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Abstract

Air traffic has been continuously rising. The expected exponential growth of un-
manned traffic, like for delivery services, can result in an uncontrollable airspace that
might rely on finding solutions that depend on more automation. Adding Artificial
Intelligence to the question might result in a good step into the future of Air Nav-
igation given its recent advancements. This project covers some theory of Artificial
Intelligence in order to understand a basic series of concepts prior to the explanation
of Deep Reinforcement Learning as the choice of Artificial Intelligence to be used in
the project. This type of Artificial Intelligence is then implemented into a workflow
that makes it possible to test the application of Deep reinforcement Learning at the
end before discussing the results.

Keywords: Air Navigation, Artificial Intelligence, Neural Networks,

Deep Reinforcement Learning, Proximal Policy Optimization, RLlib,

BlueSky
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Resumen

El trafico aéreo no ha parado de aumentar. Se espera, además, un aumento expo-
nencial del número de aeronaves no tripuladas, para servicios como el delivery, que
pueden acarrear que el espacio aéreo se convierta en incontrolable y donde soluciones
como aumentar el nivel de automatización podrían ser clave. Añadir Inteligencia
Artificial a la cuestión podría resultar en un buen paso hacia delante en el futuro
de la Navegación Aérea dado sus avances en los últimos años. El trabajo cubre algo
de teoría sobre Inteligencia Artificial para poder comprender una serie de conceptos
previos a la explicación del Aprendizaje Reforzado Profundo como elección de tipo de
Inteligencia Artificial a desarrollar en el proyecto. Este tipo de Inteligencia Artificial
es luego implementado en un entorno que hace posible la aplicación de Aprendizaje
Reforzado Profundo a la Navegación Aérea para posteriormente realizar una serie de
experimentos y discutir sus resultados.

Palabras Clave: Navegación Aérea, Inteligencia Artificial, Redes Neu-

ronales, Aprendizaje Reforzado Profundo, RLlib, BlueSky
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Chapter 1

Project definition

Thoughts and motivation behind the creation of the project and a description of it.

1.1 Introduction

Drones have been flying for several years now, but it is in the recent past that they
have become a much more affordable and, thus, used product, to the point that it
is difficult not to see any fly on a regular basis. Due to this, we are already used to
hearing news of drones putting people in danger, whether it is by getting too close to
manned aircraft, or just by getting too close to people. On top of that, it is difficult
to have regulations followed by individuals, often due to the vast amount of users
that there already is and how hard it makes it to know what each one of them is
doing. The great variety of drones, many even being homemade ones, explains the
lack of standards and safety measures on these kind of aircraft, specially smaller ones
used by hobbyists, small film makers, or the ones treated as toys.

Drones are starting to be used for applications such as the delivery of packages in
urban settings and could soon result in traffic densities way higher than for manned
civil aviation, that as well is expected to grow. From this, and what was mentioned
before, we can extract that the situation could easily turn into a much harder problem
that might actually be impossible to control if we just take the measures as we know
them today.

1



CHAPTER 1. PROJECT DEFINITION

In an scenario where many unmanned aircraft are airborne the necessity for a
service that organizes and helps avoid conflicts is a key problem that has to be dealt
with in a near future and, thus, the addition of AI to the equation could lead to a
solution that is both affordable and effective.

AI has not stopped gaining maturity and has recently meant a radical change
in how many problems are approached. This subject is shown all the time around
the news as well, and it seems like most people still find it difficult and confusing to
know what is behind this kind of technology and how it can be approached in order
to solve modern day problems and proposing great new never-before-seen ideas that
could revolutionize certain aspects of life and industry.

2 An Artificial Intelligence framework for Air Navigation based on Deep
Reinforcement Learning
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1.2 Past work

The topic has been researched in several occasions. Most of the work that seems to
exist, or at least the work that is publicly available to read, is done using a simulator
that will later be introduced in the document and is called BlueSky [12].

The efforts have been mainly in the field of deep multi-agent reinforcement learn-
ing and most authors state the difficulty of finding an optimal solution to most of the
problems due to the instability that this kind of algorithms can face due to several
reasons that will be discussed in future sections. Another recurrent topic found in
previous work is the high amount of computing power and time needed to solve the
complex problems proposed in the papers or thesis.

The paper by the authors Marc Brittain and Peng Wei seems to find optimal
solutions to the case studies that are proposed, mainly related to conflict resolution
in air routes, by using different kinds of algorithms and a framework created by
themselves. This is at the expense of a really good computing platform and around
5 days each time training has to be done [13].

The job done by Marta Ribeiro is focused more around drones in urban areas, the
problem she also finds is concerning the convergence of the model, making it hard to
reach an optimal solution [14].

Bart Vonk’s thesis tries to use reinforcement learning for autonomous sequencing
and spacing of aircraft. His results also show the concern of learning stability and an
optimal solution is only found for a simple scenario involving one aircraft [15].

Dennis van der Hoff found in his thesis that, for lower density traffic, his method
could provide collision avoidance and approach to the correct runway. However, he
also found that more complex scenarios were difficult to get solved [16].

The fact that some authors did not find the results they wanted shows the high
level of experimentation in which this field is at, the problems that were mentioned
as not solved were mainly to the high degree of freedom and the great amount of
different states and possible actions that were involved in those problems, making
the agent harder to train.

An Artificial Intelligence framework for Air Navigation based on Deep
Reinforcement Learning
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1.3 Motivation

The interest in the subject of AI came around the second year of the Bachelor’s Degree
in Aerospace Engineering. The way AI could solve such complex problems seemed
somewhat magical and the curiosity of knowing what was behind those algorithms
lead to a lot of research and learning of the basics of AI.

Being part of Horus UPV team at university, dedicated to the design and con-
struction of an autonomous UAV, I discovered that the knowledge acquired during
the previous summer was actually enough to understand how to solve a computer
vision task related to the project and got the responsibility of leading the computer
vision team inside Horus UPV for the next year.

It was during quarantine and the following summer that a lot of time was spent
obtaining several certificates, specially in the field of Deep Learning, and got a better
quality education related to the field. This led to a better global understanding of the
subject and the potential of it as a solution to many problems. One of those problems
was Air Navigation, which lead to a marriage of the self-taught skills related to AI
with what was being taught at university.

The last year of the degree was the moment the project was born. Talking with
who would later become the tutor of the project about the field of AI and its potential
uses for Air Navigation, he thought AI could be useful in a near future to some of the
research projects carried out at the university and helped establish boundaries to what
could be done, narrowing the task to a more specific subject and application. This
is the moment I was included in the Bubbles project by SESAR Joint Undertaking
as an apprentice. One of the partners, as well as the coordinators, is UPV and the
group of Sistemas de Navegación Aérea at the university is, thus, in charge of a good
portion of the research. In Bubbles, I was asked to start the research in the field
in order to solve the problem of tactical separation of drones for the work package
4. My participation was conceived as an apprenticeship and as a way to develop my
final year thesis with the work done with them.

4 An Artificial Intelligence framework for Air Navigation based on Deep
Reinforcement Learning
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This project contains a lot of personal ambition and started as a challenge, some-
thing different that could, maybe, in a near future have served as the seed of some-
thing bigger and hopefully useful. As well, it serves as a way of achieving a lot of
personal growth, having to work on something that is probably out of the comfort
which means a lot of new knowledge and development of problem solving skills, spe-
cially having the change to participate in the Bubbles project with a professional
environment around.

1.4 Description and objective of the project

The project consists in the research of a potential application of AI for air naviga-
tion purposes and, for this, the basics of AI and the different types of it have to be
understood. Later a workflow is created using several tools, that will be introduced,
and ideas in order to be able to solve problems regarding the use of AI in the field.
Finally, there is experimentation in order to test if the different software components
can work well together and the potential application of this in the field of air navi-
gation. It has to be highlighted that this project is conceived as a research oriented
project.

The main objective of the project, thus, will be understanding AI and the different
kinds of it, its potential for solving air navigation problems and the explanation, set-
up, and test of the different software in order to create a workflow that helps solving
these problems with AI.

1.5 Justification

As mentioned previously, there is a need to increase the level of automation in air
navigation due to the increase in traffic density, and specially when talking about
drones, the creation of a centralized management and control service how we know
now seems unrealistic.

Increasing the level of automation is a task that has been worked on and is still
being developed today but usually means having to deal with unknown levels of safety
that, specially in manned aviation, mean that its implementation into production is
usually difficult. However, drones are not like manned aviation in terms of safety as,
in most cases, damage to a drone usually does not mean endangering anyone. This

An Artificial Intelligence framework for Air Navigation based on Deep
Reinforcement Learning
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is an opportunity to use this kind of aviation as a test platform for new techniques
that could eventually even make their way to manned navigation, but even if that is
not the case, it would still hugely benefit the way we deal will the increase in traffic
that supposes the addition of all unmanned traffic to come in a near future.

The paragraph above serves as the reason why studying how to apply, and the
potential use cases of AI in the field, seems to be an attractive idea to take into
account and explore.

1.6 Structure

The project consists of several sections in which the aim is to introduce the field of
AI in a general way, later go into more specific details, and afterwards propose a
workflow with several software that will be introduced and tested before closing up
by reflecting on what has been done and achieved.

First it is necessary to have a quick look into what AI is, the different kinds of
AI, and understand what is the most attractive kind in order to solve the proposed
problem. It will be then key understanding how that exact type of AI works as it
will be the tool that will help solve the problem, and thus, knowing the potential of
your tools is vital for extracting the most out of them.

After the more theoretical explanation, it is necessary to take a look into how we
can make use of all that by using different software and, for that, the library that will
help with the AI part, RLLib, will be explained. As an experiment with real aircraft
cannot be performed due to obvious reasons, a simulator will be key in order to
approach this problem and, thus, a brief explanation of the BlueSky simulator will be
carried out in order to understand how it can help as a platform to quickly and easily
obtain a simulation of different aircraft in premeditated scenarios taking into account
many complex factors that realistically replicate a real world behavior. A quick look
into what virtual environments are, the Integrated Development Environment used
and another coding platform will close up the talk about software.

It is essential to take a look into how the different software integrates and works
together, also to test how the proposed techniques behave when dealing with air
navigation problems. Having said that, a little experimentation will be carried out
to test all of this.

6 An Artificial Intelligence framework for Air Navigation based on Deep
Reinforcement Learning
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The results obtained have to be analysed to conclude whether we can take this as
a valid solution to the problem. In this section the capabilities of AI will be assessed
for this kind of problems and it will be possible to extract a more precise conclusion
regarding its usage as a way to solve different air navigation problems proposed.

Finally, its is key to reflect on what things regarding the project could be changed
in the future and what ideas could be implemented in order to help give it a better
shape. Also, it is good to mention the potential applications of the solution presented
in the document or, at least, when the technology is better developed and matured.

An Artificial Intelligence framework for Air Navigation based on Deep
Reinforcement Learning
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Chapter 2

Theoretical Study

In this chapter, the necessary theory to understand how to apply AI to Air Navigation
is discussed..

2.1 What is AI?

Less than ten years after cracking Enigma, the Nazi encryption machine, Alan Turing
asked a simple question. "Can machines think?". In his paper "Computing Machinery
and Intelligence" [17], published in 1950 and the Turing Test, which is an exam that
evaluates the capability of a machine to act in a humanly intelligent way, Alan Turing
established the basis and goals of AI.

AI can be thought of as the branch of computer science that tries to replicate or
simulate human intelligence and behavior in machines, however the exact definition
of AI that is universally accepted is yet to come. A major question that can come to
mind after the definition of AI above is that it does not really explain what AI is, as
no answer to what makes a machine intelligent is offered.

In the book Artificial Intelligence: A Modern Approach [18], Stuart Russel and
Peter Norvig say that AI is "the study of agents that receive percepts from the
environment and perform actions" and they explore four traditional approaches to the
definition of AI: thinking humanly and rationally, and acting humanly and rationally.
The first two cover the thought process and reasoning and the next two deal with the
behavior.

Another definition comes from Patrick Winston, the former Ford professor of

9
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artificial intelligence and computer science at MIT, he defines AI as "algorithms
enabled by constraints, exposed by representations that support models targeted at
loops that tie thinking, perception and action together"

Both definitions mentioned above may seem pretty abstract to the average person,
but they help establish the field as an area of computer science.

2.1.1 How AI is used

AI can be divided into two categories that cover a huge amount of topics: Artificial
General Intelligence and Narrow AI.

