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Artificial Pancreas System with Unannounced

Meals based on a Disturbance Observer and

Feedforward Compensation
Ricardo Sanz, Pedro Garcı́a, José-Luis Dı́ez and Jorge Bondia

Abstract—This paper is focused on closed-loop control of
postprandial glucose levels of patients with type 1 diabetes
mellitus after unannounced meals, still a major challenge towards
a fully autonomous artificial pancreas. The main limitations
are the delays introduced by the subcutaneous insulin phar-
macokinetics and the glucose sensor, which typically lead to
insulin over-delivery. Current solutions reported in the literature
typically resort to meal announcement, which requires the patient
intervention. In this paper, a disturbance observer is used to
estimate the effect of unannounced meals and the insulin phar-
macokinetics is taken into account by means of a feedforward
compensator. The proposed strategy is validated in silico with
the UVa/Padova metabolic simulator. It is demonstrated how the
disturbance observer successfully estimates and counteracts not
only the effect of meals but also sudden drops in the glucose levels
that may lead to hypoglycemia. For unannounced meals, results
show a median time-in-range of 80% in a 30-day scenario with
high carbohydrate content and large intra-subject variability.
Optionally, users may decide to announce meals. In this case,
considering severe bolus mismatch due to carbohydrate counting
errors, the median time-in-range is increased up to 88%. In every
case, hypoglycemia is avoided.

Index Terms—Artificial pancreas, disturbance observer, feed-
forward compensation, type 1 diabetes

I. INTRODUCTION

TYPE 1 diabetes Mellitus (T1DM) is an auto-immune

disorder that destroys the pancreatic β cells, which results

in the incapability of secreting insulin, a hormone that plays

a crucial role in glucose homeostasis as it is responsible of

lowering plasma glucose concentration. Therefore, people with

T1DM generally fail to maintain appropriate glucose levels

and they tend to suffer chronic hyperglycemia, which leads to
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risanda@upv.es)

P. Garcı́a is with the Instituto Universitario de Automática e Informática
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Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
(e-mail: jldiez@isa.upv.es)

J. Bondia is with the Instituto Universitario de Automática e Informática
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severe health problems in the long term, e.g., cardiovascular

diseases, nephropathy, retinopathy and neuropathy [1]. This is

the reason why exogenous insulin delivery is needed. Open-

loop (manual) control by individuals with T1DM is highly

demanding as it requires carbohydrate counting and a great

number of insulin dosing decisions per day. It is not surprising

then that closed-loop (automatized) insulin delivery has been

an active research field since the 1970s [2], [3], [4]. The device

that performs such task is widely known today as an artificial

pancreas (AP).

In an AP, the insulin dose is computed by a control

algorithm based on glucose measurements coming from a

continuous glucose monitoring (CGM) device and automat-

ically delivered through an insulin pump [5]. There is a

substantial delay between the subcutaneous insulin delivery,

its appearance in the blood stream and, ultimately, its effect

in lowering blood glucose levels. Such long delay typically

causes a feedback controller to over-deliver insulin, resulting

in hypoglycemia, which is the main risk of closed-loop glu-

cose control [6]. Nevertheless, the improvement of an AP in

glucose regulation compared to open-loop therapy is widely

acknowledged [7], [8], [9], [10]. A wide variety of control

strategies have been applied to tackle this problem. Controllers

based on model predictive control (MPC) [11], [12], [13], [14],

proportional-integral-derivative (PID) control [15], [16], fuzzy

logic [17], [18] or linear parameter varying (LPV) models [19],

[20] have been tested in human trials. However, mitigation by

the AP of hyperglycemia due to large meals is still challenging

because of the limitations discussed above. Quite often, current

APs deal with this problem by delivering an insulin bolus

at meal time. However, this requires the patient intervention,

who has to announce the meal and provide an estimate of its

carbohydrate (CHO) content. Misestimation of CHO content

and/or skipping meal announcements is indeed a risk and thus

the controller should be able to handle these situations. In

order to face unannounced meals, heuristic meal detection

and carbohydrate counting algorithms based on CGM readings

have been investigated, which are often used to deliver meal

boluses accordingly [21], [22], [23], [24], [25]. In [19], a meal

detection algorithm is used to trigger a switching controller.

