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Abstract

Understanding flow structures in urban areas is being widely recognised as an important con-
cern due to its effect on urban development, air quality and pollutant dispersion. In this study,
state-of-the-art data-driven methods for modal analysis of urban flows are used to achieve a
better understanding of the dominant flow processes that occur in this dynamic phenomenon.
Higher-order dynamic mode decomposition (HODMD), a highly efficient method in the analy-
sis of turbulent flows, is used in conjunction with traditional techniques such as singular-value
decomposition (SVD) and proper orthogonal decomposition (POD) over high-fidelity simu-
lation data of a simplified urban environment. The flow simulation is carried out using the
spectral-element code Nek5000 through a well-resolved large-eddy simulation (LES). The re-
sulting flow regime will depend on the height-to-separation ratio h/` varying from 1 to 0.25
for two wall-mounted obstacles with a constant width-to-height ratio b/h = 0.5. The inter-
action of the flow within the canopy influences the coherent structures, with the objective of
the present project being to characterise the flow mechanisms driving the dynamics in urban
areas with different separation ratios. Particularly, from all the vortical structures identified
by the HODMD algorithm, low- and high-frequency modes are classified depending on their
relation to the arch vortex and are referred to as arch generators and breakers, respectively.
This classification implies that one of the processes driving the formation and destruction of
major vortical structures in between the buildings is the interaction between low- and high-
frequency structures. Additionally, when the separation increases, the flow inside the canopy
becomes more correlated in the spanwise direction due to the increased interaction of the flow
in this region. Therefore, HODMD is shown to be a powerful tool for describing the physics
of very complicated turbulent flows.

Key words: direct numerical simulations (DNS), turbulent boundary layers (TBL), urban
flows, spatio-temporal structures, data-driven methods
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Resumen

La comprensión de las estructuras del flujo en áreas urbanas está adquiriendo una importan-
cia cada vez mayor debido a su influencia sobre la planificación urbana, la calidad del aire y
la dispersión de contaminantes. En este estudio, se utilizan métodos de vanguardia para el
análisis modal de flujos urbanos con el objetivo de lograr una mejor comprensión de los pa-
trones dominantes que tienen lugar en este fenómeno dinámico. Dynamic mode decomposition
de orden superior (HODMD), un método sumamente efectivo para el análisis de flujos tur-
bulentos, se utiliza junto con técnicas tradicionales como singular-value decomposition (SVD)
y proper orthogonal decomposition (POD) sobre datos de simulación de alta fidelidad en un
entorno urbano simplificado. La simulación del flujo se lleva a cabo utilizando el código de
elementos espectrales Nek5000 a través de una large-eddy simulation (LES) bien resuelta.
El régimen del flujo resultante dependerá en gran medida de la relación entre la altura y la
separación de los obstáculos h/` que variará entre 1 y 0.25 para dos obstáculos de pared con
una relación entre ancho y altura constante b/h = 0.5. La interacción del flujo en la sección
intermedia de los obstáculos influye en las estructuras coherentes, siendo el principal objetivo
del presente estudio caracterizar los mecanismos del flujo que promueven esta dinámica en
áreas urbanas con diferentes relaciones de separación. En particular, de todas las estructuras
vorticales identificadas por el algoritmo HODMD, los modos de baja y alta frecuencia se
clasifican según su relación con el vórtice de arco y se denominan generadores y rompedores
de arco, respectivamente. Esta clasificación implica que la interacción entre estructuras de
baja y alta frecuencia es uno de los mecanismos responsables de la generación y destrucción
de estructuras vorticales relevantes entre los edificios. Asimismo, al aumentar la separación,
el flujo se vuelve más correlacionado en la dirección transversal al flujo debido a la mayor
interacción en la región comprendida entre los obstáculos. Por lo tanto, se ha demostrado
que HODMD es una herramienta robusta para describir la física de flujos turbulentos de gran
complejidad.

Palabras clave: simulación numérica directa (DNS), capas límites turbulentas (TBL), flujos
urbanos, estructuras espacio-temporales
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Resum

La comprensió de les estructures del flux en àrees urbanes està adquirint una importància
cada vegada major degut a la seua influència sobre la planificació urbana, la qualitat de l’aire
i la dispersió de contaminants. En aquest estudi, s’utilitzen mètodes d’avantguarda per a
l’anàlisi modal de fluxos urbans amb l’objectiu d’aconseguir una millor comprensió dels pa-
trons dominants que tenen lloc en aquest fenomen dinàmic. Dynamic mode decomposition
d’ordre superior (HODMD), un mètode summament efectiu per a l’anàlisi de fluxos turbu-
lents, s’utilitza junt a tècniques tradicionals com singular-value decomposition (SVD) i proper
ortogonal decomposition (POD) sobre dades de simulació d’alta fidelitat en un entorn urbà
simplificat. La simulació del flux es realitza utilitzant un codi d’elements espectrals Nek5000
a través d’una large-eddy simulation (LES) ben resolta. El règim del flux resultant dependrà
en gran mesura de la relació entre l’altura i la separació dels obstacles h/` que variarà entre
1 i 0.25 per a dos obstacles de paret amb una relació d’ample i altura constant b/h = 0.5. La
interacció del flux en la secció intermèdia dels obstacles influeix en les estructures coherents,
sent el principal objectiu del present estudi caracteritzar els mecanismes de flux que promouen
aquesta dinàmica en àrees urbanes amb diferents relacions de separació. En particular, de
totes les estructures vorticals trobades per l’algoritme HODMD, els modes de baixa i alta
freqüència es classificaran segons la relació entre el vòrtex d’arc i es denominen generadors
i destrossadors d’arc, respectivament. Aquesta classificació implica que la interacció entre
estructures de baixa i alta freqüència es un dels mecanismes responsables de la generació i
destrucció d’estructures vorticals rellevants entre els edificis. Així mateix, a l’augmentar la
separació, el flux es torna més correlacionat en la direcció transversal al flux degut a la major
interacció en la regió compresa entre els obstacles. Per tant, s’ha demostrat que HODMD és
una ferramenta robusta per a descriure la física de fluxos turbulents de gran complexitat.

Paraules clau: simulació numèrica directa (DNS), capes límits turbulentes (TBL), fluxos
urbans, estructures espacio-temporals
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versus frequency ωm computed with different tolerances for (top) skimming
flow, (middle) wake interference and (bottom) isolated roughness. . . . . . . . 63

4.14 Two-dimensional representation at y/h = 0.25 of the arch-breaker mode (ωm =
1.22) for the skimming-flow regime. . . . . . . . . . . . . . . . . . . . . . . . . 64

4.15 Three-dimensional iso-surface of the (left) streamwise, (middle) wall-normal
and (right) spanwise velocities of the arch-generator mode shown in Table 4.1. 66

4.16 Three-dimensional iso-surface of the (left) streamwise, (middle) wall-normal
and (right) spanwise velocities of the arch-breaker mode shown in Table 4.1. . 67

4.17 DMD modes of the streamwise velocity fields at y/h = 0.25 for the different
flow regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.18 DMD modes of the spanwise velocity fields at y/h = 0.25 for the different flow
regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ix



List of Figures List of Figures

4.19 Main flow patterns of the arch-generator mode (ω = 0.13) visualised by means
of streamlines for the wake-interference regime . . . . . . . . . . . . . . . . . . 69

4.20 Main flow patterns of the arch-breaker mode (ω = 1.05) visualised by means
of streamlines for the wake-interference regime . . . . . . . . . . . . . . . . . . 70

x





List of Tables

2.1 Tunable parameters of the HODMD algorithm . . . . . . . . . . . . . . . . . 33

3.1 Geometrical parameters defining the numerical domain of the three flow regimes
identified by Oke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Boundary conditions representing the physical behaviour of the flow simulation 39

3.3 Interpolation mesh parameters for the different flow regimes . . . . . . . . . . 41

3.4 Temporal parameters of the datasets used for the modal decomposition analysis 42

3.5 Results of SVD applied to the toy model function in (3.2) . . . . . . . . . . . 45

3.6 Summary of the workflow stages for the DMD-d algorithm. . . . . . . . . . . 46

3.7 Results of the DMD-d used to approximate the toy model . . . . . . . . . . . 47

3.8 Results of the DMD-d used to approximate the toy model with a 10% of random
noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Summary of the frequencies and amplitudes of the DMDmodes shown in Figure
4.13. From top to bottom, the modes are ordered from lower to higher frequency. 64

8.1 Breakdown of the main costs before and after taxes of the present project . . 82

xi





Part I

Report

xii



1

Introduction

1.1 General concepts

The world we live in today is increasingly characterised by urban areas: around 55% of the
global population has been reported to live in urban environments and, based on formerly
consistent definitions of urbanised areas, this ratio is expected to increase up to 68% by 2050
[1]. In such a fashion, cities worldwide, which are the primary source of climate change, are
required to play a decisive role in the accomplishment of the widely-known Paris Agreement
targets [2], according to UN-Habitat Executive Director [3]. Moreover, the great levels of
air pollution, to which the vast majority of the urban population is exposed, is undoubtedly
related to a myriad of health issues; some recent research has estimated that climate change
and, precisely, the global warming suffered by cities with respect to rural areas (UHI phe-
nomenon), was strictly associated to 70, 000 deaths [4]. This problematic situation boosts
the search for physical models capable of reproducing the pollutant and thermal distributions
within cities.

Although some predictive models have already been introduced by the EU [5], their lack of
providing the spatio-temporal required accuracy to model pollutant dispersion through urban
environments forces researchers to improve those methods in order to ensure the must-have
urban sustainability in the hereafter. Particularly, with the aim of establishing a proper ac-
tion plan to alleviate the associated adverse consequences, several studies have focused their
efforts on analysing the coherent structures of the flow: those three-dimensional flow regions
responsible for the pollutant dispersion within a given urban geometry.

Furthermore, the plethora of data to which society has access nowadays is pushing big
data techniques, including Artificial Intelligence (AI), forward. Even though a failure to
properly manage this information overexposure might result in gaps in transparency or ethical
standards, several studies are being currently developed in order to analyse the implications
derived from applying those techniques to a wide range of disciplines of this data-driven
world. The thorough research performed by Vinuesa et al. [6] analyses the role that AI is
progressively adopting and its wider impact on various sectors and, notably, on achieving
the Sustainable Development Goals (SDG) proposed by United Nations [7]. Focusing on the
aforementioned urban sustainability goals, the analysis executed over SDG 11 (Sustainable
Cities and Communities) showed clear evidence that AI could behave as an enabler towards
the achievement of such targets. Therefore, using state-of-the-art data-driven techniques,
general descriptions of the main patterns and instabilities driving the flow dynamics in urban
areas can be provided.

1



1.2. Motivation and objectives 1. Introduction

Closely related to the point mentioned above, thanks to recent developments in computa-
tional techniques, direct numerical or large-eddy simulations can now be solved in a feasible
time range and thus enabling researchers to have available more detailed information regard-
ing the pollutant dispersion and its interaction within urban environments. This emerging
sustainable discipline focuses on the analysis of the flow in order to properly characterise
the urban air quality. It is, therefore, in this section where modern fluid simulations play
a prominent role towards the understanding of the physics behind the flow in urban areas
and, together with AI, the main patterns driving the flow dynamics can be identified. These
coherent structures can be connected to the presence of polluting processes in such a way as
to allow for a series of alternatives to minimise their impact when designing the cities of the
time to come.

1.2 Motivation and objectives

The main motivation upon which this study relies is to gain further understanding into the
physics of the flow within urban environments. This will enable to obtain new physical models
of the dynamical processes responsible for pollutant dispersion and thermal effects in this type
of environments. Particularly, in contrast to experimental studies, thanks to the increased
spatial and temporal resolution provided by numerical simulations, the purpose is to char-
acterise the spatio-temporal features of the flow, using data-driven methods that will shed
light on the obtaining of generalisable and interpretable models of urban flows. Furthermore,
the obtained results will be contrasted with the extensive work in both experimental and
numerical analyses performed within the field.

Using the results of a large-eddy simulation (LES) over a simplified urban environment
consisting of two building blocks, the objective is to use cutting-edge techniques to conduct
modal decompositions over the three-dimensional instantaneous fields of the flow. Higher-
order dynamic mode decomposition (HODMD), a highly efficient method in the study of
turbulent flows, will be used together with common techniques such as singular-value de-
composition (SVD) and proper orthogonal decomposition (POD), aiming at defining the key
flow patterns with high precision and designing high-fidelity reduced-order models (ROMs).
The resulting models will serve as a foundation for the creation of more complex algorithms,
including machine learning, with reliable predictive capabilities.

1.3 Historical perspective

1.3.1 Fundamentals of urban flows

The issues associated with the dispersion of material through and above the urban area can be
addressed by analysing the problem at the different length scales in which those environments
can be described: regional and city scales (from 10 to 200 km), neighbourhood scale (up to
1 or 2 km) and street scale (between 100 and 200 m). Britter and Hanna [8] discussed how
the physical processes at each of the different scales may vary and how they can be combined
into mathematical models but conducted in a way that each model, reconstructed within its
own regime, can serve as a reference for further interpretations at larger scales.
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Figure 1.1: Definition of sublayers involved in the study of the flow at the city scale (urban
area). Extracted from Britter and Hanna [8]

Regional and city scales. Britter and Hanna [8] describe the city scale as an urban
environment that is clearly distinguished from its surroundings by its comparatively large ob-
stacles that impose a significant drag force on the atmosphere. This scale is used to represent
the diameter of a typical metropolitan region, allowing individual variations in flow and dis-
persion to be averaged out. In other words, at this size, additional information in the urban
canopy will not be examined, and the emphasis will be on pollutants above the height of the
buildings. Additionally, the authors contend that the regional scale refers to the surrounding
zone that is mostly influenced by the metropolitan centre, i.e. the previously mentioned city
scale. As a result, whilst the interaction between those zones can be of relevant importance,
the flow understanding will be focused on the city scale, where Britter and Hanna [8], based
on the work of Grimmond and Oke [9], identified the three main sublayers present in urban
areas. In Figure 1.1, these urban layers are illustrated.

• Inertial sublayer: It is the flow region where the boundary layer has absorbed the
obstacles perturbations (top sublayer). As a result, the layer can be thought of as a free
stream layer, allowing normal atmospheric models to be applied. In truth, in theoretical
aerodynamics, this is a well-known theory in which the effects of flow perturbations are
ignored.

• Urban-canopy sublayer: In contrast to the inertial sublayer, the urban canopy sub-
layer is the one with the utmost interaction with urban obstacles. Therefore, those local
obstacles will have a strong impact on the flow at a given location of this layer.

• Roughness sublayer: Having characterised the farthest and closest sublayers with
respect to the local obstacles, i.e. the buildings, the roughness sublayer will refer to
a transient band in which the flow adapts to the perturbations imposed in the urban
canopy sublayer over time. It is worth saying that the urban sublayer is included within
this layer and its limits expand up to the inertial sublayer.
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Neighborhood scale. The neighbourhood scale is a 1–2 km spatial scale at which a
gross parameterisation of the flow can be attempted as well as a scale at which extensive
quantitative analysis is possible, though at a cost, in clear contrast with the previous scales.
It is also a scale on which some statistical homogeneity can be expected; the city is then
seen as a collection of these neighbourhoods. On this scale, dispersion research would almost
certainly necessitate a more detailed understanding of the flow inside and directly above the
urban canopy [8]. This is especially important when contemplating the effects and dangers of
releasing dangerous chemicals into cities, whether by mistake or on purpose.

Street scale. The street (canyon) scale is analysed in particular in the sense of urban air
quality, where the most significant source of pollutants, i.e. automobile emissions, is located
near the pollutant receptors of concern, i.e. citizens [8]. These minor local vector factors are
influenced and influence the flow at such a small scale. As the variability of the events has
increased, characterising the flow under certain conditions continues to be considerably more
difficult.

Once the length scales at which the urban problem can be assessed have been introduced,
it is worth recalling that the majority of factors impacting pedestrian comfort and air quality,
among others, must be evaluated at the street level. The urban-canopy sublayer is the area of
the flow that is directly influenced by the obstacles. Oke [12] presented an analytical overview

Figure 1.2: Geometrical parameters and angle of incidence (AOI) of the incoming flow
definition in a simplified urban model. λ2 method [10] is employed to characterise the vortical
structures, which are coloured by streamwise velocity, from (dark blue) −1.2 to (dark red)
+1.8. Extracted from Torres et al. [11].
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Figure 1.3: Threshold lines dividing the flow into three different regimes depending on the
building (b/h) and the separation (h/`). Extracted from Oke [12].

of the flow regimes apparent in this layer, identifying three flow regimes based on the ratio of
street width to building height: in the case of narrow streets, the flow above the canopy can
barely reach down to the street (skimming flow), and only one vortex can be seen between
the obstacles; gradually broader streets lead to the wake interference regime first and then to
the isolated roughness flow which shows much more contact with the flow above the roofline
and dramatically more complicated physics than the previous cases. Figure 1.2 depicts the
geometrical parameters defining an urban environment, together with the reference frame that
will be used throughout the present. In particular, the width-to-height b/h and height-to-
separation h/` ratios need to be highlighted, since they will be relevant in determining the
flow regimes identified by Oke. In Figure 1.3, the resulting flow regimes depending on the
geometrical parameters that define an urban model are depicted. According to Oke [12], the
height-to-separation ratio, h/`, stands for the most critical parameter to define the resulting
flow regime, as opposed to the width-to-height ratio, b/h, whose influence is not remarkable
for considerably large ratios.

The study of Torres et al. [11] aims to evaluate Oke flow regimes [12] using a high-
resolution large-eddy simulation (LES) with the high-order spectral code Nek5000 [13] over
a simplified urban environment consisting of two wall-mounted rectangular obstacles. These
simulations employ a spectral-element mesh with elements refined in the near-obstacle area,
as well as a Gauss-Lobatto-Legendre (GLL) quadrature of eight points within each element to
ensure the proper resolution. They were carried out on the Cray XC40 machine "Beskow" at
KTH Royal Institute of Technology PDC Centre for High-Performance Computing. Further
details regarding the simulation procedure can be found in Reference [14]. However, the geo-
metrical parameters defining an urban environment shown in Figure 1.2 and the conclusions
of Figure 1.3 highlight the importance of the width-to-height b/h and height-to-separation
h/` ratios, which determine the resulting flow regime. Being the h/` ratio the most crucial
one (recall Figure 1.3), the analysis of Torres et al. focuses on the variation of the h/` ratio,
keeping b/h constant.
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In Figure 1.4, the discrepancies that occur in the flow regimes when the obstacle separa-
tion is changed are shown. The skimming-flow regime, obtained with h/` = 1, can be seen
in Figure 1.4 (top), in which the flow above the obstacles can scarcely penetrate in the area
between the two blocks due to the strong impact of the wake of the first obstacle. Figure 1.4
(middle), which depicts the wake-interference regime, shows a greater separation, resulting in
h/` = 0.5. Whilst there is still some combined effects between the wake of the first building
and the second block, it is apparent that some energy can be transferred between both ob-
stacles from the flow above the canopy. Lastly, with h/` = 0.25, Figure 1.4 (bottom) shows
the isolated-roughness regime. Owing to the high separation between blocks, a considerable
momentum exchange will appear between this area and the flow above the canopy. These
interactions lead, however, to more disorganised flow patterns, which hinder the obtaining of
high-fidelity physical models.

Please note that these simulations are the ones that will be analysed throughout the
present project in order to examine the changes appearing in the coherent structures of the
flow when modifying the separation ratio between obstacles.

The study on flow and contaminant dispersion through building clusters was further in-
vestigated by Zajic et al. [15]. Hinged upon the classification of Oke [12] and multiple
experiments on flow patterns across wall-mounted obstacles [16, 17, 18], the authors aimed
to compare predicted flow patterns in well-known simplified configurations, e.g. those seen in
Figure 1.4, with real atmospheric data obtained within a portion of Park Avenue in the Ok-
lahoma City CBD1. They demonstrated that using canonical flow configurations as building
blocks to simulate more complex multi-building configurations, e.g. an array of equispaced
rectangular wall-mounted obstacles, performed well, at least in that situation. This conclu-
sion makes first-order predictions of flow through canopies possible, such that field studies
can be planned and interpreted and non-linear phenomena, which occur due to the strong
interactions of canonical building processes, delineated.

They also contemplated the changes introduced when considering different building heights.
This geometry variation, together with the previously discussed separation ratio h/`, provokes
a considerable alteration in the number of vortices appearing within the urban canopy [15].
In fact, the larger the ratios, the more vortices will appear. However, Zajic et al. [15] accen-
tuated the importance of accountability for three-dimensional effects. Indeed, as a result of
this 3D approach, the corner vortices appearing on either side of the obstacle modify the flow
distribution inside the canopy, which is particularly noticeable for taller buildings, i.e. with a
length-to-height ratio wb/h < 1, since the side separation layer alters the recirculation bubble
on the leeward face of the upwind building, resulting in intense turbulent fluctuations which
may destroy the separation bubble [15]. Therefore, due to the three-dimensional approach,
the flow analysis should be conducted in both the streamwise and spanwise coordinates.

