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Abstract 

In our everyday life, many things are done electronically, e-mails, buying different tickets, 

navigation, and so on. These devices must always work correctly. Linux-based routers are no 

exception. The devices create a log file about everything that happens to them, which in many 

cases is in an unreadable state for humans. When such a device fails, professional workers spend 

many hours searching for individual errors and often fail to detect them. 

The main goal of this research is to create a System log files analyzer for predictive 

maintenance because there is currently no quick and effective program for this. Therefore, 

several publicly available programs were overviewed that are capable of individual log files, 

especially system log files, and analyzing them. It was investigated how they are structured and 

what types of logs are analyzed in what way. 

Syslog files were examined with different labels in this dissertation, which were converted 

using text mining methods. Then they were analyzed with several models, including decision 

trees, random forests, the XGBoost model, and neural networks, and they predicted labels for 

each log file. To make this more successful, text-mining methods were applied, and each Syslog 

was sliced into sequences. These transformations gave much more transparent and accurate 

results. After teaching and testing the models, the results were obtained, which were evaluated 

with different indicators, such as accuracy and a confusion matrix. 

It was also part of this thesis the writing of a program for a Raspberry Pi that can give the 

professional workers guidance on what kind of failures happened in the system, thus reducing 

their time spent on maintenance and more efficient debugging. The program was written in 

Python and tested on two different types of Raspberry Pi. 

In conclusion, several types of errors can occur in a log file, and machine learning methods 

can significantly help the work of professionals by guiding analysis. With this AI technology, 

professionals know more precisely what error they need to look for in which sequence; they do 

not have to look through all the rows. This allows them to spend more time on improvements 

and upgrades, and not have to deal with maintenance. 

 

Keywords: text mining, Syslog, TF-IDF, analysis, Python  
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1 Introduction 

Nowadays, the automation of services or production is becoming more and more common. 

During or after this automation, some products may fail and break down. In this thesis, the 

general goal is to find the answer to whether there is already a solution to automatically monitor 

Linux-based edge routers after a failure. In the real life the log files monitoring is essential to 

help the maintenance processes. 

According to my best knowledge, it does not exist any program that could analyze the log 

files containing the system message. There are some programs which could only interpret the 

text generated by themself. Therefore, in this study, these system log files using machine 

learning and neural network are analyzed. 

Raspberry Pis are easy-to-carry, small-sized computers. Since failures can occur in any 

country, it is enough for I.T. professionals to bring this small device with them and connect the 

appropriate elements to it for analysis; therefore, a program was developed for a Linux-based 

Raspberry Pi. Most of the times the system log files contain very sensitive data; therefore the 

companies try to avoid the online solutions, it can be risky to run the scripts throught servers or 

upload the files into the cloud. These are the reasons why the program had to be written for this 

device. 

This dissertation has eight chapters followed by references and lists of tables, figures, and 

equations. The entire work is based on the principle that the definition and theorems are taken 

from the cited references with the proper citation as they are. At first, a comprehensive 

literature overview  is conducted. Section two contains the theoretical background in brief. Then 

the programming steps and the coding itself are explained. The dissertation is closed by the 

results and the conclusions. The Cross-Industry Standard Process for Data Mining (CRISP-DM) 

methodology is applied throughout the project, which means the first step is business 

understanding. Initially, it has to understand how the system works log files, which system can 

write in the files, and why. The next important step is preparing the data, which means the 

system logs have been cleaned and reduce noise. For these steps, the Term Frequency-Inverse 

Document Frequency (TF-IDF) and other methods were used. The various transformations and 

tokenization are followed by modeling. After the evaluation, the last step was deployment. The 

thesis is closed by the sections of the conclusions and the references.  
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2 Methodology and Tools 

In this chapter, a brief theoretical overview is presented to understand the data mining and 

the connected tools that were used during the analysis better. 

2.1 Data mining 

2.1.1 A brief overview of the fundamentals of data mining 

Data mining is the process of finding patterns, correlations, and anomalies within datasets to 

extract insight and knowledge, and use it for explaining the data or making predictions. Using 

many of the data mining techniques, companies can use this information, for example, to 

increase revenues, cut costs, improve customer relationships, reduce risks, and predict the result 

of a game, and more [1]. 

Nowadays, data mining is widespread in business, science, engineering, medicine, and more 

several other applications. The bank sectors use data mining of credit card transactions, stock 

market movements, or the national government to use several data science tools for national 

security. These application areas are just the tip of the iceberg for data mining applications. Big 

Data is now commonplace, with data collection becoming relatively cheap and the proliferation 

of devices capable of collecting data. The most active techniques explored today come from 

Machine Learning, such as Deep Learning. Deep Learning can capture dependencies and 

complex patterns far beyond other techniques; it reignites some of the biggest challenges in the 

world of data mining, data science, and artificial intelligence [2]. 

2.1.2 About text mining 

One of the earliest examples of text summarization, text mining, and classification was 

library catalogs. The earliest library catalog is attributed to Thomas Hyde for the Bodleian 

Library at the University of Oxford in the 17th century. In 1876, Melvin Dewey introduced the 

index card to form a library card catalog [3]. 

Nowadays, more and more information is in an unstructured and semi-structured format, like 

open-ended survey answers, news, call-center notes, and even books or web forms. Text mining 

is the process of analyzing textual collections of material to understand key concepts and topics 

and explore hidden contexts and trends without knowing the words or phrases used by the 

authors to express the concepts. 
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The text mining process usually includes the following steps: 

 Identify the text you want to mine: Identify the text and prepare it for mining.  

 Mine the text and extract the structured data. To the source text apply the text mining 

methods. 

 Build concept and category models. Define key concepts, categories. Determine the 

best categories and concepts for scoring. 

 Analysis of structured data. Use traditional data mining techniques such as 

clustering, classification, and predictive modeling to explore the relationships 

between concepts. Combine extracted concepts with other structured data to predict 

future behavior based on the concepts. 

2.1.3 CRISP-DM and text mining methods 

The Cross-Industry Standard Process for Data Mining (CRISP-DM) stands for a cross-

industry process for data mining, data science. The methodology provides a structured approach 

to planning and doing data mining projects; unfortunately, this model belongs to an ideal world, 

an idealized sequence of events. Therefore, in practice, many of the tasks can be performed 

differently, in a separate order. The CRISP-DM methodology will often be necessary to 

backtrack to previous assignments and repeat specific actions. For example, Business and 

datasets understanding are one of the most critical tasks. If the data miners do not understand 

what the company wants, there will be many unnecessary costs [6]. 
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The CRISP-DM life cycle model consists of six phases (Figure 1). The sequence of the 

stages is not strict; therefore, most data mining projects move many times back and forth 

between evaluation and modeling as necessary. The model is flexible, and it can be customized 

easily. The six phases are business understanding (determining the purpose of the study), data 

understanding (data exploration and understanding), data preparation, modeling, evaluation, 

and deployment [7]. 

In [3], the authors presented a model for text mining based on the CRISP-DM method. As 

they wrote, “Within the six phases, CRISP-DM methodology provides comprehensive coverage 

of all of the activities involved in carrying out data mining projects. Because the primary 

distinction between data mining and text mining is simply the type of data involved in the 

knowledge discovery process, we adopt CRISP-DM as a foundation upon which to derive the 

text mining methodology followed in this book.”  

 

Figure 2: Text mining process flow. These are the general steps 

Business 
Understanding

Data Understanding

Data Preparation

Modeling

Evaluation

Deployment

Determine the 
purpose of the text 

mining study

Explore the 
avaibility and 
nature of the 

unstructured data 
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TF-IDF 
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Develop models Evalute results Deploy 

results

Figure 1: CRISP-DM reference model. The boxes represent the six phases of the life cycle model 

DATA 
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Figure 2 shows the flow of the text mining process. The first phase (Determine the purpose 

of the text mining study) works like any other project’s first step, so the text mining study starts 

with determining the purpose of the study. This requires a thorough understanding of the 

business case and what the study aims to accomplish. In order to achieve this understanding 

and define the aims precisely, we must assess the nature of the problem that initiated the study.  

The second phase (Explore the availability and the quality of the data) include a few tasks, 

like 

 Identification of the textual data sources (digitized or paper-based; internal or 

external to the organization) 

 Assessment of the accessibility and usability of the data 

 Collection of an initial set of data 

 Exploration of the richness of the data (does it have the information content needed 

for the text mining study) 

 Assessment of the quantity and quality of the data: Once the exploration is concluded 

with positive outcomes, the next phase is to collect and integrate large amounts of 

data from various sources used in the study. 

The third and fourth phases (Prepare data and Develop models) present the most significant 

differences between data mining and text mining. Within the context of knowledge discovery, 

the primary purpose of text mining is to process unstructured, textual data and structured and 

semi-structured data to extract novel, meaningful, and actionable knowledge/information for 

better decision making.  

In the fifth phase (Evaluate the results), if the models are developed and assessed for 

accuracy and quality from a data analysis perspective, we must verify and validate the proper 

execution of all of the activities. 

At the end, in the sixth phase (Deploy the results), if the models and the modeling process 

successfully pass the assessment process; they can be deployed [3]. 
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2.2 Term Frequency-Inverse Document Frequency weight 

After reviewing the data mining and CRISP-DM methodology, we will review the TF-IDF 

measure because it is used for normalization later on. 

The Term Frequency-Inverse Document Frequency (TF-IDF) weight is often used in text 

mining and information retrieval. This weight is a statistical measure used to evaluate how 

important a word is to a document in a collection or corpus. The importance increases 

proportionally to the number of times a word appears in a document but is offset by the 

frequency of the word in the corpus. Search engines often use variations of the TF-IDF 

weighting scheme as a central tool in scoring and ranking a document’s relevance given a user 

query. TF-IDF can be successfully used for stop-words filtering in various subject fields, 

including classification and text summarization [6]. 

Typically, the TF-IDF weight is composed of two terms. The first computes the normalized 

Term Frequency (TF), which means the number of times a word appears in a document, divided 

by the total number of words in that document. The second term is the Inverse Document 

Frequency (IDF), computed as the logarithm of the number of the documents in the corpus 

divided by the number of documents where the specific term appears. 

Term Frequency, which measures how frequently a term occurs in a document. Since every 

document is different in length, it is possible that a term would appear much more time in long 

documents than shorter ones. Thus, the document length as a way of normalization often divides 

the term frequency (Equation 1): 

𝑇𝐹(𝑡) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 

Equation 1: The equation for the Term Frequency 

Inverse Document Frequency, which measures how important a term is. While computing 

term frequency, all terms are considered equally important. However, it is known that certain 

terms, such as “that”, “is”, “of”, and “the”, may appear many times but have little importance. 

Thus, we need to weigh down the frequent terms while scaling up the rare ones by computing 

the following [7] (Equation 2): 

𝐼𝐷𝐹(𝑡) = log
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑖𝑡
 

Equation 2: The equatin for the Inverse Document Frequency 
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As a result of the previous equitations one can get TF-IDF what is the multiplications of 

Equation 1 and Equation 2 (Equation 3). 

𝑇𝐹𝐼𝐷𝐹(𝑡) = 𝑇𝐹(𝑡) ∗ 𝐼𝐷𝐹(𝑡) 

Equation 3: The equation for Term Frequency-Inverse Document Frequency 
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2.3 Regular expressions 

Regular expressions were very useful during data preparation. It was easier to search and 

replace some specific words. In this section, we explain how the regex works.  

A regular expression (regex) is a sequence of characters that define a search pattern. Usually, 

such patterns are used by string searching algorithms to find and replace or find operations on 

strings or input validation. It is a technique developed in theoretical computer science and 

formal language theory. Regular expressions are widely used in different areas, for example in 

search engines, or text editors. With this process, the user can check the e-mail address is correct 

or not, find and replace the date format with something else, or validate the bank account 

number. 