Within the framework of MPC, a switching cost-function

based on the blood glucose rate of change has been employed

in [26].

In the context of control theory, maintaining blood glucose

near the target level can be seen as a standard regulation

problem, in which disturbance rejection is the central issue.
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When disturbances are known, their effect can be mitigated

by means of feedforward compensators [27]. However, quite

often, disturbances cannot be directly measured (for exam-

ple, meals in the application here considered). Disturbance

observers (DOBs) emerged as a powerful tool to estimate

unknown disturbances from other measurable input/output

signals. Then, the estimated disturbance can be used to take

appropriate actions, leading to the so-called DOB-based con-

trol. The reader is referred to [28] for an overview of available

methods. DOB-based controllers have demonstrated simpler

tuning and improved performance over equivalent PID-based

strategies even in high-demanding real-time applications [29].

Furthermore, DOBs to estimate the rate of glucose appearance

have been already designed and successfully validated through

simulations in [30], [31].

In this paper, a DOB-based control strategy is proposed

to deal with unannounced meals. The observer estimates any

unexpected variation in the glucose level by using information

of the CGM, the insulin infusion rate and a control-oriented

nonlinear model of the patient adapted from [12], [32], [33].

The estimation provided by the observer is then combined

with a feedforward strategy to compensate for the delay of the

subcutaneous insulin pharmacokinetics. On the other hand, in

order to handle the constraint of positive control action and

to avoid insulin over-delivery, the insulin feedback strategy

reported in [6] is employed.

II. METHODS

A. Control-oriented patient model

A subject-dependent model is employed for control pur-

poses, adapted from [12], [32]. For each subject j, the follow-

ing switched nonlinear personalized model is considered

Ġ(t) = −(SG(G) + r(G)X(t))G(t) + SG(G)Gb +Ra(t),

Ẋ(t) = −p2X(t) + p2SIcjI(t),

İ(t) = −kII(t) + (1/(tmaxI
VI))S2(t), (1)

Ṡ2(t) = −(1/tmaxI
)S2(t) + (1/tmaxI

)S1(t),

Ṡ1(t) = −(1/tmaxI
)S1(t) + ūj(t),

where G (mg/dL) is the plasma glucose concentration, Ra

(mg/dL/min) is the rate of glucose appearance, X (1/min)

is the remote insulin action, I (µU/mL) is the deviation

in plasma insulin concentration, S2, S1 (µU/kg) are the

deviations in insulin amount at each compartment of the

absorption model and ūj (µU/kg/min) is the incremental

infusion rate with respect to the basal insulin infusion

ubj , needed to maintain the fasting glucose value Gb. The

functions r, SG : R
+ → R

+ are defined by r(G) = {r if

G ≥ Gb; r if G < Gb} and SG(G) = {SG if G ≥ Gb; SG

if G < Gb}, which are intended to account for the increase

of the insulin action when glucose decreases under a given

threshold towards hypoglycemia (this is a simplification of the

risk function reported in [33]). The individualized parameter

cj is used to adapt the model gain as

cj = max
{

0.7,min
{

CRj/CR,CFj/CF
}}

, (2)

where CRj ,CFj are, respectively, the individual insulin-to-

carbohydrate ratio, given by the simulator, and the correc-

tion factor, computed upon the total daily insulin (TDI) as

CFj = 1800/TDI (this is referred to as the 1800-rule, of-

ten used in conventinal diabetes therapy [34]); and CR =
15.9 g/U, CF = 40.8 mg/dL/U are the mean population values

based on the ten adult virtual subjects of the distribution

version of the UVa/Padova simulator. The factor cj is lower

bounded by 0.7 for safety to avoid too aggressive controllers.

