  In a companion paper (Ishida et al. 2015), the authors 132 

relaxed the atmospheric moisture boundary condition to maximize the amount of moisture entering 133 

the region to evaluate the increase in precipitation.  And in a third study Ishida et al. (2016) 134 

evaluated the impact of air temperature and moisture holding capacity on probable maximum 135 
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precipitation.  Further work on modeling PMP in California was accomplished by Diaz et al. 136 

(2017), Toride et al. (2017), and Ohara et al. (2017).  137 

As the atmosphere continues to warm in the 21st Century, it will be important to better 138 

understand increases in atmospheric temperature and associated changes in ocean temperatures 139 

and heat content, and changes on the land surface all interact to drive extreme precipitation 140 

formation.  Efforts like Dettinger (2011) exploring processes associated with atmospheric rivers 141 

in GCMs to evaluate potential future extreme precipitation offer insights into what may happen 142 

with PMPs.  Kunkel et al. (2013) explored expected changes in atmospheric moisture content and 143 

changes in winds associated with climate change could impact estimates of the PMP.  They found 144 

that moisture content changes have a larger impact than expected changes in wind fields.  Toride 145 

et al. (2018) explored long term trends in extreme precipitation in watersheds feeding into Shasta 146 

Dam in Northern California. Recent extremes like super-storm Sandy or Hurricane Harvey have 147 

pushed the boundaries of historical estimates of PMP and suggested that further work on these 148 

types of events in a warmer world are warranted (e.g. Kao et al. 2019).  Villarini et al. (2013) 149 

examine historical precipitation observations to identify increasing frequencies of heavy 150 

precipitation in the northern part of the Central United States and points to the increasing 151 

temperatures and associated water vapor transport as possible causes.  Rastogi et al. (2017) used a 152 

numerical model to explore potential impacts to PMP estimates due to a warming atmosphere for 153 

a region in the southeast United States.  Their results suggest further study of how increasing 154 

extremes with warming temperatures can influence the PMP.  Mahoney et al. (2018) explore 155 

climate change and PMP estimates for dam safety for Colorado and New Mexico.    156 

Even though the PMP estimation based on hydrometeorological methods has become the 157 

preferred method because it involves the underlying dynamic and thermodynamic processes, 158 
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however it is quite complex and despite the advances made in numerical and computational 159 

algorithms and data collection techniques, still includes a large number of uncertainties. Micovic 160 

et al. (2015) discuss in some detail the factors that influence the PMP estimation such as moisture 161 

maximization, storm separation method, temporal and spatial characteristics, and historical storm 162 

data. In addition, they point out that climate change will likely change moisture maximum, storm 163 

efficiencies, precipitation intensities, wind speeds, and freezing levels. Also as mentioned above, 164 

the simulation studies by Kunkel et al. (2013) based on several climate models indicate 165 

approximately 20-30 % increase in maximum water vapor concentrations, one of the key inputs in 166 

PMP estimation.  Thus Kunkel et al. concluded that PMP values will increase in the future due to 167 

higher levels of atmospheric moisture content and higher levels of moisture transport into storms. 168 

Micovic et al. (2015) considering the PMP estimates for La Joie basin in Canada, proposed 169 

a method for assessing PMP uncertainty by identifying the uncertain parameters, determining the 170 

plausible range of parameter values, and characterize the distribution of the range of values of each 171 

parameter.  They applied Monte Carlo simulation to determine the sensitivity of the 24-hr PMP 172 

and the empirical distribution of the PMP estimates. The method included the contribution from 173 

five sources of uncertainty.  The results suggest the PMP estimate to be the most sensitive to the 174 

factors related to storm efficiencies and in-place moisture maximization. And the resulting 175 

distribution give empirical quantiles (e.g. the 90%) of the PMP.  Further details for their method 176 

and results including the uncertainty bounds for the 48-hr and 72-hr PMPs can be found in the 177 

reference above. 178 

PMP Based on Statistical Methods  179 

Traditional Statistical Method  180 

The statistical method commonly utilized in practice, particularly for basins lacking 181 

hydrometeorological data, has been originally proposed by Hershfield (1961, 1965, 1977) and 182 
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popularized internationally by WMO (1973, 1986, 2009).  Hershfield’s statistical method is based 183 

on Chow’s frequency equation where a quantile of the underlying distribution is expressed as a 184 

function of the sample mean, the sample standard deviation, and a frequency factor K (e.g. Chow 185 

1951; Chow et al. 1988).  In the typical procedure for fitting the empirical frequency distribution 186 

of the data at hand using a probability distribution function, there is a one-to-one correspondence 187 

between a quantile and the value of K.  However, in Hershfield’s application of the frequency 188 

equation the value of K (denoted as Km ) was established after analyzing a large number of 189 

historical data of extreme storms of annual daily maximums so that an upper bound of K was 190 

determined, which was bigger than all values of K obtained from the historical sample.  Hershfield 191 

realized that since the PMP estimated from such an equation (Eq. 1a below) was a function of the 192 

mean, the standard deviation, and the factor Km, which were quantities obtained from a limited 193 

historical sample, he developed a procedure for adjusting them to account for the sample size and 194 

additional improvements as indicated below.  195 

Hershfield (1961) method was developed based on 24-hour annual maximum precipitation 196 

data collected worldwide at 2,645 stations (90% of which were stations located in the United States 197 

and the rest of them from other parts of the world), which gave a total of about 95,000 station-198 

years data.  The method was based on the equation 199 

n m nPMP X K S       (1a) 200 

where nX  is the mean annual maximum daily precipitation, nS  is the corresponding standard 201 

deviation, and Km is the factor suggested by Hershfield.  As indicated above, Hershfield suggested 202 

adjusting  nX  and nS  for sample size and for the effect of outliers.  For this purpose, Hershfield 203 

(1961) provided graphs from which one can obtain the appropriate adjustment factors.  These 204 

graphs are also available in the WMO manuals (e.g. WMO, 2009).  Another correction suggested 205 
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by Hershfield was to account for the difference that exists between the daily maximum values and 206 

the 24-hour maximums regardless of the calendar day.  207 

Based on the extreme precipitation data of the 2,645 stations, Hershfield (1961) found that the 208 

value of Km in Eq.(1a) varied in the range 1.00 - 14.99 and that Km ranged between 13.00 and 14.49 209 

for only 4 stations.  Consequently, Hershfield suggested utilizing the value of Km =15 for 210 

estimating the PMP.  However, additional studies by Hershfield (1965, 1977) indicated that Km 211 

varied with the storm duration and the mean annual maximum precipitation, therefore he provided 212 

additional relations for determining the value of Km for practical applications.  For example, for a 213 

24-hr PMP Hershfield (1977) gave 0.000965 (24)(24) 19(10) nX
mK   in which Km (24) is the factor  214 