Artificial General Intelligence can be said to be focused on the AI that can be
seen in science fiction movies. This kind of AI tries to achieve, as its name says, a
general intelligence that, just like a human, can be employed by a machine to solve
any kind of problem. This topic seems to be the ultimate goal for many researchers
but it has proven to be a really difficult task and it seems like it will not be a reality
anytime soon.

Most AI based applications that can be seen nowadays are in the field of Narrow
AI and many examples can be found, like Siri, or the recommendation algorithms
from Youtube or Netflix. Narrow AI usually operates within a limited context and
tries to simulate human intelligence. It is usually created to focus on a single task
extremely well and although they might seem intelligent, they usually operate under
a lot of constraints and limitations that not even the most basic human intelligence
compares.

As it can be deduced from the examples in the previous paragraph, Narrow AI is
clearly the most successful implementation of AI up until now, and it has experienced
a massive growth in the last decade.

Machine Learning breakthroughs and specially one of its types, Deep Learning,
power much of the the Narrow AI that is used today. Those usually are the names
that first come to mind when thinking about AI and, sometimes, it can be difficult to
differentiate the concepts of AI, Machine Learning and Deep Learning. Essentially,
Deep Learning is a kind of Machine Learning as expressed in the beginning of the
paragraph, and Machine Learning is one of the techniques used in AI. [19]

The project is built using techniques of Machine Learning and for that it is key
to understand what Machine Learning is and what are the different types of it.

10 An Artificial Intelligence framework for Air Navigation based on Deep
Reinforcement Learning
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2.2 Machine Learning (ML)

ML is focused on the creation of algorithms. Algorithms can be easily and briefly
defined as sequences of instructions that generate a solution to a problem.

An algorithm can be created by a programmer who establishes the rules that
describe the behavior of an algorithm. For example, if a program is created that
prints to the console the values of a linear function for the first one hundred positive
integers given a certain slope and intercept introduced previously by the user in the
terminal, the program will consist of a section of code that handles the acquisition
of the two constants and its storage in a variable, a section that calculates the one
hundred values and another section that prints all those values in the terminal.

In ML, however, the rules are established by the computer and the computer is
provided with several tools that allow it to learn from data without the necessity
of programming each step of the process, and thus, the program defined in the last
paragraph can be solved from the point of view of ML as an example. Let’s suppose
that the first one hundred integers were saved and tagged under the name "inputs"
and the output of the terminal was saved under the name "output" after running
the previously explained algorithm. In this case we know what we want to achieve
but we don’t know how was that output created. A solution using ML would be the
creation of a model that gets fed the input and output data and learns the way to
get to produce an output similar to that data by modifying its parameters.

The problem described above only serves as an example to understand the different
approach between what could be called "traditional" programming and ML. However,
the solution of that problem is as simple as a regression and the field of ML can get
way more exciting. Present solutions to problems that were unable to be tackled
before like Object Detection in Computer Vision have been radically influenced by
ML as this is a task humans can do very easily, but it is difficult to tell a computer
how to do it by "traditional" programming.

An Artificial Intelligence framework for Air Navigation based on Deep
Reinforcement Learning
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A successful ML algorithm can do many different things, in a recent research
brief about AI and the future of work [20] it is said that "the function of a machine
learning system can be descriptive, meaning that the system uses the data to explain
what happened; predictive, meaning that the system uses the data to predict what
will happen; or prescriptive, meaning that the system will use the data to make
suggestions about what action to take".

There are three categories for ML:

Supervised ML models learn from labeled data, this helps the models to learn
and grow to be more accurate over time. An example of supervised ML can be the
problem described at the beginning of the section, or a model trained with pictures
of dogs that have been labeled by people and that can later identify dogs by itself.

Unsupervised ML programs look for patterns in unlabeled data. This type of
ML is useful for finding patters that people aren’t necessarily looking for or that
they cannot really perceive on their own. A typical example for an unsupervised
ML program is the product recommendation system after buying or adding to cart
another product in sites like Amazon. This program recognizes that people that buy
an specific product are likely to buy any of the recommended products.

Reinforcement ML learns through trial and error to take the best action by es-
tablishing a reward system. It is commonly used to train models on how to play
games, some even better than humans; or to make self-driving vehicles possible by
telling the car when it made right and wring decisions helping it learn over time. The
field of RL can be of deep interest for its application in Air Navigation, as well as it
is being used for self-driving cars. This is because it can learn complex policies in
high dimensional environments and work over real life or high accuracy simulations
where data might be difficult to get or process. The topic of RL will be covered more
in-depth in a future chapter.

One of the reasons there are great ML models nowadays and the exponential
growth it has had comes from the advancements in computing power. This has also
meant having better processors available to the general public, contributing to a
big growth of the AI community that subsequently has meant a lot of open-source
research and an event better development of the subject.

12 An Artificial Intelligence framework for Air Navigation based on Deep
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As explained in previous paragraphs ML models learn from examples, which is
basically data, which leads the other main reason this kind of technology has grown
so much: the huge amount of data available. In a world where the internet is present
in every aspect of daily routine, data collection means having the ability to know
unlimited information about consumers and many other aspects. ML helps make use
of that vast amount of data, for commercial purposes and for research and it is a
pillar on which ML stands.

An example of how such great amout of data has been used is, for example, Google
Translate. That was trained on huge amouts of information available on the web and
in different languages in order to offer effective translations.

ML models have not only meant doing some tasks in a more effective or automated
way than humans, but also some perform actions that humans could never really
achieve, like Google Search. The amount of information that can be browsed in no
time and the understanding of the information that might be the most relevant to the
user is just something a human cannot do, so it is not an example of computers putting
people aside like it is a lot of times feared, but actually an example of computers doing
things that could have never been feasible if done by humans. [21][20]

ML derives into many kinds of algorithms and approaches, which many are not
part of the scope of the project nor really help in its development. There are many
different kinds of fields of study and applications like Natural Language Processing,
that aims to understand natural language as spoken and written by humans, helping
create coherent text, translations and even conversations, being great examples Siri
or Alexa.

Uses of ML that are worth mentioning are: recommendation algorithms, image
analysis and object detection, fraud detection, chatbots, self-driving cars and even
medical diagnostics and imaging.
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2.3 Deep Learning (DL)

Deep Learning is one specific kind of ML that has exponentially grown in recent
years. This type of ML is based on how a human brain works in a way that we
have neurons, or cells, that individually compute a result to their input and pass
their result to the next series of neurons. These are also know as perceptrons. The
following discussion will be centered in concepts that lead to the understanding of
neural networks in a basic way as the implementation of these algorithms is done
using high level approaches provided by different ML programming frameworks.

2.3.1 Neurons and Artificial Neural Networks (ANN)

If a single neuron is taken, the calculation that takes place inside if it is a linear
combination of its inputs that is then passed to an activation function before becoming
the output of the neuron. It is interesting to observe that a neuron that has no
activation function is just a linear regression that in the case of having multiple inputs
would become a multiple linear regression. In the figure 2.1 the basic structure of a
neuron can be observed. From the figure we see that a neuron can have any number
of inputs and each one of them will be part of a weighted sum to which a bias term
is also added, the result of all this function is then passed to the activation function
and the output of the activation layer is then considered as the output of the neuron.
Activation functions will be covered later in the document. A neuron "learns" by
modifying its weights and bias in order to fit an input to a desired output as also
mentioned earlier in the chapter.

Figure 2.1. The basic structure of an artificial neuron [1].
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From this explanation a basic understanding of what a neuron is can be obtained,
so guessing from its name and ANN is a set of neurons that connect with each other.
A NN typically consists of an input layer, a number of hidden layers being the ones
that are intermediate, and an output layer. As explained before this structure is
inspired by the human brain and a basic diagram can be seen in the figure 2.2.

Figure 2.2. Simple ANN [2].

Deep learning comes from the concept of Deep Neural Networks which are NNs
that have more hidden layers. An example can be seen in the figure 2.3.

Figure 2.3. Simple DNN [3]
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The advantage of using DL is the benefit of not really having to know much
about the input as it can learn representations and features directly from it. Also,
a good reason why deep learning is so used currently is that it allows for better
generalization and more complex models that learn from much bigger datasets, which
are really common to find know. A problem with traditional ML, also NNs, is that
generalization is sometimes not easy to achieve due to the problem of overfitting,
which is essentially adjusting your model too much to your training data resulting in
a poor performance when receiving inputs that has not previously seen.

Now that an introduction to NNs has helped understand the structure and basic
principles behind them, a brief look into activation functions and the training process
should offer a decent general knowledge behind how these algorithms work.

2.3.2 Activation functions

The functionality of the activation function inside a neuron is to determine its output
in terms of its combination. It is also the function that the NN represents and some of
the most typical are: the hyperbolic tangent activation function, the logistic activation
function and the rectified linear activation function [22].

The hyperbolic tangent activation function, represented in equation (1), is a sig-
moid function that makes the output of the neuron vary from -1 to +1. Its output
can be seen in the figure 2.4.

activation = tanh(combination) (1)

Figure 2.4. Hyperbolic Tangent [4]

16 An Artificial Intelligence framework for Air Navigation based on Deep
Reinforcement Learning



CHAPTER 2. THEORETICAL STUDY

The logistic activation function, seen in equation (2), is also a sigmoid function
but it varies from 0 to 1. It is represented in the figure 2.5.

activation =
1

1 + e−combination
(2)

Figure 2.5. Logistic Activation [5]

The rectified linear activation function, also known as ReLU is one of the most,
if not the most, used activation functions. It is 0 when the combination is negative
and equal to the combination when it is positive, as seen in equation (3). ReLU helps
train models faster as it helps with the vanishing gradient problem while training.
Vanishing gradient is when the gradient gradually starts becoming smaller after each
iteration to a point that is makes impossible updating the parameters in an effective
way, the optimization of the parameters will be discussed in the next section. The
figure 2.6 shows the output of the function.

activation =

0 combination < 0

combination combination ≥ 0
(3)
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Figure 2.6. Rectified Linear Activation [6]

2.3.3 Training

The loss index has a vital role in the use of NNs. It provides with a measure of the
quality of the representation required to learn and defines the tast to be done. The
loss index has two terms: the error term and the regularization term, as it can be sen
in equation (4) [23].

loss_index = error_term+ regularization_term (4)

The error is the key term in the expression and measures how well the NN is
fitting the data. Some of the most important error functions used in the field are:
the mean squared error, the normalized squared error, or the cross entropy error
amongst many others.

The mean squared error is the average squared error between the outputs of the
NN and the real output coming from the data that we want to fit, its expression is
seen in the equation (5).

mean_squared_error =
Σ(outputs− targets)2

instances_number
(5)
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The normalized squared error gets the squared error between the output of the NN
and the target output from the where training from data divided by a normalization
coefficient. If the error is close to 1 is predicting the data "on the mean", if the value
of the error is 0 then the prediction is perfect. The equation (6) shows the expression
for this error.

normalized_squared_error =
Σ(outputs− targets)2

normalization_coefficient
(6)

The cross-entropy error is used for problems of binary classification. This means
that the output that we expect from the NN is either 0 or 1. The advantage of using
this error is that it penalizes with high error is a target is label mistakenly. The
equation (7) shows this type of error.

cross_entropy_error = −Σ(target ∗ log(output) + (1− target) ∗ log(output)) (7)

A regular solution is one that for small changes in inputs, small changes in the
output are obtained. For non-regular problems a solution is to control the effective
complexity of the NN and this can be done by the usage of a regularization term in
the loss index.

Usually the regularization term measures the values of the parameters of a NN.
By adding that term to the error the size of the weights and biases are reduced and
the response is forced to be smoother. The most used types are L1, equation (8), and
L2, equation (9), regularization.

l1_regularization = regularization_weight ∗ Σ |parameters| (8)

l2_regularization = regularization_weight ∗ Σ parameters2 (9)

The regularization weight has to be tuned to fit the desired solution. If the solution
is too smooth that it has to be decreased, and the opposite if the solution oscillated
too much.

The loss index depends on the function that the NN represents. It can be visu-
alized as a surface with the parameters as coordinates as seen in the figure 2.7. The
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learning process for a neural network consists in tuning the parameters of the NN in
order to find the minimum value of the loss index.

Figure 2.7. Performance Function [7]

As already mentioned, the training of NN consists in searching for set of NN
parameters that minimize the loss index. For this we know that if the NN is at the
minimum of the loss index, the gradient will be 0.

The loss is generally a non-linear function of the parameters of the NN. Finding
closed optimization algorithms for the minima is not possible and the solution is
carried out through the parameter space by a succession of steps or epochs. At each
epoch the loss will decrease by optimizing the value of the NN parameters according
to a certain algorithm.