It should be stressed that the use of compact models for

controller design purposes is well celebrated in the field [35],

[36]. More specifically, gain-personalized models have been

previously used in the literature as a useful tool to account

for the variability of total daily insulin requirement among

patients [37], [14], [38]. Moreover, CFj and CRj are clinical

parameters that are known for every patient and thus the

proposed tuning rule would be feasible in a clinical trial.

B. Model identification

A data set for identification was generated using the

UVa/Padova simulator. This data set is based on an open-

loop therapy and it includes meals of different size, bolusing

and changes in the basal rate adjustment, including sinusoidal

variations. Each of the ten adult virtual patients was identified

using the genetic algorithm provided by Matlab R© and pop-

ulation values were obtained by averaging them. The value

r = 1 was set manually to avoid identification problems

because, otherwise, the effect of the insulin sensitivity SI

and the free parameters r, r would be indistinguishable. The

following mean values were obtained: tmaxI
= 48.8 min, kI =

0.58 min−1, VI = 28.4 mL/Kg, SI = 6 · 10−4 mL/µU/min,

p2 = 0.027 min−1, SG = 0.017 min−1, SG = 0.007 min−1

and r = 1.41. It should be remarked that Gb is a control

parameter defining the operating coditions in the absence of

disturbances, which was set to Gb = 100 mg/dL, and the

corresponding basal insulin infusions for each patient, ubj ,

are obtained from the equilibrium equations of the simulator

model [33].

C. Control strategy

The system (1) can be seen as the interconnection between

a nonlinear subsystem, that is, the glucose metabolism, and

a linear subsystem, namely, the insulin pharmacokinetics.

According to this decomposition and defining

x(t) = [X(t), I(t), S2(t), S1(t)]
T ,

the model (1) can be expressed as

Ġ(t) = f(G(t), x1(t), Ra(t)),

ẋ(t) = Ax(t) +Būj(t),

y(t) = x1(t) = X(t),

(3)

where the function f and the matrices A,B are easily obtained

from (1). For the sake of clarity, let us assume for the moment

that both the state x, and the rate of glucose appearance Ra(t),
are known.
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The proposed controller has a cascade structure. First, by

looking at the nonlinear subsystem, the following exponen-

tially stable target system1 given by Ġ(t) = −SG(G)G(t) +
SG(G)Gref (t), is proposed, which can be achieved by choos-

ing a target trajectory x∗
1(t) as follows

x∗
1(t) =

1

G(t)r(G)

(

Ra(t) + SG(G)
(

Gb −Gref (t)
)

)

, (4)

being Gref (t) a piecewise constant function representing the

desired glucose concentration. Second, a tracking controller is

designed so that the error e(t) = x1(t) − x∗
1(t) approaches

to zero exponentially. To that end, let us consider the trans-

formation z(t) = Tx(t) so that the system in z-coordinates,

given by ż(t) = Azz(t)+Bzūj(t), is in controllable canonical

form, i.e.,

Az =









0 1 0 0
0 0 1 0
0 0 0 1

−a1 −a2 −a3 −a4









, Bz =









0
0
0
b









, (5)

and y(t) = z1(t) = x1(t) = X(t). It is well known that the

transformation matrix is given by T = C(Az, Bz)C(A,B)−1,

where C denotes the controllability matrix [40]. Once in

controllable canonical form, it is easy to design the following

tracking controller

ūj(t) =
1

b
(a4z4(t) + a3z3(t) + a2z2(t) + a1z1)

+
1

b



x∗(4)

1 (t)−

4
∑

j=1

kj
(

zj(t)− x∗(j−1)

1 (t)
)





, (6)

that leads to the exponentially stable tracking error system

e(4)(t) + k4e
(3)(t) + k3e

(2)(t) + k2e
(1)(t) + k1e(t) = 0, (7)

for any set of gains kj > 0. The overall stability of the (G̃, e)-
system, being G̃(t) = G(t) − Gref (t), has a rather common

cascade structure where the exponentially stable e-subsystem

drives the G̃-subsystem. The latter can be cast into a switched

system with vanishing perturbations whose stability is proved

by means of a common Lyapunov function [41], [42].