Km for 24-hr storm duration and (24)nX  is the 24-hr mean annual maximum precipitation.    215 

Furthermore, other studies appeared in literature applying and modifying Hershfield’s method 216 

and documenting the most appropriate values of Km according to the climatic region of the study 217 

areas.  For example, Mejía and Villegas (1979) suggested the envelopes for determining Km as a 218 

function of the mean annual maximum precipitation for Colombia.  And similar studies can be 219 

found for other locations of the world such as, the southern half of the Indian Peninsula (Dhar et 220 

al. 1980), the Alpine Region in Austria (Nobilis et al. 1990), the Indian Peninsula or estimating 221 

the 2-day duration PMP (Rakhecha et al. 1992), the North Region of India (Rakhecha and Soman 222 

1994), the Czech Republic (Rezacova et al. 2005), the South Region of Malaysia (Desa and 223 

Rakhecha 2007), and the Cataluña Region of Spain (Casas et al. 2008).  In addition, Lin and Vogel 224 

(1992) rederived the expression of the factor Km and provided some criteria for its application. 225 

Casas et al (2016) using a large data base of storm rainfall for the Iberian Peninsula, applied 226 

Hershfield’s method to estimate PMP for 24-hr rainfall duration based on the factor Km determined 227 

as a function of nX (24). And based on scaling concepts determined the PMP for sub-daily (hourly) 228 
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durations. Lan et al (2017) indicated that using a standardized factor denoted by Φ is more 229 

appropriate for estimating PMP than using Km for China, although other studies (e.g. Lin and 230 

Vogel, 1993) indicated the opposite. They provided relations between Φ and Km and comparisons 231 

based on data from Hong Kong. 232 

Hershfield (1961) recognized the fact that Km in Eq.(1a) is a random variable and illustrated 233 

this point by associating the values of Km with the return period using as examples the Gumbel and 234 

Lognormal distributions.  His rationale was finding a value (an envelope function) that could be 235 

applicable for a given storm duration and climatic region.  Such an envelope was obtained based 236 

on a large data base of numerous storms that have been observed in historical records at similar 237 

locations.  In finding the envelope for KH, Hershfield (1965, p. 967) argued that “enveloping Km 238 

as a function of the mean serves a transposition purpose.”  239 

On the other hand, Koutsoyiannis (1999) suggested fitting the general extreme value (GEV) 240 

distribution function to Hershfield’s data because it deals with extreme precipitation events.  Thus, 241 

after carefully re-examining Hershfield’s results Koutsoyiannis concluded that the Km =15 242 

suggested by Hershfield corresponds approximately to a return period of 60,000 years based on 243 

the GEV distribution.  Koutsoyiannis also illustrated his alternative approach using 136 years of 244 

data of annual maximum daily rainfall in Greece.  As expected, such a long record offers the 245 

alternative of fitting the frequency distribution of the data and finding quantiles for any desired 246 

return period.  Likewise, Papalexiou and Koutsoyiannis (2006) argued that the estimates of the 247 

PMP based on maximization of storm moisture do not appear having an upper bound.  Their 248 

analysis of dewpoint temperature, atmospheric moisture, and maximized precipitation showed that 249 

no upper bounds were evident.  Therefore, they suggested finding design values of maximum 250 

precipitation using the frequency analysis of the observed data based on the GEV distribution.  251 

Douglas and Barros (2003) approached the design of maximum precipitation using a completely 252 
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different method, which is based on applying multifractal concepts for determining what they 253 

called the fractal maximum precipitation (FMP) and applied their approach to the eastern United 254 

States.  255 

When using short records, there is a lack of information on large hydrological events, which is 256 

one of main drawbacks in flood frequency analysis (Merz and Bloschl 2008). In other words, there 257 

is a need of “temporal information expansion” as indicated by Merz and Bloschl to obtain results 258 

concerning quantiles of large return periods reliable enough.  For this reason, several studies of 259 

high return period extreme floods based on historical and paleo-hydrologic data have been 260 

proposed (e.g. Stedinger and Cohn 1986; Frances et al. 1994; Frances, 1997; England et al. 2004) 261 

and Botero and Frances (2010) applied them for PMF analysis.  While these techniques have been 262 

developed mostly for frequency studies of extreme flood data, they are briefly mentioned in this 263 

review because of the obvious relation of the PMP and PMF. A more in-depth review of the various 264 

alternative statistical methods is included in the following section.  265 

Despite that the traditional statistical method by Hershfield (1961) was developed over 50 266 

years ago and the many advances made on hydrometeorological based methods, Hershfield’s 267 

method with modifications or not continues to be widely utilized in practice in many countries 268 

particularly in locations lacking hydrometeorological data as indicated by many papers published 269 

in the last few years such as Japan (Alias et al. 2013), India (Chavan and Srinivas 2017), and 270 

Thailand (Wangwongwiroj and Khemngoen 2019).  Nevertheless, the practice of designing and 271 

evaluating flood related structures based on such PMP (and the ensuing PMF) have been criticized 272 

among others because of the many uncertainties involved in determining them (e.g. Dawdy and 273 

Lettenmaier 1987.) The tendency in the last two decades has been modifying the traditional 274 

statistical approach to include uncertainty and risk analysis in the estimation and selection of the 275 

PMP for project design or evaluation. They are discussed in the reminder of this section.  276 
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Furthermore, statistical alternatives based on fitting probability distribution functions as suggested 277 

by Koutsoyiannis (1999) and many others, are discussed in the following section. 278 

Several studies have recognized that the estimation of the PMP using hydrometeorological and 279 

statistical methods involve many uncertainties (e.g. Mamoon and Rahman 2014; Salas et al. 2014; 280 

Micovic et al. 2015; Singh et al. 2018).  Regarding Hershfield’s traditional statistical PMP 281 

estimation, Salas et al (2014) proposed a simple method to consider the uncertainty of the PMP 282 

arising from the uncertainty of the sample mean nX  and the sample standard deviation nS . 283 

Referring to the original equation (1a) used by Hershfield (1961), one may observe that the PMP 284 

is a function of the sample mean nX , the standard deviation nS , and the coefficient Km.  Since the 285 

sample statistics are random variables, then the PMP is an estimator that can be denoted as P̂  and 286 

Eq.(1a) is rewritten as   287 

     ˆ
n m nP X K S       (1b) 288 

where n represents the sample size (number of years of data).  Also let us recall that  289 





n

i
in X
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2)()]1/(1[  290 

where nXXX ,...,, 21  is a random sample from an unknown distribution with population mean   291 

and variance 2 .  Because nX  and nS  are uncertain quantities and considering Km as a constant 292 

