

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/171216

Picornell-Sanjuan, T.; Flich Cardo, J.; Hernández Luz, C.; Duato Marín, JF. (2021).
Enforcing Predictability of Many-cores with DCFNoC. IEEE Transactions on Computers.
70(2):270-283. https://doi.org/10.1109/TC.2020.2987797

https://doi.org/10.1109/TC.2020.2987797

Institute of Electrical and Electronics Engineers

© 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertisíng or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

1

Enforcing Predictability of Many-cores with
DCFNoC

Tomás Picornell, Student Member, IEEE, José Flich, Senior Member, IEEE,
Carles Hernández, Member, IEEE, and José Duato, Senior Member, IEEE

Abstract—The ever need for higher performance forces industry to include technology based on multi-processors system on chip
(MPSoCs) in their safety-critical embedded systems. MPSoCs include a network-on-chip (NoC) to interconnect the cores between
them and with memory and the rest of shared resources. Unfortunately, the inclusion of NoCs compromises guaranteeing time
predictability as network-level conflicts may occur. To overcome this problem, in this paper we propose DCFNoC, a new
time-predictable NoC design paradigm where conflicts within the network are eliminated by design. This new paradigm builds on top of
the Channel Dependency Graph (CDG) in order to deterministically avoid network conflicts. The network guarantees predictability to
applications and is able to naturally inject messages using a TDM period equal to the optimal theoretical bound without the need of
using a computationally demanding offline process. DCFNoC is integrated in a tile-based many-core system and adapted to its
memory hierarchy. Our results show that DCFNoC guarantees time predictability avoiding network interference among multiple running
applications. DCFNoC always guarantees performance and also improves wormhole performance in a 4× 4 setting by a factor of 3.7×
when interference traffic is injected. For a 8× 8 network differences are even larger. In addition, DCFNoC obtains a total area saving of
10.79% over a standard wormhole implementation.

Index Terms—real-time systems, safety-critical systems, MPSoCs, time division multiplexing (TDM), time predictable network.

F

1 INTRODUCTION

MANY-CORE processors are increasingly considered in
safety critical systems to cope with the high computa-

tional power demands of new applications (e.g autonomous
driving systems). Unfortunately, current commercial off-the-
shelf (COTS) many-core processor designs cannot be used in
the context of autonomous safety-related applications since
safety standards (e.g ISO26262 in the automotive domain)
impose strict requirements that cannot be generally met
with these platforms. One of the major obstacles relates
to the inability for determining good quality (i.e low and
tight) worst-case execution time (WCET) estimates for the
software functions running on top of COTS many-core
platforms. This is in turn a consequence of the way shared
resources included in these systems are handled. Due to
the high number of cores competing for the shared re-
sources, the network-on-chip (NoC) becomes the resource
with highest impact in contention. In particular, wormhole
NoCs implemented in COTS many-cores have been shown
to introduce a huge negative impact in the quality of WCET
estimates [1].

To address this problem, in this work we focus on the
design of a new contention-free NoC [2] design (DCFNoC)
using time-division multiplexing (TDM) such as the ones
proposed in [3] and [4]. DCFNoC relies on the utilization
of the channel dependency graph (CDGs) associated to the

• Tomás Picornell, José Flich, Carles Hernández and José Duato are
with Department of Computer Architecture, Universitat Politècnica de
València, Valencia, 46022, Spain.

• Email: tompic@gap.upv.es (Tomás Picornell)
• Email: jflich@disca.upv.es (José Flich)
• Email: carherlu@upv.es (Carles Hernández)
• Email: jduato@disca.upv.es (José Duato)

This work has been supported by MINECO under Grant BES-2016-076885,
by MINECO and funds from the European ERDF under Grants TIN2015-
66972-C05-1-R and RTI2018-098156-B-C51, and by the EC H2020 RECIPE
project Grant 801137.

routing algorithm to understand the existing packet depen-
dencies (contention) and eliminate them by the introduction
of delays at strategic router output ports. The CDG helps
to identify where conflicts may occur in the NoC and how
these conflicts are always the consequence of dependencies
between packets reaching their destination with a variable
number of hops. With the addition of delays at output ports
of specific routers we ensure transmissions are naturally
serialised and conflicts are avoided. With this methodol-
ogy, the network is significantly simplified as it does not
need scheduling tables. Also, buffers and associated flow
control and arbitration logic within routers can be removed.
DCFNoC provides the following benefits to our system:

• Straightforward scheduling. Contention is simply
avoided when it is enforced that no more than one node
is injecting a packet in the same time slot.

• Scalability. DCFNoC provides better scheduling peri-
ods than competing TDM approaches and is able to
find schedules in arbitrarily large NoCs.

• Constant network message latency. Once a message is
injected into the network a path is guaranteed to reach
its destination node with the same delay since all paths
are forced to have the same delay.

• Timing isolation. Heterogeneous network bandwidth
allocation can be assigned to nodes preventing band-
width starvation or network interference.

DCFNoC is suitable for mixed-criticality systems since
it provides the timing isolation requirements imposed by
safety critical standards to consolidate several tasks of dif-
ferent criticality levels. Additionally, the good properties of
DCFNoC allow easily allocating heterogeneous bandwidth
guarantees to the different tasks executed in the MPSoC
thus, tailoring the performance bounds of the NoC to the
needs of the different applications. Even though, network
interferences and bandwidth starvation are avoided. We
formalize the DCFNoC properties and prove that when

2

using this NoC paradigm packet transmission is conflict-
free. Besides, we demonstrate that DCFNoC can be obtained
for any given topology and any deterministic routing algo-
rithm.

As a second major contribution in this paper, we in-
tegrate DCFNoC in a many-core processor, adjusting the
design to meet determinism at application level. Indeed, we
demonstrate DCFNoC can be smoothly integrated in the
many-core system and we show performance guarantees
can be achieved with our DCFNoC, contrary to the ones
provided by a baseline default wormhole NoC.

The rest of this paper is organized as follows. Section 2
formally describes DCFNoC theory. Section 3 gives a general
methodology for designing conflict-free networks by apply-
ing this theory. Section 4 shows a detailed router design
adapted to this new methodology. Section 5 briefly details
a flexible bandwidth allocation mechanism, for DCFNoC.
Section 6 describes the DCFNoC integration in a manycore
system. Section 7 provides detailed analysis of performance
of the proposed DCFNoC manycore integration without
losing its time predictability property. Section 8 discusses
related work and, finally, conclusions are given in Section 9.

2 DELAYED CONFLICT-FREE NETWORK

This section presents and formalizes DCFNoC, a TDM-
based NoC design paradigm in which conflicts are avoided
by serializing message transmissions. Although DCFNoC
can be used for long messages, for the sake of explanation
we consider only single-flit messages. We have the following
assumptions:
A1 A node can generate messages targeting any other node at

any rate, even broadcast messages.
A2 A message arriving at its destination is eventually consumed

assuming an end-to-end flow control is used preventing final
node contention.

A3 Once a message is injected into the network a path is
guaranteed to reach its destination node.

A4 Messages are forwarded following any deterministic or par-
tially adaptive deadlock-free routing algorithm.

A5 All TDM slots composing a period have the same length.
A6 Every router and link within the network have the same delay

(we assume one cycle).
The following definitions develop a notation for describ-

ing networks, routing functions, conflicts, and dependency
graphs. A summary of notation is given in Table 1.

2.1 Definitions
Definition 1. An interconnection network I is a strongly
connected multigraph defined as I = G(N,C). The vertices
of the multigraph N represent the set of communication
nodes. The arcs of the multigraph C represent the set
of communication channels. The source node of a given
channel ci is denoted as si and the destination node as di.
Figure 1 shows a 2D mesh topology of an interconnection
network.

Definition 2. A routing function R : C × N × N → C
provides the output channel cy for a message located in the
current node nc at an input channel cx and with destination
node nd:

R(cx, nc, nd) = cy (1)

Fig. 1: 2× 2 mesh network. End nodes shown as circles.