Until now, the gaze has been kept on the classification proposed by Oke [12]. Nonetheless,
several studies have focused their attention on the search for alternative categorisations of
flow regimes in urban environments. One of those projects relies on Britter and Hunt [19],
which seeks to obtain a general description of the flow, based on the interaction between

1The term CBD refers to the central business district, which is the central sector of urban centres and
is characterised by a wide range in constructions of varying forms and sizes in (1–10) km2. The regular
disposition of buildings in new planned communities, such as Phoenix or Arizona, has steadily increased the
interest in flow patterns in street canyons of CBDs over the past decade due to issues about pedestrian safety,
internal and outside air quality.
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Figure 1.4: Flow regimes based on the obstacle separation, using Oke’s criterion [12]: (top)
skimming flow, (middle) wake interference and (bottom) isolated roughness. λ2 method [10]
is employed to characterize the vortical structures, which are coloured by streamwise velocity,
from (dark blue) −1.2 to (dark red) +1.8. Extracted from Torres et al. [11].

bluff bodies, i.e. the two wall-mounted rectangular obstacles. In consequence, a weak and a
strong interaction regime can be defined so that when the interaction between both bodies is
practically null, the upwind block will be unaltered by the downwind building and vice versa.
These regimes appear, analogously to previous works, as a result of different combinations of
the height h, width b and separation ` of the blocks.
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In such a fashion, for ` < 6h and ` < 3b, the flow around the downstream block will be
firmly influenced by the upwind one and, therefore, the flow regime will be of strong interaction
type [19]. Whereas this regime will be clearly characterised by a stable vortex spanning the
gap between the two blocks, increasing separations will give rise to higher fluctuations towards
the ground. Wise and Penwarden [20] supported those verdicts and introduced a resembling
analysis based on the height difference: higher speeds near the ground were the result of an
increase in height of the downstream block, contrary to the results obtained by Isyumov and
Davenport [21]. Britter and Hunt [19] discussed that the apparent contradictions between
those results may reside in the understanding and interpretation of the flow measurements,
which emphasises the need to account for three-dimensional effects, meaning that each velocity
component possesses its own relevance.

1.3.1.1 Atmospheric boundary layer

Even though the turbulent vortical structures may play a prominent role in the pollutant dis-
persion through urban environments, there are other key factors that need to be considered in
some specific applications. This is the case of the atmospheric boundary layer (ABL), which
stands for that atmospheric region in contact with the Earth surface, in the same way as
any boundary layer. This approach introduces some concepts that need to be analysed when
working with ABLs. Fundamentally, the condition of atmospheric stability may change as a
result of a given temperature distribution: whereas a stable environment will be characterised
by a cooler (and denser) lifted parcel, compared with the surrounding air, which will tend to
sink; an unstable environment, as a result of a warmer and less dense lifted parcel, will rise
indefinitely. In the middle of those, when no temperature difference is appreciated with the
surrounding air, no relative movement will be induced and neutral conditions will be met. The
understanding of these conditions is essential for the atmospheric studies, including pollutant
dispersion and deposition.

Among all the extensive analyses and discussions conducted with this approach, the work
of Counihan [22] presented a thorough review of the meteorological literature on fully de-
veloped atmospheric boundary layers. Counihan found that the major anomalies appearing
on both the interpretation of full-scale measurements and on the theoretical predictions of
some boundary layer characteristics occurred due to the definition of the logarithmic law,
with which the overwhelming majority of ABLs are approximated, allowing to its parametri-
sation as a single layer [22]. Besides, from all the analysed data, Counihan showed how the
main boundary layer parameters, concretely those associated with the roughness scale, can
be derived from one equation [22]: in the lower part of an ABL, the mean velocity follows the
logarithmic behaviour of Equation 1.1.

uz
uτ

=
1

κ
ln

(
z − d
z0

)
(1.1)

where z0 is the roughness length2 and, together with d, depends on the type of terrain, uτ is
the friction velocity and κ the Von Kármán constant [23]. Note that since z0 may differ from
diverse surfaces, this method allows for the particularisation of each urban environment.

2The roughness length is a commonly used parameter in computational models to express the roughness
of a given surface. It mostly influences the mechanical instability of the flow above the surface, resulting in
less exchange between the surface and the atmosphere but higher winds against the ground for low roughness
distances. Its value may vary from z0 = 0.001 for ice, open sea or even desert to z0 = 0.3 or z0 = 3 for the
suburban area and tall buildings (city centers), respectively.
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Blocken et al. [24] also considered the prospect of achieving an atmospheric boundary
layer (ABL) model by precise Computational Fluid Dynamics (CFD) simulations. However,
at the bottom of the numerical domain, where wall-function roughness modifications, based
on experimental results, are added, the precision of such simulations can be severely harmed.
They consider easing the criteria in that area as an alternate approach, since it is difficult
to meet all requirements for ABL flow simulations. This simplification, though, leaves out
critical detail about turbulent coherent structures. This might be posed as the main reason
why the literature is mostly concerned with the investigation of turbulent processes rather
than the construction of ABL models.

1.3.2 Coherent flow structures

Understanding the chaotic processes that contribute to pollutant-concentration fields, wind
patterns and gusts requires the ability to describe the coherent structures guiding the flow
dynamics in urban environments. In other words, identifying them allows for the development
of physical models, which are crucial in this type of flows due to their inherent complexity.
These mechanisms have already been documented in a few experimental studies. However,
there is a pressing need for interpretable and generalisable models: models as low dimensional
as possible and with as few terms in the dynamics as necessary to explain how these variables
interact dynamically in time [25]. As a result, numerical simulations allow the evaluation of
their impact in dynamic processes due to their adequate spatial and temporal resolution.

Vinuesa et al. [26] used direct numerical simulations (DNS) to examine the effects of
inflow conditions in flow structures around a wall-mounted square cylinder. While the sharp
edges of the obstacle maintain the separation position independent of the inflow conditions,
the resulting structures and topology of the wake further downstream vary greatly in both sit-
uations. The effect of the growing boundary layers on both sides of the obstacle, in particular,
results in a different behaviour in both wakes: the wake associated with the laminar inflow
is instantaneously broader, while the turbulent one is marginally wider in the time-averaged
field. In addition, Vinuesa et al. [26] acknowledged that, in the turbulent-inflow simulation,
the horseshoe vortex was modulated by the streamwise fluctuations. Henceforth, in both ex-
perimental and numerical studies, this emphasises the importance of having well-established
inflow conditions so as to ensure flow reproducibility.

1.3.2.1 Experimental studies of coherent turbulent structures

Keeping this in mind, since the inflow conditions may well be the reason of different flow
structures, Hunt et al. [27] reported the structures of laminar and turbulent flows around
surface-mounted obstacles by means of flow-visualisation studies. Using a novel oil-film visu-
alisation technique, the authors aimed at recognising the various flow patterns of shear-stress
lines around cuboids of distinct shapes and with different incidence angles.

The information derived from the visualisation of the flow, enabled Hunt et al. [27] to
clearly represent the general pattern of the streamlines. They found that the number of
vortical structures upstream is sensitive to flow parameters, i.e. the aforementioned inflow
conditions: up to seven vortices might be observed in some cases. Particularly, the schematic
representation of the flow around a cuboid proposed by Hunt et al. [27] is depicted in Figure
1.6, where four different flow patterns have been identified: a) the horseshoe vortex, formed
around the obstacle, b) the roof vortex, located in the upper section of the obstacle, c) the
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Figure 1.5: Schematic representation of the flow around a surface-mounted rectangular
obstacle. Main appearing vortices are highlighted: (A) horseshoe vortex, (B) roof vortex,
(C) vortices on the obstacle side and (D) arch vortex. Extracted from Hunt et al. [27].

side vortices, created on both lateral parts, having a strong interaction with the wake, and
d) the arch vortex, established on the leeward side of the obstacle. Interestingly, with this
representation, they proved the absence of a separation bubble or cavity in the wake of a
surface-mounted bluff obstacle. Therefore, no closed surface is observed in the wake [27].

Meinders [28] extended the work of flow structures around wall-mounted cubes by analysing
the interaction between the obstacles when more than one cuboid was considered. Similarly
to the analysis conducted by Torres et al. in Figure 1.4, Meinders qualitatively examined
the influence of the separation distance between the obstacles, h/`, on the flow around an
in-line tandem disposition of two cubes. For that, the author employed oil-film visualisations
together with LDA3 measurements.

It was shown that the h/` variance only led to a substantial modification of the mean
flow and turbulence statistics on the downstream obstacle. The separated shear layer reat-
tached to the downstream side edge of the downstream obstacle for h/` = 0.5, which led
to an inter-obstacle region characterised by an arc-shaped vortex, confined by the side flow
and the separating shear layer. In addition, upstream of the front face of the leading cube,
a horseshoe vortex was formed and deflected further downstream along the sides due to the
presence of the second obstacle [28].

For h/` = 0.25, the flow reattached in the inter-obstacle region: the shear layer detached
from the sides and top edges of the upstream obstacle and breached the inter-obstacle spacing
before reattaching on the channel surface. Because of that flow reattachment, a second horse-
shoe vortex emerged in front of the downstream cube. The imprints of such vortices were
clear from the oil-film visualisations, see Figure 1.6. Larger spacing ratios, h/` < 0.125 were
seen to produce flow patterns very close to those around a single obstacle, i.e. the upstream
and downstream flow structures were seen to be strongly similar [28]. Despite the fact that
the mean flow and turbulence figures around the downstream cube were somewhat similar to

3LDA states for Laser Doppler Anemometer and it is an optical well-established technique ideal for non-
intrusive velocity measurement in fluid dynamics applications. Its main advantages rely on the high spatial
and temporal resolution, the ability to perform measurements in flows that are reversing and the no need for
calibration.
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those around the upstream cube, the upstream protuberance disrupted the flow, resulting in
a very high degree of turbulence intensity as encountered by the downstream cuboid. These
results are in good agreement with the flow regimes presented by Oke [12].

Figure 1.6: Oil-film visualisation of the surface flow pattern of an in-line tandem arrangement
of cubes for h/` = 0.25 (ReH = 7000). Extracted from Meinders and Hanjalić [29].

Additionally, Becker et al. [30] studied experimentally the structure of the flow field around
three-dimensional rectangular block obstacles, representing generic shapes of buildings. Such
a investigation provided further insights into the dependence of the flow structures on the
aspect ratio of the obstacle and the inflow conditions: the type of boundary layer, the incidence
angle and the Reynolds number. Using LDA measurements and oil-film visualisations in wind-
tunnel experiments, where a suburban boundary layer was employed as inflow conditions, the
authors analysed the arch-shaped vortices formed on the leeward side of the obstacle for
different values of the incidence angle, AOI. These findings allowed the authors to define the
evolution of the arch vortex, which Martinuzzi [31] previously depicted for AOI = 0◦, for non-
zero incidence angles. For increasing angles of attack, the main observation is the dislocation
of one of the vortex’s legs, which gradually rotates until it reaches the side of the obstacle
for AOI = 45◦ (Figure 1.7). Curiously, raising the AOI to 60◦ causes the vortex leg to be
displaced to the top of the obstacle, which has a major impact on the momentum-transfer
processes within an urban canyon.

1.3.2.2 Methods for vortex identification

A wide range of criteria to identify vortical structures have been developed in the literature.
Monnier et al. [32] aimed at identifying the coherent structures of the wind-tunnel flow around
the geometry of the Mock Urban Setting Test (MUST) experiment4 using different criteria. In
this urban environment, the authors employed a set of 4×3 buildings of b/h = 5 and wb/h = 1
(recall the definition of geometrical parameters in Figure 1.2). The experiment’s goal was to
identify the well-known arch vortex downstream the obstacles: a vortical structure of two legs
and a roof, with each leg consisting of fluid rotating around the vertical axis and the roof
rotating around the spanwise axis. As a result, they began by visualising the wall-normal and
spanwise mean vorticities, ωy and ωz respectively, given by Equation 1.2. Using the modulus

4The Mock Urban Setting Test (MUST) was an urban disperse test performed at the US Army Dugway
Proving Board (DPG) Horizontal Grid Test Site by the Defense Threat Reduction Agency (DTRA). The aim
was to obtain near full-scale meteorological and dispersion data for the production and validation of toxic risk
assessment models in urban areas.
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Figure 1.7: Arch vortex schematic representation around a three-dimensional rectangular
block with b/h = 2 and wb/h = 0.29 depending on the angle of attack: (A) AOI = 0◦, (B)
AOI = 30◦, (C) AOI = 45◦ and (D) AOI = 60◦. Extracted from Becker et al. [30].

of the spatially-averaged vorticity vector 〈ω〉 =
√
ωx2 + ωy2 + ωz2, the authors were able to

define a local threshold for correctly identifying coherent structures.

ω (x, t) = ∇×U (1.2)

Similarly to what Becker et al. [30] deduced, using various iso-levels for the vorticity
quantities, Monnier et al. [32] discovered that when the incidence angle is non-zero with
respect to the model, one leg of the arch vortex shrinks in size. Furthermore, the authors
used the popular method introduced by Hunt et al. [27], known as the Q-criterion, to classify
eddy regions. This approach, which is based on the second invariant of the velocity-gradient
tensor, see Equation 1.3, has the advantage of defining coherent structures even when shear
loads are large.

Q = −1

2

∂Ui
∂xj

∂Uj
∂xi

= −1

2
(SijSij − ΩijΩij) (1.3)

where Sij represents the rate of the strain tensor and Ωij , the rate of the rotation tensor,
which is related to the aforementioned vorticity with ωi = εijkΩkj , being εijk the Levi-Civita
symbol [32]. The representation of an iso-Q surface showed two clear recirculation regions:
on the entire span of the leeward side of the upstream obstacle and closer to the ground on
the windward side of the downstream block [32]. Comparable results were obtained with λ2

method. In this case, this proposal seeks to analyse the eigenvalues of the SikSkj + ΩikΩkj

tensor, where the symmetric and anti-symmetric parts of the tensor play a role. Particularly,
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only when at least two of its eigenvalues are negative, a point of the velocity field will define
a vortex core. Therefore, if λ1 ≤ λ2 ≤ λ3; then, λ2 < 0.

Finally, in addition to the velocity gradient techniques, Monnier et al. [32] utilised the
normalised angular momentum technique, defined in Equation 1.4, which Sousa [33] used
to pinpoint the centre of the vortical structures downstream of a single cuboid obstacle.
They concluded that this approach improves large-scale vortical structures identification over
vorticity magnitude because, unlike previous methods, it is an integral-based quantity that
does not require spatial derivatives of the velocity field.

Γ1 (xp) =
1

D

∫
D

(x− xp)× u(x)

|x− xp||u(x)|
dx (1.4)

where xp is the spatial position at which Γ1 is computed, D, the domain over which the the
integration is performed, u (x), the velocity vector, | · |, the norm quantity and ×, the vector
product.

Monnier et al. [34] used this method to describe the relationship between the arch vortex
and high-turbulence areas. Figure 1.8 depicts the resulting isosurface Γ1 with rms streamwise
and spanwise turbulence high intensity areas. Due to shear layers developing on both sides
of the block in the AOI = 0◦ event, see Figure 1.8 (left), two regions of significant streamwise
velocity fluctuations emerge. The arch vortex is then found between these two areas. On the
other side, the zone of high spanwise velocity found along the downstream block’s windward
edge is centred immediately after the arch vortex. As a result, Monnier et al. [34] concluded
that the arch vortex is situated in high turbulence areas, while its centre is located in a low
turbulence zone. As the angle of attack is increased, see Figure 1.8 (right), the arch vortex
appears to be rotated with respect to the street axis. Besides, the velocity fluctuations are
displaced, too, allowing the arch vortex to stay in a low turbulence area. Please note that in
this experiment the obstacles used to simulate buildings in an urban area are relatively high
with respect to the street separation, thus presenting features of the skimming flow regime
[12].

Figure 1.8: Representation of the iso-surfaces of Γ1 = 0.4 for (left) AOI = 0◦ and Γ1 = 0.35
for (right) AOI = 30◦, streamwise (green) and spanwise (purple) rms velocity fluctuations,
representing the 75% of the maximum value reported in each panel. Extracted from Monnier
et al. [32]
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1.3.3 Final comments on historical perspective

Finally, to wrap up this part, some final thoughts on the reviewed literature and the current
project will be made. Previously, a general overview of research projects conducted with the
aim of further understanding the flow inside urbanised areas was portrayed. In this regard,
the importance of recognising the spatio-temporal features of the dynamics driving the flow
has been emphasised.

There is currently an urgent need to acquire generalisable and interpretable models in order
to perform more accurate flow predictions. As a result, the present project will concentrate on
the study and identification of the coherent structures responsible for the behaviour discussed
throughout this section. To that end, numerical simulations allow data-driven methods to
conduct a high-quality modal analysis of three-dimensional instantaneous fields. This will en-
able us to gain a better understanding of the flow physics. Following sections will present and
describe the state-of-the-art techniques that will be used to achieve a better understanding of
the complex mechanisms that occur in urban flows.
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2

Theoretical background

Having reviewed the past and current state of scientific research on urban flows, the goal of
this section is to provide the reader with a sufficient understanding of the physical laws that
govern turbulent flows, i.e. the flow within urban environments, and the mathematical tools
used throughout the present to gain further insight into the physical processes responsible for
these type of complex flows.

2.1 Theory in fluid mechanics

Prior to the description of the mathematical tools that will allow for the obtaining of a
reduced-order model (ROM) of the flow simulation data, it is advisable to give some guide-
lines over the empirical laws governing the fluid physics, which might be posed as the very
first step towards the analysis of any kind of numerical simulation.

Flows, in the same way as any physical process, can be classified based on various of
their characteristics. For instance, flows can be classified as compressible or incompressible
depending on the relevance of density changes; inviscid or viscous based on the importance of
inertial effects compared to viscous (friction) effects; or steady and unsteady flows according
to their time dependence. However, one of the most common ways of classifying flows is to
consider their inherent behaviour, which leads to laminar and turbulent flows. This distinction
is critical since it might well be the reason for using different assumptions or problem-solving
methods. Henceforth, since the case study will only deal with turbulence, just turbulent flows
and their characteristics will be examined from now on.

2.1.1 The nature of turbulent flows

It is common knowledge that turbulent flows may be observed in our everyday surroundings,
ranging from water in a river to smoke from a chimney. According to Pope’s definition in
his book Turbulent flows [35], turbulent flows, e.g. those witnessed in a waterfall, are charac-
terised by being unsteady, irregular, apparently random and chaotic, and the velocity of every
eddy or droplet is unexpected. This is regarded as a key feature for the study of turbulent
flows since it dictates how fluid velocity fluctuates dramatically and randomly in both time
and position. However, although the velocity fluctuations over the time-averaged field can
be seen to fluctuate considerably (approximately a quarter of the mean velocity in certain
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circumstances), far from being unstable, both the fluctuations and the mean can be argued
to be stable: neither enormous changes of the whole flow field are visible, nor the fluctuations
spend lengthy periods of time at values that are notably distant from the mean [35]. Figure
2.1 displays the time history of the axial component of the velocity U1(t) of a turbulent jet to
demonstrate this. It can be seen here that the velocity is not periodic and fluctuates across a
wide range of time scales, reinforcing the aforementioned traits of turbulent flows.

Figure 2.1: Time history of the axial component of velocity U1(t) on the centre line of a
turbulent jet. From the experiment of Tong and Warhaft [36]. Extracted from Pope [35].

Taking this into consideration, another essential feature of turbulence is its capacity to
transfer and mix fluid much more efficiently than laminar flows. When various fluid streams
must be combined, it is normally preferable for this mixing to occur as quickly as feasible.
This is when turbulence comes into play in the case of pollution streams thrown into the
atmosphere. Osborne Reynolds vividly proved this experimentally, aiming at analysing the
propagation of dye steadily injected on the centre line of a lengthy conduit through which
water was flowing. Reynolds discovered that this sort of flow can be described by a single
non-dimensional quantity, which is now known as the Reynolds number.

Re =
Ul

v
(2.1)

In this sense, it may be interpreted as the ratio of dynamic forces to viscous forces, which
aids in defining specific thresholds above which the flow is deemed turbulent and below which
the flow is considered laminar. During Reynolds’ experiment, if Re < 2300, the flow was
assumed to be laminar, i.e., the fluid velocity did not vary with time and all streamlines were
parallel to the pipe’s axis [35]. If, on the other hand, Re > 4000, the flow should be turbu-
lent, increasing mixing with the surrounding water and reducing the peak dye concentration
downstream of the injection point.

2.1.2 The equations of fluid motion

The Navier-Stokes equations, which govern the flow of Newtonian fluids with constant prop-
erties, will be examined briefly in this section. To that purpose, the work once published
by Pope in Turbulent Flows [35] will be followed. The goal is to present a broad overview
of the equations that must be solved in order to represent flow in an urban context. Please
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bear in mind that this is merely a high-level overview of the equations; for a more in-depth
examination of the numerical implementation, see Ref. [14].

2.1.2.1 Continuum fluid properties

Real fluids are all made up of individual molecules that are far too tiny for us to see di-
rectly. Because the molecules have their own motion, they ultimately collide. In fact, fluid
motion is the average motion of many particular molecules, and the independent motion of
each molecule is what is known as pressure and heat on the macroscopic level. As a result,
modelling a fluid as a continuous medium eliminates the need to address the behaviour of each
individual molecule, a crucial simplification. However, despite the potency of the continuous
concept, it should always be remembered that fluid is made up of molecules. Hence, a fluid
parcel is defined as a collection of molecules that occupy a simply interconnected region of
space that is substantially larger than the mean free path, i.e. the average distance between
molecules.

To support this hypothesis, Pope analysed the length and time scales at both the micro-
scopic and macroscopic levels and concluded that the flow scales outnumber the molecular
scales by three or more orders of magnitude, proving the validity of the continuum hypothe-
ses for such types of flows [35]. This difference of length scales is quantified by the Knudsen
number:

Kn ≡ λ/` (2.2)

where λ is the mean free path and `, the smallest geometrical length scale in a flow. Therefore,
if Kn � 1, the continuum hypothesis is considered to hold, and once invoked, all concepts
of the fluid’s discrete molecular nature and molecular scales cease to be relevant. This is the
approach that will be followed throughout the present work.