(i.e. a maximum value for the region where the basin of interest is located), Salas et al. (2014) 293 

determined the mean and the variance of the PMP estimator P̂ .  It may be worth mentioning that 294 

using a constant value of K follows Hershfield’s approach in which K was established after 295 

analyzing data of historical storms that have occurred in the regions of study.  Thus, the uncertainty 296 
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associated with K is accounted for by using an envelope function and as such K is a constant, and 297 

the remaining uncertainty is associated with nX  and nS .  298 

Therefore, it may be shown that the expected value of the estimator P̂  is (Salas et al. 2014) 299 

( / 2)ˆ( )
( 1) / 2 [( 1) / 2]

m
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E P K

n n
 

 
  

   (2) 300 

where   and   represent the mean and the standard deviation of the population, respectively and 301 

)(a  represents the incomplete gamma function with argument a.  Note that in estimating E( P̂ ) 302 

for an actual case the population quantities   and   are replaced by their corresponding sample 303 

estimates (after the appropriate adjustments for outliers as needed as suggested by Hershfield.) 304 

Likewise, the standard deviation of the estimator P̂  of Eq. (1b) can be calculated as  305 

1/22ˆ( ) ( ) ( ) 2 ( , )n m n m n nP Var X K Var S K Cov X S        (3) 306 

where ./)( 2 nXVar n   The terms  )( nSVar  and ),( nn SXCov  depend on the parent distribution. 307 

For example, the normal approximations for determining )( nSVar  and ),( nn SXCov  are 308 

)1(2/)( 2  nSVar n   and 0),( nn SXCov  (Kendall and Stuart 1963).  In general, for any 309 

distribution, it may be shown that the standard deviation )ˆ(P  of Eq.(3a) can be written as 310 
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  (4) 311 

where f is an adjustment factor defined as 2( ) / [ / 2 ( 1)]nf Var S n    and ( , )n nX S  is the 312 

correlation coefficient. Note that for the normal distribution f = 1 and ( , )n nX S =0. Simple tables 313 

and graphs are available for determining f and ( , )n nX S  assuming the Gumbel (Salas et al. 2014) 314 

and log-Gumbel (Salas and Salas, 2016) distributions. And applications can be found in the given 315 

references. 316 
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 In addition, Singh et al (2018b) studied the uncertainty of the PMP estimates when using 317 

envelope curves of the frequency factor Km, the number of stations used for constructing them, and 318 

suggested that basin specific curve should be used rather than Hershfield’s curve. Likewise, the 319 

return period of the PMP was determined by fitting a wide range of probability distribution 320 

functions such as the GEV, log-logistic, log-Pearson 3, and BurrXII for the Brazos River in Texas, 321 

and concluded that the BurrXII was the best distribution for the referred data.  Furthermore, Singh 322 

et al. (2018a) considered the relative contribution of the uncertainties of nX  , nS , and K, on the 323 

uncertainty of P̂  and concluded that the uncertainty due to nX  is more important than the other 324 

two.  325 

Considering the uncertainty of the mean nX  and the standard deviation nS  and the ensuing 326 

uncertainty of the PMP estimator P̂ , Salas et al. (2014) suggested that one can estimate design 327 

values of the PMP as   328 

)ˆ()ˆ(ˆ PcPEPd        (5) 329 

where dP̂  represents a design PMP value and c > 1.  Note that dP̂  is a quantile of the uncertain 330 

quantity P̂  whose distribution is unknown.  In order to have an approximation to the probability 331 

that the PMP estimator P̂  may be smaller or greater than the quantile dP̂ , Salas et al. (2014) 332 

suggested applying Chebyshev’s inequality, which can be expressed as  333 

2

1
1)]ˆ()ˆ(ˆ)ˆ()ˆ([

c
PcPEPPcPEP      (6) 334 

This inequality gives a bound of the probability which does not depend on the distribution of P̂ .  335 

As expected, the probability bound is conservative since one only knows the mean and the standard 336 
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deviation of P̂  but not its distribution.  Applications of this technique can be found in Salas et al. 337 

(2014) and Singh et al. (2018a).  338 

Statistical Alternatives for Estimating PMP:  Probabilistic and Stochastic Methods  339 

Apart from the “standard” statistical method to estimate the PMP, which is based on the seminal 340 

work of Hershfield (1961, 1965, 1977), many methods were devised that introduce a probabilistic 341 

component. These efforts do not only aim to assess the PMP value but also to tackle the major 342 

point of criticism of the PMP concept. Recall that, PMP entails an estimated precipitation depth 343 

(over a given area, duration, and season) that cannot be exceeded. Yet this assumption has been 344 

shown to be unrealistic due to practical and conceptual arguments (e.g., Benson 1973; Dawdy and 345 

Lettenmaier 1987; Koutsoyiannis 1999; Salas et al. 2014). 346 

In this direction, Fontaine and Potter (1989) explored the “Stochastic storm transposition” 347 

method, first introduced by Alexander (1963), further developed by Gupta (1972), and generalized 348 

by the Committee on Techniques for Estimating Probabilities of Extreme Floods (1988) The storm 349 

transposition method, a key concept in estimating the PMP, essentially allows integrating the 350 

probability of occurrence of the storm. Namely, an extreme storm occurring anywhere in a large 351 

meteorological homogeneous region is assumed to have the same probability of occurrence 352 

anywhere else in the region. This allows to extend the number of observed extreme storms and 353 

calculate more reliably the exceedance probabilities of storms at the catchment of interest. 354 

However, Foufoula-Georgiou (1989) highlighted the methodological and conceptual difficulties 355 

of this approach and provided a more rigorous probabilistic storm transposition method and 356 

stressed the importance of storm/catchment interaction. 357 

Hubert et al. (1993) used multifractal theory to provide a formula for the possible maximum 358 

precipitation depth for a given duration and sample size. They argued that the multifractal approach 359 
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reconciles statistics with physics as multiplicative cascades have their basis in the underlined 360 

turbulent process which leads to consistent rainfall representation. Likewise, Douglas and Barros 361 

(2003) also investigated the magnitude of extreme storms for design purposes based on multifractal 362 

methods. They suggested estimates of maximum precipitation that do not violate physical laws. 363 