Routing functions will determine the existence and
severity of contention within the network as they set the
communication flows. As highlighted in other works [1], [5],
[6] NoC contention is a consequence of direct interference
between messages, which are in turn a consequence of
channel dependencies. Next, we provide a formal definition
for channel dependencies.

Definition 3. There is a direct channel dependency from
channel cy to channel cx, for a given interconnection net-
work I and routing function R if cy is needed immediately
after cx for a message located at node nc with destination
nd.

Definition 4. A channel dependency graph CDG for a
given interconnection network I and routing function R, is a
directed graph, CDG = G(C,E). The vertices of the graph
are the channels of I and the arcs of the graph are direct
channel dependencies between channels determined by R
in the following way:

E = (cx, cy) | R(cx, nc, nd) = cy for some n ∈ N (2)

Figure 2 depicts a channel dependency graph of 2D mesh
topology based on Dimension Order Routing (DOR [7])
algorithm. In this plot squares represent the vertices (chan-
nels), and the arcs represent channel dependencies. Circles
represent injection and ejection channels.

Fig. 2: CDG for the 2 × 2 mesh topology and the DOR
routing algorithm.

Definition 5. A direct conflict C(Ma,Mb, tm) between
a pair of messages Ma and Mb for a given interconnection
network I , and routing function R may arise at time tm if

R(cx, n, da) = R(cy, n, db) for some n ∈ N, (3)

3

that is, M a and Mb are in the same node and request the
same channel at the same cycle time.

Definition 6. A layered channel dependency graph
CDGl for a given interconnection network I and routing
function R, is a layered directed graph, CDGl = Gl(C,E).
The vertices of the graph are the channels of I and the arcs
of the graph are the channel dependencies defined by R. In
contrast to CDG, all the vertices of CDGl have an assigned
layer id Lh where h represents the position of the layer. Any
vertex (channel) is assigned a unique layer id. Therefore,
Lh(v) is a bijective function. A channel cy with a direct
dependency with channel cx will have a higher layer id:

Lh(cy) > Lh(cx) if R(cx, nc, nd) = cy (4)

Note that in order to build a CDGl the associated CDG
must be acyclic. Therefore, the routing algorithm R must
be a deterministic one or a partially adaptive one. Figure 3
shows the CDGl of the 2D mesh with DOR routing. The
CDGl serves us to clearly identify potential conflicts within
the network as follows. Let us assume links and routers have
a delay of one cycle each and on every cycle no more than
one end node injects a message in the network. If we use
only dependencies not crossing a layer in the CDGl (black
arrows in the figure) then all messages will take the same
amount of time to traverse the path and at every cycle there
will be one message at each layer. If, however, we allow
dependencies crossing layers (red arcs in the figure) to be
used, then conflicts may occur at a given channel. Notice
channels are located only in one layer. Indeed, the layer
Lh represents the relative cycle time from injection when
a specific channel along a path P (si, di) is used. Assuming
assumption A6 we can deduce that every layer has one cycle
delay.

Fig. 3: CDGl obtained from CDG.

In order to remove all potential conflicts we just need to
enforce two messages will not be located on the same layer
at the same time (one-message-per-layer rule). To do so, we
define a delayed layered channel dependency graph.

Definition 7. A delayed layered channel dependency
graph CDGdl for a given interconnection network I and
routing function R, is a layered direct graph CDGdl =
Gl(C,E), in which additional delays are introduced to
remove potential conflicts. In this graph, as in CDGl, all the
vertices are assigned to a specific layer Lh. In the CDGdl ex-
tra delays are introduced for channel dependencies crossing
layers. Every delay is layered also in the CDGdl. Therefore,
all paths P (si, di) have the same delay D(P (si, di)).

Figure 4 shows parts of a CDGdl. Notice that all paths
have the same latency as injection channels are located at

L0 and ejection channels are located at L3. Indeed, let H be
the network diameter, ci the injection channel and ce the
ejection channel. Thereby, and assuming A6, the delay for
any path is:
∀P (si, di) ∈ CDGdl{

D(ci, P (si, di), ce) ≡ L{H}+ 2, (5)

In other words, for every possible path in the CDGdl

connecting a pair of source and destination nodes (si,di),
the delay of a path is equal to the time required to traverse
the set of layers corresponding to the network diameter plus
two (injection and ejection layers).

Forcing all messages to traverse the same number of lay-
ers allows us to serialize transmissions and avoid conflicts.
However, this requires controlling the injection. To do so, we
rely on time-division multiplexing. A TDM arbiter operates
by periodically repeating a schedule, with a fixed number of
time slots tslot. The scheduler comprises a number of slots,
each corresponding to single resource access with bounded
execution time in cycles.

Definition 8. A TDM period P TDM is a set of time slots
tslot, where each slot can be assigned to a single node ni to
control injection slots, P TDM = N × tslot.

We assume all slots have the same length, according to
A5. This ensures every node can only inject messages in
a given time slot and that only one node is injecting in a
particular cycle.

(a) CDGdl to dn = 0 (b) CDGdl to dn = 1

(c) CDGdl to dn = 2 (d) CDGdl to dn = 3

Fig. 4: CDGdl by destination node.

Theorem 1. An interconnection network I for which a
CDGdl can be derived is conflict-free if injection is controlled
in such a way that only a message is injected in a given tslot.

Proof Sketch. We construct the proof by contradiction.
Let us assume there is a conflict C(Ma,Mb, tm) between
two messages Ma and Mb. If a conflict exists then a channel
cy will be requested in the same cycle tm by both messages.

4

TABLE 1: Summary of Notation

Sign Description

I interconnection network,
C the set of channels,
N the set of nodes,
cc a current channel,
si source node,
di destination node,
ni a node,
R a routing function,
C1 a channel subset,
Lx an assigned layer,
M x a message,

P (si, di) a path between src to dst nodes,
D the delay of a layer or a path,
tm specific cycle time,

C(M a,Mb, tm) a conflict between two messages
at a time tm,

CDG a channel dependency graph,
E the edges of CDG,

CDGl a layered CDG,
Lh a layer of CDGl in position h,

CDGdl a delayed layered CDG,
H the network diameter,

I(cx) a injection channel,
E(cy) a ejection channel,

tslot a time slot,
P TDM a TDM period,

The channel will be mapped in the CDGdl in a given layer
Lh(cy). The distance from the injection channel to cy is
the same for both messages. Therefore, as each layer in the
CDGdl implies one cycle delay, the delay between injection
and cy is the same D(Ma, cy) = D(Mb, cy). This means both
messages have been injected in the same cycle time which
contradicts the injection rule where only one end node can
inject at a time.

The previous proof is straightforward. Indeed, assuming
the existence of a CDGdl it is clear conflicts are not present
in the network if messages are serialized at injection time.
Therefore, the complexity comes when building the CDGdl

for a given network I and routing function R. In the next
section we provide a general algorithm for such purpose
and demonstrate we can build the CDGdl for deterministic
and partially adaptative routing algorithms.

Although an injection of one flit per cycle is a perfor-
mance limitation the focus of this paper is to provide a clear
mechanism to guarantee performance guarantees. On top
of DCFNoC we can apply new methods to improve base
performance. For example, to inject more than one message
we must ensure that messages from two nodes per cycle
injected in the same slot do not share any resource along
their path. To exploit disjoint paths between messages a
previous notification phase is needed. Nodes must know
future transmissions and avoid resource sharing in the same
slot. Along notification phase all nodes agree on the slot
assignment for pending messages to transmit following the
priority rules. After the notification phase, the transmission
phase starts following slot assignment for each message. In

addition, notification and transmission phase can be over-
lapped by using different DCFNoC networks to potentially
improve DCFNoC performance. Improvements on top of
DCFNoC are, however, left for future work.