A regular expression specifies a set of strings that each individual string in the set should 

match it; the functions in this module let you check if a particular string matches a given regular 

expression (or whether a given regular expression corresponds to a given string that applies to 

the same thing). 

Regular expressions can be concatenated to create new regular expressions. “A” and “B” are 

both regular expressions, in this case, “AB” is also a regular expression. Usually, if a string “a” 

matches with “A” and another string “b” matches with “B”, the string “ab” will match with 

“AB”. This holds unless “A” or “B” contains low precedence operations, boundary conditions 

between “A” and “B”; or have numbered group references. Thus, complex expressions can 

easily be constructed from simpler primitive expressions like those described here [8]. 

In this part, some regular expressions were written with some examples. 

If the regular expression is inside a bracket “[a-zA-z]”, this will match any character from 

“a” to “z” or “A” to “Z ”, but it is also possible to set the opposite, that means “[^abc]” will 

match any character except “a”, “b”, “c”. 

Some of the special sequences beginning with “\” represent predefined sets of characters that 

are often useful, such as the set of digits, the set of letters, or the set of anything that is not 

whitespace. “\d” matches any decimal digit; this is equivalent to the class “[0-9]”, and also it 

has negation “\D” it is equivalent to the class “[^0-9]”. The user can find the whitespace 

characters with regular expressions, like space, newline, tabulator with the “\s” expression. The 

“\w” matches any alphanumerical character; it is equivalent to the class “[a-zA-Z0-9_]”. 
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These sequences can be included inside a character class. For example, “[\s,!]” is a character 

class that will match any whitespace character, or “,” or “!”. 

Dot “.” is a metacharacter. It matches anything except a newline character. The first 

metacharacter for repeating things that we will look at is “*”. The star character does not match 

the literal character “*”; instead, it specifies that the previous character can be matched zero or 

more times instead of exactly once. 

For example (Figure 3), in this expression, “da*ta” will match “dta”, it means zero “a” 

character, “data” (one “a” character), “daaaata” (four “a” character), and so on. 

Find the date in a text could look like this formula: “[0-9]{4}[^0-9]*[0-9]{2}[^0-9]*[0-

9]{2}” 

This means “[0-9]{4}” four number which is the year, next “[^0-9]*” zero or more non-

numeric character (it is the separate character); the next step is “[0-9]{2}” it means two 

numbers, which is the month, and again the separate characters “[^0-9]*” and in the end again 

“[0-9]{2}” the last two digits which are the days. Therefore, this regular expression’s source 

text could be this “2019. 10.31” or “2019-10-31” or “20191031” as well [9]. 

 

Figure 3: Regular expression example 
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2.4 Syslog files 

In this chapter, the Syslog files were presented. What a Syslog is and how it is built, and 

what it can be used for. This section helps understand the Syslog files (Figure 4). 

In computer science, Syslogs are the Message Logging Standard by which almost any device 

or application can send data about events, status, diagnostics, and more [24]. The default 

programs to read these files are the notebook programs. 

The log is the file extension for an automatically produced file that contains a record of 

events from specific software and operating systems. While they can include several things, log 

files are often used to show all events associated with the system or application that created 

them. For example, a backup program might keep log files showing exactly what happened or 

did not happen during a backup. The point of a log file is to keep track of what is happening 

behind the scenes, and if something should happen within a complex system, you have access 

to a detailed list of events that took place before the malfunction. Whatever the application, 

server, or Operating System (O.S.) thinks needs to be recorded [25]. 

 

Figure 4: A System log file, Syslog 

The Syslog Protocol (RFC 5424) describes [26] that a log file uses three layers: 

 The “Syslog transport” layer puts messages on the wire and takes them off the wire. 

 The “Syslog application” layer handles the generation, interpretation, routing, and 

storage of Syslog messages. 

 The “Syslog content” is the management information contained in a Syslog message. 

Syslog message size limits are dictated by the “Syslog transport” mapping in use, and there 

is no upper limit per se. Each transport mapping defines the minimum maximum required 

message length support. 

In a Syslog file, the date is an important part. It could be four different formats.  

1. format : “1985-04-12T23:20:50.52Z” 

This example represents 20 minutes and 50.52 seconds after the 23rd hour of 12 April 1985 

in UTC. 

2. format: “1985-04-12T19:20:50.52-04:00” 
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The second format represents the same time as in the first example but is expressed in U.S. 

Eastern Standard Time. 

3. format: “2003-10-11T22:14:15.003Z” 

This date represents 11 October 2003 at 10:14:15pm, 3 milliseconds into the next second. 

The timestamp is in UTC.  

4. format: “2003-08-24T05:14:15.000003-07:00” 

The last date format represents 24 August 2003 at 05:14:15am, 3 microseconds into the next 

second. The timestamp indicates that its local time is -7 hours from UTC [26]. 
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2.5 System log analyzer programs 

At the beginning of this research several programs were overviewed to see whether they 

were capable of analyzing various log files. In this section these programs are explained, 

including my testing experiences. 

Since a program can create many log files, it is worth organizing and analyzing them 

somehow; there are different programs for these; a couple of them were presented in this 

section. 

Most system log file analysis programs cannot be used in this case. The log file management 

means how many files there are, at what intervals they were created, and whether they contain 

any anomaly. Often these programs are used to extract the message from many other unreadable 

words and numbers. Some programs can categorize log files somehow, but you cannot attach 

other existing data to this program; only those files can handle that are created on that computer. 

Some analyzer program works only in the Ubuntu environment, like “logpai”. Others are 

available from browsers, like “LOGalyze” (Figure 5).  

 

Figure 5: Screenshot of the LOGanalyze program, which is a log analyzer program 

For a log analysis program, it is essential to read and understand the data, the text. The 

program then split the log files into different aspects, such as time, log type, message, and 

facility. Based on these, the log analyzer programs can summarize and create charts based on 

the processed data. For example, when an anomaly is detected, the program looks when the log 

files were created more often.   
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2.6 Raspberry Pi 

In this thesis, in part Raspberry Pi was used, so in this chapter it was intruduced. 

The Raspberry Pi is a credit-card-sized single-board computer that plugs into a computer 

monitor or television and uses a standard keyboard and mouse. A capable device enables people 

to explore computing and learn how to program in a language like Python. It can do everything 

people would expect a desktop computer to do, from browsing the internet and playing high-

definition videos to making spreadsheets, word-processing, and even playing video games [27]. 

The first Raspberry Pi product was released in 2012, and the latest, the Raspberry Pi 4 Model 

B, was introduced in June 2019. It contains Gigabit Ethernet, along with onboard wireless 

networking and Bluetooth. It can handle the 4K output and run two monitors at once [28]. 

 

Figure 6: Raspberry Pi 4 Model B1. General view of the single computer board 

As we can see above (Figure 6), the graphical interface of the Raspberry Pi device is the 

same as the standard desktop computer interfaces.  

  

                                                           
1 Source: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/ (2021. April) 

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
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2.7 Tools for implementation 

Python was used in this research because Python is a general-purpose, high-level 

programming language, which is very useful for data science, and deep learning tasks. It has 

many downloadable packages, modules, or machine learning, and many people use it in data 

mining and text mining. 

For creating tables and working with data frames, the “pandas” package was used, and for 

the regular expressions, the “re” module. The “os” and “glob” modules were used to manage 

folders and files. Natural Language Toolkit (“nltk”) was used to tokenize the words. This 

module is a very useful module for tokenization, stemming, text processing, and work with 

human language. For the calculations, evaluation “math”, Scikit-learn (“sklearn”), and 

“NumPy” were used. Sklearn is also useful for separating training and test datasets, encoding 

labels, and create different models, such as Random Forest or Decision Tree. The charts and 

figures were created with the help of the “matplotlib” module. The “pickle” package was used 

to save and load the models. 

“Keras” and “TensorFlow” were used for creating the neural network. It is also an open-

source neural network library, which was written in Python, as well. Keras contains a significant 

number of implementations of commonly used neural network building blocks like layers, 

activation functions, and so on. It also supports convolutional and Recurrent Neural Networks. 

Keras module is also useful to help the text preprocessing.  

TensorFlow is a helpful tool for neural networks; it is open-source software. This module is 

fast and flexible so that it can be used for many different problems. TensorFlow is a symbolic 

math library, and for example, at Google, the engineers use this module for research and 

productivity. It is prevalent, and most of the time, it performs very well [29]. 
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2.8 Evaluation with metrics 

For the models, the accuracy of the given model was calculated as well as the value of the 

area under the receiver operating characteristic curve. The formula for accuracy is (Equation 

4): 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑐𝑙𝑎𝑠𝑠
 ∗ 100 

Equation 4: The formula for the models’ accuracy 

On the other hand, the other formula is (Equation 5): 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Equation 5: The formula for the models’ accuracy rearranged 

[30]. 

For the formula for the Area Under the receiver-operating characteristic Curve (AUC) score, 

we have to calculate the True Positive Rate (TPR), and the False Positive Rate (FPR), which 

are the following equations (Equation 6): 

𝑇𝑃𝑅 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐴𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
;          𝐹𝑃𝑅 =  

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐴𝑙𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Equation 6: The formula for the models’ AUC score 

The value of AUC is the area under the line on the diagram where the x-axis is the False 

Positive Rate, and the y-axis is the True Positive Rate [31]. 

The AUC is equal to the probability that the classifier will rank a randomly chosen positive 

example higher than a randomly chosen negative example. There are some important basic 

terms for this; the True Positive Rate is also known as Recall or Sensitivity, and the False 

Positive Rate or Specificity. They both have values in the range [0, 1] close intervals, and they 

are computed at the threshold values. After a graph is drawn, the AUC is the area under the 

curve between them. Other good evaluation numbers are Precision, Recall, and F1 score [32] 

(Equation 7). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Equation 7: The formulas for Precision, Recall, and F1 scores 

The Confusion Matrix is a matrix; it describes the performance of the model. Actual values 

can be Positive or Negative. For example, in a binary classification, the first label is positive, 

and the second is negative. When we predicted the positive and negative value correctly, then 

it is the True Positive (TP), which means that we predicted the first label, and the first label 

happened to the system. The True Negative (TN) means that we predicted the second and the 

second label happened. However, suppose our predicted positive value is a true negative, and 

the predicted negative is actually positive. In that case, they are False Positive (FP), where we 

predicted the first label, but the system had the second label and False Negative (FN), where 

we predicted the second, but it actually had the first (Table 1). 
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Predicted label 

 Positive Negative 

Positive TP FN 

Negative FP TN 

Table 1: Confusion matrix 

Cross-validation was used during this research. Cross-validation helps the models to give 

much more accurate results and avoid overfitting; the “KFold()”function from the “sklearn” 

module was used to create fifteen folds. 

Cross-validation is a resampling procedure used to evaluate machine-learning models on a 

limited data sample. The procedure has a single parameter called ‘k’, which refers to the number 

of groups to which a particular data sample should be divided [33]. 

To understand the cross-validation procedure, an example was written: 

We have a dataset with six observations.  

𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6] 
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The first step is to select a k value to determine the number of folds used to split the data; let 

us say, in this case, 𝑘 =  3. This means; first, we shuffle the data and split it into three different 

groups. Since we have six observations, each group will have the same number of observations. 

The result is the following folds: 

 𝐹𝑜𝑙𝑑_1 =  [𝑥1, 𝑥2] 

 𝐹𝑜𝑙𝑑_2 =  [𝑥3, 𝑥4] 

 𝐹𝑜𝑙𝑑_3 =  [𝑥5, 𝑥6] 

Three models are trained and evaluated, with each fold given a chance to be the held-out test 

set. The table below (Table 2) illustrates these splits; the fold with red text is the test set, and 

the others are the train set. 