D. Extended state observer

The controller strategy described above relies on the knowl-

edge of the whole state x and the disturbance Ra. Since these

variables are not measurable in practice, an extended state

observer is adopted to estimate them [28], [30]. Using the

notation introduced in (3), the proposed observer is given by






˙̂
G(t)
˙̂x(t)
˙̂
Ra(t)






=





f(Ĝ, x̂1, R̂a)
Ax̂(t) +Būj(t)

0



+ L(G)(y(t)− Ĝ(t)) (8)

where Ĝ, x̂, R̂a are the observer estimates and L : R → R
6 is

the matrix gain to be designed. The proposed observer (8) is

composed of a nonlinear model with a switched linear gain,

1This is a scalar switched system with two exponentially stable modes
whose exponential stability under arbitrary switching is easily proved [39].

L(G) = {L if G ≥ Gb; L if G < Gb}. Each of the gains is

designed by pole placement using the corresponding linearized

model around Gb ± ǫ with ǫ → 0. The closed-loop poles of

the observer are selected according to [30], in order to avoid

overshoot in the estimation.

E. Tracking differentiator

One can see from (6) that the time-derivatives of the target

signal x∗
1(t) are also needed. Instead of computing those

numerically, they are rather obtained by means of a simple

linear tracking differentiator [43], given by

ξ̇(t) =









0 1 0 0
0 0 1 0
0 0 0 1

−ω4 −4ω3 −6ω2 −4ω









ξ(t) +









0
0
0
ω4









x∗
1(t).

It is readily verified that limt→∞

(

ξj(t) − x∗(j)

1 (t)
)

= 0
with j ∈ {1, 2, 3, 4} for any ω > 0, which determines the

bandwidth and hence the speed of convergence.

F. Insulin limitation

The proposed control strategy does not take into account the

control input constraint, that is, 0 ≤ u(t) ≤ umax, where u
is the absolute insulin infusion rate. Therefore, an aggressive

tuning of the controller will result in insulin overdose, which

is a known issue in the field of diabetes control [44]. One of

the solutions to mitigate this problem is the insulin feedback

technique, which consists on the inhibition of the insulin

infusion by high values of plasma insulin concentration [6],

[45]. It was pointed out in [45] and validated in clinical

trials in [46], that the insulin located at the subcutaneous

compartments (yet to appear in plasma) could be also included

as an inhibition. Following these ideas, the absolute insulin

rate delivered by the proposed controller is computed by

uj(t) = ūj(t) + ubj − γ3 max
(

0, I(t)− Îss
)

− γ2 max
(

0, Ŝ2(t)− S2,ss

)

− γ1 max
(

0, Ŝ1(t)− S1,ss

)

,

(9)

where γ1, γ2, γ3 > 0 are tuning parameters and Iss =
x1,ss/(cjSI), S2,ss = tmaxI

kIVIIss, S1,ss = S2,ss with

x1,ss = SG(Gref )
(

Gb−Gref

)

/Gref/r(Gref ), are the steady-

state values corresponding to Gref , which are computed from

(1) and (4) assuming Ra(t) = 0.

On the other hand, an upper limit on the maximum insulin

infusion rate is imposed in order to avoid insulin over-delivery

due to very large meals. In practice, this limit is imposed by

the pump capability to deliver insulin and, in any case, it serves

as a safety mechanism. A patient-dependent saturation of the

control action is proposed so that u(t) ∈ [0, (cj/0.7)umax].
Recall that cj is the non-dimensional factor used to personalize

insulin sensitivity in the patient model (1). The individu-

alized bound allows the patient with lowest cj to exploit

the maximum insulin infusion rate umax, and constraints the

other patients proportionally. For this application, the value

umax = 16 U/h is chosen, which corresponds to maximum

insulin infusion rate of the Dana Diabecare R R© insulin pump

(Sooil, Seoul, Korea).
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TABLE I
MEAL TIMES AND CARBOHYDRATE CONTENT FOR SCENARIOS 1 AND 2

Day 1 Day 2 Day 3

Scenario 1 7h (50g) 14h (60g) 20h (50g) 6h (50g) 13h (70g) 19h (50g) 7h (50g) 13h (65g) 21h (55g)
Scenario 2 7h (50g) 14h (80g) 20h (40g) 6h (50g) 19h (40g) 21h (70g) 7h (50g) 13h (100g) 21h (40g)
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Fig. 1. Closed-loop responses without meal announcement under Scenario 1.
Thick lines are median values while shaded areas embrace the 15% and 85%
percentiles.