So, to train a NN, we start from a set of parameters that are usually initialized as
random numbers and a new set of parameters is generated at each iteration in order
to reduce the loss index.

Usually the optimization stops when a given criteria is reached, some common
are:

• Loss has reached a goal value

• A maximum number of epochs is reached

• The loss improvement in one epoch is less that a set value
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The optimization algorithm is what determines how the adjustment of the pa-
rameters of the NN is carried out. There are many different types of optimization
algorithms that vary in computation and storage requirements and no one is actually
suited for every single case. Some examples of the most common are the gradient
descent, the stochastic gradient descent, or the adaptive linear momentum algorithm.

Gradient descent, equation (10), is the simplest optimization algorithm. This
algorithm updates the parameters at each epoch in the direction of the negative
gradient of the loss index respect to the parameter it is trying to optimize. There is
a constant called learning rate that specifies how much the gradient is affecting the
new parameters and it is usually set to a certain value chosen before optimizing or
can be adjusted at each epoch using line minimization.

new_parameters = parameters− loss_gradient ∗ learning_rate (10)

Stochastic gradient descent, equation (11), updates at every epoch the parameters
many times using batches of data.

new_parameters = parameters− batch_gradient ∗ learning_rate (11)

Stochastic gradient descent has many advantages as it makes it easier to fit in
the memory as only a single training example is being processed by the network at
a single time. Also, for the same reason, it is computationally fast. And, for larger
datasets, it can converge faster as it updates the parameters more frequently.

The Adaptive linear momentum, or ADAM, optimizer is very similar to gradient
descent, but it uses a more sophisticated method to calculate the training direction
and helps produce a faster convergence. This algorithm also helps to avoid getting
stuck at the local minima of the loss. The exact method used by the algorithm is out
of the scope of the project as it usually already implemented in ML frameworks.
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2.4 Reinforcement Learning (RL)

Reinforcement Learning is a really popular subject in the field of ML and its pop-
ularity does not stop growing. The basic definition of it was given in one previous
section but the goal of this section will be to understand at least the basics of it.

As a reminder, RL is one type of ML technique that allows an agent to learn from
an interactive environment. That is, instead of providing previously stored data, we
allow the agent to interact with an environment in order to, by trial and error and
feedback from its experiences, learn how to behave in a proper way. Both supervised
learning and RL use mapping between input and output, but in supervised learning
the feedback provided to the agent is a correct set of actions for a given task and, in
RL, punishes and rewards are used as signals for positive or negative behavior that
guide the agent towards learning.

Comparing unsupervised learning and RL, unsupervised learning tries to find
similarities in data, however in RL the goal is to find an action model that maximises
the total cumulative reward collected by an agent, in the figure 2.8 we see the generic
feedback loop for RL [24].

Figure 2.8. Generic Reinforcement Learning Loop [8]

The basic components of RL are:

1. Environment: "world" in which agent acts

2. State: current data about the agent like, for example, position

3. Reward: feedback in the form of points

4. Policy: the method that describes what action to take given a certain state

5. Value: future reward expected to receive given a certain action in a given state
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A really helpful way to understand a RL problem can be through games. For
example in the game Breakout you interact with a ball with a small paddle to make
it bounce into the bricks at the top and win points. However the player gets a penalty
if it misses the ball. In this case, the game screen would be the environment in which
the agent acts by moving the paddle to the left, right, or keeping it in place. The
agent will receive reward by hitting the bricks and a penalty for missing the ball.
The states would be the location of the agent in the world and the total cumulative
reward is the agent beating the game. A screenshot of how the game Breakout looks
is given at figure 2.9.

Figure 2.9. Atari Breakout (2600) Screenshot [9]

To build an optimal policy that behaves the way it is needed the agent faces the
dilemma of exploring new states but, as well, optimizing the overall reward. This
is called the Exploration vs Exploitation trade-off. To be able to balance both, the
agent may want to involve in short term sacrifices and that way the agent can collect
more information to make the policy better and provide the best overall decision in
the future. This topic will be mentioned and better explained in future sections.

2.4.1 Markov Decision Process (MDP)

The key abstraction in Reinforcement Learning is the Markov Decision Process. The
MDP is the classically formalized process of sequential decision making, where actions
taken not only influence immediate rewards, but also subsequent states and thus
future rewards. In each time step the process is in a given state, the agent chooses
an action to make dependent on that given state which in turn receives a reward and
leads the agent into the next state. It is key to know that for each action there is
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always a probability that certain action leads to a certain state, which is the state
transition probability. [25]

An important assumption is the Markov Property. A state is a Markov state if it
has the Markov Property, which is when the current state contains the information
that is needed in order to determine the state transition and it does not depend on
previous states.

With the approach given to the problem, it will be seen that the Markov Property
is fulfilled because when a flight is simulated the changes given an action can be
computed with the current information.

So, an MDP is defined as a tuple of size 4 (S,A, Pa, R) where S is the finite set of
different states, A is the different possible actions, Pa is the state transition matrix
and R the reward function.

The agent’s goal is to maximize the cumulative reward it receives over the whole
sequence of actions that it takes. The return is the sequence of reward received over
the trajectory, as seen in the equation (12) [16].

Gt =
T∑

k=t+1

γk−t−1Rk (12)

Gt is the return.γ is the discount factor that balances the importance that the
future reward will have over immediate reward. T is the time step at the end of the
whole sequence of actions. The return gives the total future discounted reward from
the current time step, that means that is an accumulation of reward of the future
and does not look backward at already received reward.

Another important group of functions that is usually found in RL algorithms are
value functions. This function estimate if the current state is good or bad to stay
at. This is determined by the expected return, that is expected cumulative reward
in the future. Rewards depend on the action taken by the agent and the behavior
that determined which action to take is called policy. A policy maps the probability
of performing each possible action given a state and is defined as π(a|s). The value
function can be defined as in equation (13).

vπ = E[Gt|St = s] (13)
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vπ(s) is the value function of the policy π, Gt is the return and s is the current
state. Concurrent with equation (13), formally known as state-value function for
policy π, the action-value function gets defined. The action-value is different from
the state-value function in relying in both state and action, seen at equation (14).

qπ(s, a) = E[Gt|St = s, At = a] (14)

In the equation (14), the action-value function, qπ(s, a) is the return expected
starting from state s, taking the action a and following the policy π(a|s).

2.4.2 Bellman Equations

There is still the question of how to maximize the cumulative reward. For that, a
policy π(a, s) has to be found so that the cumulative reward vπ(s) is maximized. As
the previous definitions of value functions cannot be solved in a numerical way, to be
able to find the optimal policy, a recursive relation is necessary for the state-value and
the action-value functions. The recursive relations to be presented use the property
of the recursiveness of the return as baseline, the equation equation (15) shows the
return expressed as recursive expression with itself.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

= Rt+1 + γ(Rt+2 + γRt+3 + ...)

= Rt+1 + γGt+1

(15)

Considering a case in which we have a set of discretized actions, to determine the
current value of this state under the policy π(a|s), the value function vπ(s) has to
be used as seen in the equation (16). The total value of that specific state will be
the summation of all the action-value functions weighted by the probability that that
given action will have given the policy.

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a) (16)
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It is key to know, though, that just as vπ(s) is dependent on qπ(s, a), qπ(s, a) is
also dependent on vπ(s). When taking an action, the action-value function provides
with a value for this action and there is also a probability associate with the outcome
of the action. The probability of taking a certain action to end up in a certain state is
the transition probability, P a

ss′ . Knowing this, the equation (17) is now the equation
for the state-action value function.

qπ(s, a) = Ra
s + γ

∑
s′∈S

P a
ss′vπ(s′) (17)

The equation (16) and equation (17) can be combined in order to obtain a recursive
relation between the initial state and the transition one. If it done for both vπ(s),
and qπ(s, a), we obtain the equation (18) and the equation (19).

vπ(s) =
∑
a∈A

π(a|s)
(
Ra
s + γ

∑
s′∈S

P a
ss′vπ(s′)

)
(18)

qπ(s, a) = Ra
s + γ

∑
s′∈S

P a
ss′

∑
a∈A

π(a′|s′)qπ(s′, a′) (19)

These equations are named the Bellman Equations and they express the relation-
ship that exists between the value of the current state and the successor one.

Now it is time to find a method to find the optimal policy, which is the one
that maximizes the accumulated reward over time. The policy defines how the agent
behaves and has a great influence on the value of both value functions. It can be
said that a policy π is better or equal than a policy π′ when the expected return is
greater or equal to the one of π′ in all states.

π ≥ π′ if vπ(s) ≥ vπ′(s) for all s ∈ S

There is always going to be a policy that complies with the statement above and
will be called an optimal policy. Multiple optimal policies can exist but they will all
have the same value function. The optimal state-value function and the state-action
value function can be defined as v∗(s) = max πvπ(s) and q∗(s, a) = max πqπ and
finding these, but especially q∗, help finding the optimal policy.
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The Bellman equations mentioned before can be rewritten for the case of an
optimal policy resulting in the Bellman Optimality Equations that can be seen in the
equation (20) and equation (21).

v∗(s) = max
a

(
Ra
s + γ

∑
s′∈S

P a
ss′vπ(s′)

)
(20)

q∗(s, a) = Ra
s + γ

∑
s′∈S

P a
ss′ max

a′
q∗(s

′, a′) (21)

The absence of π(a|s) comes due to the fact that, under an optimal policy, simply
taking the action that results in the maximum expected return is an optimal policy.
When the selection of the action is done as to always obtain the maximum possible
value it is called a greedy policy. Once v∗(s) or q∗(s, a) are found, solving the MDP is
quite simple; acting greedily with respect to the value functions will be the optimal
policy.

For computing the optimal policy a series of algorithms called Dynamic Program-
ming (DP) are needed. However, DP algorithms are not usually practical as they
require knowing the perfect model of the environment as well as its computational
expense although all other methods that try to find the optimal policy can be seen as
an approximation to DP with less computational effort and without perfect knowl-
edge of the environment’s model. The idea behind DP is to make use of the value
functions in order to structure the search for an optimal policy.

The first step in DP is being able to compute the state-value function vπ for a
policy π(a|s). Determining the state-value function for a given policy is called policy
evaluation. Converting the equation (18), which is one of the Bellman equations into
an iterative update rule gives the equation (22) given that the policy is stationary.

vk+1(s) =
∑
a∈A

π(a|s)
(
Ra
s + γ

∑
s′∈S

P a
ss′vπ(s′)

)
(22)

As with all iterative processes, initial conditions are needed in order to being able
to calculate. The condition can depend on the problem but, usually, v0(s) = 0 for all
s ∈ S. In general vk → vπ for k →∞.

In policy evaluation there is a method for measuring the quality of a certain
policy using iterative solving of the state-value function. This method also helps
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to find better policies. If the state-value function vπ is fully determined under a
random policy π, for each state s and assessment is made to see if an action a that
is a 6= π(s) and results in a better behavior can be found. It just happens to be
that the action-value function qπ(s, a) does exactly that, meaning that if there is an
action to be selected that provides with more value and follows policy π, it can be
said that selecting this action in this state will always provide more value for the
whole trajectory. This is qπ(s, π′(s)) ≥ vπ(s), where π′(s) is the new policy that will
provide with a better behavior, so a new and better policy has been found. This is
named policy improvement. Having said that, selecting the action that maximizes
the value through qπ(s, a) can be written as seen in the equation (23). This form of
achieving maximization is called greedy optimization policy.

π′(s) = arg max
a

qπ(s, a) (23)

As now a way of both evaluating the policy and improving it have been found,
they can get used in alternating manner to evaluate the policy, then improve it, and
so on. This is called policy iteration and can be seen in the equation (24), where the
E stands for evaluation, and I for improvement.

π0
E−→ ππ0

I−→ π1
E−→ ππ1

E−→ π2
E−→ ...

I−→ π∗
E−→ vπ∗ (24)

Generally, though, it is not necessary to achieve full convergence in each step
as it usually takes several steps when evaluating a certain policy to converge to the
true value function. For most application the absolute converged value is not really
necessary, only the ordering and the tendency of this values really is. This way,
this results in a lower computational cost. A special case for reducing the iterations
that it takes policy evaluation is called value iteration. Value iteration only does one
evaluation iteration and then combined with the policy improvement step it reduces
the multiple policy evaluations and subsequent policy improvement to one single
update. The equation for value iteration is the equation (25).

vk+1(s) = max
a

∑
s′

P a
s,s′ [Ra(s, s

′) + γvk(s
′)] (25)

A relation can be observed between value iteration and the Bellman Optimality
equation. Value iteration merges the greedy policy improvement with the update of
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the value function under the new policy.