 Fold_1 Fold_2 Fold_3 

Model_1 [𝑥1, 𝑥2] [𝑥3, 𝑥4] [𝑥5, 𝑥6] 

Model_2 [𝑥1, 𝑥2] [𝑥3, 𝑥4] [𝑥5, 𝑥6] 

Model_3 [𝑥1, 𝑥2] [𝑥3, 𝑥4] [𝑥5, 𝑥6] 

Table 2: Cross-validation example 
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3 Models and deep learning 

In this chapter, first, decision Trees were written, and after, the XGBoost model, which is a 

gradient boosted decision trees. 

3.1 Machine learning 

Machine learning is a deep learning area that focused on constructing algorithms that predict 

based on data. A machine learning task aims to learn a function “f: Data (X) → Possible 

predictions (Y)” that maps the input domain of the data onto the output domain of possible 

predictions. The function “f” is selected from a specific function class, which is different for 

each family of learning algorithms. Elements of “X” and “Y” are application-specific 

representations of data objects and predictions, respectively [18]. 

Machine learning algorithms can be classified mainly into three different categories by the 

type of datasets used as experience. These categories are reinforcement learning, supervised 

learning, and unsupervised learning. Other learning algorithms combine two categories, like 

semi-supervised learning, which uses both unlabeled and labeled data. Reinforcement learnings 

do not experience a fixed dataset but a feedback loop between the system and its experiences. 

Supervised learnings use labeled datasets, where part of the dataset represents the data point, 

and the other part is the corresponding true prediction for the first part. This training set of 

input-output pairs is used to find a deterministic function that maps any input to output, 

predicting future input-output observations while minimizing errors as much as possible. 

Unsupervised learning algorithms use unlabeled datasets to train the model. The point of 

unsupervised learning is to derive structure from unlabeled data by investigating the similarity 

between pairs of objects and is usually associated with density estimation or data clustering 

[19]. A possible machine learning method can minimize the mean squared error (MSE) on the 

training set X:  

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦̂ − 𝑦)2

𝑖

 

Equation 8: Mean Squared error 

In this equation (Equation 8), the datasets X has n instances i (the events). 𝑦̂ is the prediction 

of the model. 
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A good, successful machine-learning algorithm should perform well on unseen input 

samples of the same type as the training and validation datasets. Therefore, the algorithm’s 

performance should be evaluated on its ability to minimize the training error and its ability to 

reduce the difference between the training error and validation error. 

3.2 Decision Trees 

Decision Tree Learning is a non-parametric supervised learning method. It can be used for 

both classification and regression. The goal is to create a model that predicts the value of a 

target variable by learning simple decision rules inferred from the data features. The deeper the 

tree, the more complex the decision rules and fitter the model.  

The Decision tree method is useful in data science because it is simple to understand and 

easy to visualize. It requires little data preparation because, for example, this module does not 

support missing values; other models often require data normalization or need to create dummy 

variables and blank values to be removed. The cost of predicting data is logarithmic in the 

number of data points used to train the tree. The Decision tree model can handle both categorical 

and numerical data, unlike other models, which are usually specialized in analyzing datasets 

with only one variable type. This method uses a white-box model. If a given situation is 

observable in a model, the explanation for the condition is easily explained by Boolean logic. 

By contrast, in a black-box model (for example, in an artificial neural network), results may be 

more challenging to interpret. Decision trees perform well even if their assumptions are 

somewhat violated by the correct model from which the data were generated. With this model, 

it is possible to validate a model using statistical tests. That makes it possible to account for the 

reliability of the model.  

Unfortunately, Decision trees have some disadvantages. Decision-tree learners can create 

over-complex trees that do not generalize the data well. If this happens it is called overfitting. 

Mechanisms such as pruning, setting the minimum number of samples required at a leaf node, 

or setting the maximum depth of the tree are necessary to avoid this problem. Decision trees 

can be unstable because small variations in the data might result in a completely different tree. 

This problem is reduced by using decision trees within an ensemble. Practical decision-tree 

learning algorithms are based on heuristic algorithms, like the greedy algorithm, where locally 

optimal decisions are made at each node. Such algorithms cannot guarantee to return the 

globally optimal decision tree. It can be reduced by training multiple trees in an ensemble 

learner, where the models are sample the features and samples randomly with replacement. 
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Decision tree learners create biased trees if some classes dominate, therefore recommended to 

balance the dataset before fitting with the decision tree. Some concepts are hard to learn because 

decision trees do not express them easily, like the multiplexer problems [12]. 

Below we can see a short example to understand the decision trees better. 

The following example shows how a decision tree learning algorithm can obtaine a decision 

tree that is designed to decide whether we can joyfully play tennis or not (Figure 7). 

  

Figure 7: A decision tree for classifying whether to play tennis or not. Each box represents a condition on an attribute whose 

value takes you down to the left of right. Box at the leaves represent the final decision (the class) 

3.3 XGBoost 

The other model used in this research is XGBoost; it stands for eXtreme Gradient Boosting 

[13]. 

XGBoost is an optimized distributed gradient boosting library designed to be highly 

efficient, portable, and flexible. It implements machine learning algorithms under the Gradient 

Boosting framework. This model provides a parallel tree boosting that solves many data science 

problems quickly and accurately. The same code runs on a significant distributed environment 

and can solve problems beyond billions of examples [14]. 

XGBoost is an algorithm that has recently been dominating applied machine learning for 

structured or tabular data. It is an implementation of gradient boosted decision trees designed 

for speed and performance. This model supports many interfaces, like C++, Python, R, Julia, 

Wind Humidity 

No Yes No Yes 

Weather 

https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Gradient_boosting
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Command Line Interface, and Java. The implementation of the model supports the features of 

the scikit-learn (Python) and R , with new additions like regularization. The model support three 

types of gradient boosting. The first is the Gradient Boosting algorithm; it is also called the 

Gradient Boosting machine, including the learning rate. The second is the Stochastic Gradient 

Boosting with sub-sampling at the row, column, and column per split levels. The third, and the 

last one, is the Regularized Gradient Boosting with both Lasso Regression and Ridge 

Regression regularization. The XGBoost library provides a system for use in a range of 

computing environments, for example, the parallelization of tree construction using all of your 

CPU cores during training. Distributed computing is useful for training huge models utilizing 

a cluster of machines. Out-of-core computing helps for enormous datasets that do not fit into 

memory. Cache optimization of data structures and algorithm to make the best use of hardware. 

The implementation of the XGBoost algorithm was engineered for the efficiency of memory 

resources and compute time. A design goal was to make the best use of available resources to 

train the model. The figure below (Figure 8) shows that XGBoost was usually faster than the 

other benchmarked implementations from R, Python Spark, and H2O.[13]. 

 

Figure 8: Benchmark Performance of XGBoost 2 and other programing laguages 

Representing input data using sparsity in this way has implications on how to calculate the 

splits. The XGBoost model’s default method of handling missing data when learning decision 

tree splits is to find the best ‘missing direction’ in addition to the standard threshold decision 

rule for numerical values. The one-hot encoded categorical variable where the zeros are 

                                                           
2 Source: http://datascience.la/benchmarking-random-forest-implementations/ (2020. September) 

http://datascience.la/benchmarking-random-forest-implementations/
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encoded as missing values is equivalent to testing one versus all splits for each category. To 

select the missing direction is the direction that maximizes the gain from equality. When 

enumerating through all possible split values, we can also test the effect on our gain function 

of sending all missing examples down the left or right branch and select the best option. This 

step makes split selection slightly more complicated, since we do not know the gradient 

statistics of the missing values for any given feature we are working on, although we do know 

the sum of all the gradient statistics for the current node [15]. The XGBoost algorithm can 

handle this by performing two reads over the input data, and the second reverse. For the first 

left-to-right scan, the left path gradient statistic is the scan value maintained by the scan, the 

corresponding direction gradient statistic for this node is the total gradient statistic minus the 

scan values. Therefore, the correct direction implicitly contains all the missing values. When 

scanning from right to left, the reverse direction is correct and the left direction contains all 

missing values. The algorithm then selects the best split from the forward or reverse scan [15].  

3.3.1 XGBoost Trees for Regression 

In Figure 9, we can see how effective a drug is depending on the dosage. The second and 

the third observations are relatively large positive values for Drug Effectiveness, which means 

that the drug was helpful. The first and the fourth are relatively large negative values, so that 

means the drug did more harm than good. The red line is the initial prediction. 

 

Figure 9: XGBoost Regression example. This figure shows the relation between the drug dosage and the drug effectiveness  

The first step in fitting XGBoost to the training data is to create an initial prediction. This 

value can be anything, but by default, it is 0.5, regardless of whether you are using the model 
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for Regression or Classification. The predictions, 0.5, corresponds to this thick, red, horizontal 

line, and the residuals, the differences between the observed and predicted values, show us how 

good the initial prediction is. After the XGBoost fits a unique regression tree to the residuals. 

There are many ways to build trees like this; below the most common way was presented to 

build them for regression.  

 

Figure 10: XGboost Regression example. The figure shows the splits based on the drug dosage 

Each tree starts as a single leaf. All of the residuals go to the leaf after calculating a quality 

score or similarity score for these points, where the lambda is a regularization parameter 

(Equation 9). 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  
(∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠)2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 +  𝜆
 

Equation 9: Similarity Score for Regression 

[16] so, in this case, if the lambda is zero, which is the default number, then the similarity 

score is: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  
(−10.5 + 6.5 + 7.5 − 7.5)2

4 + 0
= 4 

The question is whether we can do a better job clustering similar residuals if we split them 

into two groups. Therefore first focus on the two observations with the lowest dosages. Their 

average dosage is 15, so we split the points into two groups, based on whether or not the dosage 

less than 15. The first point on the far left is the only one that is smaller, so its residual goes to 

the leaf on the left, the others go to the leaf on the right. Now the model calculates the similarity 

score again for the left and the right as well, which are:  
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𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 𝑜𝑛 𝑙𝑒𝑓𝑡 =  
−10.52

1 + 0
= 110.25 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 𝑜𝑛 𝑟𝑖𝑔ℎ𝑡 =  
(6.5 + 7.5 −  7.5)2

3 + 0
= 14.08 

We can see that when the residuals in a node are very different, they cancel each other out, 

and the similarity score is relatively small (4). In contrast, when the points are similar, or there 

is just one of them, they do not cancel out, and the similarity score is relatively large (110.25). 

After the model needs to quantify how much better the leaves cluster similar residuals than the 

root by calculating the gain of splitting the residuals into two groups (Equation 10). 

𝐺𝑎𝑖𝑛 =  𝐿𝑒𝑓𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 +  𝑅𝑖𝑔ℎ𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 − 𝑅𝑜𝑜𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

Equation 10: Gain score for regression 

[17] In this case is the Gain is 110.25 +  14.08 –  4 =  120.33. After the threshold’s gain 

calculation, XGBoost can compare it to the gain calculated for the other thresholds. Therefore, 

it shifts the threshold over so that it is the average of the next to observations and builds a simple 

tree that divides the observations using the new threshold, dosage less than 22.5. Calculate the 

similarity score for the leaves and calculate the gain again. This gain is 4. Since this gain is less 

than the gain for dosage less than 15 (120.33), therefore, dosage < 15 is better at splitting the 

residuals into clusters of similar values. So again, it shifts the threshold over so that it is the 

average of the last two observations and builds again a simple tree that divides the observations 

using the new threshold, dosage less than 30, and calculates the similarity scores and the gain. 