3 ALGORITHMS FOR THE DCFNOC DESIGN
METHODOLOGY

In this section we propose a methodology for designing
TDM-based networks relying on the DCFNoC approach.
The proposed methodology consists of two steps. In the first
step we start from the CDG and derive the CDGl. Then, in
the second step we construct the CDGdl by inserting delays
at certain channels.

3.1 CDGl Algorithm

The algorithm is shown in Algorithm 1. First, in lines 6-8 the
CDG is copied to the CDGl structure and all channels are
labelled with an unassigned layer. Then, for every possible
path (lines 10-27) the channels are visited and a layer id
is assigned to each channel along the paths. The injection
channel is assigned always to layer 0 (lines 14-15) whereas
router channels are visited in the order set by the path and
incremental layers are assigned (lines 19-20). Notice that
channels may be already assigned by a previous path. In
that case, the channel layer is inspected and if the layer is
lower than the one to be assigned by the current path (lines
21-22) then an update tree call is performed. This function
searches the graph and increments the layer of channels
with direct and indirect dependencies with the channel by
an offset. This guarantees that the channel will have a higher
layer than the previous one in the current path. In the case
the channel already has a higher layer then nothing is done.
After each hop the layer, the input channel and the current
node in the path are updated for the next hop (lines 23-25).

1 : funct ion build CDGl (CDG, I , R)
2 : path p
3 : channel c
4 : hop h
5 : l a y e r l
6 : CDGl = CDG
7 : f o r every channel in CDGl (c)
8 : CDGl . c . l a y e r = unassigned
9 : end

1 0 : f o r every path (p)
1 1 : cx = i n j e c t i o n c h a n n e l (p)
1 2 : node = p . s r c
1 3 : l = 0
1 4 : i f (CDGl . cx . l a y e r == unassigned)
1 5 : CDGl . cx . l a y e r = l
1 6 : l = l + 1
1 7 : f o r every hop of p (h)
1 8 : cy = R(cx , node , p . dst)
1 9 : i f (CDGl . cy . l a y e r == unassigned)
2 0 : CDGl . cy . l a y e r = l
2 1 : e l s i f (CDGl . cy . layer<=l)
2 2 : update tree (CDGl , cy , l−CDGl . cy)
2 3 : l = CDGl . cy + 1
2 4 : cx = cy
2 5 : node = I . node . next (cy)
2 6 : endfor
2 7 : endfor
2 8 : end funct ion

Alg. 1: Algorithm for CDGl

5

3.2 CDGdl Algorithm
Once we have the CDGl algorithm we proceed to obtain the
CDGdl. Basically we need to add delays to some channel
dependencies in order to ensure every path will have the
same length in time and that every path will cross all layers.
To do this, we add a new field to each channel dependency
(arcs in CDG, CDGl and DCGdl) representing the delay in
cycles that need to be enforced as shows Algorithm 2. As
a first action, the algorithm copies CDGl into CDGdl (line
5), then for each pair of channels cx and cy of CDGdl (lines
6-7) check if they have a direct dependency (line 8). If so,
then the delay of the output channel is set to the difference
between layers of both channels (line 9).

1 : funct ion build CDGdl (CDGl , R)
3 : channel cx
4 : channel cy
5 : CDGdl = CDGl
6 : f o r every channel in CDGdl (cx)
7 : f o r every channel in CDGdl (cy)
8 : i f (R(cx , any , any) == cy)
9 : CDGdl . arc (cx , cy) . delay =

CDGdl . cy . l a y e r − CDGdl . cx . l a y e r
1 0 : end
1 1 : endfor
1 2 : end funct ion

Alg. 2: Algorithm for CDGdl

Theorem 2. Given an interconnection network I , and a de-
terministic (or partially adaptive) routing function R, the CDGl

and CDGdl can always be obtained and are acyclic.
Proof Sketch. Given R is deterministic or partially adap-

tive guarantees the CDG will be acyclic. Therefore, we guar-
antee that the algorithm used to obtain CDGl and CDGdl

prevent cycles from appearing. Both CDGl and CDGdl

have the same structure but only one or two new fields
are added (the layer and the delay) to each arc (channel
dependency). The set of edges and arcs are the same with
the same configuration. Therefore, the same graph shape is
inherited. Thus, CDGl and CDGdl are acyclic as well with
added information. As we simply copy the CDG into CDGl

and CDGl into CDGdl then we guarantee both can always
be obtained given CDG is available.

Theorem 3. Given a path P defined from a routing function
R for a network I and an associated CDGl, the path crosses
always channels in increasing layered order.

Proof Sketch. The way the algorithm is defined guaran-
tees a channel cy with a direct dependency with channel
cx will have assigned a higher layer. Indeed, Lh(cy) =
Lh(cx)+1. As a path is a list of direct channel dependencies,
each hop along P the channel used will have a higher layer
assigned.

Theorem 4. Given a path P for a network I , a routing
function R, and an associated CDGdl, the path has a delay of
2 +H where H is the diameter of the network.

Proof Sketch. The path is a set of channels with direct
dependencies in the CDGdl. Each channel dependency has
an associated delay which is the difference between layers
of each channel involved in the dependency. As the depth of
the CDGdl is H + 2 the delays associated with the channel
sum up H + 2.

4 ROUTER DESIGN

The structure of the DCFNoC router is shown in Figure 5.
This router consists of multiplexers, registers and OR gates.

N
N E W S L

E

W

S

L

W_E

E_W

N_S

E

W

S

N

W_N S_NE_N

E_S W_S

L_N

L_E

L_W

L_S

L

E_L W_LN_L S_L

Fig. 5: DCFNoC router input/output ports connections with
output delay registers.

This simple design leads to low resource utilization, high
frequency, and low power consumption as we will show in
Section 7.

The router implements five ports and the DOR routing
algorithm. Messages at input ports are routed and latched
at the corresponding output port without needing any arbi-
tration logic nor flow control. However, the router supports
the case of receiving multiple conflict-free messages through
different ports at the same time, and also several of them
targeting the same output port but targeting different delay
latches. Each output port implements a de-multiplexer with
several single-cycle delay latches. A registered configuration
vector programs the de-multiplexer on each output port.
Input port arrival ID is used to index the configuration
register and set appropriately the de-multiplexer. Notice
that depending on the routing algorithm the configuration
register may have a varying number of slots, from two to
four when DOR is used. This depends on the maximum
number of output dependencies of a given link accounted
in the CDG. Notice that each configuration slot will impose
a varying number of delay cycles to the message pipeline
transmission. This will enable the proper appliance of the
CDGdl methodology.

As an example Figure 6 shows delays introduced by
DCFNoC for paths 0 → 3 and 2 → 3 in a 2 × 2 mesh
following the example provided in Figure 4d. As we can see
in the plot, the latency for both paths is three cycles since
they traverse the same number of latches. Both, injection
and ejection end nodes are also shown (represented by
circles). Note that the extra cycle delay of path 2 to 3 will
be set at output port local of router 3. In a N×M Mesh,
the maximum number of extra cycle delays implemented in
each output port is (N − 1) + (M − 1)− 1.

5 FLEXIBLE BANDWIDTH ALLOCATION

One of the main advantages of DCFNoC over state-of-the-
art TDM approaches is that conflict-free transmission can
be ensured by simply enforcing no more than one end
node injects a message at each time slot. This property
emanates from the fact that DCFNoC can be seen as a logical
shared bus and thus, conflict-free message transmission can

6

R0 R1

R2 R3L_in

L_in

L_out

L_E=1 W_S=1

L_E=1 N_L=1
W_L=2

0

2

3

Fig. 6: DCFNoC mesh with output delay registers for paths
0→ 3 and 2→ 3.

Fig. 7: Different bandwidth allocation options. Each box
represents an injection slot and each label indicates the end
node the slot is assigned to.

be ensured by simply enforcing the atomic utilization of
time slots. This property can be exploited to implement
heterogeneous bandwidth allocation schemes across end
nodes to accommodate the communication requirements
of the different applications running in the system. For
instance, heterogeneous bandwidth allocation is a desirable
NoC feature in the context of automotive applications. Au-
tomotive applications using AUTOSAR are composed of
several runnables that can be executed in parallel and have
different computing and communication requirements [8].