The iterative method described before for the interaction between evaluation and
improvements called generalized policy iteration (GPI) and it is usually seen in Re-
inforcement Learning methods. When the updates start to stabilize, the Bellman
optimality equations are approximated in a correct manner and the optimal policies
and value function are found. DP gives a method of finding in a consistent man-
ner the optimal policies and value functions, but for bigger state representations it
requires a lot of complete sweeps and thus using a lot of computational resources.
As well, and to really be highlighted, they require the full model of the environment.
Having mentioned this, the next section will introduce model free methods which rely
on exploring the environment and trying to estimate the value functions and policy
based on just the feedback provided by the environment. Model free methods that
are built on experience are called Reinforcement Learning methods.

2.4.3 Model free methods

In model free methods of RL there is a lack of knowledge about the transition prob-
ability of the environment, so the learning is done based purely on the interaction
with the environment. Model free methods consist of two categories which are value
based methods or policy gradient methods. In value function methods an extension
is done to the dynamic programming methods that were discussed in the previous
section. In policy gradient methods, which are a more recent development, the policy
space is parameterized and estimated in a direct manner.

2.4.3.1 Value based methods

This part of the document will cover a more traditional approach that originates
from dynamic programming to tackle model free problems. Monte Carlo methods
will be explained before and later the concepts that were explained about DL in a
past section will be combined with value based solutions to cover one of the state-of-
the-art reinforcement learning methods, Deep Q-learning. Value based methods go
way beyond what will be covered, but it serves as a way to understand the way they
work.
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2.4.3.1.1 Monte Carlo methods

These methods rely on the experience collected over a complete episode, so each
problem that wants to be solved using this kind of methods needs to have a finite
length. The difference with DP methods is that where in DP methods the value-
functions are directly calculated for all the states, in MC methods the value-functions
a learned from the returns on a trajectory in the environment.

Compared to DP methods, in MC not all information is available so the rewards
a responsible of estimating the value function V (s). This is done by knowing all the
gained reward-state pairs collected during an episode and then calculating the return
G(s) for each state during the episode. Once the returns are calculated the value
function V (s) is estimated with an average of the returns for each one of the states
that have been returned in an episode V (s) = average(G(s)). For each episode a
single state can be visited multiple times, so there is the choice of only evaluating the
value function the first time a state is visited, or taking into account all the times
that is has been visited. Usually the first visit approach is preferred and is called
First-visit MC Prediction. Given that the calculation of the return requires knowing
the estimated returns of the states before it, this method requires having to complete
a whole episode before any calculations are made. At this point the calculations are
made going backwards from the end of the episode to the beginning.

Calculating the action-value function is of more interest than the state-value func-
tion as for control problems is of more interest knowing the value that a certain action
contributes to the return. The amount of parameters to be estimated for the action
value function increases a lot depending of how many actions are available, making it
a setback to overcome. Another problem is that when the policy is deterministic for
each state only one action-value is estimated. This is clearly part of the exploration
problem, which will be talked about later. In order to apply First-visit MC prediction
to action-value functions a policy that makes sure of having a non-zero probability
for all actions in each state has to be used.

The method for evaluating and improving the policy is as seen in the DP methods,
GPI, and can been seen in equation (26)

π0
E−→ qπ0

I−→ π1
E−→ qπ1

E−→ π2
E−→ ...

I−→ π∗
E−→ qπ∗ (26)

The evaluation step is the same as discussed before, the iteration step is different
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as while in DP methods the method is known and, thus, the state-value functions,
in MC that is not known as it is a model free method. When using action-value
functions though, the policy is reduced easily by taking the action that for each step
will maximize reward, but without waiting for full convergence, allowing to truncated
iterations. Value iteration in DP was similar to this, which took a single evaluation
step and then did an improvement on the policy. In MC, after each episode the
returns will be used for evaluating the policy for each state for then improving the
policy for each of them.

The problem of exploration has not yet been dealt with and a little knowledge
of it is necessary to understand certain approaches taken by the methods that are
used in RL. In RL, this problem is key as the way of making an agent behave in
an optimal way is usually making it learn action values conditional on subsequent
optimal behavior, however to obtain optimal behavior there is a need to explore all
of the states, which is sub-optimal behavior. A distinction can be made between
two methods of evaluation, on-policy and off-policy. On-policy methods evaluate or
improve the existing policy that is used to make decisions. Off-policy methods use a
different policy to get data to the one that is trying to evaluate or improve. An on-
policy method that is improved for better exploration is called ε-greedy. This policy
method behaves greedy with a probability of 1− ε, and chooses an action at random
with probability ε. With this method some actions a forced to be sub-optimal and,
thus, improving the exploration.

Off-policy methods consist of two different policies, one that is trying to get to
be an optimal policy, and a different one to make sure there is exploratory behavior.
The policy that is learning to be optimal is the target policy, the one that ensure
exploration is called behavior policy and it is the one used to gather data from the
environment. This method requires extra care as the data gathered is not from the
target policy and this induces greater variance and an slower convergence.

As it has been discussed before, and being coherent, the target policy is called
π and the behavior one b. For off-policy methods the term coverage refers to the
fact that both policies have to ensure the visitation of the same state-action values.
Before moving to discuss off-policy MC control, MC evaluation is considered. The
difference between the target and behavior policy require making compensations to
correct the different during learning. This is achieved by importance sampling which
tries to determine the values given by a distribution by using samples of another
distribution, in this case the two policies. This method is used as a way of weighting
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the returns according to the relative probability of their succession of states occurring
under each of both policies. This weighting is called importance-sampling ratio, seen
in the equation (27).

pt:T−1 =
T−1∏
k=t

π(Ak|Sk)
b(Ak|Sk)

(27)

An extension to this approach is weighted importance sampling. This method
is different as it uses a weighted average instead of the absolute one. This can be
seen in the equation (28) to calculate V (s) with the returns scaled by the weighted
importance sampling ratio. The sum is for the first-visited stated over all episodes.

V (s) =
Σpt:T−1Gt

Σpt:T−1
(28)

This latter approach is the one that is almost exclusively used in practice.

Like most methods there is an incremental update rule for the weighted impor-
tance sampling ratio, seen in the equation (29)

Vn =
Σn−1
k=1WkGt

Σn−1
k=1

(29)

Each update requires knowing the previously applied weights Wk. This is done
keeping the previous weights in Cn. The rule for updating Vn+1 and Cn+1 are in the
equation (30) and equation (31).

Vn+1 = Vn +
Wn

Cn
[Gn − Vn] (30)

Cn+1 = Cn +Wn+1 (31)
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Knowing all this, the pseudo code for the Off-policy Monte Carlo control in given,
combining everything that has been mentioned. This is shown in algorithm 1.

Algorithm 1: Off-policy MC control [16].
Initialize, for all ∈ S, a ∈ A(s):
Q(s, a)←−arbitrary
C(s, a)←−0
π(s) arg max aQ(St, a)

while True do
b←−any policy with coverage of π
Generate an episode using b:

S0, A0, R1, ..., ST−1, AT−1, RT , ST

G←− 0

W ←− 1

for t = T − 1, T − 2, ..., down to 0 do
G←− γG+Rt+1

C(St, At)←− C(St, At) +W

Q(St, At)←− Q(St, At) + W
C(St,At)

[G−Q(St, At)]

π(St) arg max aQ(St, a)

if At 6= π(St) then
exit For loop

end

W ←− W 1
b(At|St)

end

end
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2.4.3.1.2 Temporal Difference methods

These methods are really similar to DP or MC. Compared to MC, it uses experiences
also, and it does not need system dynamics. TD, however, does not wait for a full
episode to be completed, but it learns based on the learned estimates.

The policy evaluation in TD is similar to MC. MC waits till the end of the episode
to calculate return, but TD does not wait and updates the value function on each step.
In the equation (32) the prediction step for MC is shown right above the prediction
step for TD. α is the step-size, that is constant.

V (St)←− V (St) + α[Gt − V (St)]

V (St)←− V (St) + α[Rt+1 + γV (St+1)− V (St)]
(32)

Updating based on existing estimates is called the bootstrapping method.. The
TD equation above is a one-step TD as it only bootstraps one step ahead, which is
V (St+1). The term Rt+1 + γV (St+1) − V (St) is the error between the old value and
the estimate of the new value, it is called TD error δ and is term that is used many
times in RL.

TD on-policy follows the pattern of GPI like DP or MC did but using the TD
method of evaluation. As in MC methods, instead of doing the evaluation with
the state-value function, the action-value function is used. This is shown in the
equation (33).

Q(St, At)←− Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (33)

The sequence of elements St,At,Rt+1,St+1,At+1 that can be seen at equation (33)
gives name to this on-policy TD method: SARSA.

The off-policy method for TD also exists and it is one of the most used methods
in RL. It is known as Q-learning. As SARSA does, Q-learning also bootstraps but
its off-policy behavior is mostly affected by the maxa operation. The update rule for
Q-learning is shown in the equation equation (34).

Q(St, At)←− Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)] (34)
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The behavioral policy in off-policy TD, Q-learning, is often ε-greedy for selection
the action At, the target policy is greedy. Q-values are stores in a tabular manner.

Q-learning serves as the basis for most value-based DL methods. This is done by
using DL as a function approximation.

2.4.3.1.3 Deep Q-Learning

This method relies in applying DL algorithms to Q-value estimation. However per-
forming this task is not straight forward and it would produce poor results unless
some modifications are done. RL, as it has been discussed, depends on a reward signal
that can often be sparse, noisy or even delayed. That delay between the action and
the reward can be really problematic for DL as it was explained in previous sections
that most DL methods depend on directly gained feedback. Another problem is the
high correlation in data for RL given usually the state returned by the environment
highly depends on the previous state. Also, the change in policies means that the
data distribution changes and this is something that for DL methods is not wanted,
as they assume a fixed data distribution.

The update rule for Deep Q-learning is similar to the one of the Q-learning
method, equation (34), but the notation changes slightly. This can be seen in equa-
tion (35).

Q(s, a)←− Q(s, a) + α[r + γmax
a′

Q(s′a′)−Q(s, a)] (35)

For being able to apply DL as a function approximator, the action-value function
Q(s, a) has to be parameterized: Q(s, a; θ) ≈ Q(s, a). The weights θ are used to
parameterize Q(s, a; θ). Updating the weights is done by the use of a loss function
where a gradient descent method or similar can be used. This loss function is defined
in the equation (36).

Li(θi) = (yi −Q(s, a; θ))2 (36)

The i in Li and yi denotes the iteration, where Li will be the loss and yi the
target for each iteration. In this case, the target is the left side of the TD error,
yi = r + γmaxa′ Q(s′a′; θi−1). The target has to be noted that it is always kept
fixed with respect to older parameters in order to stabilize the network updates and
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diminishing the issues with non-stationarity and correlation that were discussed at the
beginning of the Deep Q-learning section. In order to differenciate the loss function
with respect to the network weights θi so that they can be updated, as explained in
the DL section, the equation (37) can be seen.

∇θiLi(θi) = (r + γmax
a′

Q(s′a′; θi−1)−Q(s, a; θi))∇θiQ(s, a, θi) (37)

Once the discussed solution is in place, the utilization of Deep Q-learning still is
not easy as the problems mentioned at the beginning of the section regarding the
application of DL to Q-learning are still there. However, this method has returned
many state-of-the-art results, even outplaying humans in several Atari games.

A key to solving the Atari problems were to use a replay memory that stored
actions and transition states from the past so the learning could happen by sampling
from this database. This method is called experience replay and permitted randomly
selecting sampling from the database and, thus, breaking the correlation and in turn
helping with the non-stationarity. Also, a generalization between games was achieved
by using a Convolutional Neural Network CNN as the function approximator so as to
use the screen as an input and obtain an interpretation of it. These kind of solutions
are individually crafted in order to implement Q-learning to each kind of problem
if trying to correctly approach the limitations and the objective that it trying to be
solved. No generalization can always be implemented and, thus, the programmer has
to be fluent in these kind of methods in order to understand its setbacks and figure
their way around it.

2.4.3.2 Policy Gradient methods

The discussion until now has presented only methods that work around the estima-
tion of the value function, meaning that the policy takes an action in the direction
of highest return. The methods to be presented now optimize the policy directly:
π(a|s, θ) = Pr{At = a|St = s, θt = θ}. In which θ are the wights of the policy. In
order to optimize the policy, equation (38) is given. α is the step size and J(θt) is an
arbitrary performance measure. In order to be able to optimize using the gradient,
the underlying function approximation has to be differentiable.