The key concept was to identify the scaling laws of the observed maximum precipitation, derive 364 

an estimate based on the observations, and use multifractal scaling laws to evaluate extreme 365 

precipitation corresponding to large return periods such as 106
 years; values that may be considered 366 

in engineering practice. Also,  Langousis et al. (2009) used multifractal scale invariance arguments 367 

to develop analytical expressions for intensity-duration-frequency estimation for practical 368 

applications. Casas-Castillo et al. (2018) investigated the fractal property of the rainfall intensities 369 

in Madrid, Spain and confirmed the scaling behavior of the PMP for several durations between 5 370 

min and 24 hr. And García-Marín et al. (2019) used multifractal methods to study hourly rainfall 371 

and the annual maxima in the Umbria Region of Italy.  Interestingly, Veneziano et al. (2009) 372 

argued that under stationarity and multifractality, extreme value theory cannot be applied to annual 373 

maxima; therefore, they proposed on the basis of large deviation theory and multifractal beta-374 

lognormal multiplicative random cascades asymptotic results different from the classical extreme 375 

value theory. On the other hand, Veneziano and Yoon (2013) developed a unified framework of 376 

extreme precipitation analysis based on stationary multifractal models.  377 

Papalexiou and Koutsoyiannis (2006) modified the moisture maximization method and 378 

compared the PMP estimates with those obtained by probabilistic methods concluding that the 379 

latter is more consistent with the natural behavior of extremes. Other studies focused on defining 380 

a statistical upper bound for precipitation (or floods) in the context of envelope curves. For 381 

example, Vogel et al. (2007) presented a probabilistic interpretation to regional envelope curves 382 

for floods, and  Castellarin et al.  (2009) extended the concept of regional envelope curves for 383 
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rainfall, with the depth-duration envelope curves, defined as regional upper bounds on observed 384 

rainfall maxima for several rainfall durations. In addition, Viglione et al. (2012) further analyzed 385 

and tested the framework of Castellarin et al.  (2009), while addressing some of its limitation and 386 

focusing on a different geographical and climatic context.  Furthermore, Ben Alaya and Zwiers 387 

(2018) introduced a probabilistic method based on a bivariate extreme value distribution which 388 

accommodates the uncertainties associated to the PMP estimation. The method is based on the 389 

generalized extreme value (GEV) distribution to approximate the joint distribution of the annual 390 

extremes of two factors affecting the PMP, namely precipitable water (PW) and precipitation 391 

efficiency (PE). To account for the dependence structure between PW and PE extremes, they 392 

employed a copula function. 393 

 From a probabilistic viewpoint, the estimated PMP values correspond to specific return 394 

periods. Thus, the core idea behind PMP alternatives is using frequency analysis to estimate 395 

precipitations depths for given return periods (or exceedance probabilities), which in turn 396 

correspond to a level of risk (and reliability) that are useful for project assessment in engineering 397 

practice. There is a vast literature on frequency analysis and reviewing it is beyond the scope of 398 

this study. Yet, for completeness we summarize here the three main approaches.  399 

The first, focuses on the analysis of block annual maxima (BAM) and dates back to the 1920’s 400 

in the pioneering works of Fréchet (1927), and Fisher and Tippett (1928), who showed that there 401 

are only three limiting distributions to describe extremes, that is, the type I (Gumbel), type II 402 

(Fréchet), and type III (reversed Weibull).  The formal mathematical theory was extensively 403 

applied and popularized in engineering practice by Gumbel (1958). Thus annual maxima data are 404 

conveniently analyzed using a single expression called Generalized Extreme Value (GEV)  405 

distribution as shown in Eq.(7), which unifies the three limiting laws (von Mises 1936). 406 
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in which α, β, and γ are the location, scale, and shape parameters, respectively and 1 ൅407 

𝛾ሺ𝑥 െ 𝛼ሻ/𝛽 ൐ 0. 408 

For example, if the GEV distribution is fitted to annual maxima precipitation data, then the 409 

precipitation depth corresponding to any return period 𝑇 (in years) can be directly estimated using 410 

the GEV quantile function, 𝑥ሺ𝑇ሻ ൌ 𝐹ିଵሺ1 െ 1/𝑇ሻ. Literature reveals an extensive discussion on 411 

the methods used to estimate the parameters with popular methods being maximum likelihood, L-412 

moments and more (e.g. Hosking et al. 1985; Martins and Stedinger 2000; El Adlouni et al. 2007). 413 

Naturally, different fitting methods may result in different estimates. In this direction, a point of 414 

importance is the estimation accuracy of the shape parameter 𝛾. This parameter dictates the type 415 

of limiting law and the heaviness of the tail, which in turn controls the frequency and the magnitude 416 

of extremes. Papalexiou and Koutsoyiannis (2013) in a global analysis of more than 15,000 daily 417 

records showed that the Fréchet distribution (i.e. the GEV with 𝛾 ൐ 0) is the appropriate choice 418 

for daily rainfall annual maxima. They suggested that the cases where 𝛾 ൏ 0 (which leads to upper 419 

bounded distributions) are an artifact of sample variations and parameter estimator bias. In this 420 

respect an unbiased estimator was proposed. 421 

The second approach is based on peaks over threshold (POT) analysis, i.e. instead of using 422 

annual maxima, values above a certain threshold are utilized. The theoretical basis is the Pickands-423 

Balkema-de Haan theorem (Balkema and de Haan 1974; Pickands III 1975) which indicates 424 

asymptotic convergence as the threshold increases to specific type of tails. It follows the so-called 425 

generalized Pareto (GP) distribution given by 426 
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where α, β, and γ are the location, scale, and shape parameters, respectively. Like the GEV 427 

distribution, the GP shape parameter 𝛾 indicates the type of tail, that is, power-type for  𝛾 ൐ 0, 428 

exponential for 𝛾 → 0, and with an upper bound for 𝛾 ൏ 0. Once the parameters of the GP are 429 

estimated, the corresponding depth for any return period T can be determined by inverting Eq. (8). 430 

Serinaldi and Kilsby (2014) in a global analysis of POT data of daily rainfall showed that the GP 431 

shape parameter is always positive, leading to distributions without an upper bound. 432 

Although using the GEV and GP has been the standard approach in analyzing extremes, it 433 

should be stressed that both distributions emerge as limiting laws. Convergence to the GEV 434 

distribution is achieved assuming that the maximum value is extracted from a sample of size 435 

tending to infinity; clearly, this is not the case in real world, e.g., for daily precipitation values 436 

(assuming a typical probability dry of 80%) the annual maximum is extracted from 20% ൈ 365 ൌ437 

73 daily values (varying also from year to year). Similarly, POT values converge to the GP 438 

distribution given that the threshold tends to infinity, and yet in practice a finite threshold is always 439 

selected.  This implies that for all finite samples, convergence is not guaranteed. The interpretation 440 

of the infinity assumption in practice is that a large sample size and a large threshold are necessary 441 

to assure convergence. In some cases, converge is rapidly achieved; if the maximum value is 442 

extracted from samples generated by a power-type distribution or the exponential (i.e. the parent 443 

distributions) then the convergence to the Fréchet and Gumbel distributions, respectively, is fast. 444 

This is because the Fréchet and Gumbel distributions have power-type and exponential tails, 445 

respectively, and match the tails of the parent distributions. However, if the parent distribution has 446 

a stretched exponential tail (heavier than the exponential but thinner than a power-type) then 447 
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convergence is practically never achieved. However, based on extreme value theory the BAM and 448 