2.1.2.2 Continuity equation

The continuity equation is one of the most significant equations in the area of fluid mechanics
since it employs the mass-conservation principle, which states that no mass may be gener-
ated or destroyed throughout the process. Considering a generic control volume, the mass-
conservation or continuity equation may thus be formally stated with Equation 2.3. Please
keep in mind that the reader should be already aware of the derivation and interpretation of
this equation in terms of control volumes and the Eulerian and Lagrangian fields.

∂ρ

∂t
+∇ · (ρU) = 0 (2.3)

The time derivative term indicates the accumulation (or loss) of mass within a given
system, whereas the divergence term indicates the difference between flow in and flow out
in a given control volume. Furthermore, depending on the type of flow being studied, the
above general equation allows for many simplifications. In this context, the equation may be
simplified such that the velocity field is divergence-free for constant-density flows, i.e. flows
where density does not vary with position or time, which is known as the continuity equation
for incompressible flows.
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2.1.2.3 Momentum equation

Although the continuity equation encompasses a large amount of essential information, an
equation that links the forces applied in a specific control volume with its acceleration should
now be described. To that aim, the momentum equation, which is based on Newton’s second
law, connects the fluid particle acceleration to the total of the forces experienced by the fluid.
In general, such forces may be split into two categories: surface forces and body forces. On
one side, surface forces are of molecular origin and are characterised by the symmetric stress
tensor τij . Body forces, on the other hand, are those applied to the whole control volume.
In that respect, gravity is the body force of interest in the study of turbulent flows. Its
mathematical model allows for a wide range of definitions, but based on Pope’s formulation
[35], a gravitational potential should be specified so that the body force per unit mass is
provided by Equation 2.4.

g = −∇Ψ (2.4)

Consequently, if a constant gravitational field is considered, then, the gravitational poten-
tial is given by Ψ = gz, where g is the gravitational acceleration. Finally, by direct application
of Newton’s second law,

ρ
DUj
Dt

=
∂τij
∂xi
− ρ ∂Ψ

∂xj
. (2.5)

By substituting the corresponding expression of the stress tensor for Newtonian fluids
with constant properties into the general momentum equation, the well-known Navier-Stokes
equations are obtained. For their particular derivation, the fact that both the density and
the viscosity are constant needs to be exploited together with the continuity equation partic-
ularised for incompressible flows.

ρ
DUj
Dt

= µ
∂2Uj
∂xi∂xi

− ∂P

∂xj
− ρ ∂Ψ

∂xj
(2.6)

Finally, introducing the concept of the modified pressure, p = P +ρΨ, the above equation
simplifies to Equation 2.7. Please note that the concept of the total derivative has been used
throughout the derivation with the objective of considering both the spatial and temporal
variation of the velocity.

DU
Dt

= −1

ρ
∇p+ ν∇2U (2.7)

2.1.2.4 Passive scalar equation

Hitherto, the continuity and momentum equations have been introduced. Nevertheless, in
addition to the velocity, a conservation equation for a conserved passive scalar denoted by
φ (A, t) can be defined so that it can represent several physical properties of the flow. For
instance, it can be a small change in temperature or the concentration of a given trace gas. In
those cases, the diffusivity term of Equation 2.8 should change according to the passive scalar
considered, e.g. the thermal diffusivity or the molecular diffusivity in the aforementioned
cases.

Dφ
Dt

= Γ∇2φ (2.8)
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It should be noted that for the scalar meeting the requirement of passive, its value should
have no influence on the material characteristics and hence no influence on the flow. This
criterion yields an essential scalar property: its boundedness. If the beginning and boundary
values of φ (A, t) are within a particular range, then φ must be within that range for any
location or temporal instant [35].

2.1.2.5 Vorticity equation

The equations described above are seen to be essential in fluid mechanics: they have to be
introduced anytime the behaviour of a flow, whether laminar or turbulent, is attempted to be
found. However, turbulent flows are generally recognised to be rotating flows, which yields to
one of its essential features, i.e. they have non-zero vorticity. Therefore, an extra equation
must be provided to finish the exposure on the fluid mechanics equations.

From a formal point of view, vorticity ω (x, t) is a measure of a fluid’s rotation and may
be mathematically represented as the curl of the velocity. It is specifically equivalent to twice
the rate of rotation of the fluid at a given location and time.

ω = ∇×U (2.9)

Accordingly, the equation for the evolution of the vorticity can be obtained by applying
the curl to the Navier-Stokes equations presented in 2.7. Finally, Equation 2.10 states the
vorticity equation in turbulent flows.

Dω
Dt

= ν∇2ω + ω · ∇U (2.10)

2.1.3 Definition of streamlines

An important concept within the field of fluid mechanics concerns the idea of streamlines.
A streamline is a path mapped out by a mass-less particle moving with the flow. Because
the streamline is drawn out by a moving particle, the velocity is tangent to the path at
every point along the path. Furthermore, mass cannot cross a streamline because there is no
normal component of velocity along the path. Since no mass can flow through the surface of a
particular object, its surface functions as a streamline. Bernouilli’s equation confirms that the
mass contained between two successive streamlines remains constant throughout the flowfield
[37]. Regarding its mathematical derivation, once the velocity field of a given flowfield has
been obtained at a certain time instant, a streamline is defined as a set of curves satisfying

d~xs
dt
× ~u (~xs) = 0 (2.11)

where ~xs(s) denotes the parametric representation of a single streamline at a given moment in
time. In such a fashion, if the velocity field can be decomposed in its components ~u = (u, v, w)
and the parametric representation of a streamline, ~xs = (xs, ys, zs), then, it can be deduced

dxs
u

=
dys
v

=
dzs
w

(2.12)
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which demonstrates that the velocity vector is parallel to the streamline. They are also
computed instantaneously, which means that they are calculated across the fluid from the
instantaneous field at a certain time instant.

2.2 Computational theory

Following the introduction of the governing equations of turbulent flows, a general review of
the technique to be followed in any numerical simulation will be now undertaken. Please bear
in mind that the goal of this work is not to offer a full analysis of the solution techniques of
such governing equations, but to conduct a deep examination of the results acquired from a
prior numerical simulation, i.e. utilising a high-fidelity database, and, to that end, certain
broad notions of the workflow in computational simulations must be retrieved.

Numerical simulations (CFD) constitute a powerful tool for obtaining detailed informa-
tion on a specific fluid flow case without the need for intrusive measurements. However, in
order to acquire accurate enough results, one must be very meticulous, which demands a good
foundation in the linked science, understanding of a specific application and competence in
CFD modelling. As a result, CFD processes comprise a number of phases, each of which is
critical to the ultimate accuracy of the results. This CFD workflow can be broken into three
main stages: pre-processing, calculation (solver) and post-processing.

Pre-processing. The very first step in any numerical simulation is the conceptual model
of the problem. During this stage, the project objectives, i.e. the expected results and accu-
racy, should be established. Additionally, potential problem simplifications, such as problem
dimensions, symmetry or periodicity, should be considered, as well as a study of the available
literature up to that point. After that, the numerical domain should be defined with the
determination of the boundary conditions (BC) far enough away from the region of interest.
This region will be characterised by a particular geometry, through which the flow is wanted
to be simulated, and needs to be created with special care, removing the non-relevant features
which may hinder the final results or the intermediate process.

On the other hand, it is at this point that the mesh topology, i.e. the discrete scheme
domain points over which the governing equations will be solved, must be determined. That
includes defining the type of mesh components to be used, whether it will be structured or
unstructured, and the refinement in high-gradient zones (boundary layer regions). This sec-
tion is critical since it determines the accuracy and speed of the computation. In reality, if
all flow scales are to be solved, i.e. a direct numerical simulation (DNS), the mesh element
total number must be exceedingly large. Furthermore, the selection of fluid characteristics
and boundary conditions fall within the scope of the pre-processing stage.

Solver. Once the domain has been fully discretised, the governing equations, i.e. differ-
ential equations, should be solved across each discretised volume. This necessitates the use of
some numerical configuration, which includes the kind of solver, such as pressure or density-
based solvers, as well as the order of the method, which is based on spatial and temporal
discretisation. The significance of this section is based on its impact on convergence speed
and accuracy. Low-order methods, for instance, will be linked with rapid convergence rates
but low accuracy. This is identical to what was described during the mesh operation, and it
results in two types of errors to account for in fluid numerical simulations.
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Post-processing. Having solved the governing equations for the whole domain, the next
step is to undertake an analysis to derive some meaningful physical implications from the
flow results. Post-processing techniques can vary depending on the application, ranging from
simple scene representations, e.g. contours, vectors, or path-lines, to more advanced mathe-
matical analyses.

It is worth noting that data-driven methods are included at this stage since they aim to
extract some physical features from high-fidelity databases, which may be acquired through
numerical simulations or experiments. Therefore, the following sections will concentrate on
the description of the tools employed during this workflow stage.

2.3 Modal-decomposition theory

In the study of fluid mechanics, specific physical properties can be found to be shared across a
variety of flows and even across a large range of parameters. As an initial stage in the study of
complicated flows, it has become normal practice to seek for and extract physically essential
characteristics or modes. Common flow characteristics include von Kármán shedding, Kelvin-
Helmholtz instability and vortex merging/pairing. The fact that these traits are frequently
easily recognised via basic visual examinations of the flow leads us to believe that they can
be retrieved using some mathematical approach [38]. Furthermore, advances in computa-
tional tools and experimental observations result in large-scale high-fidelity data, for which
establishing reduced-order models to comprehend and describe their dynamical behaviour is
critical. It should be noted that these spatio-temporal features or modes can be generated
using flow-field data or the governing equations. Because of the intrinsic complexity of urban
flows, the goal of this work is to conduct modal-decomposition analyses using flow-field data
as input. These methods will be referred to as purely data-based methods.

The purpose of this section is to describe the approaches for performing modal decomposi-
tions over complex flows, which will be used to gain a better understanding of the flow through
urban environments. Particularly, this section focuses on modal-analysis techniques such as
proper orthogonal decomposition (POD), singular value decomposition (SVD), dynamic mode
decomposition (DMD) and higher-order DMD (HODMD). The explanation offered here fol-
lows the one provided by Le Clainche and Vega in their book Higher order dynamic mode
decomposition and its applications [39] as well as by Brunton and Kutz in Data-driven science
and engineering [40]. For a more detailed discussion of modal decompositions, please refer to
the cited works.

2.3.1 Singular-value decomposition

Singular-value decomposition (SVD) is a technique that extends eigenvalue decomposition
to non-square matrices and is one of the most significant in the area of matrix factorisa-
tion. Among its various applications, data reduction should be highlighted since, from a
high-dimensional dataset, SVD can extract the essential correlated patterns that improve the
level of understanding of the data and allow for reliable low-order matrix approximations [38].
Because of the basic linear algebra on which it is based, as well as its scalability, this mathe-
matical technique has become common in the data-driven world, allowing large corporations
such as Google and Facebook to construct certain page rank and facial recognition algorithms.
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Let us now consider a matrix X ∈ CJ×K representing a large dataset where each of the
columns xk ∈ CJ may represent measurements from simulations or experiments. For instance,
in the case of fluid numerical simulations, columns represent the evolution of the flow state
in a set of discrete points, i.e. snapshots.

X = VK
1 = [v1, v2, . . . , vk, vk+1, . . . , vK−1, vK ] (2.13)

where vk represents the field variable evaluated at time instant tk and is defined as vk = v(tk)
for brevity. The snapshot matrix has dimensions of J × K, where J represents the spatial
degrees of freedom of the evaluated data, i.e. the total number of grid points defining the
spatial domain (in three-dimensional computational domains with structured and uniform
meshes, J = Nx×Ny ×Nz, where Nx, Ny and Nz represent the number of points along with
the streamwise, normal and spanwise directions), and K, as previously mentioned, indicates
the number of snapshots.

The SVD allows for obtaining a unique matrix factorisation that exists for any matrix
X ∈ CJ×K :

X = WΣTT (2.14)

where W ∈ CJ×J and T ∈ CK×K are known as left and right singular vectors or modes,
respectively, and they are unitary matrices1 such that each column is orthonormal, and
Σ ∈ RJ×K is a diagonal matrix with non-negative values, known as singular values σk, hier-
archically ordered. Note that the superscript (·)T denotes the complex conjugate transpose
of a matrix, which corresponds to the regular transpose for real-valued matrices.

σ1 ≥ σ2 ≥ ... ≥ σK ≥ 0 (2.15)

It is worth noting that the columns of the matrix W are known to have the same shape as
columns of X. Therefore, if X represents the evolution in time of a given flow-field, each uk
can be named as eigenflowfields hierarchically arranged so that u1 is somehow more relevant
than u2 in terms of describing the variance in the columns of X. This means that each uk
can be reshaped into a given flow-field, which will represent a certain flow feature. On the
other side, matrix T represents the eigentime series of each eigenflowfield, meaning that each
spatial mode can be associated with some temporal coefficients.

Aiming at illustrating this, given a matrix A, it can be graphically decomposed using
the SVD approach as shown in Figure 2.2. It could happen, and it is usually the case in
the modal analysis of fluid flows, that the length of vk does not coincide with the number of
snapshots considered. Figure 2.2 shows an example of J > K, where the components in W
encompassed by broken lines are removed from the decomposition since they are multiplied by
zeros in Σ. Accordingly, the economy SVD is the decomposition that ignores the submatrices
in the broken-line boxes, as opposed to the full SVD, which takes into account all of the
components involved in the decomposition. Therefore, it is possible to fully represent the
matrix X using the economy SVD.

X = ŴΣ̂TT (2.16)

1Any square matrix is unitary if it satisfies that AAT = ATA = I.
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up to a complex scalar of magnitude one (i.e., eiθ, where
θ ∈ !0; 2π").
Given a rectangular matrix A, we can decompose the matrix with

the SVD in the following graphical manner:

(12)

where we have taken m > n in this example. Sometimes, the
components in U enclosed by the broken lines are omitted from
the decomposition, as they are multiplied by zeros in Σ. The
decomposition that disregards the submatrices in the broken-line
boxes are called the reduced SVD (economy-sized SVD), as opposed
to the full SVD.
In a manner similar to the eigenvalue decomposition, we can

interpret the SVD as a means to represent the effect of matrix
operation merely through the multiplication by scalars (singular
values) given the appropriate directions. Because the SVD is applied
to a rectangular matrix, we need two sets of basis vectors to span the
domain and range of the matrix. Hence, we have the right singular
vectors V that span the domain of A and the left singular vectors U
that span the range of A, as illustrated in Fig. 4. This is different from
the eigenvalue decomposition of a square matrix: in which case,
the domain and the range are (generally) the same. Although the
eigenvalue decomposition requires the square matrix to be
diagonalizable, the SVD (on the other hand) can be performed on
any rectangular matrix.

C. Relationship Between Eigenvalue and Singular Value
Decompositions
The eigenvalue and singular value decompositions are closely

related. In fact, the left and right singular vectors ofA ∈ Cm×n are also
the orthonormal eigenvectors of AA# and A#A, respectively.
Furthermore, the nonzero singular values of A are the square roots of
the nonzero eigenvalues of AA# and A#A. Therefore, instead of the
SVD, the eigenvalue decomposition can be performed onAA# orA#A
to solve for the singular vectors and singular values of A. For these
reasons, the smaller of the square matrices of AA# and A#A are often
chosen to perform the decomposition in a computationally
inexpensive manner as compared to the full SVD. This property is
taken advantage of in some of the decomposition methods discussed
in the following because flowfield data usually yield a rectangular
data matrix that can be very high-dimensional in one direction
(e.g., the snapshot POD method [28] in Sec. III).

D. Numerical Libraries for Eigenvalue and Singular Value
Decompositions

Eigenvalue and singular value decompositions can be performed
with codes that are readily available. We list a few standard

numerical libraries to execute eigenvalue and singular value
decompositions.
MATLAB: In MATLAB®, the command eig finds the

eigenvalues and eigenvectors for standard eigenvalue problems as
well as generalized eigenvalue problems. The command svd
outputs the singular values and the left and right singular vectors. It
can also perform the economy-sized SVD. For small- to moderate-
sized problems, MATLAB can offer a user-friendly environment to
perform modal decompositions. We provide in Table 2 some
common examples of eig and svd in use for canonical
decompositions.**

LAPACK: LAPACK (linear algebra package) offers standard
numerical library routines for a variety of basic linear algebra
problems, including eigenvalue and singular value decomposi-
tions. The routines are written in Fortran 90. See the users’
guide [38].††

ScaLAPACK: ScaLAPACK (scalable LAPACK) comprises
high-performance linear algebra routines for parallel distributed
memory machines. ScaLAPACK solves dense and banded
eigenvalue and singular value problems. See the users’
guide [39].‡‡

ARPACK: ARPACK (Arnoldi package) is a numerical library,
written in FORTRAN 77, that is specialized to handle large-scale
eigenvalue problems as well as generalized eigenvalue problems. It
can also perform singular value decompositions. The library is
available for both serial and parallel computations. See the users’
guide [40].§§

E. Pseudospectra

Before we transition our discussion to the coverage of modal
analysis techniques, let us consider the pseudospectral analysis
[33,35], which reveals the sensitivity of the eigenvalue spectra with
respect to perturbations to the operator. This is also an important
concept in studying transient and input–output dynamics,
complementing the stability analysis based on eigenvalues. Concepts
from the pseudospectral analysis appear later in the resolvent analysis
(Sec. VIII).
For a linear system described by Eq. (4) to exhibit stable

dynamics, we require all eigenvalues of its operator A to satisfy
Re$λj$A%% < 0, as illustrated in Fig. 3. Although this criterion
guarantees the solution x$t% to be stable for large t, it does not
provide insights into the transient behavior of x$t%. To illustrate this
point, let us consider an example of A & VΛV−1 with stable
eigenvalues of

λ1 & −0.1; λ2 & −0.2 (13)

Fig. 4 Graphical representation of singular value decomposition transforming a unit radius sphere, described by right singular vectors vj, to an ellipse
(ellipsoid) with semiaxes characterized by the left singular vectorsuj andmagnitude captured by the singular values σj. In this graphical example,we take
A ∈ R3×3.

**For additional details, see the documentation available on http://www.
mathworks.com [retrieved 10 February 2017].

††Library available online at http://www.netlib.org/lapack [retrieved
10 February 2017].

‡‡Library available online at http://www.netlib.org/scalapack/ [retrieved
10 February 2017].

§§Library available online at http://www.caam.rice.edu/software/ARPACK
[retrieved 10 February 2017].
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Figure 2.2: Schematic representation of the matrices involved in the full and economy
singular value decomposition. Broken lines are used to represent the part of the matrices
which is not considered by the economy SVD as they are multiplied by zeros in the singular
value matrix. Extracted from Taira et al. [38].

Please note the slight difference between Equations 2.14 and 2.16, where Ŵ and Σ̂ denote
the reduced matrices, which ignore the broken-line boxes of Figure 2.2.

Another variation of the singular value decomposition occurs from truncating the singular
value matrix at rank N such that non-zero values are removed.

X ≈ W̃Σ̃T̃
T

(2.17)

This truncation results in a relative root mean square (RMS) difference between the orig-
inal and reconstructed matrix Xapprox, i.e.

RRMSE =
‖Xapprox −X‖2

‖X‖2
=

√
σ2
N+1 + ...+ σ2

K

σ2
1 + ...+ σ2

K

(2.18)

As a result, in order to ensure that the relative RMS is under a set threshold, the truncated
SVD allows for the imposition of the following:

σN+1

σ1
≤ εSVD (2.19)

2.3.2 Fourier transforms

Historically, it has been common in the field of engineering mathematics to seek new coor-
dinate systems into which equations may be transformed so as to simplify their calculation
and analysis. While researching the theory of heat, Joseph Fourier [41] invented in 1822 what
is now perhaps the most widely used coordinate system transformation. Fourier found that
sine and cosine functions of increasing frequency may be employed as orthogonal bases for the
heat equation, resulting in a revolution in analytical and computational mathematics. Fast
forward two centuries, an efficient method for performing the Fourier transform, known as the
fast Fourier transform (FFT), has played as important a role in moulding the contemporary
world as any other algorithm to date.

The method underlying the Fourier transforms has previously been addressed throughout
this chapter in the context of data analysis utilising the SVD matrix factorisation and will
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be examined further in this section. The Fourier analysis has a wide range of applications:
it may be used to solve partial differential equations (PDEs), i.e. to compute derivatives, to
denoise data or to compress audio or picture files. However, hereinafter, the focus will be
on the analysis of temporal data in order to extract additional information about the flow
dynamics using the Fourier transformation.