G. Glucose target

The use of different glucose targets during nocturnal and

diurnal periods was reported in [14]. This is a safety measure

to reduce the risk of nocturnal hypoglycemia. In this work, a

glucose target of Gref = 130 mg/dL is set for the nocturnal

period (between 23 h and 4 h), whereas Gref = 100 mg/dL

is set during the rest of the day. Notice that the mean values

of the noctural and diurnal target zones reported in [14] are

similar to the target values chosen here.

H. Tuning

The controller gains kj (which determine the closed-loop

bandwidth) are tuned in relation to the tracking differentiator

bandwidth, ω, so that they are the same. A simple way to

achieve this is to select the gains as k1 = ω4, k2 = 4ω3, k3 =
6ω2 and k4 = 4ω. Recall that the CGM readings are available

every 5 min, that is, at rate of 1/5 min−1, which already

imposes a limitation on the achievable bandwidth. Based on

this limitation, a closed-loop bandwidth of ω = 1/10 min−1

is selected. Regarding γ1, γ2, γ3, those are selected by trial

and error to avoid insulin overdose without loosing too much

performance. Recall that the factor γ1 inhibits the control

action based on the insulin amount at the first compartment

and hence is the fastest inhibition of all three. Therefore, high

values of γ1 have a large impact on performance in the early

postprandial period. Keeping that in mind, the value of γ1 is

chosen as small as possible. On the other hand, larger values

of γ3 can be set without affecting performance significantly

because its effect takes place after the postprandial peak. The
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G
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Fig. 2. Closed-loop responses without meal announcement under Scenario 2.
Thick lines are median values while shaded areas embrace the 15% and 85%
percentiles.

tuning is performed through simulations with the entire cohort

of patients, in which a meal with a carbohydrate content of

70 g is given. The population values are finally selected as

γ1 = 0.05, γ2 = 0.2 and γ3 = 100, in order to avoid

undershoot in the glucose response (respect to the fasting

value). This tuning is conservative as it ensures safe operating

conditions for every subject of the cohort.

I. Optional hybrid mode

Without meal announcement, the proposed control system

estimates disturbances and delivers insulin accordingly, based

solely on CGM measurements. However, if desired, an AP

system should allow the patient the possibility to announce

meals. In that case, the control law (9) is modified by adding

up the term ubolus(t) = CHO/CR · δ(t− tmeal), where CHO

is the patient’s carbohydrate content estimation, δ(·) is the

Dirac delta function and tmeal is the time when the meal

is announced. Notice that the bolus is computed using only

the meal size and there is no correction term due to neither

the deviation between the glucose target and the current one

nor insulin-on-board. The injection of an insulin bolus causes

a rapid increase in the estimated compartmental and plasma

insulin, leading to a fast inhibition. This mechanism plays the

same role as the insulin on board limitation reported in other

strategies [6], [14].

III. RESULTS

In this section, the proposed strategy is validated in silico

under three different scenarios. Scenarios 1 and 2 are evaluated



5

Fig. 3. CVGA plot of comparing the closed-loop responses under Scenario 1
with (blue squares) and without (black circles) meal announcement. Each of
the points at the graph is computed upon 24 h of CGM readings.

using the distribution version of the UVa/Padova simulator

[33]. In order to assess robustness to intra-patient variablity,

a modified version (described below in Section III.C) of

the simulator was used to evaluate Scenario 3. In all three

scenarios, closed-loop control with and without meal an-

nouncement was considered. In the case of announced meals,

CHO misestimation has been simulated according to the study

carried out in [47] (see the curve fitted by regression analysis

in Fig. 3 therein), which basically reports a tendency to

overestimate small meals and underestimate the large ones.