θt+1 = θt + α∇J(θt) (38)

36 An Artificial Intelligence framework for Air Navigation based on Deep
Reinforcement Learning



CHAPTER 2. THEORETICAL STUDY

Usually, the arbitrary performance measure is a value function. The combination
of the use of a value function with a policy estimation method results in a series
of methods called actor-critic, in which the value function is considered the critic
dictating how good or bad the state is to be in, and the actor is the policy that
determines which action to take.

Parameterizing the policy provides with some advantages over greedy policies,
usually found in value based methods. One of the advantages is that the policy space
can be approximated by stochastic function approximation. Depending o the prob-
lem, stochastic function approximation enables the policy to converge to a stochastic
optimal policy. Another one of the advantages is that sometimes estimating the pol-
icy itself is easier than estimating the complete value function for the whole problem.
A final advantage is that when optimizing the policy, the probabilities of the actions
change smoothly between updates when compared to value based methods. In value
based methods, when a certain action-value surpasses another one, under a greedy
policy, this new action is chosen instantly and can result in an erratic behavior.

To provide with weight updates the performance measure has to be defined, an
example of which can be the value of the starting state s0, where vπθ(s0) is the true
value function for the policy πθ. This can be seen in the equation (39).

J(θ)
.
= vπθ(s0) (39)

The performance measure will be different for different problems and can be con-
structed as seen. The policy has to have an effect on this performance measure,
specifically, the gradient of the performance measure with respect to the parame-
ters. From the Policy Gradient Theorem that establishes a proportional relationship
between the gradient of the performance measure and the gradient of the policy, a
definition can be given and it is shown in equation (40).

∇J(θ) = Eπ[Gt
∇θπ(At|St, θ)
π(At|St, θ)

] (40)
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In equation (40), the St and At are the samples actions and visited states. Gt is
the episode return. If equation (38) and equation (40) are combined, it results in a
classic policy gradient method called REINFORCE and it is shown in equation (41).

θt+1 = θt + αGt
∇θπ(At|St, θ)
π(At|St, θ)

= αGt∇θ ln π(At|St, θ) (41)

The parameters in equation (41) move in the direction of space that increases or
decreases the probability of repeating that action, and it is weighted by the received
return. That means that high returns for certain actions are updated more heavily.
The division by the actual probability of selection the action results in balancing
out the updates depending on the probability of selection. If not, actions that have
already been visited frequently would be updates in an unfairly manner due to their
higher change on taking that action.

The method REINFORCE uses the whole return at each time step, similar to
MC, so updates are only done at the end of each episode.

The REINFORCE method can be extended using a baseline with which the action
value can be compared to. This later will lead to the introduction of actor-critic
methods. When using action value for the updating of the parameters, the interest
is not the absolute value, but the action that is relatively better compared to the
other ones. If absolute values are used, the variance between states can be high. By
introducing the baseline, the updates are normalized reducing the variance at each
update step. The equation (42) shows the updates version of REINFORCE with
baseline in which b(St) is a arbitrary baseline value depending on the current state.

θt+1 = θt + α(Gt − b(St))
∇θπ(At|St, θ)
π(At|St, θ)

(42)

The baseline can be taken as a random value, but it should have the property
that when in a state where the actions are high value, the baseline should be also
high value, and vice-versa. For this, the use of an estimates state value v̂(St, w)

is a good approach. The w are the weights for the state value estimation. As the
REINFORCE algorithm is a MC method, the value function can be estimated using
the same approach as MC. The use of an approximated state value function as the
baseline is related in a closely manner to actor-critic methods that will be discussed
next.
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2.4.3.2.1 Actor-Critic

The REINFORCE with baseline is not considered an actor-critic method even though
is very similar due to the fact that the value function is used as a baseline with respect
to the return but not as an estimate. As well, a method like MC that depends
on complete episodes has a really slow convergence and are not suitable for online
estimation. So, by replacing the return with a value function estimate, results in a
one step actor-critic method. The value function is updates with bootstrapping, like
in TD, so it has to be recalled that E(Gt) = V (St) = v̂(St, w). The one step actor
critic method is shown in equation (43). δt is the TD error that was discussed in past
sections.

θt+1 = θt + α(Rt+1 + γv̂(St+1, w)− v̂(St, w))
∇θπ(At|St, θ)
π(At|St, θ)

(43)

This is an online process that in every step can be updated. The term (Rt+1 +

γv̂(St+1, w) − v̂(St, w)) is the critic in this case, and is the esstimation of the value
function. The actor is the policy estimation ∇θπ(At|St,θ)

π(At|St,θ) . This method is the basis for
actor-critic.

The actor and the critic are usually estimated by the means of a NN, so by using
DL, and the basics of policy gradient methods are explained. In order to apply DL to
policy gradient methods there are a few challenges to overcome, like the introduction
of more steps to provide stability for gradient updates. This will be covered in the
next section, plus more on the application of DL to policy gradient.

2.4.3.2.2 Policy optimization

This section cover two of the most popular policy optimization methods: Trust Region
Policy Optimization (TRPO), and ProximalProximal Policy Optimization (PPO).

TRPO provides a method that help guarantee policy improvement for non linear
approximation methods with thousands of parameters. For this, TRPO’s goal is
to find a way to regularize the step size, something required for complex non-linear
policies. If a constant step size was to be used, the result would probably not converge
or result in local optima, and especially if the policies are non-linear. Also, if a step
size that is to small was to be used, it would probably never converge.

To the previously defined variables, a series of additions are going to be made.
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The first one is going to be the advantage function, which is an often used substitution
for the state-value function or the action-value function. The goal of the advantage
function is to normalize the value function’s value and, for this, it subtracts the
state-value function from the action-values like the equation (44) shows.

Aπ(s, a) = Qπ(s, a)− Vπ(s) (44)

The advantage function is Aπ, then Qπ(s, a) is the action value function and
Vπ(s) is the state-value function. It is important to know that the value functions
are discounted.

Another term to introduce is the policy performance η, which is defined as the
discounted expected reward, seen in equation (45).

η(π) = Es0,a0,...

[
∞∑
t=0

γr(st)

]
(45)

In the original paper [26], the authors used a a really useful identity that expresses
the performance of one policy in terms of another policy and the advantage function.
This is shown in the equation (46), where π and π̃ are policies, and Aπ is the advantage
function determined by π.

η(π̃) = η(π) + Es0,a0,...π̃

[
∞∑
t=0

γtAπ(st, at)

]
(46)

This identity is then expanded to resolve around states instead of steps, which is
more of the nature of RL. The equation (47) is the result of this, where ρπ̃(s) is the
discounted visitation frequency.

η(π̃) = η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a) (47)

What the equation (47) means is that when the expected advantage at every state
s is not negative, the policy performance of π̃ will be at least equal or higher than
the policy performance of π.

It has to be noted that on the equation (47) the new policy has a dependency
on the state visitation frequency. When using information from the old policy this
is difficult to obtain, so there is a need for an approximation for the state visitation
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frequency. For this, the state visitation frequency that is used is from the old policy
ρ(π) instead of ρ(π̃) to work as an approximation. There is proof that for a sufficient
small policy improvement step, the derived identity will still hold, but that means
that there is a need to determine the size of this step. In the equation (48), the final
local approximate identity is given depending on the mentioned constraints.

Lπ(π̃) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(a|s)Aπ(s, a) (48)

Last paragraph stated the need to now know how to determine the step size that
is sufficiently small to not break the policy improvement guarantee, but still assures
that the policy improves. The authors of the paper Trust Region Policy Optimization
[26] utilize KL divergence between the old and new policy, giving equation (49). KL
divergence measures the difference between two probability distributions and by using
it, it allowed the theorem to be of practical use for most policies.

η(π̃) ≥ Lπ(π̃)− CḊmax
KL (π, π̃) (49)

Dmax
KL (π, π̃) is the KL divergence between the two policies, C = 4εγ

(1−γ)2 and ε =

maxs,a |Aπ(s, a)|. With the combination of the KL divergence and the variable C,
the lower bound approximation of the performance function is defined. Before the
usage of this equation is discussed, another term has to introduced. If Mi(π) =

Lπi(π)− CḊmax
KL (π, π̃), combining it with equation (49), results inequation (50).

η(πi+1)− η(πi) ≥Mi(πi+1)−M(πi) (50)

The equation (50) shows that the actual policy performance will always be higher
or equal to that ofMi. So, ifMi is maximized, this will result in a policy performance
improvement. This algorithm is called minorization-maximization (MM).

As parameterized policies are learned, the previous notations concerning π have
to be substituted by the policy parameters θ. The objective function, then, will result
in the maximization ofMi(θ), parameterized by the policy parameters θ and is shown
in equation (51).

maximize
θ

[
Lθold(θ)− CḊmax

KL (θold, θ)
]

(51)
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The authors also noted that if using C to penalize the function, the updates would
result to be too small to allow for convergence. Determining a constant C that would
give good performance resulted to be pretty difficult due to the dependency on the
KL divergence. So, instead of penalizing the Kl divergence, a constraint is set on it:
Davg
KL(θold, θ) ≤ δ. It has to be pointed the usage of average KL divergence as the

max KL divergence is unstable. Also, there is no upper bound for the KL divergence,
threatening with instability. This result in the final constraints of Trust Region Policy
Optimization, shown on equation (52).

maximize
θ

Lθold(θ)

subject to D̄KL(θold, θ) ≤ δ
(52)

Now that the theory is explained, a practical objective function can be defined
so as to optimize it subjected to the theorem provided by equation (52). From
equation (48), if the objective function is rewritten in a more convenient way, the
result is shown in equation (53).

∆η =
∑
s

ρπθold (s)
∑
a

πθ(a|s)Aπθold (s, a)

=
∑
s

ρπθold (s)
∑
a

πθold(a|s)

[
πθ(a|s)
πθold(a|s)

Aπθold (s, a)

] (53)

The first part,
∑

s ρπθold (s)
∑

a πθold(a|s), gets determined by the episode returns of

the older policy. The part to be optimized is inside the brackets,
[

πθ(a|s)
πθold (a|s)

Aπθold (s, a)
]
.

If equation (52) and equation (53) are combined and converting it to a sampled based
approach like usually in RL, the equation (54) is obtained.

maximize
θ

Êt

[
πθ(a|s)
πθold(a|s)

Aπθold (s, a)

]
subject to ÊtD̄KL(θold, θ) ≤ δ

(54)

The method that TRPO uses to optimize this objective function is to use MC
roll outs to determine state visitations, Q-values, and KL divergence estimate. To
optimize the parameters a conjugate gradient algorithm is uses, requiring a local
approximation of both the objective function and the constraint of the KL divergence.
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For continuous state and action problems TRPO has shown great results, also for the
Atari games mentioned in the Deep Q-learning section.

Computational requirements are really heavy for TRPO, and it is also incompat-
ible with some of the methods used in DL. However, the Trust Region approach has
proven to be worthy to the point that Trust Regions as an idea is used extensively in
RL.

This is where PPO is introduced. PPO is less computational expensive method
than TRPO is, but is also easy to implement and is built on the foundations of TRPO.

PPO is a simplification of the TRPO method that allows to use standard gradient
descent methods compared to TRPO that needs more extensive methods like conju-
gate gradients. Two general ideas are behind PPO. TRPO applies a constraint on the
update step with the KL divergence between two policies. PPO, however, instead of
applying a constraint, it limits the update step depending on the probability ratios
between the old and the new policy. From equation (54), and with the probability
ratio rt(θ) = πθ(at|st)

πθold (at|st)
, a new function is made that instead of using the constraint,

limits the update step due to the constraints invoked on rt(θ). This can be seen in
equation (55)

LCLIP (θ) = Êt
[
min (rt(θ)Ât, clip(rt(θ)), 1− ε, 1 + ε)Ât

]
(55)

The parameter ε is a tunable hyper parameter. The min operator takes either
the clipped or unclipped probability ratio. The figure 2.10 shows the effect that the
modified loss function has. When a certain action, under a new policy, has a high
chance of being executed with respect to the old policy and the associated advantage
function is positive, it can result in a large update step when it is not unbounded.
With this update rule, the side of the step is limited by the clip boundaries that in
this case are [1− ε, 1 + ε]. This way more conservative steps are applied. When there
is a negative advantage function and a probability ratio is well under 1, the same
thing happens.