Heterogeneous bandwidth allocation can be easily im-
plemented in DCFNoC at the edges. Figure 7 shows 4
potential allocation windows (A, B, C, and D) in a 3 × 3
NoC. The first allocation (A) is the one corresponding to
an homogeneous bandwidth allocation strategy in which all
nodes get the same bandwidth (1/9). Example B shows the
case in which nodes 3 and 6 are inactive and this bandwidth
is assigned to end node 0 that gets 3/9 of performance
guarantees. Example C shows how increasing the period
from 9 to 11 can be used to assign node 0 3/11 of the total
bandwidth while the rest get 1/11. Finally, example D shows
a period of 18 cycles in which node 0 gets 4/18, and nodes
3 and 5 get 1/18 each. Each of the rest of end nodes get
2/18 of the total bandwidth. In general, DCFNoC allows
using fine-grained bandwidth allocation to match different
applications needs.

DCFNoC is application agnostic and can be configured
to fit the application bandwidth requirements. Indeed, a
profile of the application is usually obtained and the net-
work is configured to adapt to the traffic requirements
between end nodes. Each end node is then configured with
some assigned slots which lets the node to achieve a certain
bandwidth of the network.

TILE_15

MC

TILE_0

R

TILE_1

R

TILE_4

R

TILE_5

R

TILE_8

R

TILE_9

R

TILE_12

R

TILE_13

R

TILE_2

R

TILE_6

R

TILE_10

R

TILE_14

R

TILE_3

R

TILE_7

R

TILE_11

R

R

CORE

L2 $

L1 $

TILE

Main
Memory

NI

to Network

Fig. 8: Baseline many-core architecture.

6 INTEGRATING DCFNOC INTO A MANY-CORE
DESIGN

This section describes the integration of DCFNoC into a
many-core design. We start from an existing many-core
processor architecture as the one depicted in Figure 8.
The design, described in Verilog RTL, is based on several
identical tiles interconnected using a standard NoC.

6.1 Tile Architecture
Each tile includes a 32-bit in-order core with L1 private
instruction and data caches. A shared L2 cache bank is
included also on each tile. All the L2 cache banks from all
tiles form the L2 cache of the many-core. To keep data co-
herent, a coherence protocol is implemented both at L1 and
L2 cache levels. The coherence protocol relies on directory
structures at L2 level. Both the core and cache memories
are interconnected via the Network Interface (NI) module,
which provides connectivity between resources within the
tile and to resources to/from other tiles. The NI is connected
to a router which, in turn, is connected to routers of neigh-
bouring tiles, building a 2D mesh topology.

6.2 Network Interface
The many-core architecture has a wide variety of commu-
nication needs. Indeed, memory requests are triggered by
the cores as well as coherence requests between memory
resources are exchanged. In addition, debug and monitoring
information is communicated between the resources. To
deal with this communication overhead and complexity, a
sophisticated NI is used, depicted in Figure 9.

Seven injector (to net) and ejector (from net) modules
are defined. The core uses three modules: L1I (instruction
cache), NCA (non-cacheable addresses) and CORE (read-
/write to specific control registers). The remaining resources
(L1 data cache, the memory controller associated to the tile,
the L2 cache bank of the tile, and the control register bank
of the tile) have one additional module each.

The injector modules are connected both to the ejector
modules (for intra-tile traffic) and to the network inject
module (for inter-tile traffic). In the case of inter-tile traffic,
serializers are used to adapt the data width on each specific
case. Ejector modules are connected also in a similar way to
injector modules and to the network eject module. Deseri-
alisers are used to adapt the data width of the network.

The network inject module implements similar logic of a
router output port. In the many-core architecture the routers

7

implement virtual networks (VNs) to separate data traffic.
A multiplexer separates every input in virtual networks.
One input buffer is used for each VN supported. A switch
allocator (SA) module is used to assign network resources to
messages and to grant access to the eject link. The network
eject module is much simpler as it only demultiplexes in-
coming messages from the network into the corresponding
virtual network (VN). A two slot buffer is used on each VN
at eject in order to guarantee 100% network throughput.

6.3 Modifications to Include TDM and DCFNoC
In order to integrate DCFNoC we modify the network inject
and network eject modules. The remaining NI components
are not modified. Moreover, the routers will be replaced
by the DCFNoC router presented above. Figure 9 depicts
a general view of this integration at NI level. As we can
see, VN multiplexing is performed at the entry point of net-
work inject module, thereby messages corresponding to the
same VN are multiplexed using a round robin arbiter and
allocated at the input port queues (shaded in green). The
previous large multiplexer is replaced by one multiplexer
per VN.

6.3.1 End-to-end Flow Control
The DCFNoC routers do not implement flow control. How-
ever, end-to-end flow control will still be needed since appli-
cations may saturate end nodes. To support this functional-
ity, the NI implements an end-to-end Stop&Go flow control
protocol based on notification messages and injection filters
placed at every NI module (shaded in orange). At network
eject module one output buffer is allocated per VN.

When an output buffer reaches the Stop threshold the
notification table is updated by using Update notification
signal. At network inject module the notification table gen-
erates a notification broadcast message to update every
node filter allocated at network inject module to stop send-
ing messages with this end node as destination. When a
Stop notification broadcast is received at eject module the
notification filter is updated by using Update filter signal.
Only outgoing messages with this destination node are
blocked. Once the saturated destination node reaches the
Go threshold the notification table is updated to resume
the communication by sending a Go notification broadcast
message. At injection time the Stop&Go filter avoid message
loss when the destination node experiences saturation.

Notification messages can use preallocated slots for their
transmission. Although this would impact performance
(bandwidth wastage) the amount of notification messages is
negligible. Only when end-point queues fill over a threshold
a notification messages would be sent. With a proper design,
this rarely occurs. In addition a side DCFNoC can be used
for this light weight traffic.

6.3.2 Enforcing Deadlock Freedom
As DCFNoC is a buffer-free network (although it contains
latches) flow control between routers is not needed. Indeed,
a message that is injected into the network will be for-
warded without any stop following the delays and links
imposed at design time. This means there is no chance of
deadlock within the network. Also, broadcast messages are
injected and follow XY paths. Those messages duplicate
when needed to reach all destinations. However, every

message copy follows the same delay approach using the
latches and therefore, can not be blocked within the net-
work. The only deadlock that could occur is at the edges of
the network where injection and ejection buffers are used.
Those buffers have been sized properly and an end-to-
end flow control is used to prevent any message overflow.
Deadlock is avoided by using different buffers at the edges
of the network to store messages of different types (e.g.
requests and responses), thus preventing protocol-induced
deadlocks.

6.3.3 TDM scheduler
For TDM management a simple scheduler is implemented
at the network inject module. We use a TDM scheduler with
a TDM slot wheel where each slot indicates the node ID
that can inject in the time slot. It is important to remark
that every node has the same information stored at its TDM
scheduler.

In our many-core system every node must be able to
inject a message in its assigned slot, thus a TDM slot should
be sized according to the number of flits for the largest
message. However, both single-flit and multi-flit messages
(six flits) co-exist and therefore, our scheduler needs to deal
with two message sizes effectively. Long messages are data
read transactions of 576 bits long divided in 6 flits of 96 bits
each. We avoid using more than six flits to achieve a short
TDM period. The number of flits in a multi-flit message
directly affects the TDM period length.

A trivial approach to deal with multiple message sizes
is to define TDM slots of different sizes and send single-
flit and multi-flit messages via the same network. In this
design the TDM slot wheel needs to combine single-flit
slots and multiple-flit slots for every node ID resulting in
a longer TDM period for both short and long messages. A
TDM period determines the average amount of time every
message is waiting to be injected into the network and also
proportional to the injection bandwidth. Consequently, a
longer TDM period implies lower performance guarantees.