In every simulation, open-loop control with basal insulin rate

is applied during the first 4 h, after which the controller takes

over the insulin delivery [19]. The fasting state of each subject

is taken to start the simulation.

A. Scenario 1

Scenario 1, taken from [19], contains medium-size meals

with a CHO content up to 65 g (see Table I). Breakfast,

lunch and dinner are considered during three consecutive days.

The closed-loop responses (median and 15%-85% percentiles)

without meal announcement for all in silico subjects of the

distribution version of the UVa/Padova simulator under Sce-

nario 1 are shown in Fig. 1. One can see that the proposed

controller has good performance but it still avoids drops near

the hypoglycemic range. Detailed performance indices of the

3-day period can be found in Table II. The overall performance

in this scenario with medium-size meals is very good, scoring

a median time-in-range of 90% and avoiding hypoglycemia.

An average time-in-range of 83% was reported in [19] for

the same scenario, although the size of the virtual cohort

was substantially larger. Another simulation is performed

considering the same scenario with meal announcement. The

comparison is illustrated by means of a Control-Variability

Grid Analysis (CVGA) plot in Fig. 3. Each of the points

depicted in the CVGA plot corresponds to the 2.5% and 97.5%
distribution of CGM data over a 24 h period [48]. One can

see how the points in the CVGA are shifted downwards when

Fig. 4. CVGA plot of comparing the closed-loop responses under Scenario 2
with (blue squares) and without (black circles) meal announcement. Each of
the points at the graph is computed upon 24 h of CGM readings.

meals are announced in spite of the CHO mismatch, leading

also to an outstanding median time-in-range of 99%.

B. Scenario 2

Scenario 2 is based on the previous one and it includes

the following challenging features: i.) large-size meals with

CHO content up to 100 g are included (see Table I); ii.) a

fasting period is considered on the second day in which lunch

is skipped; iii.) a fairly large snack is given shortly before

dinner on the second day ; and iv.) a nocturnal hypoglycemic

episode is simulated by introducing an undetected insulin

bolus of 2 U the first night at 2 AM. The closed-loop responses

under Scenario 2 are shown in Fig. 2. At first glance, the

overall perfornance is also good in spite of the simulated

nocturnal hypoglycemic episode. The postprandial excursions

get further into the hypoglycemic range due to the large-size

Fig. 5. Detail of the first 42 h of the closed-loop response under Scenario 2
(3-day simulation with large-size meals and nocturnal hypoglycemia), for the
virtual subject #2 of the distribution version of the UVa/Padova simulator.
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TABLE II
OVERALL PERFORMANCE INDICES (MEDIAN VALUES WITH 15% AND 85% PERCENTILES) FOR THE IN SILICO EVALUATION

Scenario 1 Scenario 2 Scenario 3
Announced Unannouced Announced Unannouced Announced Unannouced

Mean BG 128 (123, 130) 136 (125, 140) 130 (123, 132) 138 (126, 142) 135 (128, 144) 144 (131, 153)
% ∈ [70, 180] 99 (97, 100) 90 (83, 98) 93 (90, 98) 85 (83, 95) 88 (80, 94) 80 (74, 88)
% ∈ [80, 140] 71 (69, 84) 65 (59, 76) 72 (71, 79) 65 (59, 74) 66 (58, 71) 57 (50, 68)
% < 70 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.1) 0.0 (0.0, 0.0)
% < 60 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
% < 50 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
% > 250 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.5) 0.4 (0.0, 1.7) 0.2 (0.0, 2.0) 1.3 (0.1, 4.2)
% > 300 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.1) 0.0 (0.0, 0.6)
HBGI 1.3 (0.8, 1.6) 2.5 (1.2, 2.8) 1.9 (1.1, 2.1) 3.2 (1.5, 3.8) 2.6 (1.8, 4.0) 3.8 (2.4, 5.0)
LBGI 0.1 (0.0, 0.2) 0.1 (0.0, 0.2) 0.1 (0.1, 0.2) 0.1 (0.1, 0.2) 0.2 (0.1, 0.2) 0.1 (0.0, 0.2)

meals. However, the performance indices (see Table II) are

still fairly good, scoring a median time-in-range of 86% and

avoiding hypoglycemia. The comparison with the announced

scenario is again illustrated by means of a CVGA plot in

Fig. 4, where improvement is also observed, achieving 93%
of median time-in-range.