The paper in which PPO was presented [27], showed that there were significant
performance gains compared to other policy gradient approaches. If we combine
that with the easy implementation and the ability to use more common gradient
optimization methods makes PPO an state-the-art policy optimization method that
is widely used in RL.
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Figure 2.10. Clip parameter illustration [10]

2.4.4 Problems of RL

RL is unstable and has difficulty converging towards an optimal solution. In a scenario
where there’s not one single agent but several of them, it is called multi-agent, and
the problem gets worse. When implementing RL there are a few obstacles that have
to be taken into account and they will be discussed now.

The Curse of dimensionality comes from the fact that the state and action space
grow a lot when the problem complexity increases. When the state and action spaces
are continuous these increases even further. Generalization by function approxima-
tions line NNs is possible, but it is easy to imagine that complex problems quickly
ask for a lot of computational power to be solved, as well as better and more efficient
function approximation. This usually comes at the cost of increased variance or other
issues with stability.

The exponential increase of the space ties closely to another problem: explore or
exploit dilemma. This problem has been stated before in past sections. To build a
good representation of the environment a lot of states have to be visited, but this
means that as the algorithm trains and a better and better policy is obtained, there
is a lot of chances that many of the states stay unexplored and, thus, potential better
policies have not been found. This means that the solution found was stuck in local
optima. Of course these is tied with how many states there are as, the more, the
worse. This is where the dilemma comes from as it is not easy to judge when to
explore or to exploit the current knowledge in search of the optimal solution.
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Another problem is credit assignment. This problem comes from the fact that is
not easy to evaluate which action caused a certain reward. This is something that
can be partially dealt with by decreasing the sparseness of the reward, but this means
customizing a reward too much and thus giving the agent too much information, this
can lead to the agent being constricted and learning from you input instead of finding
more exotic solutions that might come if not provided with that much information.
This, in turn, devalues the usage of RL, as one of the main attributives is essentially
this.

A problem that comes when dealing with multi-agent problems that the environ-
ment is non-stationary. When having several agents interacting the agent not only
receive the impact of their own actions, but also the of all the other agents. This, in
turn, makes the learning difficult as the action performed by an agent might mistak-
enly be attributed to more agents than himself only. Also, the agents update their
policy each time step, increasing unpredictability from the point of view of a single
agent. This non-stationarity of the environment means that the Markov Property is
violated, and for that reason convergence to the optimal policy is not assured.

Another issue that arises from multi-agent problems is the way conflicts are re-
solved. In multi-agent the distinction can be done between cooperation and com-
petition, which leads to having either a total reward being more prevalent, or the
individual one.

Another factor is the amount of information that is available between the agents.
In a cooperative multi-agent approach, information about the other agents is key to
obtain a fully cooperative behavior, for example, when trying to avoid a crash, if the
knowledge about the action the other agent is taken is available, then the action to
take will be according to the one observed from the other.

Also regarding the amount of information is the observability of the system. It is
not realistic the the agent has full observability of the system and, thus, most likely
the system will be only partially observable. One of the reasons why this is the case
is that having full observability would make the state space huge. And the problem
with this was discussed earlier in the section.
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How to work with RL

This chapter shows how to implement a solution using the ideas and software pre-
sented in the previous chapter.

3.1 RLLib

RLlib is part Ray, which is a framework that "provides a simple, universal API for
building distributed applications" [28]. Ray provides with simple primitives for build-
ing and running distributed applications, and this way it enables users to parallelize
single machine code without many or no changes to the code. Ray includes a large
ecosystem of applications, libraries and tools on top of the core Ray, one of which is
RLlib, that enable complex applications. The framework has a Python, Java and a
C# experimental API. This project will make use of the Python API.

As most, if not all, the code required to run the experiments is done with RLlib
only, no further explanation of Ray is necessary. However, there is great documen-
tation that is kept updated and that can be found online from one of the references
[28].

"RLlib is an open-source library for RL that offers both high scalability and a
unified API for a variety of applications" [28]. This library is a really popular library
and we can see examples of it being used in companies like JPMorgan, which utilizes
it to power trading models [29].
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RLlib supports a variety of ML frameworks like TensorFlow or PyTorch, but the
internals are mostly non-dependant on any of these frameworks.

The RLlib API is quite straightforward and simple thanks to great abstraction,
especially for simple scenarios. However, it is also possible to use the library in a much
more low-level way, providing with a platform for experimentation and development.

3.1.1 Environments

RLlib is compatible with OpenAI Gym, which is "a toolkit for developing and com-
paring RL algorithms" [30]. Gym offers a simple API to build your own custom
environments or test some existing ones. This is done by inheriting a Python class
with a series of functions, that are expected to be recognized and accessed later by
the training API, and that will have to be overwritten to return a given output that
is also expected by the training API and that will be information about the envi-
ronment like the reward necessary to find a solution to the problem proposed. This
method serves as a way for abstract implementations of RL algorithms to run the en-
vironments is a simple manner. The main functions of this class are the init function,
the reset function, and the step function.

The init function, as its name says, is run when a new instance of the environment
is created, and just for one time. In here, it is typical to declare constants and it is
mandatory to define the state space and the action space as well. There is no return
expected from this function.

The reset function serves as a way to restart an episode of the environment. In
this function all of you variables have to be set back to their initial states and it the
function has to return a series of initial observations that have to match the state
space definition in the initialization function.

The step function is the most complex one. This function is responsible for ad-
vancing a step in time of the environment. That means that the next series of states
have to be calculated in this function. The logic behind rewards also has to be pro-
grammed inside this function so that the rewards corresponding to the new states
are calculated. The step has to return both the new states and the reward, but also
a flag called done that is a boolean that indicates when an episode has finalized and
that has to be set to true according to the logic behind the environment that is being
created. Also, like for the reset function, the states return have to match the expected
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format declared in the state space at the the init function. The step function will be
accessed by the training API to send actions for the agents to execute, so the step
function also expects the input of the action, and that has to be taken into account.

As the environment is defined as a Python class, the use of helper functions
is completely available. That means that the tasks do not necessarily have to be
programmed inside the previously mentioned functions, but the calls to the helper
functions must happen inside those in order to return what is necessary from the
environment.

The great thing about this approach is that anything that can be written inside
those functions can be a valid environment and, thus, it can be used to play games and
make different calls to external applications, making accessible to use RL solutions
for a huge amount of problems.

RLlib has their own implementation of Gym environments, but for multi-agent
RL. This type of environments can be created by inheriting from a Python class called
MultiAgentEnv and the usage of it is really similar to the standard Gym environments
but with the necessary changes to support the addition of several different agents.
The changes are mainly due to the fact the the several agents are interacting on the
same environment and so, for example, the step function has to be able to return more
than one array of states, one for each agent. This extends to all the other functions
and tasks and the process of doing this is pretty intuitive and well explained by the
RLlib documentation.

The environments in RLLib go into a much deeper level with even more kinds that
support many different things like specific types of multi-agent problems. However, it
is not necessary to go into that much detail, and a further more in-depth explanation
is always available in the documentation.

3.1.2 Algorithms

RLlib supports many different kinds of algorithms that are suitable for many different
tasks, from very simple "hello world" applications, to state-of-the-art algorithms.

Among the many different algorithms we of course find some of the different ones
discussed in previous sections. From value based models to policy gradient methods.
One example being the popular PPO algorithm.

The different ways in which to customize an algorithm are endless. RLlib offers the
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possibility of tweaking the different hyper parameters that are available for different
algorithms. In the case of PPO, for example, we can specify how we want the model
to be. This models are usually DL based, so NNs are used to approximate the policy
function or the value function. These models are also fully customizable as it was
mentioned before, the library is fully integrated with ML frameworks like TensorFlow
that allow for this.

Specific algorithms are used by instantiating their trainer class and that will be
discussed in the next section.

3.1.3 Training

RLlib provide a great training API that is simple and easy to use, but at the same
time gives the possibility to access more low-level functionalities.

At a high level, RLlib offers a trainer class that is responsible for holding the
policy for environment interaction. Through the trainer interface, the policy can be
trained, saved, or an action can be computed.

For the sake of understanding a little bit better the way the trainer works, a brief
explanation of it will be given. As always, the information available is much larger
and more specific, but it is not necessary to know how the trainer operates as a user.

To start using the trainer, RLlib expects a series of configuration parameters
and the environment that we want to train. The list of configuration parameters is
pretty large and might be overwhelming at the beginning, however there are now
well known parameters that can be found like the γ of the MDP, or the selection of
the ML framework that is going to be used, like TensorFlow. These parameters will
be better discussed when analysing the results of different experiments in a future
chapter.

Once an instance of the trainer class is created, some of the functions that the
trainer is capable of doing are train, save, or compute_action. The first one as its
name suggest serves as a way to find the optimal policy, while save is for saving the
parameters of the policy in order to restore it later. The compute_action function
takes an observation of the environment as the input and returns an action to be sent
to the step function of the environment in order according to the latest policy.
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By using the save functionality, the checkpoint of the model is stored in a folder
which also contains a file that can be read by TensorBoard. TensorBoard is a tool
developed by the people from TensorFlow that provides with a visual platform to
observe or debug the training and that is usually handy when dealing with ML
algorithms. The figure 3.1 shows how the TensorBoard Application looks.

Figure 3.1. TensorBoard User Interface [11]

3.2 BlueSky simulator

BlueSky is an open-source air traffic simulator developed at TU Delft. "The goal
of BlueSky is to provide everybody who wants to visualize, analyze or simulate air
traffic with a tool to do so without any restrictions, licenses or limitations. It can be
copied, modified, cited, etc. without any limitations" [12].

The simulator is written in Python, so it makes a great deal when trying to
integrate it into the RL pipeline that is being built. It also contains data on navaids,
performance data of aircraft or of airports. In addition to this, the simulator can
perform simulations of aircraft performance, autopilot and even conflict detection
and is compatible with the BADA 3.x files [31].

The characteristics presented above make of the simulator a great potential can-
didate for the application of RL, as the performance of the aircraft in the simulation
will be close to the performance of a real one and thus provide with more realistic
results.
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BlueSky can run in many different manners. The most simple approach is to run
it by default. By doing this the simulator opens a screen with a UI that can be use to
visualize traffic and to input commands to create or modify many aspects that might
be interesting like aircraft routes, sectors, waypoints, etc. This way of using BlueSky
is really user friendly and for many applications might result as enough. However,
BlueSky can also run as a server, without the UI, and can be controlled with Python
scripts. A look at the UI is given in figure 3.2.

Figure 3.2. Bluesky User Interface [12]

If BlueSky is able to be controlled with Python scripts, the usage of Gym envi-
ronments that can be in turn get used with RLlib, opens up the possibility of solving
RL problems with this tool.

By using Python scripts, BlueSky has the option of controlling every aspect of
the simulation. It allows for traffic creation, advancing the simulation step by step,
defining routes, etc. All of this might be really overwhelming at the beginning because
the source code for the simulator is pretty big. However, with enough dedication the
philosophy behind its code can be understood and this way finding how to implement
it to custom solutions becomes much easier.

It is worth mentioning that the simulator is well supported and the Github com-
munity [32], specially the developers from TU Delft, make a great effort responding
doubts and fixing any kind of problem or bug that may arise.
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3.3 Anaconda

Anyone that works with code, specially open-source like Python, might find than
when building a program on top of different libraries that might be supported by
different people, and those libraries might as well have dependencies, when an update
that changes any of the libraries brings an incompatibility, the issue is carried down
and has a cascade effect that can break a lot of code.

It is good practice using virtual environments. Virtual environments isolate a
copy of a Python interpreter and its libraries making it possible to have multiple
versions of the same libraries, and even of Python, on the same machine with the
security that no version conflicts will be produced.

A great tool for the creating of virtual environments is Anaconda. "Anaconda is
a package manager, an environment manager, a Python/R data science distribution
and a collection of over 7500 open-source packages" [33]. Environment in this context
is not to be confused with a RL environment, but a virtual environment.

Anaconda has a UI and a command prompt, both easy to use, and they allow
activating or deactivating the environments or installing packages in a really simple
way. For this project, given the high number of dependencies, not using a virtual
environment is almost not a choice, and the usage of Anaconda will be of great utility.

3.4 Writing code

Code can be written in many different kinds of environments. For the project two
different philosophies of writing code are used that benefit different kinds of the
process.