POT values should converge to the Gumbel and the exponential distributions, respectively. An 449 

alternative general method to the classical POT analysis, that tackles the convergence issue, was 450 

proposed by Papalexiou et al. (2013) where instead of using the GP distribution to describe POT 451 

data different type of tails are fitted to these values.  This allows fitting and using tails of any 452 

distribution, such as, the Weibull, Lognormal, and Gamma, and then, select the best performing, 453 

rather than assuming convergence to the GP distribution which might not hold.  454 

In the third approach, one can assume a probability distribution that is consistent with all 455 

nonzero values and describes also adequately the extremes. For example, Papalexiou et al. (2018a) 456 

estimated hourly precipitation depths at any return period by fitting distributions to the whole 457 

sample of nonzero hourly values focusing on robust tail representation based on regional tail 458 

estimates. In general, the depth 𝑥ሺ𝑇ሻ ൌ 𝐹௑
ିଵሼ1 െ ሾሺ1 െ 𝑝଴ሻ 𝑘 𝑇ሿିଵሽ, where 𝑇 is the return period 459 

in years, 𝑝଴ is the probability dry years (number of zeros over total number of values), and 𝑘 is a 460 

constant to express 𝑇 in years (for example, if  we deal with daily values then 𝑘 ൌ 365 days/year). 461 

For daily precipitation, global analyses  of more than 15,000 daily precipitation records 462 

(Papalexiou and Koutsoyiannis 2012, 2016) showed that two-parameter distributions are in general 463 

inadequate to describe all nonzero rainfall. Instead, flexible distributions such as the Generalized 464 

Gamma (GG), the Burr XII (BrXII), or, the Burr III (BrIII) (e.g. Papalexiou 2018) were suggested 465 

as more appropriate models for nonzero rainfall. The cumulative distribution and probability 466 

density functions for the BrXII and GG distributions are given respectively by 467 

𝐹ℬ𝓇ଡ଼୍୍ሺ𝑥;𝛽, 𝛾ଵ, 𝛾ଶሻ ൌ 1 െ ൤1 ൅ 𝛾ଶ ൬
𝑥
𝛽
൰
ఊభ
൨
ି ଵ
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These models are illustrated using a synthetic 100-year sample (Papalexiou 2018) representing 468 

daily rainfall (Fig. a). The annual maxima are extracted and the GEV distribution is fitted and 469 

compared with the empirical values (Fig. b). Next, the 100 larger daily values are identified and 470 

used for fitting the GP distribution (Fig. c). And, the whole sample of nonzero values is used to fit 471 

the BrXII and GG distributions (Fig. d). 472 

 473 

Fig. 2. Example of using different approaches to estimate rainfall depths for large return periods 474 

that could be considered as estimates of the PMP.   (a) Daily precipitation time series, (b) fitted 475 

GEV distribution to annual maxima, (c) fitted GP distribution to POT data, and (d) fitted BrXII 476 

and GG distributions to the whole sample of nonzero values. 477 

The suggested analysis could be applied to obtain an estimate of the PMP.  For this purpose, 478 

the precipitation depth corresponding to a large return period can be determined consistent with a 479 

desired acceptable risk. For example, for 𝑇 ൌ 1,000 years the GEV, GP, BrXII, and GG, 480 

distributions give rainfall depths of 210.5 mm, 194.1 mm, 203.5 mm, and 151.3 mm, respectively. 481 

For comparison, the PMP value obtained using Hershfield’s method with 𝑘௠ ൌ  15 (the maximum 482 

frequency factor given by Hershfield) is 351.2 mm which corresponds to a return period 𝑇 ≅483 
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 11,000 years based on the fitted GEV.  However, note that the value of 𝑘௠  taken in the example 484 

is the maximum value and smaller values of 𝑇 would result for smaller values of 𝑘௠. In addition, 485 

note that the GEV, GP, and BrXII models are expected to give close estimates since they have 486 

equivalent tails, i.e., power-law tails, while the GG model, which is of exponential form with 487 

thinner tail, gives lower depths. Therefore, the effect of the tails of the underlying distribution is 488 

crucial, since one may either overestimate or underestimate the precipitation depth depending on 489 

the type of tails of the distribution.  For example, global analysis on daily rainfall conducted by 490 

Papalexiou & Koutsoyiannis (2016) showed that the GG distribution performed better than the 491 

power-type BrXII, while  in another global analysis the Weibull (with stretched-exponential tail) 492 

was proposed for daily rainfall (Wilson and Toumi 2005). Furthermore, the analysis of more than 493 

4,000 hourly precipitation records all over the U.S. showed that stretched exponential tails 494 

performed better than power-type (Pareto) tails (Papalexiou et al., 2018). This study also revealed 495 

converge issues for the Pareto tail as the threshold selection of the POT values affected the 496 

estimation of the parameter that quantifies its heaviness. In contract, the stretched-exponential tail 497 

was robust and had the same heaviness for all thresholds tested. This is exactly the case when the 498 

parent distribution (describing all values at a specific scale) is not power-type (or exponential) and 499 

we are using a limiting distribution such as the GP to describe the POT values. Again, the foregoing 500 

discussion highlights the vast importance of assessing correctly the tails, i.e, the type of 501 

distribution. It is stressed again that the liming laws expressed by the GEV and GP distributions 502 

do not guarantee the accurate representation of the tails, a fact that can be demonstrated by 503 

assuming a parent distribution with a stretched exponential tail. 504 

Finally, although probable maximum flood (PMF) is not the topic of this review, as expected 505 

it is strongly related to the PMP since as has been indicated above, the PMF is typically estimated 506 
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by using PMP values. Whether applying probabilistic methods or not, the estimated PMP is a 507 

single value that corresponds to a given value of 𝑇 and does not account for clustering of high 508 

precipitation values in time (or space). This may affect severely the values of extreme flooding. 509 

Thus, as an alternative one may use consistent stochastic univariate (or multivariate) models  that 510 

preserve the marginal distributions (and thus the behavior of extremes) and the correlation 511 

structure of precipitation (Papalexiou, 2018). Such models can be used to generate long time series 512 

to estimate areal PMP, and, feed hydrologic models to estimate PMF values. Finally, if low 513 

frequency components of precipitation are of relevance (e.g., caused by ENSO, PDO, AMO, etc.) 514 

they could affect estimates of the PMP and PMF. In this case, consistent time series can be 515 

generated based on recently developed disaggregation methods (Papalexiou et al., 2018) that 516 

preserve marginals and correlation structures but also are conditioned on time series at coarser 517 

time scales that can describe the low-frequency components.  518 

There is agreement in the literature that the regime of extreme precipitation is changing due to 519 

global warming. Jakob et al. (2008) showed that extreme values of the precipitable water have an 520 

increasing trend in most of Australia; Groisman et al. (2013) reported that annual extreme daily 521 

precipitation increased in the USA during the 1958-2011 period; Papalexiou and Montanari (2019) 522 

showed an increase in the frequency of daily precipitation extremes in the period 1964-2013; and 523 