2.3.2.1 Fourier series

One of the most relevant results within Fourier’s work [41] was the representation of a peri-
odic and piece-wise smooth function f(x) in terms of an infinite sum of sines and cosines of
increasing frequency, i.e. the Fourier series. Particularly, if f(x) is an L-periodic function, it
can be rewritten as:

f(x) =
a0

2
+

∞∑
k=1

[
ak cos

(
2πkx

L

)
+ bk sin

(
2πkx

L

)]
(2.20)

where the coefficients ak and bk are given by:

ak =
2

L

∫ L

0
f(x) cos

(
2πkx

L

)
dx, (2.21)

bk =
2

L

∫ L

0
f(x) sin

(
2πkx

L

)
dx. (2.22)

Furthermore, since cosine and sine functions are being employed, one can rewrite the
previous equations in a more compact way using Euler’s equation eikx = cos (kx) + i sin (kx):

f(x) =

∞∑
k=−∞

cke
ikx, (2.23)

where the coefficient ck represents:

ck =
1

2L

∫ L

−L
f(x)e−ikπx/Ldx. (2.24)

2.3.2.2 Fourier transform

As stated previously, the Fourier series can only be applied to periodic functions repeating
itself out of the domain. In this case, the Fourier transform can be interpreted as a Fourier
series with a domain length approaching infinity, which allows for the use of functions without
repeating, i.e. with a domain corresponding to (−∞,∞). Therefore, the Fourier transform is
generalised to non-periodic functions. Using Equation 2.20 or 2.23, the Fourier transform can
be derived regarding f(x) as a collection of cosines and sines with a discrete set of frequencies.
Defining ωk = kπ/L and ∆ωk = π/L, if the domain length approaches to infinity L → ∞,
then ∆ω → 0:

f(x) = lim
∆ω→0

∞∑
k=−∞

∆ω

2π

∫ π/∆ω

−π/∆ω
f(ξ)eik∆ωξdξ eik∆ωx. (2.25)
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Once limits have been applied, the integral expression will become the Fourier transform
of the function f(x) and will be denoted henceforward as f̂(ω) ≡ F (f(x)).

f̂(ω) = F (f(x)) =

∫ ∞
−∞

f(x)e−iωxdx (2.26)

f(x) = F−1
(
f̂(ω)

)
=

1

2π

∫ ∞
−∞

f̂(ω)e−iωxdω (2.27)

Both integrals together are generally referred to as the Fourier transform pair and they
are helpful owing to a variety of properties, such as linearity, the derivative behaviour in the
Fourier transform domain, i.e. frequency, and convolution, which have been widely used, e.g.
to solve PDEs in an efficient and accurate manner for computation and data analysis. Due
to its importance, the derivative behaviour and the linearity will be briefly discussed here,
please consult Ref. [40] for a more detailed explanation of the Fourier transform.

Derivatives of functions. The derivative of a function can be transformed into the
Fourier domain using:

F
[
d

dx
f(x)

]
=

∫ ∞
−∞

f ′(x)e−iωxdx = iω

∫ ∞
−∞

f(x)e−iωxdx = iωF [f(x)] (2.28)

which is an extremely important property within the field of differential equations which
allows for easily transforming a PDE into an ODE.

Linearity. The Fourier transform is a merely linear operator which satisfies that:

F [αf(x) + βg(x)] = αF(f) + βF(g), (2.29)

F−1
[
αf̂(ω) + βĝ(ω)

]
= αF−1(f̂) + βF−1(ĝ). (2.30)

2.3.2.3 Discrete Fourier transform

Heretofore, both the Fourier series and the Fourier transform do only consider continuous
functions. Nevertheless, in real-world applications data is not continuous; necessitating the
development of an algorithm to perform the Fourier transform over a discrete vector of data:
the discrete Fourier transform (DFT), which is simply a discretised version of the Fourier
series for vector data f = [f1, f2, ..., fn]T acquired by discretising a given function f(x) at
regular intervals ∆t.

Based on the definition of the Fourier series and the aforementioned hypotheses, a simple
formulation of the discrete Fourier transform can be determined by:

f̂k =
n−1∑
j=0

fje
−i2πjk/n (2.31)

and the inverse discrete Fourier transform (iDFT) reduces to:
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fk =
1

n

n−1∑
j=0

f̂je
i2πjk/n. (2.32)

Therefore, defining a fundamental frequency ωn = e−2πi/n, the DFT algorithm can be
expressed in matrix form for a given number of points n.


f̂1

f̂2

f̂3
...
f̂n

 =


1 1 1 . . . 1
1 ωn ω2

n . . . ωn−1
n

1 ω2
n ω4

n . . . ω
2(n−1)
n

...
...

...
. . .

...
1 ωn−1

n ω
2(n−1)
n . . . ω

(n−1)2

n

 ·

f1

f2

f3
...
fn

 (2.33)

Note that the DFT can be regarded as a matrix F, corresponding to a Vandermonde ma-
trix fulfilling Fij = xj−1

i , that maps the temporal data points in f to the frequency domain f̂.
It is also worth noting that this transformation comprises the multiplication of a n×n matrix,
which yields to O

(
n2
)
operations. Therefore, when the number of samples is substantially

large, this algorithm is computationally inefficient. Interestingly, Cooley and Tukey devel-
oped one of the most revolutionary algorithms up to date, known as fast Fourier transform
(FFT), which, based on the DFT, reduces dramatically the number of operations involved
in its computation. The mathematics behind the method will be described in the following
section.

2.3.2.4 Fast Fourier transform

As discussed previously, the DFT rests on a linear operator whose multiplication results in
O
(
n2
)
operations. Conversely, the algorithm proposed by Cooley and Tukey, the fast Fourier

transform (FFT), only requires from O (n log (n)) operations, which represents a major de-
velopment in a myriad of applications, such as audio and image compression or satellite
communications.

For instance, to demonstrate the computational reduction, one can compare the number
of operations involved in DFT versus FFT in a real-world scenario. Assuming a 10-second
audio file, sampled at 50 kHz, the total number of samples will be n = 5 · 105. Computing
the DFT results in 2.5 · 1011 operations to be performed, whereas the FFT requires roughly
6.6 · 106. This amounts to a speed-up factor of over 35 000, a marvellous advantage of FFT
compared to DFT.

The underlying notion behind the FFT is that, if the amount of samples n is a power
of 2, the DFT may be executed considerably more effectively. Considering n = 1024 = 210,
the DFT algorithm can be expressed as a combination of lower order matrices for which the
number of operations is lower.

f̂ = F1024f =

[
I512 −D512

I512 −D512

] [
F512 0

0 F512

] [
feven
fodd

]
(2.34)

where feven correspond to the even index elements of the discrete sample data, fodd, to the
odd ones, I512 represents a 512× 512 identity matrix and D512, a diagonal matrix containing
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the characteristic frequency hierarchically powered from 0 to 511.

Indeed, the FFT relies on this assumption, dividing the whole computation process into
different operations of smaller 2 × 2 matrices computations, which is what dramatically re-
duces the number of operations. Please note that when dealing with sample points which are
not a power of 2, the resulting vector can be padded with zeros until the condition is met.

2.3.3 Proper orthogonal decomposition

Based on the previous SVD matrix decomposition, a method of modal-decomposition built
on the optimisation of the RMS error of the field variable under consideration is the proper
orthogonal decomposition (POD). It is one of the most extensively used approaches for the
analysis of fluid flows, with a significant number of variations. In POD applications to fluid
flows, the analysis begins with a vector field v (x, t) with its temporal mean removed. The
unsteady component can then be decomposed as follows:

v (x, t)− v̄ (x) =
∑
j

cjφj (x, t) , (2.35)

where cj and φj (x, t) are the expansion coefficients and modes, respectively. For a set of
basis functions φj (x, t), this equation describes the flow-field in terms of a Fourier series.
Additionally, modern innovations in the modal-decomposition field have aimed to further
separate space and time, requiring just spatial modes, i.e.

v (x, t)− v̄ (x) =
∑
j

cj (t)φj (x) . (2.36)

Note that the approach to be followed will strongly depend on the applicability of the
problem, i.e. the properties of the flow and the information one wishes to extract [38].

Two types of methods, the standard POD approach, based on the covariance of a vec-
tor state varying in time, and the snapshot approach, applied in a similar way to the SVD
method, can be used for identifying POD modes. Thereby, while POD is the technique that
provides the modal expansion, SVD might be thought of as one of the POD modes algorithms.
Both methods are based on the covariance matrix of the snapshot matrix C = XXT, which
is known to be symmetric and positive-definite by definition.

The traditional POD method seeks to solve the eigenvalue problem of the covariance
matrix, i.e.

Cφj = λjφj (2.37)

where the largest eigenvalues λj produce the optimum orthogonal modes φj , named as POD
modes, that best represent a given dynamic field. However, when analysing three-dimensional
turbulent flows, this technique is prohibitively computationally expensive since it aims at
solving the eigenvalue problem of the covariance matrix with dimensions corresponding to the
spatial degrees of freedom. Therefore, here we will focus on the SVD approach, which is also
known to be more robust against round-off errors [38].
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Having clarified this, recalling that the SVD can be applied to a rectangular matrix, a
given data matrix, structured as indicated in Equation 2.13, can be directly decomposed with
the SVD methodology as X = WΣTT, where the matricesW and T contain the left (spatial)
and right (temporal) singular vectors of X and Σ, the singular values. Please keep in mind
that the singular vectors in W and T are the same as the eigenvectors of AAT and ATA,
respectively, and the singular values are connected to the aforementioned eigenvalues through
σ2
j = λj . Hence, both the conventional and the SVD approaches are related so that the POD

might be seen as a consequence of the SVD of a snapshots matrix.

The relevance of POD relies on its optimality. POD modes are calculated in an optimal
manner regarding the `2 norm error. For instance, in fluid dynamics, the velocity field is gen-
erally used to determine the POD modes. In that case, the modes capture the kinetic energy
of the fluid flow in an efficient way. Besides, this technique is masterful in terms of minimising
not only the mean-square error between the signal and its truncated reconstruction but also
the number of modes required to properly describe the signal for a given threshold.

2.3.4 Higher-order dynamic mode decomposition

Aiming at identifying the spatio-temporal coherent patterns present in high-dimensional flow
data, Schmid [42] developed a tool based on proper orthogonal decomposition (POD) which
retrieved the spatially correlated structures with comparable behaviour in time. This method-
ology, known as dynamic mode decomposition (DMD), provides not only a reduction in dimen-
sion concerning a reduced set of modes which best reproduce the input flow-field energetically
but also a model for the interaction of those modes in time.

The method decomposes the vector field data v (x, t) in Fourier-type modes, i.e.

v (x, t) '
M∑
m=1

amum (x) e(δm+iωm)tk , (2.38)

for k = 1, ...,K, where um represents the DMD modes weighted by an amplitude am, ωm, their
associated frequencies and δm, their associated growth rates, which symbolise the temporal
growth or decay of the um modes in time.

Regarding the input data, it should be noted that in order to avoid aliasing2, the inter-
val between snapshots, ∆t, must be considerably smaller than the shorter period involved
in Equation 2.38, which demands that the number of snapshots be considerably larger than
the number of involved frequencies, i.e. K � N . Furthermore, in order to have sufficient
information about the dynamics, the sampled data time span, T , must be slightly larger than
the broader involved period [39]. This method also requires equidistant snapshots in time,
i.e. ∆t should be kept fixed. These assumptions are of utmost importance for accurately
understanding the flow’s underlying physics.

2Aliasing is a sampling phenomenon that turns separate signals indistinguishable. When the resolution is
too poor, it also refers to the difference between a signal reconstructed from samples and the original continuous
signal. In general, aliasing is determined by the signal’s sampling rate and frequency content. Therefore, if
aliasing is wanted to be avoided, according to the Nyquist sampling theorem, the sampling frequency should
be at least twice the highest frequency involved in the original signal.
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The standard DMD algorithm, introduced by Schmid [42], relies on the linear relationship
of two consecutive snapshots matrices using the linear Koopman operator R. To this end, a
general snapshot matrix Vk2

k1
can be defined for k1 < k2 so that its columns represent the

snapshots varying equidistantly between k1 and k2, namely,

Vk2
k1

= [vk1 , vk1+1, ..., vk2 ] (2.39)

Therefore, using the previous nomenclature, the standard DMD can be defined based on
the Koopman operator.

VK
2 ' RVK−1

1 (2.40)

where VK
2 and VK−1

1 represent here the second to last snapshots and the first to the penul-
timate snapshots of the data matrix, respectively. Recalling Equation 2.38, this equation
might be seen as the simplest equation exhibiting such behaviour [39]. The Koopman matrix
R, which is independent of k, contains the dynamical information of the system, ωm and
δm represent the computed eigenvalues and um (x) DMD modes can be obtained from the
eigenvectors of the matrix R. Therefore, combining both expressions, the general solution can
be approximated to

vk '
M∑
m=1

amumµ
k−1
m , (2.41)

for k = 1, ...,K, where um represent the eigenvectors of the Koopman matrix and µm, the
associated eigenvalues. This equation allows for a certain relationship of the growth rates and
frequencies appearing in Equation 2.38 with the eigenvalues:

δm + iωm =
1

∆t
logµm. (2.42)

However, this approach and various of its extended versions are restricted to those cases
in which the spatial and spectral complexities coincide, J = M , which may not generally be
the case. Recently, Le Clainche & Vega [39] extended the DMD method for the analysis of
various types of flows, e.g. turbulent, multi-scale or transitional flows and noisy experimental
data. Based on Takens’ delayed embedded theorem [39], the higher-order dynamic mode
decomposition (HODMD) relates d time-delayed snapshots using the higher-order Koopman
assumption as:

VK
d+1 ' R1VK−d

1 + R2V
K−(d−1)
2 + ...+ RdVK−1

d . (2.43)

This more general condition allows the HODMD algorithm for computing the expansion
in the following steps.

2.3.4.1 Step 1: dimension reduction

First of all, the singular value decomposition (SVD) technique is employed to reduce spatial
redundancy and filter out noise caused by numerical or experimental errors (see § 2.3.1). The
truncated SVD allows for the reduction of the original snapshot data into a series of linearly
independent vectors of dimension N (where N < J is the spatial complexity), based on a
certain tolerance εSVD.
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VK
1 'WΣTT (2.44)

where Σ includes the singular values σ1, ..., σN and WTW = TTT = I are N × N unitary
matrices. Note that the user must adjust the value of the parameter εSVD based on previous
information of the simulation or experimental data, e.g. if the noise level of the snapshots
is known in advance, then, εSVD may be set to be comparable to that level. Otherwise, the
singular-value distribution (σn vs. n) can be used to guess a confident value. Above all, this
parameter determines the number N of SVD retained modes, as described in Equation 2.19,
which is recalled here for the sake of clarity.

σN+1

σ1
≤ εSVD (2.45)

Therefore, the snapshot matrix can be defined, using Equation 2.44, as

VK
1 'WΣTT ≡WT̂

K
1 (2.46)

where T̂
K
1 = ΣTT represents the dimension-reduced snapshot matrix with dimensions N×K.

2.3.4.2 Step 2: the DMD-d algorithm

The higher-order Koopman assumption, defined in Equation 2.43, is now applied to the re-
duced snapshot matrix:

V̂
K
d+1 ' R̂1V̂

K−d
1 + R̂2V̂

K−(d−1)
2 + ...+ R̂dV̂

K−1
d (2.47)

where R̂k = WTRkW is used for k = 1, ..., d. The snapshot matrix, used in this equation, is
divided into d blocks, each storing K − d snapshots. The above equation may be stated in a
more generic form by incorporating the modified snapshot matrix Ṽ

k−d+1
1 and the modified

Koopman matrix R̃.

Ṽ
K−d+1
2 = R̃Ṽ

K−d
1 (2.48)

which can also be presented in matrix form for the sake of clarity:


V̂
K−d+1
2
...

V̂
K−1
d

V̂
K
d+1

 =


0 I 0 . . . 0 0
0 0 I . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . I 0

R̂1 R̂2 R̂3 . . . R̂d−1 R̂d

 ·


V̂
K−d
1

V̂
K−d+1
2
...

V̂
K−1
d

 (2.49)

This matrix is also known to present redundancies that must be removed by utilising the
truncated SVD algorithm with the aforementioned εSVD, varying the number of dimensions
to N ′.

σ̃N ′+1

σ̃1
< εSVD (2.50)

30



2.3. Modal-decomposition theory 2. Theoretical background

where N ′ > N is the number of SVD modes that have been retained. The conclusion that
N ′ > N is based on the partitioning of the input data matrix into snapshot blocks (high-order
Koopman assumption), which raises the spatial complexity of the problem from N to N ′. As a
result, the number of DMD modes is increased, filling in the gaps in information and ensuring
that the DMD algorithm performs well in those circumstances when the spatial complexity
J is substantially higher than the spatial complexity N (generally the case in the study of
three-dimensional turbulent flows). Applying the truncated SVD to the modified snapshot
matrix yields to

Ṽ
k−d+1
1 ' W̃Σ̃T̃

T ' W̃T̄k−d+1
1 (2.51)

where T̄k−d+1
1 = Σ̃T̃

T
, the matrix Σ̃ includes the singular values σ̃1, ..., σ̃N ′ and W̃

T
W̃ =

T̃
T
T̃ = I are N ′ ×N ′ unitary matrices.

The following step is to introduce the modified snapshot matrix definition of Equation
2.51 in the general expression for the high-order Koopman assumption of Equation 2.48 and
premultiply it by Ũ

T
. This combination yields to

T̄k−d+1
2 = R̄T̄k−d

1 . (2.52)

Here, a new Koopman matrix with dimensions N ′×N ′ has been introduced, which relates
to the modified snapshot matrix by R̄ ' W̃

T
R̃W̃. In order to obtain an expression for this

new Koopman matrix, the term T̄k−d
1 in Equation 2.52 is factorised with the SVDmethodology

T̄k−d
1 = UΛVT (2.53)

where UUT = UTU = VTV are N ′ × N ′ unitary matrices and Λ is the diagonal matrix
containing theN ′ singular values. Substituting now Equation 2.53 in 2.52, a general expression
for the Koopman matrix is obtained.

R̄ = T̄k−d+1
2 VΛ−1UT (2.54)

Consecutively, the eigenvalue problem can be solved for this matrix so that the eigenvalues
µm and the eigenvectors q̄m can be obtained, thus allowing for computing the reduced DMD
expansion:

v̂k =

M∑
m=1

âmûme
(δm+iωm)tk (2.55)

for k = 1, ..,K. The reduced DMD modes ûm are calculated using q̂m = Ũq̄m and the
frequencies ωm and the damping rates δm are calculated using Equation 2.42. Since the
dimension of the reduced snapshots v̂k is N (= M in the present case) and the eigenvectors
q̄m are linearly independent, each of these equations uniquely determines the value of the
amplitude am of each DMD mode. The whole system of equations can be solved using the
pseudoinverse, which minimises the least-squares-error of the approximation. Therefore, the
Equation 2.55 can be rewritten in matrix form as

La = b (2.56)
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where the matrix L, the unknown amplitudes vector a and the forcing term b can be defined
as

L =


Q

Q M
...

QMK−1

 , a =


a1

a2
...
aM

 , b =


v̂1

v̂2
...
v̂K

 (2.57)

Note that the matrix L has been defined accordingly to the matrix Q = [q1, ...,qM ]
formed by the eigenvectors and the diagonal matrix M containing the associated eigenvalues
µm. Applying the standard SVD without truncation to this matrix, the pseudoinverse can be
computed

L = Ũ1Σ̃Ũ
T
2 (2.58)

Combining Equations 2.56 and 2.58, a general expression for the amplitudes vector can be
obtained. Note that using the pseudoinverse allows for the minimisation of the least-squares-
error of the approximation, which gives a good picture of the effect of each DMD mode on
the overall flow dynamics.

a = Ũ2Σ̃
−1Ũ

T
1 b (2.59)

Finally, the spectral complexity M , which denotes the number of retained modes in the
Fourier-like expansion of Equation 2.38, can be controlled using a second tolerance εDMD, also
adjusted by the user.

aM+1

a1
≤ εDMD (2.60)

Last but not least, similarly to the computed error in the POD case, the error made in the
calculations is measured by the root mean square (RMS) error of the HODMD reconstruction
(Equation 2.38).

RMSE =

√√√√∑K
k=1

∥∥vk − vDMD
k

∥∥2∑K
k=1 ‖vk‖

2
(2.61)

2.3.4.3 General remarks on the HODMD algorithm

The HODMD algorithm presented here is based upon the high-order Koopman assumption,
see Equation 2.43, which yields to the standard DMD [42] when d = 1. Therefore, the
HODMD approach may be viewed as an extension to those cases in which the standard DMD
fails, i.e. in noisy experimental data or in cases where the spectral complexity M is consider-
ably larger than the spatial complexity N .

In both cases, even though the algorithm is built upon the Koopman linear equation, see
Equation 2.52, where the Koopman matrix R does not vary over time, i.e. it is an invariant
matrix in time containing the main information of the data dynamics, it can be applied over
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non-linear systems, with the only constraint being to model that dynamical system using
Fourier-like modes, as described in Equation 2.38.

The representation of the amplitude and frequency of such modes enables the identifica-
tion of the prominent spatio-temporal patterns present in the analysed data. This plot will
be referred to as DMD spectrum, and will be employed throughout the document to identify
the leading modes, namely, those with the greatest amplitude. Furthermore, if the dynamics
are real, then, they should also be invariant under um → ūm and ωm → −ωm. Therefore, the
a− ω diagram must be symmetric around ω = 0.

Please note that the primary goal of the present study is to identify the spatio-temporal
patterns driving the underlying physics of the flow inside urban contexts. The state-of-the-
techniques detailed here enable for gaining further understanding without the need for the
governing equations. The HODMD approach, on the other hand, may be used to create some
reduced-order models (ROMs) that are fully data-driven, which implies that prior knowledge
of the governing equations driving the dynamics is not required. These HODMD-based ROMs
are also marketed as an excellent tool for making temporal predictions based solely on avail-
able data.

Additionally, this method involves a large number of tunable parameters, which will be
now summarised in Table 2.1. Please note that the selection of d is not critical. One can
start using d = 1 (corresponding to the standard DMD) and then increase its value aiming at
minimising the relative RMS errors for the reduced snapshots. It is, however, important to
calibrate the parameters εSVD, εDMD and d before applying the method, in order to obtain as
robust and accurate as possible results. This will be further discussed in the following sections.

Parameter Description
T Sampled interval of the data, also known as timespan. It should be selected

so as to be slightly larger than the highest period involved in the dynamics.
∆t Temporal distance between snapshots. It should be selected to be consider-

ably smaller compared to the smallest period involved in the dynamics.
εSVD Threshold used in dimension-reduction steps, see Equations 2.45 and 2.50.

For noisy data, it should be selected comparable to that level and for tur-
bulent and transitory flows, it should be selected so as to remove the small-
amplitude modes (singular value distribution).