3.4.1 Jupyter Notebooks

Notebooks execute code written in different "cells" that all run with the same Python
Kernel. The use of a notebook permits a lot of experimentation with code as different
functions or sets of code can be tested separately in order to tune it, specially when
configuring the training API for the RL algorithms. The notebook environment used
for the project is Jupyter Notebooks, which is open-source and offers easy installation
and UI, and powerful environment, making it widely popular in the data science field.
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3.4.2 Visual Studio Code

Integrated Development Environments (IDE) are solutions for creating code. They
usually include a source code editor, an interpreter or build tools, and a debugger.
The use of this kind of environment allows for the creation of a more definitive code
that is not run cell after cell but in a command prompt. The IDE used for the
project is Visual Studio Code, which is free and open-source and uses the python
interpreter that is active in an Anaconda environment. The code created with this
kind of environments is used in the project to run training in a command prompt,
with a script that deals with everything in just one run.
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Experimentation

In the following pages, several problems are tried to be solved using RL techniques.
All of them make use of fixed-winged Boeing 737s as the aircraft of choice. This is
because the implementation of drones in BlueSky is not mature enough and, as the
purpose of this experiments is just to test the different approaches, the fixed wing
aircraft are also well suited.

4.1 Single agent

As an introduction to the field of RL, the use of complex environments is not recom-
mended given all that has been discussed in previous chapters. When dealing with
RL, in which many cases converging into a good policy can be really hard to achieve,
having a complex environment that can add more difficulty for the algorithm to con-
verge is a recipe for frustration. So for the sake of simplicity and better understanding
the behaviour of the training process, a simpler environment is created that focuses
on testing the pipeline created and not so much on the use cases of the algorithm.

The problem consists of a single aircraft that has to navigate to a random waypoint
15 nautical miles away from it. For this, a Gym environment has to be created that
interacts with the BlueSky simulator.
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4.1.1 Environment

For creating the environment it is helpful to first analyse the problem and how it can
be implemented in a Gym environment. Specially two things have to be taken into
account, which is the action space, and the state space.

The actions that are performed in the simulation are only heading changes. This
is done to reduce both the observation and action space, subtracting complexity. It
is decided that the actions should be in a continuous form, that means that the agent
will be able to select for each step of the simulation, the new heading that the aircraft
will want to follow from 0 to 360 degrees. This is in contrast to a set of discrete actions
that could, for example, be turning left, right, or maintaining the heading.

The state space has to offer enough information for the agent to take decisions on
what to do. For this problem the heading of the aircraft, the heading at which the
waypoint is at, and the distance to the waypoint are the given states.

With the problem clear, the environment has to be constructed as a Python
class that will inherit from the env.gym class and will have the methods or functions
discussed before: init, reset and step.

4.1.1.1 Init function

In the init function, as previously discussed, the most important thing is to define
the state space and the action space. Also, in this function, all things that have to
be executed only one time when the simulation is created should be added to this
function. In this environment the definition of the action and state space is the most
concerning given the scope of the project, this means that the definition of constants
other code related issues do not necessarily have to be mentioned.

The action space is defined as mentioned previously and, thus, the agent will be
able to change the heading of the aircraft from 0 to 360 degrees. However, this wide
range of values is not ideal for the convergence of the RL algorithm. To solve this
issue, the action space is defined as action that can go from -1 to 1 and, then, this
action will be converted to the values expected by the simulator before sending it the
command to change the heading of the aircraft.

The state space is defined in a similar way, all the possible states will have to
be included and bounded. This means that each state will have a minimum and
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maximum possible value which will be have to be thought of in advance in order to
not have the observations returned by the simulator be out of the state space. The
heading is established as the first element of the action space, the desireed heading
to reach the waypoint is the second element, the distance is the third element and it
goes from 0 to a maximum range of about 40. This higher value is done to be always
sure that even if the policy does not know how to reach the waypoint, the distance
observation will not be higher that the one defined in the state space, which would
cause an error. Also, like for the actions, all the states are normalized between the
values of 0 and 1, which is easily done given the boundaries of the states are known.

4.1.1.2 Reset function

The reset function is called after every episode is terminated and it serves as the start
of the next one. If it can be recalled, in the reset function the objective is to set the
simulation in this case to its default values in order to have a starting point for the
next episode. Also, the first set of observations has to be returned by this function.

In the reset function, the first thing that is done is check if any BlueSky server
is active and then a connection is established if not already done so. Then, the
aircraft and the waypoint have to be generated. The aircraft is spawned in a random
location given by the boundaries established for the state space, over the center of
the eastern coast of Spain. The coordinates of the waypoint that it has to follow
are then calculated given the location of the aircraft. The waypoint is created 15
nautical miles away from the aircraft in any direction between the heading minus 50
degrees and the heading plus 50 degrees. This is done so that the environment does
not always show the same situation which could lead to little generalization. Once
the location of the aircraft and the waypoint are clear, both are created within the
simulation. The aircraft is created with a flight speed of 250 knots and an altitude
of 5000 meters.

After the simulator has received the command to create both the aircraft and
the waypoint, another command is sent that returns the observations in the format
that is given by the simulator. All these observations have to be converted in order
to comply with the state space that was defined in the init function. For this the
distance between the aircraft and the waypoint has to be calculated and then an
array with all the observations has to be defined with each observation normalized
between 0 and 1. The final step is to return the array of observations.
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4.1.1.3 Step function

The step function is the most complex one as several tasks have to be performed in
it, the first one being to receive the action and process it. The input of the step
function is the action that has to be taken by the aircraft for that given step and this
is given by the policy. If it can be recalled, the action space was defined a a range
between -1 and 1, so the action that is received will be a number inside that range.
This action than has to be converted to a value between 0 and 360 and it is sent to
the simulator as a command.

The next task is to perform a step in the simulation, which is done by sending
a certain command to the BlueSky simulator that takes care of all the necessary
calculations.

Once the next step of the simulation has been calculated, the observations have
to be obtained the same way as it was done in the reset function.

A really important part of the function is the calculation of the reward which will
be calculated using the observations. In this environment, the reward is given by
the distance between the aircraft and the waypoint. The reward will be maximum
at the waypoint and will take the value of 1, decreasing linearly to 0 which is at the
distance of 20 nautical miles. Another reward is received is correctly arriving to the
destination waypoint, and has a value of 50. The sum of the reward of that step is
then multiplied by a factor that goes from 0 to 1, being 1 when the heading is the
right one to reach the waypoint, and 0 when it is completely the opposite. The final
step to calculate the reward is to scale it so that it it not too high, this way it does
not go over 1 and the algorithm can perform better, similar to what was done with
the actions and states.

From last chapter, is has to be recalled there was a flag called "done" that also
had to be returned by the environment and means the episode is over. For this
environment this flag is set to true when the aircraft reaches its destination.

After performing all of these tasks, the normalized observation array, the reward,
and the done flag are returned as these are the values that the training API will be
expecting to collect, as explained in the previous chapter.
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4.1.2 Training

For the training of the policy the algorithm PPO is chosen given the ease of im-
plementation and how friendly it is for new learners of RL, as explained in previous
sections. It also has the possibility of parallelizing several tasks of the training process
which accelerate the training.

The training is done with RLlib using the trainer class discussed in the previ-
ous chapter and that takes as the input the environment and a set of configuration
hyperparameters.

The selection of the configuration hyperparameters is sometimes hard to decide.
No real instructions are given on how to perform this selection and the selection
usually involves trying with the parameters used in a configuration from a problem
that is similar and then tweak them until the desired solution is obtained. The
selection of these hyperparameters is key to obtain the solution and the amount of
trial and error needed to obtain them can be quite high and time consuming, as
each training session can take several hours, or even days. Considering the amount
of iteration in order to obtain these parameters, and that they are vital to obtain a
valid solution, they are included in the results section.
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4.2 Multi-agent

As the airspace is composed of more than one aircraft and, as it was mentioned at the
beginning of the project, the final objective of using this technology is to be able to
add a layer of automation to the airspace, the most attractive approach is to be able
to use multi-agent RL to expand on the task presented in the last section and add
a level of complexity. This is done by not only making the aircraft reach a specific
waypoint, but also doing so while avoiding other traffic that they may encounter.

The approach to the problem has to take into account several factors including
the way policies are going to be assigned to each agent, or the way rewards are going
to be shaped. As before, these details are discussed in the following sections.

4.2.1 Environment

The environment that is used to solve this problem has to take into account the
existence of other aircraft, which involves having to deal with more sets of actions,
observations, rewards and "dones". The problem is considered as multi-agent because
an attractive solution is to have the aircraft cooperate in order to avoid collisions.
As it was explained in last chapter, RLlib offers a way to construct multi-agent
environments in a similar way that Gym environments work. For this, the Python
class from which the environment will have to inherit is named MultiAgentEnv.

For this problem, the environment, instead of spawning one single aircraft, will
spawn two of them in a position where having a conflict can be likely. Also each
individual aircraft will have a waypoint individually assigned that they will have to
reach. Having said this, the way the environment is constructed goes as follows.

4.2.1.1 Init function

The init function is close to the one for the single agent, however the state space has
to take into account the distance between the two aircraft as well. Apart from this,
some constants may be added to ease the programming part, but they do not mean
anything to the way the problem is approached.
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4.2.1.2 Reset function

For the reset function, the objective will be to generate two aircraft, which will
behave as two agents. The first one is created with the same approach as for the
single agent, randomizing a location within a given boundary that is approximately
over the center of the east coast of Spain. The way the second aircraft is added is by
computing a location that is 10 nautical miles ahead in the direction of the heading
but with some noise added in order to not always be perfectly aligned with the first
aircraft. Before sending the command to the simulator to add both aircraft to the
simulation, their heading are slightly adjusted randomly also to avoid having always
a repetitive situation, this means that some trajectories will be non-collision paths
and others will.

For the creation of the destination waypoints, a similar approach is used. The
waypoint is determined by calculating the coordinates given a distance of 15 nautical
miles in the direction of the heading and with added randomness, this has the same
objective as before, providing a more diverse training environment. Each aircraft will
have its waypoint calculated separately given their respective location.

Like for the other case, observations are then obtained from the simulator that
will be adjusted to the shape that the state space has. This means that the distance
between each aircraft and their respective waypoints will have to be calculated but
also the distance between both of them. The result has to be two arrays of obser-
vations, one for each agent, where the coordinates of the agent and its waypoint are
included as well as the heading, the distance to the waypoint, and the distance to
the other agent. All of this will have to be normalized between values of 0 and 1
and arranged into a Python dictionary, in which the keys are the name of the agents,
and each key contains the respective array of observations. This dictionary than is
returned by the function like for the single agent case.

The dictionary is the way RLlib understands that a multi-agent environment is
being used and is one of the additions that come from inheriting from the MultiA-
gentEnv class that RLlib provides.

4.2.1.3 Step function

The step, function has to calculate the next set of observations given the actions that
are introduced as arguments into the function. The way actions are introduced are
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by a dictionary just like the way observation were returned by the reset function. It
has to be taken into account that the action space defined inside the init function
will determine which input will be received in the dictionary, as the policy will follow
that action space, the same way it happened for the single agent case.

As the actions in the action space go from -1 to 1, just like for the single agent
environment, the action will have to be converted to the range of 0 to 360 that can
be used to send the command to the simulator to change heading to that direction.

After having performed a step in the simulation, following the actions that came
from the input of the function, the new observations have to be computed, which is
done the same way as for the reset function.

Another important procedure is calculating the rewards and "dones". Which will
follow the same structure that for observations and actions, being contained inside a
dictionary in which the keys are the names of the agents. The "dones" dictionary is
now a group of flags instead of a single one like for the single agent problem. Apart
from a key for each agent, the "dones" dictionary will have to get added a new key
that RLlib expects which is called "__all__". This done flag is set to true when
the whole episode is done and it is mandatory to have it included.

The reward for this problem also gives a reward of 50 for reaching the waypoint
and gives a value from 0 to 1 the closer the aircraft gets to the waypoint, similarly
to what was done for the single agent. However, if crashes want to be avoided, the
reward should reflect this. The way this is done is by penalizing the agents if they
collide by a value of -50. Also, the done "__all__" key is set to true in order to
stop the simulation and start a new episode.

Once the observations have been collected and processed, the rewards have been
calculated, and the "dones" dictionary has been filled, these three dictionaries are
returned by the step function just like for the single agent problem.

4.2.2 Training

This problem is also tackled using PPO, for the same benefits expressed before and
the added one that also supports multi-agent problems in its RLlib implementation.

Having two agents leads to the question if it is necessary to have more than one
policy. This might be the case if the agents are not of the same type. If, for a example,
the simulation was a jet fighter trying to intercept another aircraft, there would be
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a need to have two policies and train them in a different way in order to compete.
As they are competing, the aircraft trying to not get caught will be rewarded by
opposite motivations with respect to the jet fighter. However, the problem that the
created environment tries to solve, as mentioned before, is cooperative and, as well,
both aircraft are from the same type, meaning their performance should be the same.
As it can be appreciated from this approach, the assumption can be made that the
same policy is valid for both agents for the reason that they are wanted to behave
the same way.