In order to provide a better insight in how the observer

works, a detailed view of the individual closed-loop response

of patient #2 for the first 42 h is shown in Fig. 5. The meal

glucose rate of appearance (black) and its estimation (blue) are

depicted at the bottom plot. The estimated value aggregates

any unexpected change in the glucose level. That includes

the effect of meals but also model uncertainties and other

disturbances such as induced nocturnal hypoglycemia. One

can see how the estimation drops below zero shortly after

2AM (when the 2U insulin bolus is delivered) leading to a

pump suspension that mitigates that glucose drop. On the other

hand, one can also appreciate in this plot the delay between

the real meal glucose rate and its estimation, which is due

to the sensing delay and observer dynamics. At this point, it

should be remarked that this observer would also estimate a

glucose drop due to exercise, which could be compensated

using specific strategies proposed in the literature [49].

C. Scenario 3

Finally, a third scenario is considered to evaluate the ro-

bustness of the proposed strategy. Scenario 3 has a duration

of 30 days, with three randomized meals per day of 65 g,

70 g, 65 g with a CV = 10% delivered at 7 h, 14 h and

21 h with STD = 60 min, respectively. The scenario also

takes into account large intra-subject variability by varying

insulin absorption model parameters up to ±30% from one

meal intake to another, and insulin sensitivity parameters up to

±30% with a sinusoidal pattern along the day [50]. For intra-

subject meal variability, the ten sets of meal model parameters

of the cohort were randomly assigned to each other at each

meal intake. This is a very challenging scenario in which 35
out of 90 meals have a CHO content over 70 g, being the

average 66.5 g per meal. The results of this simulation are

displayed by means of a CVGA plot in Fig. 6. Without meal

announcement, a few number of samples lay on the out of

the A+B zones, of which approximately 77% correspond to

patient #7 (as pointed out in [38], this patient has an insulin

sensitivity that is not coherent with its TDI). Nevertheless, the

Fig. 6. CVGA plot of comparing the closed-loop responses under Scenario 3
with (blue squares) and without (black circles) meal announcement. Each of
the points at the graph is computed upon 24 h of CGM readings.

overall counting indicates that 91% of the samples lay within

the A+B zones in the unannounced case, which is not far from

the 95% scored in the announced case. It should be pointed out

that the tendency to hyperglycemia in spite of meal boluses is

due to the fact that the simulated uncertainty in CHO counting

severely under-estimates large meals. As indicated in Table II,

the unannounced strategy leads to a median time-in-range of

80%, which is increased up to 88% when meals are announced.

IV. CONCLUSIONS

A novel control algorithm for artificial pancreas system has

been proposed in this work, based on a disturbance observer

and feedforward compensation. It has been shown how the

disturbance observer is capable of estimating disturbances that

cause unexpected variations in glucose levels. That includes

the effect of meals but also model uncertainties or sudden

drops that could result in hypoglycemia. The tuning of the

proposed controller is feasible as it is based on a priori infor-

mation of each subject. For unannounced meals, the results are

promising, showing a median time-in-range of 80% in a chal-

lenging 30-day scenario with high carbohydrate content and

large intra-subject variability. Results show this performance

is further improved by +10% in the same scenario when meals

are announced in spite of severe CHO misestimation.
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While successful postprandial control with meal announce-

ment has been reported, exercise was not discussed in this

work, which is a another major challenge towards a fully

automated artificial pancreas. Future research will be directed

to exploit the information provided by the disturbance observer

in order to mitigate hypoglycemia induced by exercise.
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