εDMD Threshold used for the mode amplitude truncation, see Equation 2.60. It is
normally selected to be slightly smaller than the relative RMS error in the
reduced snapshot reconstruction.

d Number of segments involved in the window shift process.

Table 2.1: Tunable parameters of the HODMD algorithm

2.3.5 HODMD for spatially multidimensional data

During § 2.3.4, the calculation of the DMD modes was performed considering a snapshot
matrix with dimensions J×K, where J , the spatial degrees of freedom of the given data, rep-
resented the number of mesh points along each direction (Nx×Ny ×Nz) and K, the number
of snapshots. However, when dealing with more than one space variable, this snapshot matrix
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can be substituted by a snapshot tensor, which may involve more than three indexes. Those
cases arise when the available data involves, for instance, more than one velocity component,
i.e. the velocity vector of the studied fluid flow is decomposed into its streamwise, normal
and spanwise components and discretised over a structured mesh labelled with (j1, j2, j3) for
the case of three-dimensional data.

The theory developed for the snapshot matrix applies to the preceding examples as well.
However, as noted by Le Clainche & Vega [39], keeping the dependency between snapshots
in more than one index may result in superior outcomes. Assuming that all of the velocity
components are introduced in the analysis, the correlation between the different snapshots
strengthens, because the real flow is treated as a combination of all of these components.

Therefore, one can rewrite Equation 2.38 in such a way that all the variables involved are
indexed:

vjk '
M∑
m=1

amujme
(δm+iωm)(k−1)∆t (2.62)

for k = 1, ...,K. This equation allows for an expansion in which j can be separated into
the different spatial dimensions of the data and l might represent the number of velocity
components.

vlj1j2j3k '
M∑
m=1

amu
l
j1j2j3ke

(δm+iωm)(k−1)∆t (2.63)

for k = 1, ...,K. Note that the approach of Equation 2.63 has a direct application to the
analysis of three-dimensional flows involving three velocity components yielding to Nj =
Nl = 3. Conversely, for the case of two-dimensional data, Nj reduces to 2.

vlj1j2k '
M∑
m=1

amu
l
j1j2ke

(δm+iωm)(k−1)∆t (2.64)

Once the shape of the input data has been defined, the procedure to apply the DMD
algorithm is analogous but incorporating the necessary tools to work with the snapshot ten-
sor. In that sense, the standard truncated SVD cannot be applied to reduce the dimension of
the data, see § 2.3.1, and it should be replaced by a higher-order SVD algorithm, i.e. trun-
cated HOSVD. Hereinafter, Equation 2.64 will be used to illustrate the dimension reduction
procedure.

vlj1j2k ≡ Tj1j2lk =

P1∑
p1=1

P2∑
p2=1

P3∑
p3=1

N∑
n=1

Sp1p2p3nW
x1
j1p1

Wx2
j2p2

Clp3Tnk (2.65)

where Sp1p2p3n represents a fourth-order tensor, the columns of the matrices Wx1 and Wx2 ,
the spatial modes, which in the present case are two, and T, the temporal mode. The reduc-
tion of § 2.3.4.1 is then applied to each of these modes and, finally, the DMD-d algorithm of
§ 2.3.4.2 is applied to the temporal modes tensor T.
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2.3.6 Iterative HODMD

It should be noted that the preceding sections’ algorithms can be used iteratively across the
reconstructed snapshots. This iterative method allows for the removal of noisy artefacts from
the data and the generation of highly accurate solutions. In other words, after calculating
the DMD modes, frequencies, growth rates and amplitudes, the snapshot matrix or tensor is
reconstructed using Equation 2.38. Thereupon, the method is applied to this reconstruction,
which comprises the main dynamics of the flow data with noise partially filtered. This proce-
dure is repeated until the number of retained modes coincides in two consecutive iterations.

2.3.7 Summary on modal-decomposition analyses

To conclude with the theoretical analysis of the modal-decomposition methods, some general
concepts will be now recovered and compared between methods, aiming at providing a general
overview of the strengths and weaknesses of each modal-decomposition method that will be
employed in further chapters to analyse the fluid simulation data.

Orthogonality First of all, the POD method is known to return an orthogonal set of basis
vectors with the smallest possible dimension [38]. This is especially useful for the creation
of a reduced-order model (ROM) of the flowfield data. On the other hand, DMD modes are
not orthogonal, which means that, if those modes are utilised for constructing a ROM, it
will contain extra terms owing to the non-zero spatial inner product terms between distinct
modes. Therefore, while constructing a ROM of the flow data, POD can be applied more
efficiently.

Hierarchy of modes In terms of mode hierarchy, whereas POD arranges them in the order
of energy contents, it is difficult to arrange DMD modes in the order of physical importance
since there is no straightforward method to rank eigenvalues. DMD modes are classified based
on their dynamical importance, i.e. their frequency and growth rate parameters. Because of
this dynamical behaviour, snapshots for POD analysis are not required to be equidistant in
time, as they are for DMD analysis. However, the high-order Koopman condition used in the
HODMD algorithm aims to address this problem of the standard DMD method.

Noisy data As far as noisy data is concerned, POD can be used to eliminate incoherent
noise from the data if its level is lower than the signal level. Hence, noise emerges in the
expansion as high-order modes that can be easily removed. On the other hand, because it
changes the dynamics of the system, the DMD method might be sensitive to noisy data [38].
However, due to the use of truncated SVD/HOSVD techniques, noise-resistant algorithms are
known to exist.

Linearity and governing equations Both approaches are purely data-driven and provide
a linear approximation of a non-linear dynamical system. In other words, prior knowledge of
the underlying dynamics of the system, i.e. the governing equations, is not required. Hence,
the nonlinear differential equations that must be solved in the domain of fluid flows (see § 2.1)
are not required for the analysis. Because of the inherent complexity of the aforementioned
equations, this is posed as the major benefit of the method.
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Problem implementation

The purpose of this chapter will be to conduct a general examination of the numerical im-
plementation of the mathematical tools discussed in the previous chapter. Indeed, it may be
viewed as an extension of the theoretical derivation, but in this case, the emphasis will be
on providing a comprehensive guide to the practical implementation of the post-processing
tools used for the analysis of fluid numerical simulations or experimental data as well as the
characterisation of the underlying spatio-temporal features.

The framework that follows will be based on the theory of modal decompositions that was
introduced in § 2.3 and it is assumed that the reader is already familiar with the principles
introduced there. The discussion will concentrate on the Matlab routines used to imple-
ment those mathematical tools, which are mostly based on the routines provided in the book
Higher-order Dynamic Mode Decomposition [39]. Please refer to the cited book for a more
in-depth explanation of the implementation described here.

3.1 Pre-processing tools

In § 2.2 the significance of each workflow stage within numerical simulations has been es-
tablished. Here, recalling the purpose of the current analysis, i.e. using post-processing
tools to gain a further physical understanding of the flow within urban environments, the
pre-processing tools, e.g. the numerical domain or the interpolation meshes, which have been
utilised to perform the numerical simulations, will be now briefly defined for the sake of clarity.

Note that this section will only cover those topics that are essential for clearly understand-
ing the following analysis. Please see Ref. [14] for a much more extensive explanation and
implementation of the numerical principles discussed here.

3.1.1 Numerical domain

Defining a numerical domain through which the flow may be simulated and analysed is one
of the first things to consider during the pre-processing step. As described in § 2.2, this
choice will have a substantial influence on subsequent phases, such as the meshing procedure
or simulation results. As a consequence, the computational domain must be specified with
special care in order to achieve the most precise and efficient solution feasible.
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Figure 3.1 depicts a geometrical representation of the xy and xz planes of the numerical
domain used for the simulations that will be examined throughout this study. This domain il-
lustrates an in-line arrangement of two wall-mounted obstacles of height h, streamwise length
wb and spanwise length b, around which the flow is intended to replicate that within urban
environments. The scheme described here is general, which means that it may be used to
analyse the many flow regimes that emerge from varying some of the given parameters. Re-
calling Oke’s classification of flow regimes [12], the most important criteria in determining
that regime is the streamwise separation of obstacles `, see Figure 1.3. Therefore, the com-
putational domain for the various case studies will be built depending on this parameter.

h

ℓ

3h

x0 /h = − 10 x3 /hx1/h

wb

z /h = − 2

z /h = 0

z /h = 2

b

x2 /h

Figure 3.1: Generic geometrical scheme of the numerical domain

The domain origin coincides with the starting point of the first obstacle, i.e. x1/h = 0,
allowing for the development of the simplified urban environment inside the domain’s positive
side. Furthermore, it is worth noting that all of the parameters given in Figure 3.1 are sized
using the height of the building-like obstacle, allowing for a rapid re-scaling of the computa-
tional domain for different cases by modifying a single parameter [14].

Another critical parameter in the domain specification is the separation between the two
obstacles, which has already been proven to be the most relevant in determining the ensuing
flow regime. In this case, while the first obstacle’s position will be set, the second will be
moved when various separation ratios are desired. In other words, the first obstacle will al-
ways be at the reference frame’s origin, and modifying the streamwise position of the second
obstacle will result in varied values of x2/h. As a result, when this parameter is modified,
the domain length in the streamwise direction changes, with the aim of accurately defining
the flow behaviour inside the wake for all possible variations. This leads to distinct values for
x3/h, which stands for the streamwise location of the domain’s final part in Figure 3.1. Please
keep in mind that the only direction changed is the streamwise one; therefore, the remainder
of the domain’s parameters will remain constant between case studies.

The distinctive parameters for the various flow regimes are depicted in Table 3.1. The
only variation between cases is the separation between obstacles ` and the domain length Lx,
both of which are in the streamwise direction. The remainder of the characteristics remain
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unchanged, as previously mentioned.

Parameter Description SF WI IR
h Obstacle height 1 1 1

wb Obstacle streamwise length 0.5 0.5 0.5

b Obstacle spanwise length 0.5 0.5 0.5

` Streamwise separation between obstacles 1 2 4

Lx Domain length in the streamwise direction 16 17 21

Ly Domain length in the heightwise direction 3 3 3

Lx Domain length in the spanwise direction 4 4 4

Table 3.1: Geometrical parameters defining the numerical domain of the three flow regimes
identified by Oke [12]: skimming flow (SF), wake interference (WI) and isolated roughness
(IR).

The numerical domain specified here is the one through which the simulation was exe-
cuted. However, for the spatio-temporal analysis, this domain comprises sections that are not
very significant and can be omitted when computational efficiency is a priority, e.g. the initial
part of the domain, which is defined by the development of the boundary layer. This will be
covered in further detail in the next sections.

3.1.2 Mesh design

The mesh issue is actually a separate topic with its own set of tools and investigations. The
objective of the work discussed here, however, is not to examine meshes, but rather to ex-
amine flows in urban contexts. Some brief comments will now be given in order to provide
the reader with sufficient comprehension of the implementation employed. Therefore, if more
information on the meshing procedure is required, please consider Refs. [14, 43]. According
to Torres [14], this pre-processing stage is both crucial and time-consuming since the mesh
resolution must be high enough to adequately represent the desired quantities, while keeping
computational cost under control. It should be noted that the simulation was a large-eddy
simulation (LES), which requires a high enough resolution to correctly solve the large turbu-
lent scales from the Kolgomorov scale. To that purpose, the mesh is created in partnership
with Parallel Works Inc. [44] and implemented in the high-order spectral code Nek5000 [13].

A spectral-element mesh is used in the simulation to discretise the computational domain
into different elements (subdomains). Besides, those elements are further divided into smaller
grid points using a Gauss-Lobatto-Legendre (GLL) quadrature of N = 8, guaranteeing that
the resolution is adequate. This is a key characteristic of the spectral-element method; the
computational domain is split into a set of elements that include a distribution of points
therein, which, in this case, corresponds to an eight-point GLL distribution, allowing for a
considerably finer mesh. On top of that, the mesh in the near-obstacle zone is refined in order
to precisely solve the flow behaviour within the boundary layer region. This is especially
crucial in the domain’s initial region, where the boundary layer develops and the transition
to turbulent flow is secured. Taking everything into consideration, the total number of mesh
elements was around 205,605, which amounts to a total of 105 million grid points [14].
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3.1.3 Boundary conditions

The final step in the pre-processing stage is to specify the boundary conditions (BC) that will
be used to solve mathematically the partial differential equations (PDEs) that govern fluid
flows. The implementation of the boundary conditions presented here is based on Torres’
work [14]. In this case, the boundary conditions that must be met will be defined according
to the domain’s various faces and they are summarised in Table 3.2.

BC Description
Inflow Dirichlet condition is applied to simulate the inflow conditions, u = f(x).

Specifically, a Blasius profile is imposed.
Outflow Extended stabilised version of the standard outflow condition, provided

by Dong et al. [45].
Open boundary Combination of an outflow and a Dirichlet condition: a zero-stress condi-

tion is applied in the normal direction, i.e. a standard outflow condition,
and a Dirichlet condition in the other two directions.

Wall The lower part of the domain and the obstacles are modelled with a
boundary condition of wall-type, i.e. u = 0.

Periodicity Periodic conditions are imposed in the spanwise boundaries in order to
minimise the influence on the studied region.

Table 3.2: Boundary conditions representing the physical behaviour of the flow simulation.
Extracted from Torres [14].

Beginning with the inflow conditions, a Dirichlet condition is applied at x/h = −10 so
that the incoming flow might well be characterised with a Blasius profile1. On the other hand,
Torres [14] used an enhanced version of the conventional outflow boundary condition, provided
by Dong et al. [45]. This approach enables the truncation length of the outflow boundary to
be maximised while causing no detrimental effects in the flow, resulting in a large reduction
in computational cost [14]. Closely related to the previous condition, at the upper part of
the domain, i.e. at y/h = 3, a combination of outflow and Dirichlet conditions is used to
simulate an open-air urban environment: a zero-stress condition is applied in the wall-normal
direction and a Dirichlet condition in the other two directions. This enables modelling of the
domain face as an open boundary. Finally, periodicity is applied in the spanwise direction
and the wall condition is applied to the domain’s bottom plane and the building-like obstacles.

3.2 Solution process

The following step is to solve the governing equations, using the prior setup configuration, in
order to generate the required flow fields over which the post-processing techniques will be ap-
plied. Recalling the aforementioned mesh parameters, the governing equations must be solved
over a total of 205,605 elements with an eight-GLL point distribution each, yielding about
105 million grid points. The laminar Blasius solution gives an inflow Reynolds number, which
is computed as a function of a unitary characteristic length, equivalent to Reδ∗ = 450 [14].
Despite the fact that the inflow Reynolds number is low for a turbulent flow simulation, the

1A Blasius boundary layer is a well-known concept in the science of laminar flows that describes a stable
two-dimensional laminar boundary layer created on a semi-infinite plate parallel to a continuous unidirectional
flow.
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tripping forces of the initial region of the domain enable turbulent conditions to be reached
around the zone of interest. As a result, the inflow Reynolds number can be significantly
reduced.

All simulations were run on the Cray XC40 machine "Beskow" at KTH Royal Institute of
Technology’s PDC Centre for High Performance Computing. This system contains a total of
67,456 cores and 156.4 TB of primary memory, from which up to 512 cores were employed for
the present project [14]. For a more detailed discussion of the numerical implementation of
the solution process in Nek5000, please refer to previous studies where the LES methodology
is used across complicated geometries, namely Refs. [46, 47, 48]. Also, for the calculation of
turbulence statistics and validation of the simulation data, consult Ref. [49].

3.3 Post-processing tools

Once the simulation has been carried out, the output data needs to be processed, which covers
from validating the obtained results to perform further analyses. Indeed, once the setup and
the solution processes have been finished, the post-processing stage assumes great importance
and it can take from simple and rapid steps to thorough analyses aiming at gaining a deep
understanding of the simulation results. The purpose of this section is to provide the reader
with a sufficient understanding of the mathematical tools employed at this stage.

3.3.1 Interpolation mesh

In § 3.1.2, the mesh design used for the subsequent calculations was briefly introduced. Here,
the design of the interpolation meshes, also included within the scope of Ref. [14], will be
defined for all the different simulation cases. First of all, it is worth noting the difference
between the standard and the interpolation meshes. While the first is the mesh employed
in the solution process, which implies that the particular governing equations are solved for
each grid point, the former is the one used to output and visualise the simulations results.
Therefore, although the resolution of the latter will not be as high as that of the calculation
mesh, it will be sufficient for the application of the different post-processing tools.

Despite their apparent differences, both types of meshes share some particular features.
The interpolation mesh, similarly to the initial mesh, has a progressive distribution in the
wall-normal direction, which means that, while the mesh elements are equally spaced in the
streamwise and spanwise directions, the elements in the wall-normal direction do not have
a linear distribution: they are more concentrated in the lower part of the domain, where
the majority of flow phenomena occur. All the same, it is also important to have this el-
ement density gradient in the y−direction in order to be able to adequately model the be-
haviour of the boundary layer close to the ground, which is especially relevant at the threshold
−10 ≤ x/h ≤ −1. A representation of the interpolation mesh at the plane z/h = 0 is shown
in Figure 3.2. This illustration shows how the number of points increases as one approaches
the bottom horizontal plane and how the resolution drops as one gets away from the ground.

Furthermore, because the spatio-temporal patterns relevant for the current analysis occur
within the region of the buildings, the region of interest can be significantly reduced, lowering
the computational cost associated with data processing, which, as will be seen later, is criti-

40



3.3. Post-processing tools 3. Problem implementation

-1 0 1 2 3 4 5 6 7

0

0.5

1

1.5

2

Figure 3.2: Two-dimensional representation of the interpolation mesh at z/h = 0, prov-
ing the resolution in y−direction. The flow regime presented here corresponds to the wake
interference (WI) case, where `/h = 2. The interpolation mesh for the rest of the cases is
analogous.

cal during the analysis. For that reason, recalling the hole numerical domain represented in
Figure 3.1, the interpolation meshes begin at x/h = −1 and conclude at the domain’s final
section, which may vary from case to case, as shown in Table 3.1. As a result of this length
difference in the streamwise direction, each case has a different number of mesh cells. The
characteristics of each one are summarised in Table 3.3.

Parameter Description SF WI IR
∆x/h Streamwise length of the reduced domain 6 8 12

∆y/h Heightwise length of the reduced domain 2 2 2

∆z/h Spanwise length of the reduced domain 3 3 3

Nx Number of points in the streamwise direction 100 355 515

Ny Number of points in the heightwise direction 400 400 400

Nz Number of points in the spanwise direction 200 200 200

NT Total number of points (in millions) 8 28.4 41.2

Table 3.3: Interpolation mesh parameters for the different flow regimes

To finish off, it is worth recalling that the simulation procedure of the described cases is
not included within the scope of the present project. Indeed, the results of those simulations
will be the ones to be analysed using the post-processing tools defined in § 2.3. The previous
sections aimed at providing the reader with a general overview of the simulations to be anal-
ysed; for more information on the simulations, refer to Torres et al. [11] and Torres’ thesis [14].

3.3.2 Modal decompositions

After having briefly examined all simulation procedures preceding the generation of flow field
results, this section aims to provide a practical description of the implementation of the various
modal decompositions, which were previously exposed in a theoretical manner in § 2.3. From
the singular value decomposition (SVD) to the higher-order dynamic mode decomposition
(HODMD), the various algorithms will be thoroughly outlined down to the implementation
level.

41



3.3. Post-processing tools 3. Problem implementation

3.3.2.1 Snapshot matrix

As stated in § 2.3.1, the very first step during a modal-decomposition analysis is to build a
considerably large dataset containing the evolution of a given flow field variable in time. Using
the nomenclature of Equation 2.13, this dataset is commonly known as snapshot matrix and
contains the temporal information, i.e. snapshots, stacked in columns, each of them repre-
senting the value of the given variable at different space locations, given by the interpolation
mesh. Recalling the total number of mesh elements for the different flow regimes of Table 3.3,
it is trite to think that the size of the associated files will be extremely high. Therefore, it
will be very important to keep track of the machine limitations and the computational cost
in order to build the most appropriate dataset.

From this point on, the concept of dataset will be referred to as the output results of the
given flow variables. This data has been obtained and provided by the PDC Centre for High
Performance Computing at KTH Royal Institute of Technology. The output files are format-
ted so that each variable u is saved in a struct-type file, where u{:} represents the different
snapshots with an inner shape equivalent to a vector shaped as (Nx ×Ny ×Nz). Therefore,
these datasets can be reshaped so that the dependence on each spatial and temporal dimen-
sion is maintained, i.e. u (x, y, z, t). In such a way, considering a given matrix A(x, y, z, t)
containing the spatial and temporal information of a given flow field variable, only a couple
of Matlab code lines are needed to transform it into the snapshot-matrix shape.

The temporal parameters of the datasets used for all the flow regimes are depicted in
Table 3.4. Here, it should be introduced the concept of convective time units. This a common
principle within the analysis of DNS simulations and it can be defined as the ratio of some
characteristic length and a velocity. In the present case, time is non-dimensionalised using
the free-stream velocity U∞ and the height of the obstacles, h. All the introduced parameters
are expressed in terms of convective time units.

Parameter Description SF WI IR
Ti Initial simulation time 38.65 80.40 83.30

Tf Final simulation time 117.38 144.60 145.60

∆T Total simulation timespan 78.73 64.20 62.30

∆t Time interval between snapshots 0.35 0.3 0.7

Nf Number of computed fields 225 215 90

Table 3.4: Temporal parameters of the datasets used for the modal-decomposition analysis.

Note that in § 2.3.5 the concept of snapshot tensor was introduced. With this approach,
the dependence of the field variable on the different spatial and temporal dimensions is main-
tained, i.e. Tensor(v, x, y, z, t), where v states for the different velocity components, x, y and
z, for the spatial dimensions and t, for the temporal dimension. Therefore, for all those multi-
dimensional algorithms, the data should be arranged using the latter approach.