Markonis et al. (2019) showed increase in total precipitation, number of wet days and heavy 524 

rainfall events over land, to mention just a few.  However, the PMP values are typically estimated 525 

based on the stationarity assumption. If stationarity is not valid anymore then the question that 526 

naturally arises is to what extent nonstationarity can affect PMP estimations. 527 

Clark (1987) investigated the impact of changing climate on maximum moisture, maximum 528 

inflow winds, and precipitation efficiency, all of which are key factors for PMP estimation. In fact, 529 
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Clark related the increase of atmospheric temperature to the increase of maximum moisture, 530 

resulting in increased values of PMP. More recently, Kunkel et al. (2013) studied how climate 531 

change influences the PMP on a global scale. Their results show that increasing trends in the mean 532 

and maximum water vapor concentrations cause increasing trends in the estimates of PMPs in the 533 

future climate. Thus, increasing attention to the effect of non-stationarity has been shown in 534 

literature for developing methods for estimating extreme precipitation including values of PMP. 535 

For example, Rousseau et al. (2014a) used the GEV distribution  to estimate the 100-year 536 

precipitable water in the southern Province of Quebec, Canada, assuming a time-dependent 537 

location parameter. And Stratz and Hossain (2014) investigated the conditions under which the 538 

stationarity assumption can be relaxed. They considered non-stationarity in maximum precipitable 539 

water by extrapolating observed dew point trends to the future. Based on a case study in the Eastern 540 

USA, they concluded that nonstationary forcing will affect PMPs such that a 2°F increase in the 541 

average dew point can cause a10% increase in the future PMP. 542 

Likewise, probabilistic estimates of PMP based on nonstationarity distribution functions may 543 

be developed for evaluating and assessing future projects to include the effect of climate variability 544 

and change.  In fact, some developments in this direction have already been made based on flood 545 

data in river systems that have been affected by human intervention such as urbanization (e.g. 546 

Villarini et al. 2009; Vogel et al. 2011) and river floods and sea levels affected by climate 547 

variability and change (e.g. Salas and Obeysekera 2014). Non-stationarity has been incorporated 548 

into the GEV distribution by introducing time dependence in the location and/or scale parameters 549 

(e.g. Coles, et al. 2001; Cooley 2009); however, time-dependent shape parameter has not been 550 

suggested in general because even for stationary GEV it is quite unreliable (e.g. Coles et al. 2001). 551 

For example, Leclerc and Ouarda (2007) used a GEV distribution with linear and quadratic 552 

functions for the location parameter; Gilroy and McCuen (2012) suggested a GEV with 553 
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exponential location and scale parameters. In general many other functional forms, such as, linear, 554 

quadratic, and exponential, can be found in the literature (e.g. Coles et al. 2001; Katz et al. 2002; 555 

Hundecha et al. 2008; Hanel et al. 2009; Villarini et al. 2010; Katz 2013).  In addition,  trends also 556 

can be added into the parameters of the GEV through a set of predictors or covariates (e.g. Coles 557 

et al. 2001; Towler et al. 2010; Yilmaz et al. 2017). For example, Mínguez et al. (2010) studied 558 

the influence of different covariates, with a focus on the parameter selection of the model. Several 559 

authors have used with succeed large‐scale climatic indices as covariates for extreme precipitation 560 

(e.g. Katz et al., 2002; El Adlouni et al. 2007; Gao et al. 2016; Su and Chen 2019) and extreme 561 

floods (e.g. Lopez and Frances 2013; Machado et al. 2015). 562 

 A different approach is to assume the parent distribution of the rainfall population is upper 563 

bounded. As shown in the sketch of Fig. 3 the behaviour of upper-bounded and unbounded 564 

distribution functions is different particularly for medium to large values of the underlying 565 

variable. If the actual distribution has an upper bound and one fits an unbounded distribution, then 566 

there will be a significant overestimation for medium values of return periods, while large 567 

underestimation for large values of return period.  Classical distributions commonly used in 568 

Hydrology such as Generalized Pareto, GEV, and Log-Pearson type III can have an upper bound, 569 

but for skewness coefficients smaller than 2, 1.14, and 0, respectively, which are unrealistic for 570 

extreme precipitation. Only highly flexible distributions as the five-parameter Wakeby distribution 571 

(Houghton 1978) or the four-parameter Kappa (Hosking and Wallis 1997) can have an upper limit 572 

with appropriate values of their shape parameters. However, the review of literature does not reveal 573 

applications of the referred distributions for PMP or PMF estimation.  574 

 575 
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 576 

Fig. 3. Schematic comparison of upper-bounded and unbounded distributions. The horizontal 577 

scale denotes the values of the random variable X (defined in the interval x0 , g) and the vertical 578 

scale denotes the return period T. 579 

 580 

Nevertheless, there are some upper-bounded distribution functions that have been developed 581 

specifically for extreme hydrological events. The EV4 (four-parameter Extreme Value distribution 582 

function) was proposed by Kanda (1981), is an extension of the EV family. The EV4 has been 583 

used by Takara and Tosa (1999) and Botero and Francés (2010) for estimation of PMP and PMF. 584 

The LN4 (Slade-type four-parameter Log-Normal distribution function), proposed by Slade (1936) 585 

can be obtained by applying the Slade-type transformation to a Log-Normal distributed random 586 

variable. Takara and Loebis (1996), Botero and Francés (2010) and Fernandes et al. (2010) used 587 

this distribution for estimation of probable maximum hydrological events.  In addition, Elíasson 588 

(1994 and 1997) defined a transformation of the Gumbel distributed variable to include an upper 589 

bound. This distribution has been used by Elíasson (1994 and 1997) and Botero and Francés (2010) 590 

for estimation of extreme precipitation and extreme floods. 591 

In estimating the parameters of an upper-bounded distribution function, the upper bound can 592 

be estimated a priori (for example, based on meteorological methods) and then fixed (if it is an 593 
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explicit parameter) or forced (if it is a function of other parameters). However, in some 594 

combinations of type of information, estimation method and distribution function, the estimated 595 

upper bound can be just the maximum observed value (Botero and Francés 2010), which is a 596 

useless sample estimate of the upper bound of the population. A better alternative is to estimate all 597 

parameters of the distribution function, including the upper bound, in the same estimation process. 598 

For example, one may use the upper bound estimator proposed by Cooke (1979), which is based 599 

on order statistics theory. Cooke (1979) demonstrated that it is asymptotically more efficient than 600 

the maximum observed value. Assuming the distribution function is known, the estimator of the 601 

upper bound is given by: 602 

max [ ( ; )]
g

n
Xg x F x dx





       (11) 603 

where maxx is the maximum observed value, n is the observed sample size, g is the upper bound, 604 

and Θ represents the parameter set of the distribution function FX. This approach has been used by 605 