At this time, the gain is 56.33, which is smaller than 120.33. Since the model cannot shift the 

threshold over any further to the right, it is done comparing different thresholds, using the 

threshold that gave the largest gain for the first branch in the tree. Since there is only one point 

in the leaf on the left, it cannot split it any further. Therefore, it can split the 3 points in the leaf 

on the right, and do the process from the beginning, calculate the average for the new first two 

residuals, and try the thresholds by calculate the similarity scores and the gains, and select the 

highest gain threshold, this time the gain is 140.17. As we can see on the chart, the tree depth 

of the levels has limit, and this means the model does not split the 6.5, 7.5 leaves any further, 

and it is done building this tree, but the default is to allow up to 6 levels. XGBoost prunes this 

tree based on its gain values. It starts by picking a number, for example, 130. XGBoost calls 

this number 𝛾 (𝑔𝑎𝑚𝑚𝑎). Than it starts to calculate the difference between the gain associated 

with the lowest branch in the tree and the value for gamma. If the difference between the gain 
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and gamma is negative, it will remove the branch, but if it is positive, we will not. In this case, 

140.17 –  130 =  10.17 is a positive number so that the branch will stay, and the model is done 

pruning. We can see the gain for the root is 120.33, and it is less than 130, the value for gamma 

so that the difference will be negative. However, because the model did not remove the first 

branch, it will not remove the root. In contrast, if we set 𝛾 = 150, than it would remove the 

branch, therefore, it will remove the root too, and all it would be left with is the original 

prediction, which is extreme pruning.  

If we set the regularization parameter, 𝜆 (𝑙𝑎𝑚𝑏𝑑𝑎) 𝑡𝑜 1, which means it is intended to 

reduce the prediction’s sensitivity to individual observations, then the new similarity score for 

the root is 3.2, which is 
8

10
𝑠 of what we got when 𝜆 = 0. When it calculates the similarity score 

for the leaf on the left, it gets 55.12, which is half of before. We can see is that when 𝜆 > 0, the 

similarity scores are smaller, and the amount of decrease is inversely proportional to the number 

of residuals in the node. In other words, the leaf on the left had only 1 point, and it had the 

largest decrease in similarity score, 50%; in contrast, the root had all 4 points and the smallest 

decrease, 20%. Therefore the gain values will be smaller, so if we use the same 

𝛾 (𝑔𝑎𝑚𝑚𝑎) values (130), we will prune the whole tree away. When the 𝜆 > 0, it is easier to 

prune leaves because the values for gain are smaller. Setting the 𝛾 = 0, does not turn off pruning 

because the gain can be a negative number, and negative – 0 = negative so that the model will 

remove the branch. On the other hand, by setting 𝜆 = 1, 𝜆 prevented overfitting the training 

data. Now the model will calculate the output values for the leaves (Equation 11); it is like the 

similarity score, except it does not square the sum of the residuals. 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑎𝑙𝑢𝑒 =  
∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 +  𝜆
 

Equation 11: Output Value for Regression 

[16] So the output value to the leaf on the left is 
−10.5

1+ 𝜆
, if the 𝜆 = 0, the value is -10.5; if it is 

1, then -5.25. In other words, when 𝜆 > 0, it will reduce the amount that this individual 

observation adds to the overall prediction and reduce the prediction’s sensitivity to this 

individual observation. When 𝜆 = 0, then the output value for a leaf is simply the average of 

the residuals in that leaf. After the calculation of the output values, the model can create new 

predictions. Like an unextreme gradient boost, XGBoost creates new predictions by starting 

with the initial prediction and adding the output of the tree scaled by a learning rate. XGBoost 

calls the learning rate, 𝜀 (𝑒𝑡𝑎), and the default value is 0.3 (Equation 12). 
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𝑁𝑒𝑤 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + (𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∗ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒) 

Equation 12: How the regression’s predictions work 

[17] Therefore the new predicted value for the first observation, with 10 dosages, is the 

original prediction, 0.5 + (0.3 * -10.5) = -2.65. For the second residual the new predicted values 

is 0.5 + (0.3 * 7) = 2.6, and so on. It builds another tree based on the new residuals and creates 

new predictions that give even smaller residuals, and it keeps building trees until the residuals 

are super small or it has reached the maximum number. 

In summary, when building XGBoost Trees for Regression, the model calculates the 

similarity scores and the gain to determine how to split the data, and it prunes the tree by 

calculating the differences between gain values and a user-defined tree complexity parameter, 

𝛾 (𝑔𝑎𝑚𝑚𝑎) (Equation 13). 

𝐺𝑎𝑖𝑛 −  𝛾 = {
> 0, 𝑡ℎ𝑎𝑛 𝑑𝑜 𝑛𝑜𝑡 𝑝𝑟𝑢𝑛𝑒
< 0, 𝑡ℎ𝑎𝑛 𝑖𝑡 𝑤𝑖𝑙𝑙 𝑝𝑟𝑢𝑛𝑒

 

Equation 13: Pruning for Regression 

If the model prunes, it will subtract 𝛾 from the next gain value and work the way up the tree. 

Then it calculates the output values for the remaining leaves. When 

𝜆 (𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) > 0, it results in more pruning by shrinking the similarity 

scores, and it results in smaller output values for the leaves. 

3.3.2 XGBoost Trees for Classification 

To present this, almost the same training set was used as before. The second and the third 

observation were effective, and the first and fourth was not. As we can see above, the first step 

in fitting XGBoost to the training data is always to create an initial prediction. As it was 

mentioned, this prediction can be anything, for example, the probability of observing an 

effective dosage in the training data, but by default, it is 0.5 (Figure 11). 
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Figure 11: XGBoost Classification example. This figure shows the relation between the drug dosage and the probability that 

the drug is effective 

Since the second and the third green dots represent effective dosages, the probability that the 

drug is effective is one. The others represent ineffective dosages, so the probability for them is 

zero. The residuals, the differences between the observed and predicted values, show us how 

good the initial prediction is. As it was explained above, a unique tree was fitted to the residuals; 

the XGBoost model for classification has a new formula for the similarity scores (Equation 14). 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

=  
(∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖)

2

∑[𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ∗ (1 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖)] +  𝜆
 

Equation 14: Similarity Scores for Classification 

The numerator for classification is the same as the numerator for regression. As with 

regression, the denominator contains 𝜆 (𝑙𝑎𝑚𝑏𝑑𝑎), the regularization parameter; however, the 

rest of the denominator is different. The sum for each observation of the predicted probability 

times one minus the previously predicted probability. 
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Figure 12: XGBoost Classification example. The figure shows the splits based on the drug dosage 

Although this formula is different from what XGBoost uses for regression, it is very closely 

related, and I will show this later. As for the regression, each tree starts as a single leaf, and all 

of the residuals go to the leaf (Figure 12). The model calculates the similarity score. This time 

means it is zero because the nominator will be 0: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 =  
(−0.5 + 0.5 + 0.5 − 0.5)2

∑[𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ∗ (1 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖)] +  𝜆
= 0 

So again, it needs to decide if it can do a better job clustering similar residuals if it split them 

into two groups. For example, I will start with the threshold, where the dosage is less than 15 

(this number is the average value between the last two observations). The similarity score for 

the leaf on the left is 
(−0.5)2

0.5∗(1−0.5)+𝜆
= 1, 𝑤ℎ𝑒𝑛 𝜆 = 0. For the right, it 

is 
(−0.5+0.5+0.5)2

(0.5∗(1−0.5))+(0.5∗(1−0.5))+(0.5∗(1−0.5))+𝜆
= 0.33, 𝑤ℎ𝑒𝑛 𝜆 = 0. Now it can calculate the gain, 

just as it did when I used XGBoost for regression. Therefore, when it split the observations 

based on the threshold dosage < 15, the gain is 0.33 + 1 – 0 = 1.33, and because no other 

threshold gives a larger gain value, this will be the first branch in the tree. The model will split 

the rest of the residuals into two leaves and start again from the beginning. As we can see above, 

the model stopped growing this tree because the number of levels has limit, and this number is 

two; however, XGBoost also has a threshold for the minimum number of residuals in each leaf. 

This number is determined by calculating cover. The cover is defined as the denominator of the 

similarity score minus 𝜆. In other words, during classification, the cover is equal to (Equation 

15): 
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𝐶𝑜𝑣𝑒𝑟 = ∑[𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ∗ (1 −  𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖)] 

Equation 15: Cover for Classification 

In contrast, during the regression, the cover is equal to the number of residuals. By default, 

the minimum value for cover is one. When we use XGBoost for regression and use the default 

minimum value for cover, the cover does not affect how the tree grows because we can have as 

few as one residual per leaf. In contrast, classification is more complicated because cover 

depends on the previously predicted probability of each residual in a leaf. For example, the 

cover value for the -0.5 leaf is 0.5 * (1 – 0.5) = 0.25, and since the default value for the minimum 

cover is one, the model would not allow this leaf. Likewise, the cover for the 0.5, 0.5 leaf is 0.5 

* (1 – 0.5) + 0.5 * (1-0.5) = 0.5, so by default the model would not allow this leaf either, and 

so on. XGBoost requires trees to be larger than just the root, so we have to set the cover value 

to zero. That means in the Python setting the min_child_weight parameter equal to zero. The 

trees are pruned in the same way as in the first case; lambda and gamma work the same way. 

For classification, the output value for a leaf is (Equation 16): 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑎𝑙𝑢𝑒 =  
(∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖)

∑[𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ∗ (1 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖)] +  𝜆
 

Equation 16: Output Value for Classification 

However, just like with an unextreme gradient boost for classification, the model needs to 

convert the initial probability to the value of the logarithm of the odds (Equation 17). 

𝑜𝑑𝑑𝑠 =  
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
→ log(𝑜𝑑𝑑𝑠) =  log (

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
) 

Equation 17: Odds for Classification 

In this case, when the initial prediction is 0.5, log (
0.5

1−0.5
) = 0. As mentioned before, like 

gradient boost for classification, we add the log(odds) of the initial prediction to the output of 

the tree, scaled by a learning rate, 𝜀 (𝑒𝑡𝑎). The default value is 0.3, so same in regression. 

Therefore, the new predicted value for the first observation with two dosage is 0 + (0.3 * -2) = 

-0.6. To convert a log(odds) value into a probability, the model plugs into the logistic function, 

which is (Equation 18): 
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𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑒log (𝑜𝑑𝑑𝑠)

1 + 𝑒log (𝑜𝑑𝑑𝑠)
 

Equation 18: Probability for Classification 

In this case, the new predicted probability is 
𝑒−0.6

1+𝑒−0.6
= 0.35, for the second point, the new 

value is 0.65. After this, the model will calculate the whole process to the next leaves and build 

a new tree with the new residuals. After the first tree, when the model builds the tree, calculating 

the similarity scores is more interesting because the previous probabilities are no longer the 

same for all observations. The model will keep building trees until the residuals are very small 

or reached the maximum number of trees. 

In summary, when we use XGBoost for classification, it calculates similarity scores and 

gains to determine how to split the data. It prunes the tree by calculating the difference between 

gain values and a user-defined gamma parameter like with the regression. Then it calculates the 

output values for the leaves. We have to be aware that the minimum number of residuals in a 

leaf is related to a metric called “cover”, which is the denominator of the similarity score minus 

lambda. 
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3.4 Deep learning 

After the decision tree, and XGBoost models, in this chapter, neural networks is written 

because neural networks were used during the thesis. 

3.4.1 Artificial Neural network 

A neural network is a network of simple components and hierarchically organized parallel 

structures that deal with the realities of the world in the same way as the biological nervous 

system. An artificial neural network is an information processing system composed of the 

structure and function of the physiological human brain neural network and some theoretical 

abstraction, simplification, and simulation of several basic characteristics. The goal of artificial 

neural networks is not to model the human brain. Artificial neural network research is 

fundamentally based on and driven by mathematical and engineering disciplines rather than 

biological brain function. 

 

Figure 13: Layers of the Artificial Neural Network3. The first layer is the input layer, the last is the output layer, between 

them are the hidden layers. Every layer could have more nodes on it. 