3.3.2.2 Singular value decomposition

The essential theoretical principles and mathematical derivation of the singular value decom-
position were introduced in § 2.3.1. This matrix factorisation method’s ubiquity stems from
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its ease of use and numerous applications in data compression. The goal of this section is to
show how simple it is to implement this method, which serves as the foundation for subse-
quent analysis.

There are several variants of the basic SVD factorisation that rely on the truncation of the
singular value matrix based on various criteria. For instance, one may decide to retain only
the first K singular values, such that K may be thought of as the approximate rank of a given
snapshot matrix A. In this scenario, this version satisfies the criteria σn/σ1 ≥ 10−15 and is
given the name compact SVD. On the other hand, truncation may be used to choose just
those modes whose reconstructed matrix has a relative RMS less than a specified threshold
ε, see Equation 2.18, i.e.

√
σ2
N+1 + ...+ σ2

K

σ2
1 + ...+ σ2

K

≤ εSVD. (3.1)

This is commonly known as truncated SVD. Since this algorithm aims to establish an
RMS threshold by means of the parameter ε, it will be the one to be employed in further
methods, also see § 2.3.4. For that reason, the computational implementation of the algorithm
is now presented.

function [] = TruncSVD (A, epsilon )

% Standard SVD calculation of the matrix A
[U1 ,S1 ,V1] = svd(A,’econ ’);
sv = diag(S1);

% Imposed restriction of retained singular values
ret = 0;
MM = length (sv);
av = norm(sv ,2);
for mm = 1:MM -1;

if norm(sv(mm +1: MM) ,2)/av > epsilon
ret = ret +1;

end
end
ret = min(ret ,MM);
sv = sv (1: ret);

% Only keep the required modes
S = diag(sv);
U = U1 (: ,1: ret);
V = V1 (: ,1: ret);

% Calculation of the truncated version of matrix A
Aapprox = U*S*V’;

end

Note that this function computes the left and right modes, represented by U and V , re-
spectively, as well as the singular values S and the reconstructed matrix from a given snapshot
matrix A within a set tolerance ε. From the computed standard SVD of matrix A, Equa-
tion 3.1 is applied to extract the required singular values. Thereupon, once the appropriate
singular values are identified, those modifications should be transferred to the left and right
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modes, allowing for the computation of the truncated approximation of the original matrix. In
contrast to the preceding methods, this one has the advantage of ensuring that the preserved
modes yield a reconstruction matrix with a relative RMS lower than a certain threshold, in-
dicated by ε.

Toy model for the SVD analysis To demonstrate the various versions of the singular
value decomposition, let us consider the following toy model described by the function:

f(x, y) = 10x sin (10x+ 20y) log(5 + y2 + 3x2)− 50(x− 1)2y3/2 + exy (3.2)

for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Note that the complexity of this function prevents an analytic
solution in the region of interest from being obtained. As a result, using the many variations
of the SVD method, one may approximate this function as a collection of modes arranged
hierarchically by their contribution to the system. Given that property of the SVD, repre-
senting the distribution of the singular values allows for the identification of those modes that
are energetically more important and the establishment of certain thresholds to represent the
function in a much more efficient manner, i.e. with a certain relative RMS error.
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Figure 3.3: Results of SVD applied to a 100 × 100 matrix for the toy model function in
(3.2). (a) Singular value distribution using the economy SVD. The dashed line represents the
threshold value of the compact SVD. (b) Energy contribution (bar) and cumulative energy
(line) for the latent space r = 6.

Figure 3.3 is introduced to demonstrate the minor variations between the SVD versions.
When the economic SVD is applied to a given matrix A(xi, yi) that contains the toy model
data, a total of min (Nx, Ny) modes are retained. In this particular case, Nx = Ny = 100, in-
dicating that the total number of modes is 100. This distribution clearly shows how additional
modes (r > 15) have a virtually zero-machine contribution to the system (σm/σ1 ≈ 10−15). At
this stage, the compact SVD outperforms because it only keeps modes that fulfil the criterion
σm/σ1 > 10−15, see § 3.3.2.2, with a comparable RMS error. These findings are also shown in
Table 3.5, where the relative error for the economy and compact methods is almost similar.
Figure 3.3 also depicts a black dashed line indicating the compact threshold, implying that
by simply using r = 15 < min (Nx, Ny) modes, one may achieve results that are reasonably
comparable to those produced by maintaining the whole set of modes. Note that it is possible
for all modes to make a substantial contribution to the system and, as a consequence, the
outcomes of the aforementioned procedures to match. This is usually the case in turbulent
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Tolerance Modes Relative RMS
Economy SVD − 100 9.4× 10−16

Compact SVD 10−15 15 9.4× 10−16

10−10 10 1.7× 10−9

Truncated SVD 10−5 6 5.8× 10−6

10−3 4 2.1× 10−4

Table 3.5: Results of SVD applied to the toy model function in (3.2). The Table shows the
number of modes retained with each of the SVD versions and the relative root mean square
error of the reconstructed signal.

flows, where smaller scales have a stronger relationship to larger scales than in the current
toy model example.

Furthermore, when employing the truncated SVD, a specific parameter, εSVD, may be
used to specify which modes are retained. In fact, with εSVD = 10−3 and 10−5, the tech-
nique preserves 4 and 6 modes with RMS errors of 2.1 × 10−4 and 5.8 × 10−6, respectively.
In both situations, the RMS error is less than the εSVD value chosen. Besides, the gaps in
the distribution of the modes are worth noticing since they describe modes with substantial
fluctuations in energy. In such a way, Figure 3.3 also depicts the energy decay for the first
six modes. These two graphs serve as the foundation for efficient mode truncation because,
by retaining only the first three modes (notice the gap between the third and fourth modes),
the reconstructed field variable may reflect nearly the whole energy of the system.

3.3.2.3 Dynamic mode decomposition

The purpose of this section is to provide sufficient information about the practicalities of
the main algorithm to use throughout subsequent analysis phases: the dynamic mode de-
composition, namely, the DMD-d algorithm. To that aim, in § 2.3.4, it has been introduced
the theoretical concepts and derivation associated with the method. Note that the present
section will not be focused on the theoretical perspective of the algorithm, but rather on
its implementation and practical applications. It is worth recalling that Le Clainche and
Vega [39] developed this higher-order method and presented it in their book Higher-order Dy-
namic Mode Decomposition. For further details on the method, please refer to the cited book.

Table 3.6 summarises the workflow phases for the DMD-d method, based on the theo-
retical derivation. First and foremost, the necessary data must be built or reshaped into a
snapshot matrix (or tensor depending on the input format of the algorithm to work with). §
3.3.2.1 contains information on how it was implemented in this particular case. Thereupon,
this matrix is dimension-reduced using the truncated SVD, with the goal of removing redun-
dancy or noise from the data using a specific threshold, as described in § 3.3.2.2, resulting in a
reduced snapshot matrix. At this stage, the high-order Koopman condition for the analy-
sis of d-time delayed snapshots is also applied, resulting in an enlarged-reduced snapshot
matrix, which serves as the foundation for the study of data where the spectral complexity
M is significantly greater than the spatial complexity N2.

2Recall that the spectral complexity M denotes the number of terms in Equation 2.38 and the spatial
complexity denotes the rank of the system of modes in the aforementioned expansion.
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Workflow Description
Step 0 Build snapshot matrix or tensor.
Step 1 First dimension reduction using the truncated SVD algorithm, see

§ 3.3.2.2, resulting in a reduced snapshot matrix.
Over this matrix, the high-order Koopman condition is applied to produce
the enlarged-reduced Koopman matrix.

Step 2 Second dimension reduction. Truncated SVD is applied over the enlarge-
reduced Koopman matrix, yielding to the reduced-enlarged-reduced Koopman
matrix.

Step 3 Standard SVD is applied to perform the pseudoinverse over the Koopman
condition and obtain a general expression for the Koopman matrix.
Computation of DMD modes, growth rates and frequencies solving the eigen-
value problem of the Koopman matrix.

Step 4 Computation of the amplitude of the modes, truncating them according to
the parameter εDMD.

Table 3.6: Summary of the workflow stages for the DMD-d algorithm.

Continuing along this line of thought, a second dimension reduction is performed to this
enlarged-reduced snapshot matrix, yielding a reduced-enlarged-reduced snapshot ma-
trix. Finally, the eigenvalue problem over the Koopman matrix is solved to calculate the DMD
modes and their associated amplitudes, which may be modified by the parameter εDMD. This
procedure is addressed in workflow steps 3 and 4. It is important to note that the user must
select the tolerances εSVD and εDMD, based on the problem objective, and the value of d, which
has a major influence on the consequent relative error of the reconstructed field variable.

Toy model for the modified Koopman analysis The modified Koopman analysis pro-
vides an extensive range of applications compared to the standard procedure. To illustrate
the reader with its various properties, a given toy model function will be used, i.e.

f(t) =
2

2− cos (ω1t) cos (ω2t)
. (3.3)

This function can also be rewritten using the Taylor expansion as

f(t) =
2

2− w(t)
= 1 +

w(t)

2
+

[
w(t)

2

]2

+

[
w(t)

2

]3
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where

w(t) = cos (ω1t) cos (ω2t) =

(
eiω1t + e−iω1t

) (
eiω2t + e−iω2t

)
4

. (3.5)

Therefore, in a very simple way, the toy model function can be represented in terms
of Equation 2.38. This means that the fundamental frequencies of the toy model are com-
mensurable and the combination of the different values that ω2 ± ω1 may acquire yield to
a quasi-periodic behaviour, where ω2 ± ω1 are the fundamental frequencies with their corre-
sponding harmonics. For the case studied here, ω1 = 1 and ω2 =

√
2.

Accordingly, the function represents the temporal variation of one single point, meaning
that the spatial complexity of the toy model is 1, whereas the spectral complexity (number of
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Figure 3.4: Results of DMD-d applied to 5000 snapshots with constant time interval ∆t =
8 × 10−3 for the toy model in (3.3). Black, blue and red colours correspond to the solution
obtained using d = 1500, 2000 and 2250. (a) Frequency versus amplitude of the DMD modes.
(b) Reconstruction of the (blue) original toy model signal using (red) DMD−2000 and (black)
DMD−1.

Modes Relative error ω2 − ω1 ω2 + ω1 2ω1 2 (ω2−ω1)

d = 1500 148 1.0× 10−2 0.4141 2.4142 2.0002 0.8398
d = 1750 148 3.6× 10−4 0.4142 2.4142 1.9999 0.8281
d = 2000 77 1.3× 10−4 0.4142 2.4142 2.0000 0.8280
d = 2250 82 1.6× 10−4 0.4142 2.4142 1.9999 0.8284
d = 2300 80 1.6× 10−4 0.4142 2.4142 1.9999 0.8279

Table 3.7: Results of the DMD-d used to approximate the toy model in (3.3). The data
consist of 5000 snapshots with a constant time interval ∆t = 8 × 10−3. The Table shows
the number of modes retained in the calculations, the relative root mean square error of the
reconstructed signal and the values of the fundamental frequencies compared to the exact
solutions ω2 − ω1 w 0.4142, ω2 + ω1 w 2.4142, 2ω1 = 2 and 2 (ω2 − ω1) w 0.8284.

frequencies) can be approximated with the number of retained modes, which may vary with
the different values of d. Due to this huge difference in complexity, the standard algorithm
cannot cope with the required accuracy and the HODMD should be used instead. As it will
be proved later on, the results are quite novel and promising when compared to the standard
DMD.

Using this toy model function, one could create a certain data set satisfying different crite-
ria. For instance, the set of data employed in this section is composed of K = 5000 snapshots
equidistant in time, ∆t = 8 × 10−3. Applying the HODMD algorithm with the tolerances
εSVD = 10−12 and εDMD = 10−5, the method approximates the original signal with a relative
RMS error of ∼ 10−4 and after having performed a calibration process of the user-controlled
parameters, i.e. the tolerances and d. The number of retained modes depends on the prior
parameters but it should be noted that the modes leading the dynamical behaviour can be
approximated to 13, resulting from the frequencies ω1 ± ω2, 2ω1, 2ω2, 2 (ω1 ± ω2) and the
zero-frequency mode, ω0, which are in good agreement with the exact ones. These results
are depicted in Table 3.7, where the number of modes, the relative RMS error of the recon-
structed signal and the values of the fundamental frequencies can be appreciated. Note that
the method is able to capture the dominant frequencies of the model at least for the interval
of 1500 ≤ d ≤ 2300. This is also shown in the graphical representation of the frequency and
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Figure 3.5: Results of DMD-d applied to 5000 snapshots with constant time interval ∆t =
8×10−3 for the toy model in (3.3) with a 10% of random noise. (a) Original toy model signal
(black dashed line), original signal with noise (red) and DMD-d reconstruction (blue) using
ω0 and ω2 ± ω1. (b) Zoomed-in version of panel (a).

ω2 − ω1 Relative error ω2 + ω1 Relative error
d = 1500 0.4131 2.6× 10−3 2.4097 2.0× 10−3

d = 1750 0.4137 1.2× 10−3 2.4142 1.4× 10−5

d = 2000 0.4143 1.5× 10−4 2.4139 1.3× 10−4

d = 2250 0.4146 8.5× 10−4 2.4139 1.3× 10−4

d = 2300 0.4144 5.6× 10−4 2.4139 1.3× 10−4

Table 3.8: Results of the DMD-d used to approximate the toy model in (3.3) with a 10% of
random noise. The Table shows the values of the fundamental frequencies compared to the
exact solutions ω2 − ω1 w 0.4142 and ω2 + ω1 w 2.4142 in terms of relative error.

amplitude of the modes of Figure 3.4 and for the different values of d. Note as well that the
relative error varies according to the parameter d, which is the main reason for performing
a calibration process prior to the final analysis. In this case, for d = 2000, the relative error
performed during the calculations is minimum, yielding a reconstructed signal approximately
equal to the original one, see Figure 3.4 (right). The results are then compared with the re-
constructed signal provided by the DMD−1 algorithm, which only recognises one mode with
a negative damping rate and null frequency.

The preceding analysis has been replicated adding a 10% of random and normally dis-
tributed noise to the toy model function. The results shown in Table 3.8 show that the method
is able to capture the underlying phenomena, predicting with small relative errors (∼ 10−4)
the fundamental frequencies of the model. Due to the noise level introduced, the tolerances
εSVD and εDMD should be increased in order to remove the low-amplitude modes associated
with the noisy data. This also influences the identification of lower amplitude modes of the
original signal, but, in general terms, the agreement is considerably large and the method is
able to capture the underlying motion. Figure 3.5 shows a comparison between the original
signal with and without noise and the reconstruction using DMD-d and the fundamental fre-
quencies ω2 ± ω1 and ω0. Particularly, it should be noted that only by retaining 5 modes,
the method is able to reproduce the original signal with a relative RMS error of 8 × 10−2.
Recall that the input signal had added random noise, making the results even more promising.
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3.3.2.4 General conclusions on modal decompositions

Both techniques have been applied to additional toy model functions with clean and noisy
signals and the results are similar to those presented in this section. Overall, the HODMD
method used here provides promising results and is capable of capturing complex phenomena
within noisy experimental data in a much more efficient manner than the traditional DMD.
HODMD can (i) accurately compute the leading modes, i.e. higher-amplitude modes, and
(ii) approximate the frequencies of the lower-amplitude modes. This is particularly beneficial
for the study of turbulent and multi-scale flows, where the underlying physics is known to be
complicated and include a large number of flow scales, as in the case of the current project.
The application of such algorithms to data from fluid numerical simulations will be covered
in the following chapters.
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4

Results and discussion

The previous chapters and sections have dealt with the theoretical concepts and computa-
tional implementation of the algorithms that allow for an extensive analysis of the different
types of datasets. Particularly, the advantages of HODMD compared to the standard DMD
algorithm have been theoretically deduced and proved using a toy model example. The aim
of this chapter is to present the results of such techniques applied over three different flow
regimes within urban environments, consisting of two building-like wall-mounted obstacles
with varying separation ratios; recall Oke’s classification [12] on flow regimes.

In § 3.1.1, the numerical domain of the final simulation and the different parameters vary-
ing with the flow regime have been defined. Also, in § 3.3.1, a quick review of the interpolation
meshes has been conducted. Note that these two concepts are of great importance since they
define the data, i.e. the snapshot matrix, over which the subsequent analyses will be per-
formed, see § 3.3.2.1.

First, an analysis over the time-averaged velocity fields will be performed by means of
different flow pattern identification methods. Then, different decomposition methods will be
applied to a set of instantaneous velocity fields with the objective of extracting the main flow
structures driving the dynamics within urban environments.

4.1 Time-averaged velocity fields

The following lines will be dedicated to the analysis of the time-averaged velocity fields at
different cut planes for the different flow regimes. These quantities are the result of an av-
eraging process over a considerable timespan for each case study, see Ref. [14], and they are
interpolated over the above-described meshes. The resulting files are then processed using
Matlab.

Prior to discussing the results, it is important to emphasise the importance of some the-
oretical ideas that will serve as the foundation for accurate interpretation of the subsequent
figures. Stull [50] defined two boundary layer areas in the context of meteorology: the zone
above the mean height of the blocks, known as the wake layer, and the region underneath,
denoted by the urban canopy.
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Figure 4.1: Time-averaged streamwise velocity field U normalised with U∞ at plane z/h = 0
for (top) skimming-flow, (middle) wake-interference and (bottom) isolated-roughness flow
regimes [12].

From Figures 4.1 to 4.3, the time-averaged quantities for all the velocity components
are depicted. The non-dimensional streamwise mean velocity component for the three flow
regimes is illustrated in Figure 4.1. To begin with, a substantial wall-normal velocity gradient
∂U/∂z is noticed at the roof level (0.8 < z/h < 1.2) for all flow regimes due to flow separa-
tion occurring across the upper part of the upstream block. Above this layer, a high-speed
freestream velocity profile (z/h > 1.3) is visible at the upper-roof level, and closer to the wall,
i.e. at z/h < 0.8, a nearly zero streamwise mean velocity component with slightly negative
values is detected in the intermediate part of the street. Due to the interaction of the flow
above the canopy as the separation between the obstacles increases, the flow in between can
be separated into two regions: a low streamwise velocity area close to the leeward side of
the upstream block and a higher-speed region towards the windward side of the downstream
block. As a result, a general assessment reveals that the mean streamwise velocity profiles
depicted in Figure 4.1 are obviously impacted by the separation of the obstacles.

These results are in good agreement with the conclusions of Oke [12] and they are posed as
the first numerical simulations to characterise the same flow structures. In the upper part of
Figure 4.1, the flow above the canopy cannot penetrate the area between the obstacles and it is
then characterised by large and negative velocity values. This is the basis of the skimming-flow
regime, where the flow in the intermediate section of the obstacles is trapped and spinning,
due to the low separation. Slightly dispelling the position of the downstream obstacle yields
to the wake-interference regime, where the flow above the canopy scarcely interacts with the
area between both obstacles. This interaction is only noticeable on the windward side of the
downstream obstacle with larger streamwise velocities and, therefore, this regime might be
seen as a mixture of the other flow cases. Finally, decreasing the height-to-separation ratio to
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Figure 4.2: Time-averaged wall-normal velocity field V normalised with U∞ at plane z/h = 0
for (top) skimming-flow, (middle) wake-interference and (bottom) isolated-roughness flow
regimes [12].

h/` = 0.25 results in the isolated-roughness regime, in which the flow around the obstacles is
seen to behave in a much more independent way than in the previous cases. Therefore, the
flow structures around both obstacles will be expected to be similar. On the other hand, it is
also worth noticing that, for all cases, the leeward side of the downstream obstacle presents a
region of large negative velocity values smaller but similar to the one generated downstream
of the upstream obstacle. This is due to the absence of an obstacle immediately after the
analysed one, which is the case for the upstream obstacle. Note as well that the shear layer
over the first obstacle defines the start and height of the aforementioned region and, in the
case of the second obstacle, increasing the separation translates into more noticeable shear
layers, since it is less affected by the other obstacle.

It is of great importance characterising and understanding these flow features since they
lead to different types of vortical structures such as the well-known arch vortex or the horse-
shoe vortex. Particularly, the regions with large and negative streamwise velocity values
(blue) will be associated with regions of rotating flows with a strong relation to vortical struc-
tures. For instance, a horseshoe vortex located for all flow regimes almost at y/h = 0 on the
windward side of the upstream obstacle appears as well around the downstream obstacle for
the isolated-roughness regime, thus confirming the independence of the flow structures in this
latter case.

Figure 4.2 illustrates the time-averaged wall-normal velocity component at the plane
z/h = 0. Contrary to the streamwise component, the wall-normal velocity does not ex-
perience significant changes within the region between both obstacles. The inflow profile is
imposed such that the unperturbed flow has no wall-normal component, i.e. it is fully hori-
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Figure 4.3: Time-averaged spanwise velocity field W normalised with U∞ at plane y/h =
0.25 for (top) skimming-flow, (middle) wake-interference and (bottom) isolated-roughness flow
regimes [12].

zontal. This is the reason why the streamwise velocity field had near-maximum levels prior
to the perturbed regions, see Figure 4.1, and near-zero wall-normal velocity values. Notwith-
standing the above, the flow experiences a high-velocity region at the top edge of the upstream
obstacle, as a result of the impact of the flow over the edge and the shear layer formed over
the upper part. Furthermore, this region is also appreciated to a lesser degree on the down-
stream obstacle of the isolated-roughness regime. On the other hand, it is also true that the
wall-normal velocity is negative on the region of the wake, meaning that the flow tends to
be directed towards the ground. Once the fluid encounters with the first obstacle, the flow is
abruptly deviated to the upper part of the domain and it then rejoins the lower part on the
wake.