To improve performance guarantees we also explore
a second approach in which single-flit and multiple-flit
messages are split and use different TDM schedulers and
DCFNoC networks. In this setup the short message and long
message scheduler implement slots of different duration
(one and six in our manycore setup). By doing this, every
node is able to inject either a short or a long message, even
both at the same time. Thus, performance guarantees and
injection bandwidth are significantly better in this latter
approach. Assuming one assigned TDM slot per node ID
and flow control notification messages using a different
network, the maximum time a message gets delayed at TDM
scheduler until finding its slot is (N−1)∗(#flits). For a 16-
core system a short message delay time is (16− 1) ∗ 1 = 15
and for long messages (16− 1) ∗ 6 = 90. However, when all
the messages are scheduled using the same TDM scheduler
and DCFNoC the maximum amount of time that a messages
can be waiting to get injected is (N−1)+(N−1)∗ (#flits)
being #flits the number of flits in a long message. In
case notification messages use additional TDM slots of
the same short messages TDM scheduler, when splitting
short and long messages in different schedulers, a short
message delay time is 2 ∗ (N − 1) and long messages are
not affected. Contrary, when all messages are scheduled
in the same TDM scheduler, the maximum waiting time is

8

NIto netResource

CORE

L2

L1D

MC

Tile
Register

L1I

NCA

L1D

L2

MC

TR

CORE
{

from net Resource

CORE

L2

L1D

MC

Tile
Register

L1I

NCA

L1D

L2

MC

TR

CORE

{

BUFFERED
XBAR

NETWORK INJECT NETWORK EJECT

Ser
Ser

vn0

vn1

local

SA

govn

vn0

vn1

vn2

DATA govn DATA

IB

IB Deser

vn0

vn1

vn2

RR

NETWORK INJECT NETWORK EJECT

vn0

vn_net0
DATA_net0

vn0 vn1 vn2

RRRR

SG
_fi

lte
r

RR
_m

ul
tip

le
RR

_s
in

gl
e

TD
M

_S
CH

TD
M

_S
CH

Notification_table
vn0 Update_notification

vn_net1
DATA_net1

DATA_net0
vn_net0

DATA_net0
vn_net0

Stop

Go

Msg
handler

Msg
handler

Msg
handler

IB

Modifications for
DCFNoC integration

vn1 RRRR

vn2 RRRR

Update_filter

vn1 vn2

Fig. 9: Network interface controller using Wormhole network and modifications to include TDM and support for two
DCFNoC networks.

2 ∗ (N − 1) + (N − 1) ∗ (#flits) being #flits the number
of flits in a long message.

Figure 9 shows the NI implements two TDM schedulers
to separate single-flit and multi-flit messages (shaded in
yellow). For the implementation of the two parallel TDM
schedulers the network inject module separates messages
by length and send them using the corresponding network.

6.3.4 Network Ejection Module

At ejection, incoming messages are first multiplexed by VN
and later the message handler module is the responsible
to establish the order between single-flit and multi-flit cor-
responding to the same VN (shaded in blue). In case two
messages providing from the same virtual network are in-
coming the message handler serializes the messages in order
to preserve the order among the flits they contain and avoid

corrupted messages. For example, if a multi-flit message
composed of six flits have delivered thee flits and arrives
a single-flit message the message handler buffers the single-
flit message until the remaining three flits corresponding to
the multi-flit message arrives.

Additionally, the NI implements receiving buffers from
the end node. Those buffers will be used to store messages
generated by the end node until the proper time slot is
used to inject the messages. Therefore, the NI decouples
generation from the injection.

7 EVALUATION RESULTS

In this section we first compare the performance guarantees
provided by DCFNoC with the ones provided by similar
TDM approaches. We also analyse DCFNoC performance
guarantees in a manycore system and compare them with

9

TABLE 2: A comparison of schedule length and network
latency.

the ones provided by wormhole. Finally, to analyze the
feasibility of implementing the proposed NoC we provide
area and maximum attainable clock frequency and compare
these numbers with the ones obtained with a standard
wormhole router [7] [9].

7.1 Experimental Setup
We design DCFNoC and the whole manycore infrastructure
using verilog RTL which can be synthetized for FPGAs and
ASIC. We simulate the system using the Xilinx Vivado [10]
RTL simulator. Thus, results presented in the paper match
exactly the number of cycles of a potential manycore imple-
mentation.

For the experimental setup we use a 2D-mesh NoC
topology to interconnect the different tiles of the previously
described manycore system and a memory controller (MC).
The MC is modeled using the IP provided by Xilinx to
communicate with the off-chip DRAM memory. Alterna-
tively, to force the worst contention scenario the NoC is fed
by a message system generator (MS) implemented at each
network interface using uniform traffic pattern. DCFNoC
configuration used includes 96-bit width links to implement
a mesh network topology. At network edges we statically
allocate 16 1-cycle time slots to nodes. One time slot is equal
to 1/16 of total bandwidth, resulting to a 6.25%.

7.2 Timing Guarantees
For comparison purposes we model DCFNoC and state
of the art TDM algorithms. Table 2 shows the scheduling
periods of our approach and compares them with the ones
obtained by other state-of-the-art proposals. As shown in
the table our NoC design achieves the smallest scheduling
periods in all configurations. Our approach is able to im-
prove the period of the ILP-based scheduling [3] that is able
to find computationally viable schedules for meshes up to
25 nodes. TLB [3] also formulates a minimum period based
on theoretical lower bounds, which is almost equal to our
schedule period. The improvement in period achieved by
our approach w.r.t [3] for a 5 × 5 mesh is 26.47%. When
compared with SYM [4], which is able to find schedules for
larger NoCs, our approach reaches a 77.67% improvement
for a 5× 5 mesh. PhaseNoC [11] has an period equal to our
schedule period but this network implements one domain
buffer at each router input port incurring in additional
latency at every hop.

Figure 10 shows latency results of DCFNoC compared
with the optimal ILP schedule proposed in [3] for a 5 × 5

NoC for different message injection rates. Latency results
are computed for randomly generated messages considering
that messages can only be injected in the network in their
assigned slot. Latency results shown in this plot represent
end-to-end latency values. Additionally, for DCFNoC the
latency experienced by the messages once injected in the
network is the same for all nodes regardless the target
destination since all messages always experience the same
latency. On the contrary, in ILP [3] and PhaseNoC [11] the
latency experienced once a message is injected depends
on the amount of hops each of the communication flow
traverses. Thus, in the figure we show values for the min,
max, and average latency flows.

As shown in Figure 11 for very small injection rates and
the smallest NoC sizes DCFNoC latency is slightly worse
than the one achieved in ILP [3] for the shortest paths but
better for the longest ones. Note that for a 3 × 3 mesh
PhaseNoC and DCFNoC have nearly the same latency. For
higher NoC sizes and/or higher injection rates DCFNoC
achieves always better results. The reason for this is the
smaller period of DCFNoC that decreases the average time
each message is waiting until it is aligned with the assigned
slot. The smaller period also enables DCFNoC achieve
small latency values for higher injection rates. Although
PhaseNoC [11] and DCFNoC have the same schedule pe-
riod, the latency of PhaseNoC is higher. As we can see in
Figure 11 DCFNoC has better scalability than other state of
the art TDM proposals for high NoC sizes.

To analyze the performance guarantees of the manycore
with DCFNoC we have designed a kernel application in
which we can vary the percentage of requests to the NoC
with respect to the total number of instructions by injecting
random non-memory operations in a kernel containing a
specific number of cache accesses that miss in L1 and L2
caches. We deploy this benchmark with the ability to have
three different percentages of memory accesses (2%, 7% and
15%) in order understand the impact of the communication
of a task in the performance guarantees the same can
achieve.

To generate a worst-case contention scenario in the NoC
we replace the regular cores in the remaining tiles (all but
tile 15) with synthetic message generators with destination
router 0 (in which memory controller is placed).