Kijko (2004) for earthquakes and Botero and Francés (2010) for extreme floods. In addition, 606 

Cooke (1979) also suggested a non-parametric estimator of the upper bound.   607 

 Furthermore, a Bayesian approach can be used for estimating the parameters of the 608 

assumed distribution function, incorporating a previous deterministic estimation of the upper 609 

bound and, at the same time, its uncertainty through the prior distribution of the upper bound. For 610 

example, Fernandes et al. (2010) used the Bayesian framework with an EV4 distribution function, 611 

determining the prior distribution of the upper bound (the PMF in this case) from a pool of 612 

estimated values in the USA. The problem of dealing with low frequency events (where PMP and 613 

PMF are special cases) is the large uncertainty in the estimators of parameters and quantiles due 614 

to the lack of information of these very large events (Merz and Blöschl 2008). The best way of 615 
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reducing this uncertainty is increasing the amount of information used in the estimation process. 616 

In the case of precipitation, regional analysis is a common procedure, while for floods it may be 617 

possible using additional historical and/or palaeoflood data in order to improve the estimator of 618 

the upper bound. This technique has been useful in the case of PMF estimation as shown by Botero 619 

and Francés (2010) where it was possible to estimate the upper bound with reasonable reliability. 620 

Guidelines for Estimating PMP  621 

Work on extreme precipitation and PMP estimates extends to many countries and locations 622 

worldwide using several procedures and comparing and evaluating them.  The interest is not only 623 

for advancing knowledge but for updating existing guidelines and standards that are applicable for 624 

regions and countries. For example, Thuy et al. (2019) use historical data and future climate 625 

scenarios to evaluate PMP for three provinces in Vietnam.  Kim et al. (2019) evaluate seven 626 

datasets for precipitation extremes in Southeast Asia. Rezacova et al. (2005) discuss the 627 

development of PMPs for the Czech Republic while Casas et al. (2011) provided PMP estimates 628 

for the Barcelona region in Spain and Casas-Castillo et al. (2016) assessed the PMP estimates for 629 

the region of Madrid and the Iberian Peninsula based on the statistical method and scaling 630 

procedures.  Guidelines in India (Bureau of Indian Standards 1985) recommend for large reservoirs 631 

(capacity larger than 60 Mm3 or dam higher than 50 m) the use of PMF for the design flood.  In 632 

some countries not using the PMP, the guidelines for evaluating and designing flood related 633 

structures are based on extreme floods with very high return periods, ranging from 500 to 10,000 634 

years, depending on the type of structure and the risk of losses downstream.  The section on “PMP 635 

Based on Hydrometeorological Methods” summarizes the various methods and standards used in 636 

the United States (US).  Further description for some other countries is provided below. 637 

Guidelines in Canada 638 
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More than 15,000 dams have been built in Canada with safety standards that are based on the 639 

concept of Probable Maximum Flood (PMF) (Canadian Dam Association, 2013). The estimated 640 

PMF’s are typically derived based on PMP estimates. Yet specifically for Canada and cold regions 641 

it is highlighted that factors such as snowpack, upstream regulations and reservoir capacity, can 642 

affect the run off and thus PMF estimates (Clavet-Gaumont et al. 2017). The Canadian Dam 643 

Association uses the same PMP definition and methods suggested by WMO (refer to the 644 

Introduction section above.) In an older study the Hershfield method was used and a high 645 

frequency factor (𝑘௠ ൌ 30) was suggested for the daily scale (McKay, 1965). Mathier et al. (1994) 646 

report that “most PMP studies in Northern Canada are based on the transposition and maximization 647 

of storms that occurred in the southern part of the country”. Water Resource Consultants Ltd. 648 

(2009) mention  that current practice uses sophisticated and physically based methods to derive 649 

the PMP for a specific basin.  650 

The need to understand the risks that climate change poses to Canadian dams led to a large-651 

scale partnership of the Ouranos Consortium (2015) with dam owners, regulators, and academics, 652 

in order to review existing estimating methods of PMP/PMF and propose credible solutions to 653 

quantify climate change impacts on PMP/PMF estimates. Some studies also explored the use of 654 

Regional Climate Models (RCM’s) to estimate PMP values. For example, Beauchamp et al. (2010) 655 

based on RCM’s suggested summer and fall PMP increases of 0.5–6% for the 2071–2100 period; 656 

Rousseau et al. (2014b) and Rouhani and Leconte (2016) also used RCM’s and showed similar 657 

increases for several Canadian basins; and, Clavet-Gaumont et al.  (2017) provided an overview 658 

and reported future increases in spring PMP for five Canadian watersheds. 659 

Guidelines in European Countries  660 
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Estimation of extreme precipitation in the United Kingdom (UK) has been generally based on 661 

the procedures established in the Flood Studies Report (FSR) developed by the Natural 662 

Environment Research Council (NERC 1975) and updated by the Center for Ecology and 663 

Hydrology (CEH 1999). They are used for estimating extreme precipitation for return periods of 664 

100 - 10,000 years.  It is essentially based on fitting the GEV and Logistic distributions. The UK 665 

guidelines for PMP estimation are described in volume 4 of the Flood Estimation Handbook (FEH) 666 

developed by CEH (1999). The PMP over a point is based on the Estimated Maximum 667 

Precipitation (EMP) for different durations in UK considering two different seasons: May to 668 

October and November to April. These EMPs are obtained by the combination of maximum 669 

observations and the theoretical maximum precipitable water in a vertical column of the 670 

atmosphere. The PMP hyetograph takes the EMP for every duration, with no compensating 671 

reduction of maximum intensities, and nests them centrally. Concerning the spatial distribution of 672 

the PMP, CEH (1999) recommends using the areal mean of the EMPs over the catchment.  Since 673 

1999, both the FSR and FEH have been the design standards for UK where the FSR method is 674 

applied for the 10,000-year return period estimates.  675 

A review of rainfall-frequency estimation methods has been made by Svensson and Jones 676 

(2010). They include a table summarizing the rainfall-frequency estimation methods including the 677 

PMP applied in various countries. The authors conclude that “there is a considerable difficulty in 678 

estimating long return periods rainfall from short data records and there is no obviously “best” 679 

way of doing it. Each country’s method is different, but most use some form of regionalization to 680 

transfer information from the surrounding sites to the target point …. Different statistical 681 

distributions and fitting methods are used in different countries, with the GEV distribution being 682 

the most common.” A recent review paper emphasizes the PMP estimation in various countries 683 