The structural model of a neuron can be represented as a node. Each input weight can be 

adjusted during the learning process. Multiple such points are connected into a directed graph 

                                                           
3 Source: https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051 

(2020. September) 

https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051
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to form an adaptive neural network. The information processing of artificial neurons can be 

divided into three parts. In the first part, the inner product of the input signal and the strength 

of the neuron connection is completed, and then the result is passed through the activation 

function and then judged on the basis of the threshold function [34]. If it is higher than the 

threshold, the nerve is activated; otherwise they will be suppressed. In this way, artificial 

neurons are very similar to biological neurons. In general, the neural network model is 

determined by three factors: network topology, neuronal characteristics, and learning or training 

rules. The topology of neural networks can be divided into hierarchical network models and 

interconnected network models (Figure 13). The former divides neurons into several layers, 

and the layers are connected one after the other. The layer input is only associated with the layer 

output. The latter allows any two neurons to be connected. Some networks are a mixture of the 

two.  

The default choice for an activation function in artificial neural networks is the max function 

(Equation 19): 

𝑔(𝑧)  =  𝑚𝑎𝑥{0, 𝑧}. 

Equation 19: The Neural networks’ max funcion 

A unit that employs this function is called a rectified linear unit or, in shorter version ReLU. 

ReLUs are quickly optimized since the derivative is either zero or a positive constant value 

through the domain. Therefore, the gradient direction is far more useful for learning than it 

would be with activation functions with non-vanishing and higher-order derivatives. 

Unfortunately, ReLU has some drawbacks; one of them is that they cannot learn via gradient-

based methods on examples for which the activation is zero. 

The other activation function is the sigmoid, and this function is used to represent a 

probability distribution over a binary variable. It defines as (Equation 20): 

𝜎(𝑧)  =  
1 

1 + 𝑒−𝑧
 

Equation 20: The Neural networks’ sigmoid function 

The softmax function of “z”, is a generalization of the sigmoid function representing a 

probability distribution over a discrete variable with n possible values. Softmax functions are 

often used as the output units of a classifier [20]. 
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Figure 14: Single Perceptron4. After the multiplication and summarization the last step is the unit function. 

Perceptron is an essential element in a neural network. We can see the figure above about a 

single perceptron (Figure 14). 

A perceptron is taking in the different inputs, processes them, and then generates an output. 

Inputs have different weights because some inputs have more importance than others do. I 

would like to write an example for representing how it works. It is a simple question: Should I 

go out to grill chicken wings in the park? I have more inputs, which decides this question,“𝑥1” 

(Is the weather good? 1: means yes, 0: means no), and“𝑥2” (Is it a weekend? 1: yes, 0: no),“𝑥3” 

(Is there a crowd in the park? 0: yes, 1: no), and“𝑥4” (Do I have chicken wings? 1: yes, 0: no). 

There are four weights for these; their value is 1 for “𝑤1”, 2 for “𝑤2”, 1 for “𝑤3” and 2 for 

“𝑤4”. When the weather is excellent, it is Saturday, nobody is in the park, and I have wings; 

the equation would be (Equation 21): 

∑(𝑥𝑖 ∗ 𝑤𝑖) =  𝑥1 ∗ 𝑤1 +  𝑥2 ∗ 𝑤2 + 𝑥3 ∗ 𝑤3 + 𝑥4 ∗ 𝑤4

4

𝑖=1

 

Equation 21: Simple equation for Neural networks 

                                                           
4 Source: https://towardsdatascience.com/introduction-to-artificial-neural-networks-ann-1aea15775ef9  (2020. October) 

https://towardsdatascience.com/introduction-to-artificial-neural-networks-ann-1aea15775ef9
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In this case, 1 + 2 + 1 + 2 = 6, so I will go to the park to grill. We need to define the 

threshold. In this example, if the limit is six, that means, if the total is less than six, then we will 

not go to the park, but if it is equal or greater than six, then we will. I gave the “𝑥2”, “𝑥4” a 

higher weight, because on the weekdays I usually go to work, and if I do not have wings then I 

cannot grill, so “𝑥2”, “𝑥4” are more important than “𝑥1”, “𝑥3”. The output was binary as well. 

A single perceptron cannot be used for tasks that are more complex because if the job is to 

recognize digits from a picture, the output could only have two values so that it would not work. 

A neuron is similar to a perceptron, but instead of zero or one for input, it can take fraction 

values as valid input. The threshold was defined before, and it looked like this (Equation 22). 

𝑜𝑢𝑡𝑝𝑢𝑡 = {1 𝑖𝑓 ∑ 𝑤𝑖∗𝑥𝑖 𝑖 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑖𝑓 ∑ 𝑤𝑖 ∗𝑥𝑖 𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 

Equation 22: The Neural networks output equation 

Now I will move the threshold to the other side of the inequality. We can use a threshold on 

the other side too, but because of bias = - threshold, the inequality will be this, but in reality, 

the outcomes of neural networks are not so discrete but continuous (Equation 23): 

𝑜𝑢𝑡𝑝𝑢𝑡 = {1 𝑖𝑓 ∑ 𝑤𝑖∗𝑥𝑖 𝑖 + 𝑏𝑖𝑎𝑠 ≥ 0
0 𝑖𝑓 ∑ 𝑤𝑖∗𝑥𝑖 𝑖 + 𝑏𝑖𝑎𝑠 <0

 

Equation 23: The Neural network output equation with bias 

Usually, in the real world, the problems are more complex, so we cannot solve them with 

only one perceptron. Typically, we create a complex neural network with more layers [21]. 

Learning in artificial neural networks is closely related to how humans learn in our regular 

lives; we perform an action, and we are either accepted or corrected by a coach to understand 

how to get better at a specific task. Neural networks require a leader in order to describe what 

should have been produced as a response to the input. Based on the difference between the 

actual value and the predicted value, an error value, also called the “cost function”, is computed 

and sent back through the system. Cost Function is a value, one-half of the squared difference 

between actual and output value. For each layer of the network, the cost function is analyzed 

and used to adjust the threshold and weights for the following input. The network aims to 

minimize this cost. The lower the cost function, the closer the actual value to the predicted 

value. In this way, the error keeps becoming marginally lesser in each run as the network learns 

how to analyze values. The system feeds the resulting data back through the entire neural 
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network. The weighted synapses connecting input variables to the neuron are the only thing we 

can control. As long as there exists a disparity between the actual value and the predicted value, 

the system needs to adjust those weights. We have to repeat this process until we scrub the cost 

function down to as small as possible [21]. 
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4 Data description and preparation 

In this section, information about the data, the preparation and processing was written. 

4.1 Data 

Only the system log files were used in the analysis. There were 837 files on 128 individual 

cards, which number was increased later to 3203 different sliced log files thanks to a slicing 

method, which is explained in the “Data preparation” section.  

 

Figure 15: The card’s label distribution. Some of the labels are raleted to the memory, some of them are power or sensor 

related 

The Syslogs were of various lengths; the shortest had two lines, which means only 77 bytes, 

and the longest system log file had almost 14.000.000 lines, which means more than 2 

gigabytes. Due to the imbalance in the lengths of the files, later it was important to pay attention 

to the method of analysis because they could lead to false results. 

As we can see in the figure above (Error! Reference source not found.), there was no 

balance in the dataset at the beginning of the research. The dataset contained twelve labels, the 

most common label was the “DIMM” label; as shown in the figure, there were 17 cards that 

received the “NTF” label, and “NTF” corresponds to “No Trouble Found”, which means the 

good log files. Some labels were similar to each other and could be grouped, but each was a 

unique label. 



Fault analysis of edge router Linux system message log files with machine learning 

42 

4.2 Tokenization and card level 

The system log files are not the same length; it could have two rows, but they could also 

have more than 400.000 rows (Figure 16), so these files were normalized. In the beginning, 

many regular expressions were used to find and replaced parts of the text. First, a single log file 

was checked how it looks, for example, the date format. Some functions were written to replace 

the words: a few were simple, and one of them was a harder and more complex function. 

 

Figure 16: Before tokenization. These are some random lines from a syslog 

Many words were replaced, which were useless to the analysis, for example, the files’ names, 

or hexadecimal numbers, and so on. First, the underscore character replaced by the space 

character because many words are written together; therefore, the task was to separate these. 

The next step was to change the dates to “DATE” words, and the files’ names to “FILE” words, 

and the same with the internet protocol address, “IP”. 

The third step was replacing all of the numbers with the capital letter “X” (Figure 17). The 

result of the cleaning part was a list, the list items are the lines, so they were split into words. A 

tokenizer function was used, which gives an OrderedDict with the counted words. Therefore, 

the task was to convert this to a list format. During the conversion, a function calculated the 

line’s length. After this process, the function gives a number, how many words are in the 

Syslogs. 
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Figure 17: After tokenization. These are the same lines as in the previous figure 

A table was created to store these tokens. The routers and their words and their counted 

numbers were inserted in this data frame so that the tokens became the columns, the numbers 

are the cell’s value, and the rows, the indexes are the routers’ names. We can see this table 

below (Table 3). 

 

Table 3: Data frame with the counted words. The rows are the syslog files, the columns are the tokens and the cell’s values 

are the counted number 

As we can see above in the table, some columns are in integer format (for example, the 

“Token_3” column); some are in float format (for example, “Token_0”, or “Token_7”). The 

reason for this difference is a function. First, if a new Syslog contains a word, which was not in 

the table before, so it was not appear in the processed log files, then a new column was created, 

named after the new token. The cells’ value turns into Not-a-Number (NaN) value, where the 

token did not appear. Secondly, if a new Syslog does not contain an existing token, the cell’s 

value is automatically set to NaN. Therefore, a function convert these cells to zero, and during 
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this process, the column automatically converts to a float format. One of the last steps inside 

this phase is adding a new column, which is the target column, the routers’ error types. 

The second and third phase was creating the Term-Frequency table and calculate the Inverse 

Document Frequency weight. A function was written, which divides the value of all columns 

in a row by the sum of all the tokens in that row, so the total length of the router. With this step, 

The table was normalized; it is crucial because, as it was mentioned above, the Syslogs are 

different lengths. After this process, the value of the cell could come only from zero to one. 

Zero means the word does not appear in the router; one means only the given token is included 

in the text.  

As we saw in section 2.2, the Inverse Document Frequency weight is a measure of how much 

information the word provides, that is, whether it is common or rare across all the routers. The 

logarithmically scaled inverse fraction of the documents containing the token is obtained by 

dividing the total number of documents by the number of documents containing the term and 

then taking the logarithm of that quotient. Therefore, to calculate this, another function was 

written, which first counts the occurrence of each token in the routers, and it calculates the value 

based on this part. So the result of the data preparation is ready (Table 4). As we can see in this 

table, the “Token_3” column contains only zero value because this token (numbers) appears in 

every single Syslog file, so it is no longer important.  

 

Table 4: The final table at the cards level. The rows are the syslog files, the columns are the tokens and the cell’s values are 

the counted number after the TF-IDF normalization 

4.3 Data preparation at the sequence level 

There may be more than one error in a log file or none at all, yet it has been classified under 

some sort of label. Therefore, for better analysis, a new method was called that sliced each 
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Syslog into different sequences (Figure 18). The point was to separate the System log files from 

boot to boot and treat them as separate log sequences.  

 

Figure 18: The slicing method 

In the figure above, we can see the function for log slicing. Because of the function, the 

number of data has multiplied from 128 to 3203 and made each card much transparent and more 

analyzable, as the maintenance do not have to look through hundreds of thousands of rows, but 

just find the sequence and look through it.  

In Figure 19, we can see how the proportion and number of labels changed after slicing. 

 

Figure 19: Labels after slicing 
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In Table 5, we can see the final table at the sequences level. After tokenization, this table 

was converted using the same procedure as the table at the cards level. 

 

Table 5: The final table after tokenization at sequences level 

Slicing yielded many results; it turned out in many sequences did not contain much 

information, so some log files gave a false result during the analysis. After checking several 

files, it turned out, when the system is booting it had only 5000 tokens. Therefore sequences 

below 5000 tokens were unusable in this analysis because they not contained any useful 

information. Therefore, they were no longer used. In the Figure 20, we can see this; the black 

dots, lines are the sequences without information, data with red color contain enough 
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information for analyzing, and the dashed green line is the border between the “good” and “bad” 

sequences. 