First we take measurements of the benchmark running in
core 15 when message generators are disconnected to have
the baseline timing measurement (Alone) for both DCFNoC
and wormhole. Later, we switch message generators on, in
all cores but the one running the task under analysis, to mea-
sure the impact of NoC interference in our application for
both designs. For this experiment, message system genera-
tors inject multi-flit (Long) messages. Figure 12 shows total
execution time of the different benchmark versions when
they are executed alone (Alone) and when other nodes are
injecting long messages (Long) at the maximum speed. The
first observation we make is that as expected when the task
is executed Alone with DCFNoC execution time is higher
than when using the wormhole setup. The reason for this is
that DCFNoC inherently restricts the injection of messages
since they can be only injected in the assigned slot and
since we are only using one NoC the TDM scheduler period
is high. The slowdown introduced by DCFNoC is 6.21×,
7.72×, and 8.22×, for the 2%, 7% and 15% benchmarks,
respectively. However, as we will show later this slowdown

10

Fig. 10: End-to-End latency of DCFNoC vs ILP [3] and
PhaseNoC [11]. Y axes starts at 20 to improve the visibility
of the comparison.

Fig. 11: Scalability of DCFNoC vs ILP [3] and
PhaseNoC [11].

Fig. 12: Execution time for benchmarks with different per-
centage of memory access instructions.

is reduced when using two TDM networks. On the contrary,
when the task in executed in a high contention scenario the
performance of the wormhole setups is degraded signifi-
cantly (around 19.85× in average) while the performance of
DCFNoC is simply unaffected.

Another interesting observation is that the percentage
of NoC requests does not have a significant impact in the
slowdown of the application in wormhole. Under such
heavy message injection the NoC gets saturated quickly.
However, requests to the NoC from the task in progress
keeps always at the same speed once the NoC is saturated.
Note also that since we are focusing in NoC contention
we avoid end-node contention by ejecting messages at 1
flit/cycle. Given that the percentage of NoC accesses does
not have a significant impact in the worst-contention we use
only one of the kernels in the remaining experiments.

7.3 Performance Guarantees of DCFNoC Manycore
System

In order to characterize how NoC interference affects to ap-
plications running in the manycore system using DCFNoC
we launch the benchmark with 2% of memory instructions
using only one NoC. In this manycore configuration we can
have short (1-flit) and long (6-flit) messages that correspond
to NoC requests and responses, respectively. Control mes-
sages required by the coherence protocol are 1-flit.

Fig. 13: Average memory transaction latency when using
only one network.

Figure 13 shows average memory transaction latency
breakdown. Total average latency is shown at the top of
the bars. We break down the total average latency in five
components. First two are related to request process, then
memory time (L2) and later two for response part. Request
and response contains NIC wait time that corresponds to
waiting time for inject at the assigned time slot and later the
network latency.

Wormhole baseline NoC latency is 32 cycles (4 for injec-
tion plus 5 cycles per router and ejection), while DCFNoC
takes only 8 cycles (6 for the longest minimal path plus the
injection and ejection).

On the contrary, when other tiles inject messages (Long
scenario), wormhole NoC experiences message interference
along the network and gets congested producing a huge
increase of messages waiting time at input port buffers. As
a consequence, the application suffers prolonged execution
time and long NoC request latencies as shown in Figure 13
(second column). Note that wormhole NoC suffers an av-
erage latency of 2404 cycles in this case while DCFNoC
average latency keeps constant to 683 cycles. Note that
although DCFNoC latency is guaranteed to be equal to the
diameter of the NoC the latency of the packets is higher
since they are enqueued at the NIC. The small TDM period
of DCFNoC decreases the average time each message is
waiting until it is aligned with the assigned slot and also

11

enables DCFNoC achieve smaller latency values for higher
injection rates.

In order to improve the performance guarantees for
both wormhole and DCFNoC we separate short and long
messages in two different networks. This allows us to reduce
TDM period for short and long messages. Since the TDM
period defines the average amount of time every message
is waiting to be injected into the network, messages suffer
less NIC wait time with this configuration. For wormhole,
we also analyze the performance when splitting messages
in two virtual networks (VN). The messages share physical
links between routers while they use separate input port
buffers. Using separate buffers in wormhole avoids head of
line blocking problem.

As Figure 14 shows we analyse the application when
running alone (Alone), also when other tiles inject short
messages (Short) and when inject long messages (Long).
These three scenarios are compared in a system using one
wormhole network, when using two wormhole networks
either virtual or physical (one for short and one for long
messages), also when using only one DCFNoC for short
and long as well as when using two DCFNoC networks
as explained in Section 6. As Figure 14 shows DCFNoC
improves execution time of the application by 3.7× with
respect to wormhole when short and long messages are di-
vided in two different NoCs due to TDM period reduction.
On the contrary, when splitting short and long messages in
different NoCs for wormhole does not reduce the contention
suffered by our application. This is explained by the fact
that wormhole does not restrict the injection of messages as
DCFNoC, therefore both wormhole networks get saturated.
As the previous case, when the application runs alone in
the system the wormhole network takes less execution time
than DCFNoC but when using two NoCs the slowdown is
only 1.65× as depicted in Figure 14.

Figure 15 shows average memory transaction latency. As
shown in the figure, when the application is exposed to max-
imum contention the wormhole network do not guarantee
performance and suffers network inferences increasing NoC
request time due to long waiting time of messages at input
port buffers. In contrast, DCFNoC preserves bandwidth
isolation regardless the amount of network messages and
network interferences.

To analyse the scalability of DCFNoC we model a 8 × 8
manycore system. Figure 16 shows execution time values
for a benchmark with 2% of memory instructions when it is
executed in the farthest node in the NoC. Unfortunately, we
were not able to obtain execution time values for the highest
contention scenario for the 8 × 8 setup with wormhole
and thus, we only report execution times of the application
executed alone for this NoC. The reason is that when our
application is running in core 63 and all other cores are
injecting messages at the maximum speed the bandwidth
reduction experienced by wormhole is so vast that makes
practically impossible to run the application in an detailed
RTL simulator as the one we use.

As shown in Figure 16 wormhole NoC running alone
has higher execution time since messages need to traverse
longer paths. When using DCFNoC the increment of execu-
tion time is caused by the network size which in turn affects
the TDM period and path length. Execution time impact
when using one and two DCFNoC networks is 8.8× and 4×,
respectively. Note also that although DCFNoC performance

decreases, meshes of this size usually have more than one
memory controller which reduces the longest paths and
allows improving DCFNoC performance.

Figure 17 shows average memory transaction latency. As
shown in the figure, request waiting time increases when
moving to a 8 × 8 mesh by 7.17× and 4.93× for one and
two DCFNoCs, respectively. However, NoC latency is only
affected by hop count being 8 cycles in 4 × 4 and 16 cycles
in 8× 8.

DCFNoC provides performance guarantees that are su-
perior to the ones wormhole provides even for smaller
NoCs. DCFNoC guaranteed performance for a 8 × 8 NoC
are 2.06× better than those obtained for a 4 × 4 wormhole
NoC. Although wormhole NoC performance is higher when
implemented in COTS many-cores, it introduces a signif-
icant negative impact in the quality of WCET estimation,
preventing any assumption on affordable timing quality
of messages. Contrarily, DCFNoC provides perfect timing
isolation as well as constant network message latency to
fulfill autonomous safety-related applications requirements
in many-core systems.

7.4 Performance Evaluation of Real Workloads in a
Manycore
In order to evaluate the benefits of using DCFNoC in safety-
related applications we have selected (ndes) and (matmult)
benchmarks from mälardalen WCET benchmarks suite [12].
Applications in this benchmark suite have small memory
footprint and thus, have very low communication require-
ments. For comparison purposes we also include a ker-
nel application (synth) resembling applications with higher
communication needs (5% of total instructions performing
NoC requests). Note that large applications cannot be effec-
tively simulated in a detailed RTL manycore model.