To conclude the analysis over the time-averaged velocity components, Figure 4.3 depicts
the mean spanwise velocity at y/h = 0.25 plane. In this case, the analysis is analogous to
the previous one, since the inflow conditions do not impose any type of perturbation in the
spanwise direction. Therefore, the unperturbed regions of the flow would have a near-zero
spanwise velocity, as happened with the wall-normal component. In this regard, some pos-
itive and negative values are seen on both lateral sides of the first obstacle and for all flow
regimes, due to the impact of the flow over the edges of the obstacles, which deviates the flow
towards the outer parts of the domain. Since the flow has been seen to be reattached when
reaching the downstream obstacle in the isolated-roughness regime, also see Figure 4.1, the
same spanwise structures are appreciated on this obstacle. Note that, while the streamwise
and wall-normal velocities would be symmetric over z/h = 0 if represented in a constant−y
plane, the spanwise component is known to be anti-symmetric.
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(a) Skimming flow (b) Wake interference (c) Isolated roughness

Figure 4.4: Main vortical structures formed around two wall-mounted obstacles with differ-
ent separation ratios: (a) h/` = 1, (b) 0.5 and (c) 0.25, visualised by means of the streamlines
flow patterns. Note the arch vortex on the leeward side and the horseshoe vortex around the
obstacles.

In short, the streamwise component is seen to be the one driving the behaviour within
the region enclosed by both obstacles and the wall-normal and spanwise velocities, the ones
responsible for the flow behaviour when reaching the obstacles. This means that the time-
averaged streamwise component restricts the interaction of the surrounding flow with the one
within the canopy, which yields to the appearance of vortical structures within these areas.
Recall that the inflow conditions have been imposed in the streamwise direction, thus making
the prior conclusions coherent. Note that one possible variation of the inflow conditions is
to introduce some angle of incidence (AOI) such that the flow is not fully in the streamwise
direction, as Monnier et al. [32] performed.

Finally, depicting the streamline flow patterns over the time-averaged fields enables the
characterisation of the key vortical features present in such flowfield. This is exactly what
Hunt et al. [27] did throughout their experimental studies, and they discovered four differ-
ent types of vortices, as shown in Figure 1.6. The objective is to identify the most relevant
structures using data from a fluid numerical simulation, which has considerably higher tempo-
ral and spatial resolution than a wind-tunnel experiment. Having identified these structures,
a more comprehensive analysis of their formation may be carried out in the following sections.

Laying our eyes on Figure 4.4, it is obvious to see an arc-shaped vortical structure on the
leeward side of both obstacles. This flow pattern is similar to the well-known arch vortex,
which is a two-leg structure found in flows through wall-mounted obstacles. In the skimming-
flow regime, its legs are slightly displaced towards the windward side of the downstream
obstacle, spanning the gap between the obstacles; in the other two cases, an arch vortex
appears immediately after the obstacle and is fully straight. Notice that the downstream
arch vortex is not as strong as the upstream one, owing to the flow exchanging momentum
with the initial building. On the other hand, the appearance of this structure corresponds
with the negative streamwise velocity area on the leeward side of the obstacles (see Figure 4.1).

It also is worth observing the horseshoe vortex created around the upstream obstacle
and, exceptionally, around the downstream obstacle in the isolated roughness case. This
validates the idea that the flow reattached when it reached the second obstacle in the IR case.
This region appears as well as a recirculation bubble on the windward bottom side of the
obstacles for the contours shown in Figures 4.1 and 4.2 on the symmetry plane. As a final
comment, this figure also illustrates the different symmetries of the velocity components: the
streamwise and wall-normal components are seen to be necessarily symmetric whereas the
spanwise component, anti-symmetric. This is obviously dependent on the inflow conditions.
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In conclusion, the analysis performed on the preceding figures have allowed for the char-
acterisation of the major flow patterns present in the time-averaged fields. These results have
been proved to be in good agreement with prior experimental analyses, which may be used to
validate the various fluid numerical simulations used here. Furthermore, not only have these
flow patterns been characterised, but also their development as the distance between the ob-
stacles has been varied. This leads to a wide range of possibilities for building placement
within an urban environment.

4.2 Proper orthogonal decomposition

Once the flow structures present in the time-averaged fields have been identified, the purpose
of the following sections is to perform an analysis over the instantaneous velocity fields aiming
at characterising the main mechanisms driving the flow dynamics. In such a fashion, the first
step is to perform a POD analysis over the datasets of the different flow regimes.

Thereafter, the snapshot matrices over which the POD will be applied should be built
based on the description of § 3.3.2.1. In this case, since the number of fields is limited due
to computational reasons, convergence can be increased by imposing symmetry over the data
to be analysed. To that end, let us consider the initial snapshot of the original data as A1

and its flipped version as Af1. Then, the final snapshot matrix over which SVD is applied
would be [A1, . . . , An, Af1, . . . , Afn], where the number of columns will be twice the number
of snapshots of the original dataset. In this regard, the spatial complexity of the problem is
increased while symmetry is imposed for the resulting POD modes.

0 50 100 150 200 250 300 350 400 450
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Figure 4.5: Singular-value distribution normalised with its maximum value σ1 of the POD
modes corresponding to the streamwise velocity of the skimming-flow regime and symmetry
imposed.

Let us begin the POD analysis with the skimming-flow regime to illustrate the potential
of the proper orthogonal decomposition while gaining further insight into the physics of this
case study. First of all, a general examination of the singular-value distribution should be
conducted to conclude those modes energetically more important. In Figure 4.5 this distribu-
tion is depicted for the streamwise velocity of the skimming-flow regime. Despite the gaps in
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Figure 4.6: POD analysis of the streamwise velocity at y/h = 0.25 for the skimming-flow
regime (h/` = 1). Shown are the instantaneous and time-averaged fields and the associated
four most dominant POD modes.

energy between the first set of singular values, all modes are seen to have a significant contri-
bution to the final system, meaning that no clear truncation region is appreciated. However,
it should be noticed that the objective behind the present is to gain further understanding of
the flow dynamics rather than focusing on the reconstruction error (reduced-order models).
Therefore, keeping this in mind, the following figures will be dedicated to the analysis of the
spatial modes energetically more relevant.

Figure 4.6 shows the classical POD decomposition of the streamwise velocity fields. The
whole set of instantaneous fields can be decomposed in their time-averaged quantity and a
set of orthogonal POD modes. By inspecting the flowfield, one can observe the formation of
an unsteady feature similar to a von Kármán vortex street. Therefore, thanks to this modal
decomposition, one could extract those flow features, with their corresponding energy contri-
bution to the system, responsible for the unsteady flow motion. Particularly, the two modes
with the largest contribution to the system exhibit some vortex shedding flow patterns close
to those of a von Kármán vortex street. However, due to the presence of the second obsta-
cle, these anti-symmetric structures are modified such that their location slightly varies. In
this case, the first mode structures are located towards the windward side of the downstream
obstacle and the wake and the second one is dominated by structures on the leeward side of
both obstacles. Indeed, just retaining these two modes, the reconstructed flowfield presents
an RMS error of ε = 3.32% compared to the reference one, which enhances the contribution
of the prior modes to the system. Besides, recalling the position of the arch vortex and the
findings of Monnier et al. [32] during their experimental studies, one could associate these flow
features to the formation or the destruction of already known vortical structures. This is the
case for the third mode, which exhibits certain symmetric structures in the region between
the obstacles, where the arch vortex is located. Hence, this mode could be closely related
to the formation of such vortical structure. Furthermore, together with the fourth mode, it
shows much more prominent structures on the wake than the previous ones. This will also be
the main course of action of subsequent analyses.

Despite not being the main purpose of the study, it is also interesting to conduct a general
analysis over the reconstructed flowfield when different latent space dimensions are employed.
Note that, when increasing this dimension, the number of higher-order modes retained will
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Figure 4.7: Reconstructed streamwise velocity at y/h = 0.25 from POD at different latent
space dimensions. The corresponding relative `2-norm of errors (ε) are listed in brackets.

consequently rise, thus lowering the final RMS error up to a 0.87% at the latent space di-
mension of 100 POD modes, see Figure 4.7. These results are promising for the creation of
reduced-order models, since only retaining a few modes, the method is able to reconstruct the
original field with a relatively low error.

However, it should be noted that the POD algorithm, while efficiently computed in the `2
sense, is based on determining the linear correlation between the different snapshots. Some
state-of-the-art deep learning algorithms outperform in this regard due to the use of non-
linear activation functions. Fukami et al. [51] developed a hierarchical autoencoder based on
a convolutional neural network for nonlinear mode decomposition of fluid field data. Using
this, the method can reconstruct the original flowfield data in a much more efficient manner
and with a fewer number of modes. Taking this into consideration, if a reduced-order model
of the original data is desired, these cutting-edge machine learning algorithms should also be
explored. For the time being, this chapter will concentrate on the physics of these types of
flows rather than the optimisation of the relative error incurred during computations and the
construction of reduced-order models.

Once the potential and applications of such techniques applied within the context of urban
flows for the skimming-flow regime have been introduced, the same analysis will be extended
and compared to the other flow cases. Analogously, the first step is to generally examine the
distribution of the singular values with the goal of identifying energy gaps that make some
modes more important than others in an energetic sense. This distribution is depicted in
Figure 4.8 for the three flow regimes. It should be noted that the number of retained modes is
strictly dependent on the number of snapshots of the input data, which in the current study
varies between cases, see § 3.3.2.1. Although the ideal scenario for properly comparing them
would be to have the same exact number of modes for all cases, a general inspection reveals
a gap between the second and third modes for all regimes, which is especially noticeable in
the wake interference and isolated roughness cases. As a result, the first two modes will be
known to contain the more relevant information of the flowfield data.

On the other hand, despite the fact that the number of retained modes in the wake-
interference regime is smaller than that of the skimming-flow regime, the latter singular values
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(r > 210) show a clear decay, implying that additional higher-order modes would not intro-
duce more relevant information. This is not the case in the other two cases, where adding
more snapshots would almost certainly introduce some relevant data into the analysis.

Closely related to the preceding point, each velocity must make a unique contribution to
the system. The energy of the most dominant POD mode for the wall-normal component, in
particular, represents approximately 45% of the maximum energy value of the other velocity
components. This means that the influence of the wall-normal velocity fluctuations is less
important to the overall system than the influence of the other velocity components. This is
consistent with the findings of Monnier et al. [32], who discovered that for a zero-incidence
angle, the streamwise and spanwise fluctuating components are more significant than the wall-
normal component. On the basis of the above, the wall-normal component will be omitted
from the analysis and only the streamwise and spanwise components will be further studied
for the three flow regimes.
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Figure 4.8: Singular-value distribution normalised with its maximum value σ1 of the POD
modes corresponding to the hole set of velocity components (streamwise, wall-normal and
spanwise) of the (black) skimming-flow, (blue) wake-interference and (red) isolated-roughness
regime. The number of retained modes coincides with the number of columns of the snapshot
matrix, i.e. 225, 215 and 90, respectively.

Starting with the streamwise velocity field, Figure 4.9 depicts the orthogonal POD basis
for the modes of the three flow regimes. First of all, regarding the first two modes for all the
flow regimes, it could be noted their apparent similarity, dominated by fluctuating regions
on both sides of the blocks, mainly due to the interaction of the wake region with the shear
layer on both sides. These regions nearly match with the high turbulence kinetic energy
(TKE) regions of the streamwise component identified by Monnier et al. [32] for an array of
building-like blocks. However, the main difference among regimes relies on the position of the
secondary structures, which are associated with the downstream block. For instance, while
these fluctuating regions span the zone in between the obstacles for the skimming flow and
the wake interference cases, in the isolated roughness, they are only located on the immediate
leeward side of the upstream block. In such a fashion, it can be concluded that increasing the
separation of the obstacles does not yield to more fluctuating regions, at least for the more
energetic modes, as it occurs in a vortex shedding case.

58



4.2. Proper orthogonal decomposition 4. Results and discussion

(a) Skimming flow

(b) Wake interference

(c) Isolated roughness

Figure 4.9: POD orthogonal basis of the streamwise velocity fields at y/h = 0.25 for the
different flow regimes.

As will be detailed in § 4.3, the structures observed in the first two modes are remarkably
similar to those associated with the high-frequency arch-breaking modes. Higher-order modes
are more focused on the wake as well as the creation of these vortical structures. Particularly,
for all cases, the third and fourth modes are clearly impacted by certain major fluctuating
areas on the wake. This pattern is quite similar to that of the time-averaged field, therefore
it is reasonable to assume that these modes are low-frequency.

After this number of modes, the correlation begins to diverge among the many cases,
each with its own set of properties. In the isolated-roughness regime, modes 5, 6, 7 and 10
present flow structures around the downstream obstacle independently, which supports the
independent behaviour of the flow around both obstacles, being the only regime providing
such isolated structures. The difference between the skimming-flow and the wake-interference
regimes, on the other hand, is based on the intersection of the fluctuating areas in the wake-
interference regime owing to the increasing spacing between the obstacles, as shown in modes
4 and 6. Higher-order modes in the case of skimming flow are shown to be harmonics of the
dominant ones.

In terms of the spanwise component, Figure 4.10 depicts the set of POD orthogonal modes
for all flow regimes. On the basis of the singular value distribution of Figure 4.8, being the
most dominant, the first two modes will be firstly analysed. In this situation, unlike the
streamwise component scenario, increasing the distance between the obstacles increases the
number of spanwise fluctuations in that region. These zones are only due to the interplay of
lateral flow within the canopy, which tends to shatter the arch vortex formed on the leeward
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(a) Skimming flow

(b) Wake interference

(c) Isolated roughness

Figure 4.10: POD orthogonal basis of the spanwise velocity fields at y/h = 0.25 for the
different flow regimes.

side of the upstream obstacle. Moving on to the modes that promote the creation of such
vortical structures, it is worth noting that modes 6 and 7 are not as uniform as the previous
ones; the two separated and symmetric areas correspond to the formation of each of the arch
vortex’s legs.

The spanwise velocity component, like the streamwise one, reveals some isolated features
exclusively for the downstream obstacle of the isolated-roughness regime. As a result of the
flow’s loss of energy after reaching the first obstacle, the method is able to discern the flow
structures around the first and second obstacles.

4.2.1 Temporal analysis using FFT

§ 2.3.1 introduced the concept of temporal coefficients in the context of POD-mode analysis.
The goal of this section is to conduct a quantitative analysis of the temporal coefficients as-
sociated with the POD spatial modes by characterising their dominant frequencies. The fast
Fourier transform (FFT) technique will be used to generate, from this temporal data, the
power spectrum revealing the prominent frequencies of each mode.

Let us begin with the analysis of the temporal coefficients of the first two POD modes
for the three flow regimes, which have already been shown to be dominant, recall § 4.2. This
temporal distribution is shown in Figure 4.11 by two phase-shifted but frequency-similar sig-
nals. As a result, the dominating POD modes’ frequencies are predicted to be comparable,
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Figure 4.11: Temporal coefficients a1 and a2 of the first two POD modes for the (top)
skimming-flow, (middle) wake-interference and (bottom) isolated-roughness regime.
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Figure 4.12: Power spectrum of FFT scaled with the Strouhal number St and applied to
the temporal coefficients of the POD modes: (red) skimming-flow, (blue) wake-interference
and (black) isolated-roughness regime. Peaks show the dominant frequencies associated with
each POD mode.

implying that the flow dynamics at that frequency will be a mixture of these POD modes. It
is also worth noting that the isolated-roughness regime is the closest to a periodic evolution,
with prominent frequencies that can be easily recovered using the FFT technique. In the
other cases, some spurious phenomena seem to have been added, thus introducing secondary
frequencies into the spectrum.

Keeping this in mind, Figure 4.12 depicts the power spectrum for the first ten POD modes
of all flow regimes. At first glance, it is clear that the technique can distinguish between low-
and high-frequency modes within the range [0, 2]. To begin with, the isolated-roughness regime
yields clearer conclusions, and the frequencies are observed to match in all three cases, at least
for the initial modes. Confirming the previous claims, the two initial modes are dominated
by a peak frequency in the [1 − 1.2] range. Furthermore, modes 3 − 6 are seen to be of low
frequency, supporting the hypothesis expressed in § 4.2 that they are intimately connected to
the creation of significant vortical structures such as the arch vortex. Higher-order modes can
be thought of as a mixture of the preceding ones and if even higher-order modes (r > 10) were
studied, certain high-frequency phenomena would be captured due to the smaller turbulent
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flow scales.

The results presented hitherto have provided further insight into the physics of the flow
within urban environments, being able to differentiate between low- and high-frequency phe-
nomena, which are closely related to the formation or destruction of the time-averaged vortical
structures. The following sections will deal with a similar modal-decomposition analysis that
also considers the dynamical behaviour of the system. In such a fashion, it would be possible
to characterise the flow dynamics based on the frequency of each mode.

4.3 Higher-order dynamic mode decomposition

4.3.1 Initial calibration and parameter selection

Because of the large number of frequencies and spatio-temporal structures present in turbu-
lent flows, identifying flow patterns is challenging. As with the toy model in § 3.3.2.3, it is
critical to test the robustness of the results. The modified Koopman operator employed in
the HODMD algorithm gives a solution fulfilled by all sub-groups of data (snapshots) simul-
taneously evaluated and capable of capturing large-scale and large-amplitude features from
the highly varied frequencies seen in the flow [52]. Therefore, the DMD-d algorithm is used
for this purpose with varied tolerances and d parameter values.

Figure 4.13 shows the frequency versus amplitude of the different modes computed using
DMD-d with a variety of parameters for the three flow regimes. Although this technique
can be used to analyse datasets with non-equidistant in time snapshots, the intricacy of the
flow described here would make modelling much more challenging. As a result, the DMD-d
analysis can be conducted considerably more efficiently if the data specifications in Table 3.4
are used. The huge number of modes calculated with each variation necessitates the use of
well-established criteria to identify the most robust modes that best characterise the entire
system. In this case, the largest-amplitude and lowest-frequency mode will possess the more
relevant information about the system and the classification will be made based on this dis-
tinction. As highlighted in Figure 4.13, these modes are known to form clusters throughout
the spectrum. The amplitude and frequency of the selected modes will be, therefore, the
average value of the collection of modes. The number of preserved modes is also a function
of the tolerances employed, which were ε = 10−3 and 10−4 in this study. Similarly, the other
user-controlled parameter, d, changes depending on the number of snapshots to be analysed.
The skimming-flow and wake-interference regimes, with K = 225 and 215 snapshots, respec-
tively, were studied with d = 10, 20 and 30, whilst the 90 snapshots of the isolated roughness
case were studied with d = 5, 10 and 15. Note that, as mentioned during the theoretical
derivation of the Koopman operator (see § 2.3.4), as the number of snapshots is reduced, the
value of d, which represents the characteristic sliding window process, must also decrease in
the same proportion [52].

Furthermore, the relative error made in the calculations remains fenced in the set of tol-
erances used. The goal of this study, however, is to identify the largest-amplitude modes in
order to provide a broad description of the fundamental patterns driving the flow, rather than
to build any accurate reduced-order models based on the physical knowledge of the flow. As
a result, the relative error will not be examined further in this study.
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Figure 4.13: DMD-d calibration. Amplitude scaled with its maximum value (âm = am/a0)
versus frequency ωm computed with different tolerances for (top) skimming flow, (middle)
wake interference and (bottom) isolated roughness. Squares represent εSVD = εDMD = 10−3

and triangles, 10−4. Red, blue and black correspond to d = 10, 20, 30 for SF (K = 225
snapshots) and WI (K = 215 snapshots) and d = 5, 10 for IR (K = 90 snapshots).

It is worth noting that when the distance between the obstacles increases, the flow com-
plexity decreases, allowing a smaller number of snapshots to be used to estimate the same flow
behaviour. Note as well that, despite the fact that the number of snapshots in the isolated-
roughness regime is smaller, the time span covered is of the same order of magnitude, as the
time step between snapshots has been increased. This is especially essential when dealing
with computationally expensive data, but one should bear in mind that in order to accu-
rately represent smaller turbulent scales, a larger number of snapshots with a shorter time
step should be utilised instead. However, in general, the HODMD provides a fair balance of
computational cost and accuracy.

4.3.2 Global temporal modes

Table 4.1 summarises the spectrum of temporal DMD modes found during the calibration
method described in the preceding section. Note that just two modes have been identified:
a low-frequency mode and a high-frequency mode, the latter of which relates to the largest-
amplitude mode (apart from the zero-frequency mode). Due to their significant interaction
with notable vortical structures such as the arch vortex, these modes will be referred to as
arch-generator and -breakermodes, respectively. Their amplitude and frequency values are
found to be close throughout the various regimes; however, increasing the distance between the
obstacles slightly reduces the frequency of the arch-breaker mode. This analysis was previously
carried out in a similar manner utilising POD, which decomposed the flow into low and high-
frequency behaviour, which is responsible for the formation and destruction of various flow
patterns. The high-frequency mode B, like in the POD case, reveals more information about
the breaking vortex phenomenon and is found to be the dominating process. This technique
also finds several other modes, which may be thought of as harmonics of the preceding ones
and will be discussed briefly in the next sections.
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Mode SF WI IR

Arch-generator (G) ωm 0.11 0.13 0.12
âm 0.0062 0.018 0.014

Arch breaker (B) ωm 1.22 1.05 1.11
âm 0.021 0.086 0.072

Table 4.1: Summary of the frequencies and amplitudes of the DMD modes shown in Figure
4.13. From top to bottom, the modes are ordered from lower to higher frequency.