 

Figure 20: Sequences’ tokens length,  the black dots, lines are the sequences without information, data with red color contain 

enough information for analyzing, and the dashed green line is the border between the “good” and “bad” sequences 

Due to these changes, only 3010 of the original 3203 sequences remain, the distribution of 

which is illustrated in the Figure 21. 

 

Figure 21: Without the small sequences 

Many sequences had incorrect labels in the dataset due to the slicing since the sequences 

cannot receive the cards’ label; for example, if a card was labeled with “DIMM”, all sequences 

within it were labeled “DIMM”. Therefore, the entire program and process had to be checked 

and redesigned.  
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In order to fix these “incorrect” labels, all the sequences were reviewed one by one and label 

them with the correct labels. Once reviewed, it occurred once that it contained two types of 

errors; this sequence was then treated as two separate sequences, one with the first and one with 

the second label. In the Figure 22, we can see the final labels at the sequences level after the 

reviews. 

 

Figure 22: The final labels at sequences level after the reviews 

We can see that the “NTF” and “DIMM” have changed the most; this is explained by the fact 

that many sequences were not faulty during the check yet were labeled with the parent’s label. 

The previous ones and current figures show that the cards with the “CPU” label have many 

sequences, but only one or two of them were actually faulty; the others were good sequences. 

A review of the log files revealed that the date changes when the cards were tested or used 

elsewhere, so modeling with the date is still not feasible. 

4.4 Grouping labels 

During the research, these twelve labels were used, but some labels could be merged. Three 

different groupings were done, and this was written in this section. 

The first such grouping was “DIMM” against each of the other labels. The theoretical 

background to this is that this type of error often occurs in log files and can already act as a pre-

filter during predictive maintenance; this was used in the card level and the sequence level as 

well. 

From the previous grouping it also follows the grouping in the program written for Raspberry 

Pi, where there are three large groups, “DIMM”, “NTF”, in other words, the logs without any 

error, and everything else. This grouping is essential for workers. They not only know if there 
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is a “DIMM” error or some other type of error in the sequences, but also the program shortens 

their work. They also know which of those sequences, which do not necessarily need to be 

reviewed, because according to the models, they are good. The “DIMM” error is most common 

on cards; therefore, this modeling is beneficial for the company. 

There were four types of labels in the dataset that are relatively extremely rare in real life, 

and because of their number of pieces, it was not worth merging, so they could be omitted in 

one of the groupings. Eight types of labels were used at this time, and these were “DIMM”, 

“NTF”, “CPU”, “POWER”, “SSD”, “SENSOR”, “SW”, and “ARAD”. This grouping was also 

applied at both levels. 

4.5 One-Hot encoding 

One-Hot Encoding was used to transform the labels into integers. Most machine learning 

algorithms look for a relationship between the integers (labels), and the closer they are, their 

relationship is stronger. For example, the models would think that category 2 is closer to 1 than 

4 because the difference between the first and the second category is 1 and between the second 

and the fourth is 2, and it follows from “1 less than 2” that the second category is more closely 

related to the first than to the fourth. In this case, this can lead to a false result because they are 

all completely different labels, so there should not be any meaning in being more similar for 

closer ones, so this is necessary for creating a better performing model. One - Hot encoding 

means that there will be only one “1” in a binary vector, and the others are always “0”. 

During the analysis process,  the “LabelEncoder()” function from sklearn.preprocessing was 

used to transform the labels to integers and the “to_categorical()” function from Keras to create 

the vectors. 
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5 Modeling 

The next phase was modeling; looking for the perfect models, and predict labels with them. 

Different models were built at both levels. In this chapter, at the end of each section, the models 

are summarized and compared in tables. 

5.1 Binary Classification 

This chapter is about the binary models for classification; these predictions are useful in 

shortening working hours for maintenance. These groups were “DIMM” and all other labels. At 

the end of the chapter, the results of the models were written in a summary table. 

5.1.1 Card level 

The first models at the card level were binary; the target labels were either “DIMM” or 

others. The dataset was split for the training set (70% of the total) and test set (30%), the data 

from both labels were included in the same proportion. The next step was building the models. 

Decision Tree 

The first model was a decision tree. A loop increased the depth of the tree one by one. The 

worst accuracy was 47.6%, with a 0.4545 area under the receiver operating characteristic curve, 

which means it was worse than the “head or tail” flip coin game. The best accuracy was 

62.50%, and in this case, the AUC score was 0.6144, so it wass better than before (Table 6). 
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 Predicted label 

 Others DIMM 

Others 29 23 

DIMM 25 51 

Table 6: Binary Decision Tree’s confusion matrix 

XGBoost 

The second type of model was the XGBoost model. The model could reach 0.95 on the 

receiver operating characteristic curve, as we can see in the figure below. To achieve this 

optimal result, the model’s set up was the follows. The number of trees in the model was 15, 

the maximum depth of a tree was 7, 0.1 was the subsample ratio of columns when constructing 

each tree. This subsampling occurs once for every tree constructed. The learning rate was 0.3, 
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which prevents the overfitting, and finally, the alpha parameters value was 2, which was the 

Lasso regularization term on weights. Increasing this alpha value yields the model more 

conservative. 

  

Figure 23: XGBoost’s receiver operating characteristic 

The values near 95% can be considered satisfying because the best value is 1.00, so this 

result was close (Figure 23). This XGBoost model could reach 95.53% accuracy. In the Table 

7, we can see the confusion matrix. 
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 Predicted label 

 Others DIMM 

Others 49 3 

DIMM 3 73 

Table 7: Binary XGBoost’s confusion matrix 
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Feedforward Neural Network 

 

Figure 24: Feedforward Neural Network in at the card level 

The following model was a feedforward neural network. The cross-validation folds was 10. 

The model had three dense layers with a rectified linear unit (ReLu) activation function and the 

last with a softmax function. Between the layers, it had dropout layers with 0.25 and 0.05 values, 

which are prevent overfitting. We can see above (Figure 24) the summary of the structure of 

the neural network. 

 

Figure 25: Feedforward Neural Network’s accuracy 

As we can see above in the figure (Figure 25), the neural network could reach 68.31% 

accuracy, but the standard deviation was relatively larger. This result shows that the neural 

network could predict with almost 70% accuracy what kind of error happened with a router. 

The AUC score was 0.68, which was higher than the decision tree mentioned above (Figure 

26). 
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Figure 26: Neural network’s ROC curve 

The Table 8 shows the neural network’s confusion matrix, which was better than the decision 

tree. 
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Predicted label 

 Others DIMM 

Others 35 17 

DIMM 23 53 

Table 8: Neural network’s confusion matrix 

The Table 9 summarizes the evaluation of the models. It shows different metrics for the 

binary classification. 

Models Accuracy Precision Recall F1 score ROC AUC 

Decision Tree 62.50 53.70 55.77 54.71 61.44 

XGBoost 95.53 94.23 95.43 95.66 95.14 

Neural Network 68.75 60.34 67.31 63.63 68.52 

Table 9: The binary classification results at cards level 

As we can see, the best model at this level was the XGBoost; this model performed much 

better than the other two. 
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5.1.2 Sequence level 

After the card level, the binary classification was performed one level deeper at the sequence 

level for better analysis. At the end of the chapter, the results of the models were described in 

a summary table. 

XGBoost 

First model was an XGBoost because this model had the best performance at the card level. 

The structure of the model was similar to the same model at the higher level; however, it was 

able to achieve a little bit worse results. The number of trees was 75, the maximum depth of a 

tree was 6, the subsample was 0.2, the learning rate was 0.2, and finally, the alpha regularization 

parameter was 1. As we can see in the Figure 27 below, the model could achieve a 0.92 score, 

which is a good result but smaller than the cards level. 

 

Figure 27: Binary XGBoost model at sequences level 

In the Table 10, we can see the confusion matrix for the test set. 

  



Fault analysis of edge router Linux system message log files with machine learning 

55 

T
ru

e 
la

b
el

 

Predicted label 

 Others DIMM 

Others 415 35 

DIMM 40 362 

Table 10: Binary XGBoost confusion matrix at sequences level 

The values near 92% can be considered more than satisfying, and we could predict this from 

the confusion matrix, because (415 +  362) / (415 +  35 +  40  +  362)  =  0.911972.  

Feedforward Neural Network 

The next model was a feedforward neural network. The best model had six dense layers and 

three dropout layers; each dropout had 0.1 values. We can see below the accuracy and the loss 

of the model and the results per fold (Figure 28). 

 

Figure 28: Binary Neural Network at sequences level 

The model had 81.34% accuracy, which is much better than the model at the cards level; the 

best fold was 84.77%, while the worst was 77.22% (Figure 29). 
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Figure 29: Binary feedforward neural network 

In the Table 11, we can see the neural network’s confusion matrix at this level. 
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Predicted label 

 Others DIMM 

Others 324 78 

DIMM 81 369 

Table 11: Binary Neural Network confusion matrix at sequences level 

As we can see (Table 12), the best model was again the XGBoost, but at this level, the neural 

network performed better than before. 

Models Accuracy Precision Recall F1 score ROC AUC 

XGBoost 91.20 91.18 90.01 90.06 91.14 

Neural Network 81.34 80.00 80.60 80.30 81.30 

Table 12: The binary classification results at sequences level 

5.2 Modeling with three types of labels 

In this part, the modeling was done with three labels, “DIMM”, “NTF”, “Others”. This 

grouping helping to shorten the maintenance work hours by many minutes. First model was 

again an XGBoost, then feedforward neural networks with different parameters.. 



Fault analysis of edge router Linux system message log files with machine learning 

57 

XGBoost 

The best of these models had 91.92% accuracy, and it had 80 estimators in it; the maximum 

depth of a tree was 4, the subsample ratio was 0.4. It had a 0.5 learning rate, which prevents 

overfitting, the alpha value was 2, and the minimum child weight was 5. The values near 92% 

can be considered more than satisfying. 

In the Table 13, we can see the confusion matrix of the model. The model made the most 

error with the “DIMM” label; it mainly was predicted as “NTF”, which refers to a good log file. 

 NTF DIMM OTHERS 

NTF 407 12 3 

DIMM 37 202 3 

OTHERS 14 4 221 

Table 13: The last XGBoost’s confusion matrix 

Neural Network 

In the following, Feed-Forward Neural Networks and some Recurrent Neural Networks 

(RNN) were built. Unfortunately, the RNNs did not produce significant results and trained 

much more slowly than the others train. 

The models were built different epoch (1000, 2000), batch (200, 250), and neurons on each 

layer. The last layer was always a simple dense layer with softmax activation, and all the models 

had the adam optimizer. On average, one model trained for more than 24590 seconds, which is 

about seven hours. The test hardware had 64 Central Processing Units with Intel Xeon 

Processor; the CPU’s speed was 2924.608 MHz. 

The first Feed-Forward Neural Network had five layers. The figure below (Figure 30) shows 

the layers and the neurons on them. 
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Figure 30: Neural Network’s summary 

In this model, the number of epochs was 1000, and the batch size was 200. As we can see in 

the Figure 31, the average accuracy of neural networks was 85.51%, with a variance of 1.46. 

This was a very good result compared to the relatively small amount of data. 
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Figure 31: First Feed-Forward Neural Network with three labels 

For calculating the Loss score, the categorical_crossentropy from Keras was used, and as 

we can see above, the average loss score was 0.6272, which means the network took the right 

decisions, but it was not perfectly confident about the results. 

The Table 14 shows the neural networks confusion matrix. 