(Johnson and Smithers 2019) including UK, US, Australia, and South Africa. The paper reviews 684 
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in some detail the PMP estimation methods by WMO, the underlying uncertainties including 685 

climate variability and change, and suggest as a good practice to compare the PMP estimation 686 

based on alternative methods as well as the importance of updating periodically the design 687 

standards to include new data and knowledge because generally the estimated PMPs do not take 688 

into account recent extreme events.  689 

Dyrrdal (2012) provided a revision of extreme precipitation in Norway. The report indicates 690 

that the 1000-year return period precipitation and the PMP are based on WMO methods. They are 691 

applied for flood estimation in Norway depending on the type of structures. The author also 692 

indicates that extrapolation of extremes events is commonly used based on the GEV distribution. 693 

The PMP is estimated following the methods used by NERC in UK. Since Norway has a complex 694 

topography the extreme precipitation method developed by NERC for Scotland/North Ireland is 695 

most suitable for Norwegian conditions.  A table is included summarizing the various methods for 696 

estimating extreme precipitation and the PMP for some countries such as US, Canada, Australia, 697 

Iceland, and various European countries.    698 

An important document for European countries on extreme events is the European Flood Risk 699 

Directive (European Commission 2007) that requires member states to consider the impact of 700 

climate change in the flood frequencies for the flood risk assessment and management. 701 

Guidelines in Australia  702 

Estimates of PMP in Australia are used for dam design. And rainfall frequency estimation in the 703 

range 50–2000 years return periods is based on FORGE method developed at the Institute of 704 

Hydrology of UK (Reed and Stewart 1989). For return periods bigger than 2000 years up to the 705 

PMP for various durations a generalized procedure is followed (Siriwardena and Weinmann 1998). 706 

Estimates of PMP are available from the Bureau of Meteorology of Australia. The estimation of 707 
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rainfall design depths considers frequency analysis, regional analysis, and “pragmatic” 708 

extrapolation. The design characteristics include design event classes in the range 50-100, 100-709 

2000, and 2000-107 years return periods for large, rare, and extreme events, respectively (Nathan 710 

and Merz 2001).  A credible limit of extrapolation is the point corresponding to 2000-year return 711 

period, i.e. the point corresponding to the annual exceedance probability (AEP) of 1/2000. The 712 

authors point out that the design guidelines in Australia have moved towards a risk-based approach 713 

and for this purpose it is necessary to have estimation procedures of extreme precipitation (and 714 

corresponding extreme floods) all the way to the PMP/PMF values. The referred paper includes 715 

figures and tables that clearly show the concepts.  They also illustrate the considerable uncertainty 716 

involved in the extrapolated estimates and indicate that “although the probabilities are subjective, 717 

they do reflect the considerable uncertainty in the AEP estimates” (Nathan and Merz 2001.) Recent 718 

research for estimating the AEP for extreme precipitation up to the PMP with applications in some 719 

Australian catchments shows promising results (Natham et al. 2016).  720 

In 2009 a study was undertaken to assess how the various factors used for estimating the PMP 721 

in Australia may change over time.  The factors included local moisture availability, storm types, 722 

depth-duration-area curves, and relative storm efficiency.  In addition, the study used GCMs 723 

projections for assessing changes in observed rainfall. The 90% of moisture availability was 724 

compared for periods 1960-1980 and 1981-2003. The results showed significant increases along 725 

parts of the east coast but also a region of decrease in south-eastern Australia for the Summer.  For 726 

assessing the projected changes in moisture availability, the CSIRO MK3.0 model was used 727 

considering three greenhouse gas emissions scenarios: A2, A1 B, and B1. The 90 percentile of the 728 

moisture availability tends to increase for future decades and as expected the increase is more 729 

pronounced for the A2 scenario.  The authors caution though that the results are based on only one 730 

model and higher degree of reliability would be obtained using a range of GCMs. After considering 731 
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and analyzing various results the report states that based on likely changes to maximum moisture 732 

and maximum storm efficiency, the investigations did not lead to conclude that PMP estimates 733 

would definitely increase under a warming climate.  The authors acknowledge some limitations 734 

involving the resolution of the GCMs outputs, the assumption that PMP does indeed occurs under 735 

maximum moisture availability, and the use of alternative measures of storm efficiency.  And they 736 

suggest that future investigations should also consider assessing separately the effects of 737 

thermodynamics and dynamical components. The report also indicates that global climate models 738 

do not accurately make the trends of late 20th Century Australian rainfall but due to the overall 739 

increase in moisture availability in a warming climate, extreme rainfall is likely to increase in the 740 

21st Century.  741 

Final Comments and Remarks 742 

 Determine potential changes in the spatial and temporal scale of conditions that lead to the 743 

PMP.  This includes assessing the critical duration of the extreme precipitation as well as the 744 

influence of antecedent conditions 745 

 Develop more process driven studies that simulate how the land surface and atmosphere 746 

interact during precipitation extremes.  This would include land cover influences on the surface 747 

boundary layer and the influence of moist air transport over snow-covered watersheds. 748 

 Determine temporal frames where different influences of change are likely to dominate the 749 

PMP process.  The next few decades may be driven by one process that gives way to others as 750 

more extreme warming takes place. 751 

 Statistical methods on estimating the PMP have been widely used in engineering practice. They 752 

are appealing as they are easy to apply and as any PMP method the estimated depth is assumed 753 

that cannot be exceeded, offering thus, risk free design depts. Yet this assumption is the 754 
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Achilles’ heel of PMP methods as reality has shown many cases where PMP estimates have 755 

been exceeded.  756 

 The main alternative is using probabilistic methods that estimate rainfall depths corresponding 757 

to very large return periods which offer an acceptable risk in engineering practice. Several 758 

different approaches have been used that focus on the analysis of annual maxima, peak over 759 

threshold values, multifractal techniques, or using distributions to describe the whole sample 760 

of precipitation values. Recent global analyses offer a clearer picture on the probabilistic 761 

behavior of precipitation and an opportunity of robust estimates of large return levels.  762 

 The increased water vapor content in the atmosphere due to global warming is expected to alter 763 

the precipitation properties and the behavior of extremes. This led into considering 764 

nonstationary methods for estimating the PMP that either are based on adopting a nonstationary 765 

distribution to estimate large return levels, or, using climate model projections.  766 

 Whether or not decision makes and stakeholders agree on the effects of climate variability and 767 

change on PMP estimates, the review of literature suggest that given the complexity of the 768 

underlying thermodynamics and the dynamics of the processes involved, the estimation of 769 

PMP must include the effects of uncertainties and rather that estimating a single PMP value, 770 

provide a range of possible values and preferably the probability distribution of PMP.      771 

 Further extend the method for determining the uncertainty of the PMP estimator based on the 772 

traditional statistical method considering the effect of the factor Km in addition to the sample 773 

mean and the standard deviation. This may be possible since Km is a function of the sample 774 

mean and the storm duration.  Likewise, consider the effect of climate change scenarios on the 775 

factors determining the PMP estimator.  776 
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