The three applications are evaluated in two scenarios:
low and high contention. To create this contention scenarios
we use synthetic message generators with random destina-
tions injecting long messages at a 6.66% and 100% injection
rates. We perform experiments placing the kernels at three
different cores (0, 5, 15) in a 4× 4 system.

Figure 18 shows a latency comparison for these three
benchmarks running in cores (0, 5, 15) in low and high
contention scenarios when using wormhole and DCFNoC
NoCs. For wormhole we present Highest Observed Values
(HOV), represented by blue bars, and average values, rep-
resented by a black line. As shown in the plot, the largest
HOV is obtained for the kernel with higher communication
needs (synth) and in the high contention scenario. This is
explained by the fact that high contention conditions are
more likely to occur when the NoC is congested. Unfortu-
nately, for hard-real time systems it is not possible to assume
HOV represents actual contention bounds. In fact, as shown
in [13] the worst possible contention is possible with few
NoC requests if they aligned in the worst possible manner.
Finally, DCFNoC latency keeps always constant being its
value much lower than the average and HOV values of
wormhole.

7.5 Flexible Bandwidth Allocation in the Manycore
In order to test the capabilities of the flexible bandwidth
allocation of DCFNoC, we perform an experiment on a 4×4
mesh using uniform traffic. Figure 19 depicts application

12

Fig. 14: Execution time when using only one or two net-
works.

Fig. 15: Average memory transaction latency when using
only one or two networks.

Fig. 16: Scalability of execution time for 4× 4 and 8× 8. Fig. 17: Scalability of average memory transaction latency
for 4× 4 and 8× 8.

Fig. 18: Latency for different benchmarks execution at dif-
ferent core positions (0, 5, 15) in a 4 × 4 mesh system using
wormhole and DCFNoC NoCs.

execution time when running alone (Alone) using worm-
hole NoC, also when other tiles inject long messages using
DCFNoC with 1/16 of total bandwidth, moreover with a
bandwidth of 2/17.

As figure shows, application execution time using
DCFNoC with a bandwidth of 1/16 increases by 2.14 times
compared with Alone scenario when using wormhole NoC.
As expected, when the application node have 2-cycle as-
signed time slots of 17, execution takes only 1.6 times. Note
also the fact that as Figure 20 shows, transaction latency is
improved by 35% due to important NIC average waiting
time reduction.

7.6 Area and Frequency of DCFNoC

Maximum operating frequency and area utilization are ob-
tained using Cadence RC Compiler and the 45-nm Nangate
library [14]. The wormhole NoC implemented is 64-bit
width and uses 8 slot input buffers with Stop&Go flow con-
trol. For the implementation results we consider a DCFNoC
router for a 8×8 mesh. The wormhole router (WH) used for
comparison purposes implements a single virtual channel.

Figure 21 shows area overheads for the two routers
when targeting high frequency. The DCFNoC router uses
10.21% less cells than the WH-based one and a total area
of 41, 586 mm2. As a consequence, we obtain total area
savings of 30.42% with a total area of 28, 935 mm2. The
WH router needs additional logic in order to implement
input buffers, flow control logic, routing units, output port
arbiters and crossbar interconnect. On the other hand, the
DCFNoC router implements very simple routing logic in
order to compute the output port, a crossbar interconnect as
well as output delay registers.

We have also analyzed the maximum attainable clock
frequency by each router. As a first insight, the DCFNoC
router is a one-cycle delay router while the wormhole router
is a 4-stage pipelined router. Figure 22 shows, as expected,
the simpler DCFNoC router design gets a significative boost
in clock frequency by improving wormhole router’s one
by 50%. The critical path of the wormhole router limits
clock frequency to 2.22GHz. However, the DCFNoC router
exhibits a critical path of 300 ps leading to a clock frequency

13

Fig. 19: Execution time using different bandwidth allo-
cations.

Fig. 20: Average transaction latency using different
bandwidth allocations.

	0

	0.2

	0.4

	0.6

	0.8

	1

Cell	Area Net	Area Total	Area

No
rm

al
ize

d	
Ar
ea

WH_switch
DCFNoC_switch

Fig. 21: Switch Area over-
head.

0
	0.5
	1

	1.5
	2

	2.5
	3
3.5

WH_switch DCFNoC_switch

GH
z

Fig. 22: Switch Maximum at-
tainable clock frequency.

of 3.33 GHz.
Figure 23 shows NI area overheads. The DCFNoC NI

uses 7.3% more cells than the one used for wormhole and
a total area of 25, 750 mm2. As a consequence, results in an
increment of 17.3% of total area with a total area of 31, 137
mm2. Even though wormhole NI multiplexing logic is more
complex, it does not require an end to end flow control and
therefore consumes less area. The DCFNoC NI uses logic to
implement VN multiplexers, TDM arbiters and flow control
buffers. End-to-end flow control uses one output buffer per
VN.

As a result, total area overhead of DCFNoC router and
NI is 60, 072 mm2 and 67, 336 mm2 for wormhole. As a
consequence, we obtain total area savings of 10.79%.

We also analyse the NIC maximum attainable frequency.
Figure 24 shows a slowdown of 15.57% in clock frequency
of DCFNoC NIC w.r.t wormhole. Although wormhole NI
is more complex, it is pipelined in several cycles which
allows achieving higher frequencies. On the contrary, TDM
arbiters and flow control of DCFNoC NI use only one
cycle simplifying flow control notifications. Even with such
critical path, DCFNoC NI clock frequency reaches up to 2.06
GHz. Other flow control schemes can be considered in the
future to allow reaching higher clock frequencies.

8 RELATED WORK

There is a large set of research and prototype solutions on
time-predictable manycore platforms. This section presents
related research platforms and discusses the relationship
between NoCs and DCFNoC.

We focus on time-predictable NoC design for real-time
manycore platforms. Many NoC proposals rely on virtual
channels to ensure non-interfering operations across do-
mains [15], [11], and [16]. These solutions implement one

0

	0.2

	0.4

	0.6

	0.8

	1

Cell	Area Net	Area Total	Area
No

rm
al
ize

d	
Ar
ea

WH_NI
DCFNoC_NI

Fig. 23: Network Interface
Area overhead.

	0

	0.5

	1

	1.5

	2

2.5

WH_NI DCFNoC_NI

GH
z

Fig. 24: Network Interface
Maximum attainable clock
frequency.

domain buffer at each router input port. Thus, no con-
tention arises between different domains but only between
VCs within the same domain which improves performance
guarantees with respect to conventional wormhole NoC
designs. Another existing approach to achieve predictable
NoC behaviour is using virtual channel prioritization with
flit-level preemption [17]. This approach allows achieving
tight latency bounds for the highest priority flows. In gen-
eral, approaches based on using virtual channels find limi-
tations due to the significant amount of resources required
to implement virtual channels. In contrast, our approach
removes the need to implement queues at the input buffers.

As in our proposal many previous real-time NoC ar-
chitectures rely on time-division-multiplexing to achieve
predictable message delivery times. However, TDM NoCs
have difficulties to find the optimal schedules. TDM sched-
ules can be statically [18], [19], [20], [21], [3], [4], [22] or
dynamically computed [23] and may be placed locally at
each router [23] for distributed routing or globally in the
network interfaces (NIs) for source routing [18], [20].

In the majority of recent proposals ([3] [4] [22]) TDM
schedules are allocated and configured off-line to simplify
NoC hardware implementation. The theoretical minimum
scheduling period for several NoC topologies and sizes are
provided in [3] where an ILP formulation is provided to
achieve schedules close to the theoretical minimum. How-
ever, the computational complexity of the ILP formulation
makes unfeasible finding schedules for network sizes be-
yond 25 nodes. Thus, the approaches in [4] and [22] propose
alternative optimization algorithms to find solutions also
for larger NoCs. Unfortunately, this comes at the expense
of periods that are significantly worse than the theoretical
bound. On the contrary, our DCFNoC does not require off-
line computations of the schedule since is able to serialize

14

message transmissions in a natural manner leading to a
contention-free transmission schedule. The fundamentals of
CDGs theory allows DCFNoC to find schedules matching
the theoretical minimum period for arbitrarily large NoCs.