 DIMM NTF OTHERS 

DIMM 198 29 15 

NTF 56 356 10 

OTHERS 20 2 217 

Table 14: Neural Network Confusion matrix 

In the next model, the epochs number was again to 1000, and the batch size was 250. The 

model had six layers (Figure 32). 
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Figure 32: Neural Network’s summary 

As we can see (Figure 33), the accuracy was almost the same as before, just a little bit less, 

and it had a larger variation with few decimal points.  

 

Figure 33: Second Feed-Forward Neural Network with three labels 
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The confusion matrix was the following (Table 15). 

 DIMM NTF OTHERS 

DIMM 208 27 7 

NTF 25 356 41 

OTHERS 3 30 206 

Table 15: Neural Network confusion matrix 

In the next model, the parameters were the following, epoch size was 2000, the batch size 

was a little bit less than before, and it was 200; it had seven layers in it (Figure 34).  

 

Figure 34: Neural Network’s summary 

This model could reach almost 89% accuracy, which can be considered satisfying. In the 

Figure 35, we can see the folds accuracies and their loss scores. As we can see, the lowest 

accuracy was almost 86%, and the highest was more than 91%. 
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Figure 35: Third Feed-Forward Neural Network 

In the Table 16, we can see the neural networks confusion matrix; again, the model could 

predict “NTF” most accurately than in the case of XGBoost, but not as well as the other model. 

 DIMM NTF OTHERS 

DIMM 180 43 19 

NTF 13 399 10 

OTHERS 8 13 218 

Table 16: Neural Networks confusion matrix 

The Table 17 summarizes the evaluation of the models. As we can see, the best model was 

the XGBoost, but neural networks also gave good results with different confusion matrices. 

Models Accuracy Precision Recall F1 score ROC AUC 

XGBoost 91.92 91.44 91.36 91.29 94.74 

First ANN 85.38 86.09 85.38 85.58 83.29 

Second ANN 85.27 85.37 85.27 85.29 84.92 

Third ANN 88.26 88.34 88.26 88.05 89.12 

Table 17: Summary table for three types of labels 
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5.3 Modeling with eight labels 

5.3.1 Sequence level 

The following grouping was with eight labels because there were four types of labels in the 

dataset that are relatively very rare in real life. These models can be a pre-filter for a log files 

analysis. The whole process was started from the beginning; first, decision trees, random 

forests, and XGBoost were built. After these models were combined into a big, robust model. 

Decision Tree 

The first models were decision trees. Of the thousands of decision trees, the best model had 

71.15% accuracy, the maximum depth of the tree was 14, and 3 samples were the minimum 

number required to split an internal node, the minimum number of samples required to be at a 

leaf node was the default. The decision trees were different in depth, minimum samples in a 

split, and minimum samples in a leaf. 

Random Forest 

The following models were random forests. More than five hundred models were built, and 

the average accuracy of the models was 71.29% with 2.05 variance. These models were 

different in the number of the trees in the forest, depth, minimum samples in a split, and in a 

leaf node. 

The number of trees in the best random forest was 185, and the maximum depth was 12; it 

had the same number of samples per split and per leaf nodes as the previous different model. 

No weight was added to the model. The best had 73.34% accuracy, so the random forest model 

was a little bit better than the decision tree. 

XGBoost 

The last non-combined model was the XGBoost. The best model had 154 estimators, the 

maximum depth of a tree was 9, the subsample was 0.5, which means that XGBoost would 

randomly sample half of the training data before growing trees, which helps prevent overfitting. 

It had a 0.8 learning rate, the alpha parameter was 0.7, and the gamma, which set the minimum 

loss reduction required to create a further partition on a leaf node of the tree, was 0.4. A larger 

gamma parameter gives a more conservative algorithm. This model had 72.52% accuracy, so it 
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is better than the best decision tree but worse than the random forest. The Figure 36 shows the 

classification error and the log loss of XGBoost. 

 

Figure 36: XGBoost log loss and Classification error charts 

Combined models 

As we can see in the results table, all models had an average accuracy of 72.25%; therefore, 

these models were combined. A dataframe was created, where the columns were the predictions 

of the best models from the decision tree, random forest, and XGBoost, and two more columns 

were created with the two combined models.  

The Table 18 shows an example from the dataframe with these individuals and combined 

models. 
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Card_name Seq_0 DIMM DIMM NTF DIMM NTF 

Seq_1 DIMM DIMM DIMM DIMM DIMM 

Seq_2 CPU DIMM CPU CPU CPU 

Seq_3 CPU DIMM CPU CPU CPU 

Table 18: The models’ results at sequences level 

First combined model – Majority voting 

The first combined model was simple voting between the models. Below we can see the 

Pseudocode for this majority voting (Equation 24). 
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Majority Voting 
 
 Create an empty list  
  For k := 0 to the length of the list of labels do 
   Choose a label that most models voted 
   Append this value to the list 

Equation 24: Majority Voting’s Pseudocode 

In this confusion matrix (Table 19), we can see the result of the majority voting; this means, 

if two models predicted the same label, then it does not matter what the third said. It was 

accurate for most labels, but when not, it predicted “NTF”, which means the sequence was 

without any error. 
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Predicted label 

 NTF DIMM CPU SSD ARAD SENSOR POWER SW 

NTF 1039 264 8 0 15 16 1 0 

DIMM 122 627 22 0 1 0 0 0 

CPU 7 0 10 0 0 0 0 0 

SSD 60 27 3 62 0 1 0 0 

ARAD 12 5 0 0 71 0 0 0 

SENSOR 61 0 0 2 0 68 0 0 

POWER 36 10 17 0 0 0 96 0 

SW 25 22 0 0 0 0 0 46 

Table 19: Majority voting’s confusion matrix 

Second combined model – Probability voting 

For the second model, the predictions probabilities was used as weights; thus, it yielded more 

accurate model. To get the probabilities of each sequence of each log, the predict_proba(), 

built-in function was used. After, list was created; in which the amount of label corresponding 

to the probabilities were put. Finally, the function took the most common item, and that became 

the prediction. 

For easier understanding, we can see the Pseudocode and an example below (Equation 25). 
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Probability Voting 
 
 Create an empty list for the final predictions 
  For k := 0 to the length of the list of labels do 
   Create an empty sublist for probability voting 
   For each model do 
    Create a number, which is the integer rounded to 
hundred times the probability of the model’s predictions 
    For j := 0 to this number that was calculated above 
do 
     Append the predicted label to the sublist 
   Choose the most common label from the sublist, in other words, 
the label that has the highest probability after the summary 
   Append this value to the final list 
   Clear the sublist 

Equation 25: Probability Voting’s Pseudocode 

Probability voting example. There were three models; decision tree, random forest and 

XGBoost. 

1. The decision tree predicted “NTF”, and the probability for this label was 0.51. 

2. The random forest also predicted “NTF”, but only with 0.45 probability 

3. The last model, the XGBoost predicted “DIMM” label, but the model was sure that 

the sequence has a “DIMM” error because the probability for this label was 0.98. 

4. Therefore in the sublist there were (0.45 * 100 + 0.51 * 100) = 91 “NTF” labels, and 

0.98 * 100 = 98 “DIMM” labels. 

5. The most common label of this sublist was “DIMM”, so the final prediction for this 

sequence was “DIMM”. 

The example illustrates well the difference between majority voting and probabilistic voting, 

as the first combined model would have predicted an “NTF” label due to the two-to-one ratio. 

However, the second model predicted a “DIMM” error due to probabilities. 

In the Table 20, we can see the probability voting’s confusion matrix.  
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Predicted label 

 NTF DIMM CPU SSD ARAD SENSOR POWER SW 

NTF 1072 141 58 0 31 39 2 0 

DIMM 149 622 0 0 1 0 0 0 

CPU 6 0 11 0 0 0 0 0 

SSD 59 20 3 76 0 1 0 0 

ARAD 9 5 0 0 74 0 0 0 

SENSOR 56 0 0 2 0 73 0 0 

POWER 21 0 22 0 0 0 110 0 

SW 12 22 0 0 0 0 0 59 

Table 20: Probability voting’s confusion matrix 

As shown from the previous two tables, the results are somewhat similar, but the probability 

model predicted different labels for many sequences. 

The Table 21 summarizes the evaluation of the models. It shows different metrics for the 

classification. The weighted-average scores were used in this table; it means the scores were 

weighted of each class by the number of samples from that class. For example, if the dataset 

had six “A”, ten “B” and nine “C”, and the micro-average F1-scores were 42.10%, 30.80%, and 

66.70%, then the weighted F1-score was (Equation 26): 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  (6 ×  42.10% +  10 ×  30.80% +  9 ×  66.70%) / (6 + 10 + 9) =  46.40% 

Equation 26: The weighted score for evaluation 

Models Accuracy Precision Recall F1 score ROC AUC 

Decision Tree 71.15 62.35 64.42 63.36 70.09 

Random Forest 73.34 72.04 73.24 73.47 72.95 

XGBoost 72.52 65.84 72.81 69.13 74.02 

Majority Voting 73.26 76.54 73.26 73.25 73.49 

Probability 

Voting 
76.09 79.07 76.09 76.67 77.46 

Table 21: The multilabel classification results at sequences level 

As we can see above, the combined models achieved better results, especially the 

probabilistic voting. 
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5.3.2 Card level 

After these models, there was an idea to take the prediction successfully at the cards level 

when even one of the sequences on the card was predicted well by the models. 

For example, if the first card, labeled with “NTF”, had 23 sequences and the models 

predicted 22 “DIMM” and 1 “NTF”, then it was considered successful. The background to this 

is that if there is even a single sequence on the card that is a “DIMM” error, then the card was 

labeled with the given label. This modeling returned how many cards were in the dataset in 

which none of the models found at least one sequence. In the Table 22, we can see only the 

votes results and the model of probability votes. 

Votes DIMM NTF CPU POWER SSD SENSOR SW ARAD Total 

Good 76 10 9 4 4 2 3 2 109 

Total 76 17 11 6 4 4 3 2 123 

% 100 58 82 66 100 50 100 100 88 

Prob_votes DIMM NTF CPU POWER SSD SENSOR SW ARAD Total 

Good 76 10 9 4 4 2 3 2 109 

Total 76 17 11 6 4 4 3 2 123 

% 100 58 82 66 100 50 100 100 88 

Table 22: At least one sequence is correct at the cards level 

As we can see, both models predicted the same percentage. There were four labels where at 

least one sequence was correctly predicted. Twice the worst-performing label was “SENSOR” 

with 50%; this means that in only half of the cases were the models able to predict the correct 

label in even one sequence. There were 14 cards where both models mispredicted, which means 

the models discovered the errors in 88.62% of the cards. 

5.4 Modeling with all of the labels 

In this chapter, all of the labels (i.e., 12) were analysed at the sequences level. The data was 

split, so that 70% of each label was included in the training data. First, XGBoost, random forest 

were built, and in the end feedforward neural networks. Due to the unbalanced dataset, the 

compute_sample_weight() function from Scikit-learn was used to estimate the sample weights 

by class. This is a good feature for handling unbalanced data; a small example had written of 

how it works. 
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1. In the dataset, we have ten observations, and from this data, six “A” labels, three “B” 

labels, and one “C” label: 𝑑𝑎𝑡𝑎 = [𝐴, 𝐴, 𝐵, 𝐵, 𝐴, 𝐶, 𝐴, 𝐵, 𝐴, 𝐴] 

2. The compute_sample_weight(‘balanced’, observations) function returns an array 

with the following weights (Equation 27): 

𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑎𝑚𝑝𝑙𝑒_𝑤𝑒𝑖𝑔ℎ𝑡(′𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑′, 𝑑𝑎𝑡𝑎)

=  [0.55, 0.55, 1.11, 1.11, 0.55, 3.33, 0.55, 1.11, 0.55, 0.55] 

Equation 27: Sample weights calculation 

As a check, if we add the weights for each label, we get the same values: 6 ∗ 0.55 = 3 ∗

1.11 = 3.33; that is, the dataset will be in balance. This algorithm was applied always for the 

training set after train-test splitting. 