The training for this environment is, thus, performed the same way as for the
single agent case as how the algorithm treats the received observations and rewards
will not change depending on the agent they are coming from. The environment is
introduced into the trainer class of RLlib that uses the PPO algorithm as well as
several hyperparameters that have to be chosen and tweaked after each training in
order to improve the results of the algorithm and that, as for the single agent case,
will be discussed later.
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Results and conclusion

This chapter will discuss the results obtained in the previous experiments.

5.1 Single Agent

The single agent experiment offered some promising results as in most cases the
aircraft reached the destination waypoint without a problem. Having said this, the
amount of work to getting to a decent solution was really big and over 200 hours
were spent training different approaches and hyperparameter configurations until the
result provided with a good enough performance.

For this problem, the standard configuration given by RLlib for the PPO trainer
was loaded and a couple of parameters had to be tuned. One of the parameters that
was tuned has to do with the amount of parallel simulations that are run, and for
the computing power that was available, 10 of them seemed appropriate and helps
accelerate the learning process. Another one of the parameters is called horizon and it
is the maximum number of steps carried out by an episode before forcing it to stop.
The horizon parameter is vital as when the policy is not performing good enough
to reach the waypoint the simulation would run for too long, until the done flag is
activated, slowing the learning process. The final parameter was the entropy. The
entropy is controlled the amount of actions that are carried out in a random way
without following the policy. The goal of this parameter is pretty much controlling
the rate of decay of the entropy, for this problem a value of 0.007 was used. The
maximum amount that this parameters usually takes is 0.01 so the value was pretty
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high. However, the use of this value helped the entropy decay more slowly and better
exploration was obtained throughout the training.

Having said this, a picture of a trajectory being followed by the aircraft can be
seen in figure 5.1. The big red X is the destination waypoint and the white triangle
is the start of the trajectory. The representation over the map, containing visual
references to different cities in the area, helps with obtaining a better perception of
the trajectory.

Figure 5.1. Representation of the trajectory using Google Earth.

From the TensorBoard interface, the evolution of the mean reward and the entropy
can be visualized as discussed in a previous chapter. The mean reward is the main
performance parameter that has to be taken into account as, in the end, the objective
of the training process is maximizing it. In the figure 5.2 the reward steadily rises
until it stabilizes, which means the algorithm has found an optima point. The entropy
in this case, seen in figure 5.3, is shown in order to visualize what was explained at
the beginning o the section regarding the hyperparameter selection, and as it can be
seen it tends to gradually decrease.
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Figure 5.2. Single agent training mean reward evolution.

Figure 5.3. Single agent training entropy evolution.
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5.2 Multi-agent

In order to analyse results, just like for the single agent case, some graphs from
TensorBoard will be given to be able to observe the behavior of the training process
prior to the discussion. The figure 5.4, figure 5.5 and figure 5.6 show the evolution of
the mean reward, the maximum reward and the entropy of the training process.

Figure 5.4. Single agent training mean reward evolution.

Figure 5.5. Single agent training maximum reward evolution.
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Figure 5.6. Multi-agent training entropy evolution.

We can observe from the graphs that the reward is not evolving, even it seems like
the tendency for it is to go down. The entropy is also continuously rising. The results
from the multi-agent environment could not be improved and a total of around 500
hours were used experimenting with different training approaches to no good result.
For this reason, the above graphs only serve as an example of what it looks like when
the solution is not arriving to the desired result.

Given the bad results, there is not a final choice of hyperparameters, as many of
them were tried to no good outcome.

From the ideas and issues mentioned in past chapters, the fact that the multi-
agent approach does not work should not come as a surprise given the difficulty of
obtaining convergence. This does not mean, however, that the task cannot be done
as in the thesis by Dennis van der Hoff’s [16], for example, some of the multi-agent
solutions seem to work properly.

The problem of convergence is not great news, but as well as some success was ob-
tained in Dennis van der Hoff’s thesis [16], many other tries discussed in the previous
work section suffered the same fate.
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5.3 Conclusion

The idea behind this project was learning and testing the methods discussed through-
out the document with the ambition of obtaining results that would lead to a deeper
interest and better implementation ideas for the technology. The results obtained,
however, show the difficulty that resides on the construction of RL models, even for
the simplest approaches, and all the limitations that they have been presenting up to
date. In a field like Air Navigation, where safety is always the priority, the implemen-
tation of this ideas still seems like a long way into the future given the difficulty that
would mean solving for an algorithm capable of dealing with much more states and
actions than the ones used in the project, being that the case if a real scenario was
trying to be approached. This, though, does not mean that the ideas exposed do not
have an opportunity to be implemented as only the surface was scratched throughout
the project.

This realization of this project has provided with a great insight into the field
of RL. On top of it, a lot of new more in-depth knowledge can be built about new
and better performing algorithms and methods that can be applied in order to solve
more complicated problems in the Air Navigation field with more effectiveness. Some
of those approaches could mean having more complex multi-agent architectures or
working on better performing models, custom built for better adaptation to a specific
problem. From this, even if the idea seems to still be far into the future, the possibility
still remains to construct implementations that use these solutions and that could help
dealing with the great variety of issues that are arising in the field of Air Navigation,
like the exponential increase in drone traffic.

Another idea that can be extracted from the project is that the approach, if fur-
ther research into the topic is done, has to be extremely experimental, which will
result in failing many times in the process and dealing with issues that might not
have an answer or have not been tried yet. The field of RL is constantly improving
and expanding so, working in parallel to it developing solutions related to Air Navi-
gation, could accelerate the introduction of this technology once its maturity makes
it possible.
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Chapter 6

Future Work

As is has been mentioned throughout the document, the objective of this project
was to cover the basics of the implementation of AI, RL more specifically, to solve
problems related to air navigation. That being said, the maturity of this technology
is not yet developed and experimentation and research constantly lead to new great
state-of-the-art algorithms that improve performance in an exponential way year after
year. If working in parallel, research on this kind of applications could contribute
to the development of these kind of algorithms and thus enter a feedback loop in
which the world of RL and air navigation push each other to improve. This chapter
introduces several interesting future ideas that could be attractive to work on.

6.1 Continuing With "The Basics"

Although this project tries to cover the basics, even these cannot be fully covered
in such a small stretch of time and text. It is really important that steps are not
skipped as it usually means having to come back to the basics all the time because
the foundations were not correctly established in the first place.

The focus of doing more research could be related to understanding more dif-
ferent types of algorithms and working on implementing them with a more low-level
approach that truly helps understanding the concepts and features of them. Not only
on the RL side, but also experimenting with more kinds of NNs.

An approach that could be interesting regarding NNs is the use of Long Short-
Term Memory (LSTM) neurons. What these kind of neurons do, with a high level
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approach, is to store their inputs so that they can understand sequences of data
rather than just an isolated input, which in the case of aircraft, given they are flying
trajectories, seems like an interesting concept to introduce and might be useful as the
function approximator for the policy or value-function.

Regarding RL algorithms, the use of methods like Deep Deterministic Policy
Gradients (DDPG) which were not covered in this project could also be of interest
and offer a different performance, also Soft Actor-Critic (SAC) could be interesting
and the list just keeps going on.

6.2 Implementing Drones

The BlueSky simulator can simulate the performance of several different types of
drones. However, the implementation of drones is still in very early stages. This will
soon change as the team behind BlueSky is working on the development of a better
suited environment for the simulation of this types of aircraft, in which city obstacles
like buildings will be able to be implemented offering a much more interesting level
of possibilities in the research field. This extension will mean that urban delivery
traffic could be simulated in a much more realistic way. Also, a great use case for
this extension is the study of the surroundings of airports, in which many conflicts
can arise and specially if drone traffic is expected to continue rising.

As mentioned in the introduction, one of the attractive ideas surrounding the
development of this kind of AI techniques is the ability to use them in the world of
unmanned aircraft, so it is naturally something that has yet to be implemented and
worked on in the future, and the use of the BlueSky simulator might still be a great
way of simulating precisely all the needed scenarios.

6.3 The Problem of High Computing Requirements

It has been mentioned several times that one of the main obstacles RL has to overcome
is the necessity for high computing resources. This would be drastically amplified if
in the discussion the topic of drones is added, meaning that if the problem was still
complex, this would only make things worse. In the field of manned aviation, this
would be different, but as it was discussed at the introduction of the report and at
least for now, this technology is only appealing to the world of unmanned aircraft
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given the high security and conservative standards imposed by manned aviation.

What is clear is that the idea of having on-board systems that process the algo-
rithms is something unreal on small unmanned vehicles like delivery drones, which
is the vast majority of them. It is unreal in all possible ways due to the fact that it
would be ridiculously expensive and heavy, and yet not powerful enough. But, what
is a possible workaround that can be made to overcome this situation?. A possible
promising solution will be discussed in the next section, as this problem is the most
concerning for the deployment of the technology.

6.4 Deployment

It might be too soon to star the discussion on this topic as many other different things
have to be done before considering the deployment of the technology. However, no
technology is useful if the deployment of it does not bring it down in a useful way to
the user. As mentioned before, the deployment on big manned or unmanned aircraft
is not such a big problem, but the fact that most big aircraft are manned and as
discussed, for now, it cannot be considered to used this technology in that field, the
discussion will focus on the deployment on drones.

The previous section mentions the problem that has to be faced in order to achieve
the introduction of this technology into UAVs, specially the smaller ones. A solution
that might not yet be possible to be implemented, but that might soon be a reality,
is the use of 5G, or at least on the urban space. The use of this technology is ideal
in the urban environment as the low latency given by 5G can allow for the usage of
edge computing as a centralized service. This way, the drones do not necessarily have
to compute their own actions on-board, but they could request the realization of the
computation to a bigger server that can process the states and provide actions much
quicker and, thus, the overall time would be greatly reduced. However this approach,
of course, also can bring a lot of problems, specially if the network is of low quality,
as that would mean that the service would go out of order. This would probably be
the case in more remote areas, but more workarounds might be able to be found, as
these areas will specially have a very low density traffic.

The topics introduced in this chapter allow for deep analyses, discussions and are
all worthy of a a lot of research. However, and sadly, not all topics can be covered in
this project. It is sure that the future of air navigation promises great advancements
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and interesting approaches that will bring safe, efficient, and cheap solutions to all
kinds of flights, making of this field a great one to work on.
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Chapter 7

Budget

In the chapter the budget required for the realization of the project is discussed. It
will also include a final price broke down in different components.

7.1 Salaries

The first thing to determine is the cost per hour worked. The student was under
an apprenticeship and the salary is 6.75 e/h. The estimated salary for the tutor is
around 30 e/h.

The project had a duration of around 5 months and the total amount of hours
worked is estimated at an average of 10 hours per week for the first 3 months, and
6 hours per day for the last 2. This makes the amount of hours dedicated by the
student to be:

10
hours

week
x 4

weeks

month
x 3 months = 80 h

6
hours

day
x 5

days

week
x 4

weeks

month
x 3 months = 360 h

Total hours = 440 h

(56)
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The hours dedicated by the tutor are estimated as 20 and, thus, the salary costs
result in what is shown at table 7.1.

Concept Quantity (h) Price per unit (e) Total price (e)
Salary expense of tutor 20 30 600

Salary expense of student 440 6.45 3574
Total salaries 3574

Table 7.1. Salaries

7.2 Equipment and Software

The cost of equipment is going to take into account the amortization of the equipment
used and the software licenses.

The cost of the equipment used taking into the account the amortization can be
seen in table 7.2.

Equipment Amortization
period

Total
cost (e)

Utilization
period

Cost in
the project (e)

ASUS ROG
Strix G712LV 24 months 1499 5 months 313

Table 7.2. Equipment cost

The software used in thee project is all open-source, making the cost 0. The
software has been mentioned in a previous chapter.

7.3 Indirect costs

Indirect costs are the ones that do not depend directly on the project, but the fact
that the project is done originates this costs. Indirect costs are the ones related to
the job done by the administration of the school, power consumption and internet.
These cost are hard to calculate due to the complexity and variety of them so it is
approximated to 5% of the total budget of the project. Indirect costs are shown in
table 7.3
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Concept Total Percentage (e) Total price (e)
Indirect Cost 3887 5% 195

Table 7.3. Indirect costs

The total expenses originated by the project divided by category and the total
cost is shown in table 7.4.

Concept Total (e)
Salary 3574

Equipment 313
Indirect 195
Final 4082

Table 7.4. Final budget
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