9 CONCLUSION

MPSoCs have been recently introduced in new environ-
ments like avionics or automotive. These new domains in-
troduce challenging requirements, such as time predictabil-
ity and performance isolation, that demand for alternative
NoC designs. In this paper we present a many-core system
integrating a novel real-time NoC (DCFNoC) to enforce
predictability. DCFNoC design is based on the CDGs the-
ory and guarantees by design the avoidance of contention
within the NoC providing lower TDM periods and better
scalability than previous TDM proposals. Finally, we show
that DCFNoC can be smoothly integrated into a manycore
design by introducing small modifications at network inter-
face. Our results confirm that the resulting manycore pro-
vides performance guarantees that are significantly better
that the ones that can be achieved with wormhole NoC
designs.

REFERENCES

[1] M. Panic et al. Modeling High-Performance Wormhole NoCs for
Critical Real-Time Embedded Systems. In RTAS ’16, pp. 267–278.

[2] T. Picornell et al. DCFNoC: A Delayed Conflict-Free Time Division
Multiplexing Network on Chip. DAC ’19. ACM, 2019.

[3] M. Schoeberl et al. A Statically Scheduled Time-Division-
Multiplexed Network-on-Chip for Real-Time Systems. In NOCS
’12.

[4] F. Brandner and M. Schoeberl. Static Routing in Symmetric Real-
time Network-on-chips. RTNS ’12, pp. 61–70. ACM.

[5] J. Duato and T. M. Pinkston. A general theory for deadlock-free
adaptive routing using a mixed set of resources. TPDS ’01.

[6] J. Duato. A new theory of deadlock-free adaptive routing in
wormhole networks. TPDS ’93, 4(12):1320–1331.

[7] J. Duato et al. Interconnection Networks: An Engineering Approach.
IEEE Computer Society Press, 1st edition, 1997.

[8] S. Kehr et al. Parcus: Energy-Aware and Robust Parallelization of
AUTOSAR Legacy Applications. In RTAS ’17, pp. 343–352.

[9] W. J. Dally and H. Aoki. Deadlock-free adaptive routing in
multicomputer networks using virtual channels. TPDS ’93.

[10] Vivado Design Suite 2016.2, 2016.
[11] A. Psarras et al. PhaseNoC: TDM scheduling at the virtual-channel

level for efficient network traffic isolation. In DATE ’15.
[12] J. Gustafsson et al. The Mälardalen WCET Benchmarks - Past,

Present and Future. In WCET 2010.
[13] M. Slijepcevic et al. Time-randomized wormhole nocs for critical

applications. J. Emerg. Technol. Comput. Syst., 15(1), January 2019.
[14] The Nangate Open Cell Library, 45 nm FreePDK,

https://projects.si2.org/openeda.si2.org/projects/nangatelib/.
[15] H. M. G. Wassel et al. SurfNoC: A Low Latency and Provably

Non-interfering Approach to Secure Networks-on-chip. ISCA ’13.
[16] A. Psarras et al. PhaseNoC: Versatile Network Traffic Isolation

Through TDM-Scheduled Virtual Channels. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2016.

[17] Z. Shi and A. Burns. Real-time communication analysis for on-
chip networks with wormhole switching. In NOCS ’08.

[18] K. Goossens et al. AEthereal network on chip: concepts, architec-
tures, and implementations. IEEE Design Test of Computers, 2005.

[19] A. Hansson et al. Aelite: A flit-synchronous Network on Chip with
composable and predictable services. In DATE ’09, pp. 250–255.

[20] R. A. Stefan et al. dAElite: A TDM NoC Supporting QoS, Multi-
cast, and Fast Connection Set-Up. IEEE Transactions on Computers,
March 2014.

[21] Z. Lu and A. Jantsch. TDM Virtual-Circuit Configuration for
Network-on-Chip. VLSI, 16(8):1021–1034, Aug 2008.

[22] R. B. Sørensen et al. A Metaheuristic Scheduler for Time Division
Multiplexed Networks-on-Chip. In ISORC ’14, pp. 309–316.

[23] N. Concer et al. A dynamic and distributed TDM slot-scheduling
protocol for QoS-oriented Networks-on-Chip. In ICCD ’11, Oct.

Tomás Picornell received the MS in Computer
and Network Engineering from the Technical
University of Valencia (Universitat Politècnica de
València), Spain, in 2016. Currently, he is a
Ph.D. candidate at the Technical University of
Valencia. His research areas include Network-
on-Chip architectures with support for time pre-
dictability and performance isolation as well as
system level solutions to minimize the effects of
variability on NoC performance.

José Flich got his PhD in 2001 in Computer
Engineering. He is Full Professor at UPV where
he leads the research activities related to NoCs.
He published over 150 conference and jour-
nal papers, and has served in different confer-
ence program committees (ISCA, PACT, HPCA,
NOCS, ICPP, IPDPS, HiPC, CAC, CASS, IC-
PADS, ISCC), as program chair (INA-OCMC,
CAC) and track co-chair (EUROPAR). José Flich
has collaborated with different Institutions (Fer-
rara, Naples, Catania, Jonkoping, USC) and

companies (AMD, Intel, Sun). Current research activities focus routing,
coherency protocols and congestion management within NoCs. He has
co-invented different routing strategies, reconfiguration and congestion
control mechanisms, some of them with high recognition (RECN and
LBDR for on-chip networks). He is a member of the Hipeac-2 NoE. He
is coeditor of the book ”Designing Network-on-Chip Architectures in the
Nanoscale Era”, and Coordinated the FP7 NaNoC project and leads the
H2020 MANGO project.

Carles Hernandez is a senior Researcher at the
Universitat Politècnica de València. Previously
from 2012 to 2018 he was senior researcher at
the CAOS group from Barcelona Supercomput-
ing Center. In 2012 he worked as intern at the
IP verification group at Intel Mobile Communica-
tions Munich. His area of expertise includes on-
chip interconnects, processor design, real-time
aware hardware design, and reliability. He is cur-
rently co-advising 5 PhD students. Dr. Hernan-
dez participates (has participated) in NaNoC,

parMERASA, PROXIMA IP7 and VeTeSS ARTEMIS projects. In 2015
he was granted with a Young Researcher Grant by the Spanish Ministry
to conduct research on high-performance and reliable processor design.
He was the PI of BSC activities in the FET-HPC RECIPE project on
predictable heterogeneous high-performance computing.

José Duato is Professor in the Department of
Computer Engineering (DISCA) at the Technical
University of Valencia (Universitat Politècnica de
València).

His current research interests include inter-
connection networks, multicore and multipro-
cessor architectures, and accelerators for deep
learning. He published over 500 refereed pa-
pers. According to Google Scholar, his pub-
lications received more than 15,000 citations.
He proposed a theory of deadlock-free adaptive

routing that has been used in the design of the routing algorithms for
the Cray T3E supercomputer, the on-chip router of the Alpha 21364 mi-
croprocessor, and the IBM BlueGene/L supercomputer. He also devel-
oped RECN, a scalable congestion management technique, and a very
efficient routing algorithm for fat trees that has been incorporated into
Sun Microsystem’s 3456-port InfiniBand Magnum switch. Prof. Duato
led the Advanced Technology Group in the HyperTransport Consortium,
and was the main contributor to the High Node Count HyperTransport
Specification 1.0. He also led the development of rCUDA, which enables
remote virtualized access to GP-GPU accelerators using a CUDA inter-
face.

Prof. Duato is the first author of the book ”Interconnection Networks:
An Engineering Approach”. He also served as a member of the editorial
boards of IEEE Transactions on Parallel and Distributed Systems, IEEE
Transactions on Computers, and IEEE Computer Architecture Letters.

Prof. Duato was awarded with the National Research Prize in 2009
and the “Rey Jaime I” Prize in 2006. He is a member of the Spanish
Royal Academy of Sciences.