XGBoost 

The best model had 55 estimators, the maximum depth of a tree was 4, and the subsample 

was 0.4. It had a 0.5 learning rate; the alpha parameter was 2; the minimum child weight was 

1, and the scale_pos_weight parameter was set to the array that the compute_sample_weight 

function returned. This model had 91.03% accuracy. In the Table 23, we can see the confusion 

matrix. 
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ARAD 17 0 0 0 0 0 0 0 0 0 0 0 

CPU 0 2 0 0 0 7 0 0 0 0 0 0 

DIMM 0 1 197 0 0 43 0 0 0 0 1 0 

FABRIC 0 0 2 5 0 0 0 0 0 0 0 0 

GLITCH 0 0 0 0 3 1 0 0 0 2 0 0 

NTF 0 0 13 0 0 407 0 0 0 0 0 0 

POWER 0 0 0 0 0 1 52 0 0 0 0 0 

BIOS 0 0 1 0 0 2 0 6 0 0 0 0 

RRC 0 0 0 0 0 1 0 0 27 0 0 0 

SENSOR 0 0 0 0 0 3 0 0 0 42 0 0 

SSD 0 0 1 0 0 1 1 0 0 0 18 0 

SW 0 0 0 0 0 0 0 0 0 0 0 46 

Table 23: XGBoost confusion matrix with 12 labels 
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Random Forest 

The random forest model could reach 89.04% accuracy. The parameters were the following; 

115 estimators, maximum depth was 4, and the class_weight parameter was set to ‘balanced’. 

The values near 99% can be considered more than satisfying; in the Table 24, we can see the 

confusion matrix. 
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ARAD 17 0 0 0 0 0 0 0 0 0 0 0 

CPU 0 1 1 0 0 7 0 0 0 0 0 0 

DIMM 0 1 190 1 0 46 0 0 0 3 1 0 

FABRIC 0 0 1 5 0 1 0 0 0 0 0 0 

GLITCH 0 0 0 0 3 0 3 0 0 0 0 0 

NTF 0 0 17 0 0 398 5 1 0 0 1 0 

POWER 0 0 0 0 0 1 52 0 0 0 0 0 

BIOS 0 0 0 0 0 2 0 7 0 0 0 0 

RRC 0 0 0 0 0 1 0 0 27 0 0 0 

SENSOR 0 0 0 0 0 2 0 0 0 43 0 0 

SSD 0 0 3 0 0 1 1 0 0 0 16 0 

SW 0 0 0 0 0 0 0 0 0 0 0 46 

Table 24: Random Forest confusion matrix with 12 labels 

Feedforward Neural Network 

The last models were neural networks again. The fold size was the same as before, 15. At 

the best neural network, the epochs size was 2000, and it had 250 batch sizes. As we can see 

below in the figure, the model had five layers and some dropout layers as well (Figure 37).  



Fault analysis of edge router Linux system message log files with machine learning 

71 

 

Figure 37: Feedforward neural network with 12 labels 

In the Figure 38, we can see the accuracies per fold; the worse accuracy was 78.22%, the 

best was 87.92%, and the average was 84.55%, which was a good result. 

 

Figure 38: Feedforward neural network with 12 labels 

In the Table 25, the confusion matrix of the neural network was written. 
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ARAD 10 0 0 0 0 7 0 0 0 0 0 0 

CPU 0 5 2 0 0 2 0 0 0 0 0 0 

DIMM 0 1 178 1 0 58 0 0 0 3 1 0 

FABRIC 0 0 1 5 0 1 0 0 0 0 0 0 

GLITCH 0 0 0 0 2 1 3 0 0 0 0 0 

NTF 0 0 33 0 0 382 5 1 0 0 1 0 

POWER 0 0 0 0 0 2 51 0 0 0 0 0 

BIOS 0 0 0 0 0 1 0 8 0 0 0 0 

RRC 0 0 0 0 0 1 0 0 27 0 0 0 

SENSOR 0 0 0 0 0 4 0 0 0 41 0 0 

SSD 0 0 6 0 0 4 1 0 0 0 10 0 

SW 0 0 0 0 0 0 0 0 0 0 0 46 

Table 25: Feedforward neural network confusion matrix with 12 labels 

The Table 26 summarizes the evaluation of the models. As we can see, the best was the 

XGBoost model again, but the other models also performed well. 

Models Accuracy Precision Recall F1 score ROC AUC 

XGBoost 91.03 91.16 91.03 90.73 92.17 

Random Forest 89.04 88.89 89.04 88.60 88.92 

Neural Network 84.55 84.73 84.53 84.12 84.92 

Table 26: The classification results with 12 labels at sequences level 

During the analysis the XGBoost model was almost always the best model to predicting the 

correct labels. The analysis had four different grouping; binary, group with three labels, with 

eight labels and with twelve labels. Each cards were analyzed by different machine learning 

algorithms, and they were sliced into sequences. 
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6 Development for Raspberry Pi 

The next task was to write a script for a Raspberry Pi device. It is not always possible to use 

servers due to the sensitive data; therefore, this device is perfect because this tool is easy to 

transport. 

Reviewing an edge router card is almost an entire day’s work for an employee. In most cases, 

they do not have any starting point; they can only guess what might have happened to the 

system, so they have to check all the lines one by one. This, in the case of hundreds of thousands 

of lines, is quite cumbersome and difficult. This program can also be useful as a starting point 

and later for predictive maintenance, as it can tell you about a particular card or log file what 

might have happened in it. In addition, its various outputs include sliced sequences, making it 

easier to check them. 

Because the previous scripts were very robust, they had to be redesigned and retained only 

the most necessary elements and modules possible. Raspberry Pi 2 and 3 were used to testing 

and improving the code. The older model was used to run small tests locally and the newer one 

through a server for larger tests. Model 2 has Debian 10.8, and model 3 has 10.9. 

6.1 The script 

The program was written in two ways because some devices only run older versions of 

Python. They are not essentially different; only the print function was redesigned (Figure 39).  

 

Figure 39: The analyzer script 

For modeling, the program uses an XGBoost model and three different neural network 

models. Since three different neural networks were trained, the models decide by vote which 

labels the sequences gets; therefore, the script yields two individual tables. The first is the 

prediction by XGBoost and the other is the result of the neural networks. 

After starting the program, the user must specify the path to the logs, which can be a folder 

containing multiple folders containing Syslogs, a folder full of Syslogs. 

For transparency, the code creates a folder called results in which all results, sliced log 

details, tables are saved in .csv format. If the folder already exists in the path from which we 
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started the program, it will not create a new one. In this case, it creates a new subfolder for the 

sliced log files within the results folder. As we can see below, the results folder already exists, 

and inside the folder, the “log_with_seq” as well, so the script created a new subfolder called 

“log_with_seq_0”, if it also exists, it moves one on the counter until it can create a new one. 

This is important because data will not be lost on multiple runs (Figure 40). 

 

Figure 40: If there is a results folder 

After that, the path specify the user no longer has to do anything in the program, just wait 

for it to run and print the results to standard output, and save each prediction in Comma-

separated values (.csv) format. In the following two figures, we can see the results (Figure 41, 

Figure 42). 

 

Figure 41: Testing with one Syslog file 
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Figure 42: The results folder after running the program twice 

6.2 Improving the script 

The next task was to improving the script. The test log card contained ten Syslog files, the 

whole folder was more than 60 megabytes, and after the slicing method, it yielded 28 sequences. 

Each sequence had more than 30000 tokens; the average was 938729 tokens. The very first 

test’s time was a little bit more than 2542 seconds; this means approximately 42.37 minutes. 

For predictive maintenance, this is not fast enough. Therefore, the runtime had to speed up. 

First, almost all of the append functions had to rewrite; instead of them, a list comprehension 

were written because that it could speed up the script with this change (Figure 43).  

 

Figure 43: Change to list comprehension 

The next step was to check the assignments; if multiple variables were written in more rows, 

then they were created simultaneously. We can see below this step in the Figure 44. 
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Figure 44: Multiple assignments 

The modules were reduced, and if it was possible, only the necessary functions were 

imported. For example, instead of “import math”, the log10 function was imported with the 

“from math import log10” line. This helped to avoid the dot operation. 

One of the last steps was to modify the regular expressions. They were used a lot during the 

tokenizing step, so it is best to use the re.compile() function beforehand, which we can use to 

transform regular expressions into pattern objects, which helps to search a pattern again without 

rewriting it (Figure 45). 

 

Figure 45: Regular expression modification 

The current final time is 1290 seconds ~ 21.5 minutes; which is half of the original time, but 

in the “Conclusions and future work” some ideas were written to improve the time more. 
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7 Conclusions and future work 

The main goal of this research was to create a System log files analyzer for predictive 

maintenance because there is currently no quick and effective program for this. Therefore; 

several publicly available programs were overviewed that are capable of individual log files, 

especially system log files, organizing, and analyzing them. It was investigated how they are 

structured and what types of logs are analyzed in what way. 

Syslog files were examined with different labels in this dissertation, which were converted 

using text mining methods. Then they were analyzed with several models, including decision 

trees, random forests, the XGBoost model, and neural networks, and they predicted labels for 

each log file. To make this more successful, text-mining methods were applied and each Syslog 

was sliced into sequences. These transformations gave much more transparent and accurate 

results. After teaching and testing the models, the results were obtained, which were evaluated 

with different indicators, such as accuracy and a confusion matrix. 

It was also part of this thesis the writing of a program for a Raspberry Pi that can give the 

professional workers guidance on what kind of failures happened in the system, thus reducing 

their time spent on maintenance and more efficient debugging. The program was written in 

Python and tested it on two different types of Raspberry Pi. 

In conclusion, several types of errors can occur in a log file, and machine learning methods 

can significantly help the work of professionals by guiding analysis. With this AI technology, 

professionals know more precisely what error they need to look for in which sequence; they do 

not have to look through all the rows. This allows them to spend more time on improvements 

and upgrades, and not have to deal with maintenance. 

As a personal impression it was worth doing this research. I have learned plenty of new 

things like neural networks, or how a text-mining project is built, how the process works in real 

situations. I have experienced that we always have to check whether the results are correct 

because many times, the results are wrong or unequivocal. Therefore, it is essential, not enough, 

if you have data mining skills, and you need to understand the data, in this case, how it works, 

how it looks like the system log files. The progress was challenging, with many failures and 

false results, or restarting the project from the beginning, but worth it because I learned many 

text-mining skills. 
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It turns out it is tough to clean a log file because many log files look different. It is not enough 

to clean the text; I had to pay attention to the fact that certain words and expressions have to be 

left out from the cleaning part because they are essential as in model building, and as well as 

for the Syslog file itself. When somebody starts to build a model, he has to pay attention to 

precisely what he wants to measure and how. 

The task was complicated because I had a relatively small amount of data. Neural networks 

need a more extensive dataset, but fortunately, different models handle even the already more 

minor dataset well, such as decision trees and the XGBoost. I increased the dataset by slicing 

to sequences, but I had to review all the sequences. Therefore, these models, the results I wrote 

in this research are more accurate because I could eliminate the noise as much as possible. 

I have several development suggestions for the future. First, the company has to write a 

Graphical User Interface or improve the runtime with some changes. I used the “pandas” 

module for creating and handling data frames, but if we can vectorize these tables with 

“NumPy”, then the whole process could be significantly faster.  

It is not a question nowadays why data mining is very popular. There are many areas where 

it could be used. Hidden information could be extracted from the data, and companies can gain 

an advantage from it. Data Science will be more in the focus of companies, as it will impact 

economic performance. With predictive maintenance, companies can gain a huge advantage 

too. They can anticipate when a device is not working correctly with a predictive model, saving 

time and money.  
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