Index

1	Gener	ral Introduction	2
	1.1	Catalysis	2
	1.1.1	Homogeneous catalysis	3
	1.1.2	Heterogeneous catalysis	5
	1.1.3	Biocatalysis	6
	1.1.4	TON and TOF	7
	1.2	Platinum Group Metals (PGMs)	8
	1.2.1	Sources of PGMs	8
	1.2.2	Physicochemical characteristics of PGMs	10
	1.2.3	Applications of Pt and Pd	12
	1.3	The size matters: from nanoparticles to single atoms	14
	1.3.1	Metal clusters: synthesis and characterization	15
	1.3.2	Metal clusters: catalytic applications	21
	1.3.3	Single atoms: synthesis and characterization	24
	1.3.4	Single atoms: catalytic applications	27
	1.4	Supramolecular Coordination Complexes (SCCs)	32
	1.4.1	Synthesis of SCCs	34
	1.4.2	Applications of SCCs	36
	1.5	Metal-Organic Frameworks (MOFs)	39
	1.5.1	Synthesis of MOFs	41
	1.5.2	Applications of MOFs	42

1.5	.2.1 MOFs as supports in catalysis	44
1.6	References	47
2 Objec	ctives	. <i>75</i>
3 Mate	rials and Methods	. <i>78</i>
3.1	Materials	78
3.2	Characterization Techniques	78
3.2.1	Qualitative and quantitative analysis of organic molecules	78
3.2.2	Spectroscopies	80
3.2.3	Other techniques	84
3.3	Experimental procedures	86
3.3.1	Catalytic activity of palladium supramolecular comple	xes
withi	n metal-organic frameworks (MOFs)	86
3.3.2	Perfluorinated palladium catalysts for the direct cataly	ytic
oxida	ntion of alkyl alcohols to carboxylic acids	92
3.3.3	Palladium single atoms for the direct catalytic oxidation	of
benz	yl alcohols to carboxylic acids	94
3.3.4	Subnanometric aqueous metal clusters as antitumoral age	nts
	96	
3.4	Characterization of isolated compounds	99
3.5	References	L04
4 Catal	ytic activity of palladium supramolecular complexes wit	hin
Metal-Or	ganic Frameworks (MOFs)	109
4.1	Introduction	109
4.2	Synthesis and characterization of the SCCs@MOF cataly	sts

4.3	Catalysis with SCCs@MOF	126
4.3.	1 Homocoupling of thienylboronic acids	126
4.	.3.1.1 Catalytic results	126
4.	.3.1.2 Mechanistic studies	129
4.3.	2 Homo- and cross-coupling of alkynes	135
4.	.3.2.1 Catalytic results	135
4.	.3.2.2 Mechanistic studies	138
4.4	Conclusions	142
4.5	References	143
5 Perj	fluorinated palladium catalysts for the direct catalyti	c oxidation of
alkyl alc	cohols to carboxylic acids	157
5.1	Introduction	157
5.2	Catalytic results	160
5.2.	1 Homogeneous catalysts: Pd(OAc)2 and substitu	ted pyridines
	160	
5.2.	2 Heterogeneous catalysts: SCCs@MOF	167
5.3	Conclusions	173
5.4	References	174
6 Pall	ladium single atoms for the direct catalytic oxidat	ion of benzyl
	to carboxylic acids	
6.1	Introduction	
6.2	Catalysis with Pd single atoms in solution	183
6.2.	1 Catalytic results	183

6.2.	2 Characterization of single atoms in solution	_ 186
6.2.	3 Mechanism of the oxidation reaction catalyzed by single a	toms
in s	olution	_ 190
6.3	Catalysis with Pd clusters and nanoparticles	_ 193
6.4	Catalysis with Pd SACs supported on a cysteine-based I	MOF
	195	
6.4.	1 Synthesis and characterization of Pd SACs supported	on a
cys	teine-based MOF	_ 196
6.4.	2 Catalysis with Pd SACs supported on a cysteine-based I	MOF
	207	
6.4.	3 Mechanistic studies of the oxidation reaction catalyzed b	y Pd
SA	Cs supported on a cysteine-based MOF	_212
6.5	Reaction scope	_ 212
6.6	Conclusions	_214
6.7	References	_ 215
7 Sub	nanometric aqueous metal clusters as antitumoral agents	_ 226
7.1	Introduction	_226
7.2	Synthesis and characterization of aqueous metal clusters	230
7.2.	1 Synthesis of metal clusters	_230
7.2.	2 Characterization of metal clusters	_231
7.3	Antitumoral activity of aqueous metal clusters	_244
7.3.	1 Cell death mechanism	_248
7.3.	2 Mechanism of action of metal clusters	_ 251
7.4	Antitumoral activity of aqueous metal clusters tow	ards

cisp	platin-resistant cells	25	
7.5	Conclusions	259	
7.6	References	260	
8 Ger	neral conclusions	272	