To begin with, one should recall that the HODMD method decomposes the flow data
into a collection of Fourier-like complex conjugate modes associated with the frequencies ωm
and −ωm, which can have both real and imaginary contributions. These real and imaginary
components can be thought of as an oscillation that visits a certain state as time passes. This
is why it is important to choose which parts of the study to examine without jeopardising the
whole analysis. To illustrate this, Figure 4.14 depicts a two-dimensional representation of the
real, imaginary, and absolute sections of the three velocity components for the arch-breaker
mode. The goal is to compare the flow structures in each of the parts and create some criteria
for future analyses. While the latter case emphasises the fluctuating areas of the flow, imply-
ing that the surroundings have no impact, the absolute part may be regarded as a mixture
of the preceding components, highlighting both the unperturbed and disturbed regions in a
more general fashion. In this approach, the real part of the modes will be investigated fur-
ther, while keeping in mind that the other components may also bring some physical meaning.
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Figure 4.14: Two-dimensional representation at y/h = 0.25 of the arch-breaker mode (ωm =
1.22) for the skimming-flow regime. Contours are scaled with their maximum value. From
top to bottom, the real, imaginary and absolute parts of the modes are represented. From
left to right, the streamwise, wall-normal and spanwise components are shown.

Using Figure 4.14 as a starting point for the analysis of the DMD modes, namely the
arch-breaker mode of the skimming-flow regime, it is possible to observe how these structures
relate to the first two POD modes of Figures 4.9 and 4.10. Particularly, both the real and
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imaginary parts of the streamwise component show some fluctuating regions towards both
windward lateral sides of the downstream obstacle. Besides, the spanwise component is domi-
nated by a high-velocity fluctuation just in front of the downstream obstacle and on the wake.
No clear conclusions can be extracted from the wall-normal component, since it does not have
a significant contribution in the constant−y plane selected. This supports the idea stated
during § 4.2, where the singular values associated with the wall-normal velocity component at
the same cut plane did not contribute to the system as much as the other velocity components.
However, the following three-dimensional representations will allow for the characterisation
of the flow structures in the wall-normal direction.

4.3.2.1 Arch-generator modes

Figures 4.15 and 4.16 show a three-dimensional view of the main DMD modes presented in
Table 4.1 as a function of the separation ratio between the obstacles, aiming at providing a
general overview of the main flow structures related to each mode. Figure 4.15 corresponds
to the arch-generator low-frequency mode, whereas the arch-breaker high-frequency mode is
depicted in Figure 4.16. In the first case, the arch-generator mode presents some characteristic
three-dimensional structures which relate to the formation of the arch and horseshoe vortices
in a low-frequency fashion.

Streamwise velocity Firstly, regarding the velocity in the streamwise direction, see Figure
4.15 (left), a dome-like structure prevails in the intermediate section of the obstacles. Increas-
ing the distance between the obstacles does not result in a reallocation of such flow pattern,
which remains in the same place throughout all flow regimes. This indicates that when the
flow reaches this region in the WI and IR cases, it interacts with the canopy, which does not
happen in the SF regime, where the flow in between the obstacles remains stuck, i.e. the
spherical structure covers the same region as the separated zone between the obstacles. Note
as well that the dome feature in the IR case is complemented by a structure on the wake
which extends through both lateral sides up to the leeward side of the downstream obstacle.
These conclusions were already extracted from the analysis of the time-averaged fields in the
streamwise direction at the symmetry plane z/h = 0, where the increased separation between
the buildings yielded a higher interaction of the flow within this zone.

Wall-normal velocity Although not presenting relevant flow structures in the constant−y
planes previously studied, the wall-normal velocity component of mode G exhibits a three-
dimensional pattern on the upper windward side of the upstream obstacle, which is shared
among all the flow regimes. At this location, the flow experiences a high-velocity region
due to the impact of the flow over the edge and the shear layer over the upper part of the
obstacle. This region is then followed by another fluctuating part in the wall-normal direction
in between the obstacles. Albeit to a lesser extent, the downstream obstacle in the IR case
also presents a similar flow structure.

Spanwise velocity Finally, similar to the wall-normal component, the flow encounters a
high-spanwise velocity gradient over this zone owing to the effect of the flow over the edges of
the first obstacle, which tends to deviate the flow towards the outside regions of the domain.
Furthermore, the second obstacle has comparable structures on its windward lateral edges as
a result of the flow reattachment that occurs in the IR case. On the other hand, due to the
slight interaction of the flow in the spanwise direction within this region, certain fluctuating
zones develop in between the obstacles. This characteristic distinguishes this generating mode
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(a) Skimming flow

(b) Wake interference

(c) Isolated roughness

Figure 4.15: Three-dimensional iso-surface of the (left) streamwise, (middle) wall-normal
and (right) spanwise velocities of the arch-generator mode shown in Table 4.1. In each panel,
the flow moves from left to right. The following velocity iso-values are employed: aUmax
(blue) and b Umin (red), where (left) a = 0.6 and b = 0.7, (middle) a = 0.6 and b = 0.5 and
(right) a = b = 0.5.

from the breaker modes, which exhibit substantial spanwise variations between the obstacles
and are thus responsible for the destruction of the vortical structures in this region, as seen
in the following figures.

In general, it can be concluded that the flow features that dominate in the arch-generator
mode are located close to the first obstacle rather than on the wake, emphasising the idea of
being a formation-type mode.

4.3.2.2 Arch-breaker modes

On the other hand, the three-dimensional structures of the arch-breaker mode are illustrated
in Figure 4.16. In this case, it is clear that the importance of this mode is reliant on the wake
rather than on the first obstacle, as occurred in the latter case. For all of the flow regimes
investigated here, the spanwise fluctuating areas are shown to occupy the whole intermediate
zone between the obstacles. As a result, increasing the distance between the obstacles leads
to a greater number of fluctuation areas in the spanwise direction, see Figure 4.16 (right): in
the IR case, up to three alternating structures may be seen, whereas only one can be seen in
the SF regime. Conversely, the streamwise component of the present mode does not exhibit
the same behaviour; the structures on the leeward side of the upstream obstacle remain un-
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(a) Skimming flow

(b) Wake interference

(c) Isolated roughness

Figure 4.16: Three-dimensional iso-surface of the (left) streamwise, (middle) wall-normal
and (right) spanwise velocities of the arch-breaker mode shown in Table 4.1. In each panel,
the flow moves from left to right. The following velocity iso-values are employed: aUmax
(blue) and b Umin (red), where a = b = 0.4 for all panels.

changed for all three flow regimes. However, another oscillating zone arises connected to the
downstream obstacle, the position of which is modified among the several regimes. Finally, in
terms of velocity in the wall-normal direction, as the separation increases, the flow interacts
inside the canopy with considerably more significance, resulting in larger flow characteristics
for both WI and IR.

Apart from being quite similar to those of the first two POD modes, these structures
are congruent with the results of Monnier et al. [32], with strong streamwise fluctuations
on both lateral sides and a high turbulent spanwise region near to the windward side of the
downstream obstacle. The arch vortex is known to exist between these regions, and these
structures will be related to the process of breaking rather than creation, owing to its location
on the wake.

Finally, the three-dimensional structures of the major DMD modes can be compared to
those of the various modes identified by the algorithm. Specifically, the following lines will
be dedicated to the classification of the modes in arch-generator or -breaker modes based on
resemblance to the prior patterns. Only those modes satisfying the criteria |fmi − fmj | < ε
have been included, where fmi and fmj represent the frequency value in two different test
cases and ε is a tolerance set by the user. This allows for selecting the more robust modes
identified by HODMD using a varied set of parameters.
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(a) Skimming flow

(b) Wake interference

(c) Isolated roughness

Figure 4.17: DMD modes of the streamwise velocity fields at y/h = 0.25 for the different
flow regimes.

(a) Skimming flow

(b) Wake interference

(c) Isolated roughness

Figure 4.18: DMD modes of the spanwise velocity fields at y/h = 0.25 for the different flow
regimes.

Figures 4.17 and 4.18 show a contour representation of the DMD modes presented in Fig-
ure 4.1. By general inspection, one could see the structures previously discussed for the main
HODMD modes, which are highlighted in bold. From these structures, a limit frequency can
be established such that greater frequency values result in flow patterns more focused on the
wake and thus being of breaking-type.

For the SF case, the mode ωSF = 0.37 still presents some flow trapped in between the ob-
stacles and high spanwise fluctuations on the lateral edges of the first obstacle. Even though
the flow in this region seems to be modified by the slight interaction with the surrounding flow,
this mode can be thought of as a vortex-production mode with a different production mech-
anism. Further modes (ωSF > 0.85) are seen to be breaker modes since both the streamwise
and spanwise components share the same flow features as the main one (ωSF = 1.22). Note as
well that higher-frequency modes present smaller turbulent scales. This highlights the associ-
ation of low-frequency modes with large flow scales (dominant patterns) and high-frequency
modes with smaller turbulent structures.
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A similar conclusion can be extracted from the IR regime, where the threshold value is
set for the mode with frequency ωIR = 0.57, which presents some flow structures around the
upstream obstacle combined with particular features on the wake. Hence, this mode may be
regarded as a transitory mode between the arch-generator and -breaker modes.

Finally, regarding the WI case, apart from the arch-generator mode (ωWI = 0.13), the
lowest-frequency mode (ωWI = 0.45) exhibits a flow pattern similar to that of the arch-
breaker mode. Therefore, in this situation, the threshold value should be set lower than this
frequency, resulting in all modes fulfilling ωWI > 0.45 becoming breaking-type.

4.3.3 Streamline flow patterns

In a similar way to the representation of the main time-averaged vortical structures shown in
§ 4.1, the dominant flow patterns of the above-described modes can be elucidated by means
of streamlines. To that aim, using this visualisation technique, one could clearly relate the
previous three-dimensional structures to the arch-generating and -breaking processes.

Figures 4.19 and 4.20 depict the streamline flow patterns of the arch-generator and -breaker
modes for the wake-interference regime. The results for the other two regimes are analogous.
By general inspection, one can clearly appreciate the two types of modes. On the one hand, in
Figure 4.19, the arch-generator mode is shown. Note the apparent resemblance with the arch
vortex depicted in Figure 4.4. It can be confirmed, therefore, that this low-frequency mode is
responsible for the process of generation of the arch vortex, which, in this case, presents one
of its legs displaced. This means that this mode induces a symmetry-breaking process over
the vortical structures formed in between the buildings.

Figure 4.19: Main flow patterns of the arch-generator mode (ω = 0.13) visualised by means
of streamlines for the wake-interference regime. The flow moves from left to right. Note the
arch-shaped structure on the leeward side of the upstream obstacle.

On the contrary, the flow patterns present in the arch-breaker mode are illustrated in Fig-
ure 4.20. When it comes to the arch-breaking process, some helicoidal flow patterns appear
in the region in between the obstacles, owing to the increased correlation in the spanwise
direction for this type of mode. Indeed, the location of these structures perfectly matches
with the gaps in between the velocity fluctuating regions in the spanwise direction (see Figure
4.16). Therefore, since these fluctuating regions define the location of such helicoidal pat-
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Figure 4.20: Main flow patterns of the arch-breaker mode (ω = 1.05) visualised by means
of streamlines for the wake-interference regime. The flow moves from left to right. Note the
helicoidal flow structures in between the obstacles.

terns, the number of structures would be modified from case to case: up to three structures
are appreciated in between the buildings for the isolated-roughness regime. In such a fashion,
the interaction of the flow within this region results in a mixing procedure, leading to the
breaking process of the vortical structures. Note that, in this case, there is no resemblance
with arc-shaped structures, thus confirming the above-stated ideas, i.e. the arch-breaking
process.

To conclude with this section, the three-dimensional structures and flow patterns for
the dominant modes identified by HODMD have been characterised for three different flow
regimes, representing urban areas with varying separation ratios. Their classification on arch-
generator and -breaker modes has been justified using streamline flow patterns.
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Conclusions

A simplified urban environment model consisting of an array of two buildings with variable
spacing ratios was examined using high-fidelity simulation data, in order to provide a full phys-
ical description of the fundamental mechanisms controlling the dynamics in different types of
urban streets. The aim was to provide an insightful analysis of the physics of the flow within
environments that simulate different types of urban areas. The growing expansion of cities
boosts the search for physical models capable of reproducing the pollutant and thermal distri-
butions within cities. Here, the three-dimensional flow patterns responsible for the pollutant
dispersion have been characterised. Isosurfaces and contour slices were used to demonstrate
the complicated flow behaviour of the modes identified by the POD and HODMD algorithms.

The results shown here prove that the flow behaviour can be split into low- and high-
frequency phenomena, each with important consequences related to the formation and de-
struction of vortical structures such as the arch or horseshoe vortices. Interestingly, low- and
high-frequency modes are named arch-generator modes since their associated structures are
related to the mechanism triggering the formation of the arch vortex formed on the leeward
side of both buildings. These structures are particularly noticeable on the windward side
of the upstream obstacle for the wall-normal and spanwise velocity components and on the
leeward side for the streamwise one, which defines the location and shape of the arch vortex.
Furthermore, this location is kept constant among the different flow regimes, which highlights
the idea that the process of formation of the arch vortex does not strongly depend on the
separation between the obstacles.

HODMD, on the other hand, identifies a high-frequency mode that correlates with the
largest-amplitude mode in all cases. Because of the streamline flow patterns in the intermedi-
ate section of the obstacles, they are referred to as arch-breaker modes. The large amplitude
of these modes emphasises their importance in this sort of urban flow. Indeed, their struc-
tures are inextricably linked to the first two highest-in-energy POD modes. Furthermore, as
the separation increases, the flow becomes more correlated in the spanwise direction, owing
to the larger interaction of the flow with the wake layer inside the canopy, which yields to
fluctuating velocity regions occupying the hole section in between the obstacles, thus being as-
sociated to the process of destruction of the vortical structures rather than to their formation.

Besides, the arch-breaker modes will be responsible for the apparition of high-TKE re-
gions on both sides of the obstacles and on the windward side of the downstream obstacle.
Interestingly, these results are consistent with the wind-tunnel results of Monnier et al. [32],
performed on a scaled and slightly more complex urban environment. Therefore, the con-
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clusions of the present project can be extrapolated to more realistic urban environments by
considering that turbulence levels from street to street are expected to decrease significantly.
It is also interesting to note that the results provided by both POD and HODMD show that
the wall-normal velocity component does not have a significant influence on the more promi-
nent structures as the streamwise and the spanwise components do.

To finish off, from an environmental point of view, urban areas with highly-separated
buildings, namely the isolated-roughness regime, would present much more interaction with
clean air sources, thus enabling for a rapid propagation of those pollutants emitted at the
street level. However, power plants, commonly located close to urban centres, are also re-
sponsible for pollution issues within cities. In those cases, owing to the low interaction of
the flow above the urban canopy with the streets, it would be convenient to decrease the
separation between buildings, i.e. the skimming-flow regime. In such a fashion, the air at
street level would also be in contact with clean sources of air through the arch vortex legs.
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Part II

Blueprints, solicitation document and
budget
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6

Plans and blueprints

No plans, drawings, or blueprints are applicable due to the nature of the current project.
Therefore, this page has been intentionally left blank.
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7

Solicitation document

The purpose of this chapter is to disclose the existing technical and legal rules that apply to
the current investigation. The emphasis will be on the work and safety conditions that must
be met in a project of this magnitude. The solicitation document adheres to the standards
included in the Spanish Law, within the context of computer-oriented projects and the mini-
mal health and safety requirements to be fulfilled in such a workplace.

7.1 Functions of the involved parties

This section aims to provide a basic overview of the major duties and working conditions as-
sociated to each of the parties implicated in the project. It should be noted that this part will
cover not only legal actions but also advisory recommendations that apply indistinguishably
within the scope of the study. The titles of the parties engaged, namely the student, tutor
and advisor, will determine the exposition to be followed.

7.1.1 Functions of the student

The engineer or student is the central figure in the success of the project. Among his or her
various responsibilities, the student is in charge of implementing the procedures to be utilised
and analysing the data obtained. Furthermore, he or she is in charge of acquiring, reviewing,
and analysing scientific literature on which the project work might be based. In terms of
strategy, he or she must design and discuss a well-founded plan to ensure that the project
goals are met. He or she is also in responsibility of drafting the final report and presentation,
as well as discussing the paperwork with the University board’s assessment committee. To
conclude, from an ethical point of view, students must guarantee the quality and reliability of
the materials used throughout the project at all stages, as well as adherence to the University
board’s non-plagiarism policy.

7.1.2 Functions of the supervisor

The student will be expected to rely on the supervision and assistance of an academic tutor
who will oversee the project and assist with administrative procedures. The director will be
in charge of overseeing the overall development of the project, monitoring the progress of the
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7.2. Working environment conditions 7. Solicitation document

student on a regular basis and assisting with serious difficulties at any point. The supervisor
will also be responsible for ensuring the quality and originality of the project, as well as sup-
plying the required equipment to achieve the objectives of the study, e.g. computer resources.
In addition, the director will be responsible for performing the essential activities within the
area of supercomputer administration and validating the quality of the acquired results.

7.1.3 Functions of the advisor

Aside from the guidance of the supervisor, the student may also count on the assistance of an
advisor, whose responsibilities vary depending on the situation. Indeed, during the current
project, the advisor has oriented the student with computed-related tasks, providing the es-
sential equipment to carry out the required activities as well as the administrative processes
required by the University where the study is presented. Note that the number of advisers and
their roles are heavily influenced by the project’s complexity. As a result, no solid functions
can be defined.

7.2 Working environment conditions

The Spanish legal edict, Real Decreto 488/1997, collects the minimal dispositions that must
be met within the scope of working places with visualisation displays. The purpose of this
section is to provide a basic overview of the specific criteria that apply to the current project.
To that purpose, the structure that will be followed will be covered by Spanish regulatory
institutions.

Working site conditions Due to the nature of the present project, the equipment to
be used must comply with certain standards so that its use does not represent a threat to
workers. The following points provide the most pertinent information regarding the working
environment and equipment conditions.

• The characters on the screen must be well-defined and legible, with proper dimensions.
It should be readily orientated and modified to the worker’s preferences and its image
should be stable and free of sparkles. Furthermore, it must include certain lighting and
contrast settings that allow it to be adjusted dependent on the environment.

• To provide a suitable posture, the keyboard must be tiltable and independent of the
screen. Its surface should be matte to avoid sparkles and its various keys should be
clearly recognisable and readable.

• The working station should be of sufficient size to allow correct placement of the screen
and keyboard as well as the worker’s comfort. The document support should be stable
and adaptable in such a way that head and eye movements are kept to a minimal.

• The working seat should provide the user enough movement, with the height adjustable
and the back tiltable.

Lighting and noise The regulations established by the Spanish institutions relating to
lighting and noise are exposed in the following lines.
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7.2. Working environment conditions 7. Solicitation document

• The lighting conditions of each zone or working site must be tailored to the activity to be
carried out in that location. The following lines are dedicated to exposing the minimal
illumination standards stated in the Spanish legislative edict, Real Decreto 486/1997.

– The lighting settings must be determined by the dangers to the safety and health
of users, as well as the visual requirements of the activity. Working places with
high and extremely high visual demands, for instance, require a minimum level of
light of 500 and 1000 lux, respectively.

– Natural lighting should be used whenever feasible, and it should be supplemented
by artificial lighting when the first does not offer enough light.

– On no account must lightning represent a threat to workers when the contrast of
the object to visualise and the background is very weak

– Lighting distribution should be intended to be as uniform as feasible, with binding
avoided whenever possible.

• The noise level is controlled by Real Decreto 1316/1989, which covers workplace protec-
tion.

– This regulation seeks to decrease noise levels as well as the possible hazards con-
nected with exposure to significantly high noise levels to a minimum level.

– An annual periodic control should be conducted if the peak noise level exceeds 85
dBA, or every three years if the daily equivalent noise level exceeds 80 dBA.

– In light of the present project, the noise produced by the equipment installed in
each working site should be considered while designing it, and it is especially crucial
that it does not disrupt either the attention or the discussion.

Emergency and protection conditions Aside from the above listed criteria, additional
emergency conditions must also be satisfied. The entrepreneur (in this case, the University
department) must design the corresponding working places in accordance with several security
requirements. This includes emergency exits, circulation areas, stairs, handrails, and any other
components that might jeopardise user safety or provide assistance in case of an emergency.
Furthermore, all installations must comply with all fire and electrical codes.

81



8

Budget

The purpose of this final chapter is to estimate the cost of the project presented here. The
labour of the participants of the project, namely the engineer, supervisor and adviser, will ac-
count for the majority of the expense. It should be mentioned, however, that certain expensive
tools are used in the development of the project. Indeed, the post-processing activities were
performed using a high-performance computer form the UPV, whose cost will be included
within the fixed section.

Despite the fact that the project was developed in collaboration with the Swedish Uni-
versity KTH, monetary quantities will be given in Euros. The costs will then be divided into
two categories: fixed costs and indirect costs. Table 8.1 shows a breakdown of the expected
expenses before and after taxes. It should be noted that the engineer’s and thesis director’s
salaries have been calculated based on a starting engineer with less than one year of experience
and an assistant professor. Indirect expenses are considered to account for 25% of total costs.
Finally, the entire cost after taxes is calculated using the Spanish VAT, which equals 21% of
the whole cost.

Type Concept Usage time (h) Cost (e/h) Total cost (e)
Engineer 600 11 6,600

Salaries Thesis director 90 22 1,980
Advisor 10 20 200

Fixed costs External computer − − 2,880.31
Expendable goods − − 400

Indirect costs − − − 3,015.08
Total cost before taxes (e) 15,075.39
Total cost after taxes (e) 18,241.22

Table 8.1: Breakdown of the main costs before and after taxes of the present project

Finally, the project cost is expected to be 18,241.22 e.
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