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Abstract: Muscle fatigue is an important field of study in sports medicine and occupational health.
Several studies in the literature have proposed methods for predicting muscle fatigue in isometric con-
tractions using three states of muscular fatigue: Non-Fatigue, Transition-to-Fatigue, and Fatigue. For
this, several features in time, spectral and time-frequency domains have been used, with good perfor-
mance results; however, when they are applied to dynamic contractions the performance decreases. In
this paper, we propose an approach for analyzing muscle fatigue during dynamic contractions based on
time and spectral domain features, Permutation Entropy (PE) and biomechanical features. We estab-
lished a protocol for fatiguing the deltoid muscle and acquiring surface electromiography (sEMG) and
biomechanical signals. Subsequently, we segmented the sEMG and biomechanical signals of every
contraction. In order to label the contraction, we computed some features from biomechanical signals
and evaluated their correlation with fatigue progression, and the most correlated variables were used
to label the contraction using hierarchical clustering with Ward’s linkage. Finally, we analyzed the
discriminant capacity of sEMG features using ANOVA and ROC analysis. Our results show that the
biomechanical features obtained from angle and angular velocity are related to fatigue progression,
the analysis of sEMG signals shows that PE could distinguish Non-Fatigue, Transition-to-Fatigue and
Fatigue more effectively than classical sEMG features of muscle fatigue such as Median Frequency.

Keywords: Muscle fatigue; unsupervised learning; biomechanics; Hierarchical clustering; sEMG;
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1. Introduction

Muscle fatigue is a reduction in the maximum voluntary force induced by exercise [1]. This topic
has been addressed by different exercise physiology researchers, as it has a great impact on athlete
performance, and is an important risk factor for the occurrence of overload injuries that, in some
cases, can be irreversible [2, 3]. It has been shown that adequate physical conditioning can help avoid
fatigue [4]. Such conditioning involves modifying or avoiding exercises or tasks that cause fatigue,
in turn preventing muscle injuries. Muscle fatigue causes numerous injuries in workers who perform
mechanical or strenuous tasks, generally associated with overload efforts. For example, in Colombia,
38.04% of the population declares to be working in conditions of fatigue most of the time [5], and
according to occupational disease data, between 2009 and 2012, an average 88.25% of the reported
accidents were associated with musculoskeletal injuries. Surface electromyography (sEMG) has been
used for muscle fatigue analysis and many researchers have studied the changes during prolonged
exercise. In this regard, there are some important topics to address, such as contraction type, fatigue
states and sEMG features.

The study of muscle fatigue has been addressed mainly for isometric contractions [6, 7, 8, 9], where
the length of the muscle does not change during exercise. However, dynamic contractions (where the
length of the muscle changes during exercise), represent a more realistic view of many daily activities
as well as sports (i.e. walk, carry objects, heavy lifting, run, cycle, among others), but these contrac-
tions have not been explored in depth. Dynamic contractions are more challenging; first, the muscle
movement adds low frequency noise and artifacts to the sEMG, as well as hindering its acquisition
and processing. Second, the activation of sEMG is not continuous, which is why it is necessary
in many cases to segment the signal. Finally, the performance of sEMG features decrease in this signal.

Most of the work in this field approaches muscle fatigue as a two state process: Fatigue and
Non-Fatigue [10, 11]. However, some authors propose to address this problem in three states
(Non-Fatigue, Transition-to-Fatigue, and Fatigue), because to introduce the transient-to-fatigue state
before the onset of fatigue allows the development of different prediction and/or detection algorithms
of muscle fatigue. In [8] they used this approach to detect the Transition-to-Fatigue state, and based
on it made predictions regarding how long it takes the bicep muscles to reach the Fatigue state during
isometric contractions. Other studies have used sEMG and deep learning to detect muscle fatigue
states [12]. Comparisons between classifiers has also been conducted, showing that Auto-Regressive
Models has the best performance for detecting the three states of muscle fatigue, while Support Vector
Machines, are more useful for Fatigue detection [13].

Many studies have reported on the performance of different indexes in time domain, spectral
domain or time-frequency domain [9]. The spectral domain indexes have been specially used in
studies working with dynamic contractions [14, 15, 16]; however, of late, time-frequency indexes
have become a trend which seems to be more effective [17, 18]. Generally many studies relate
several indexes like Mean Frequency (FM), Median Frequency (Fmed), Dimitrov’s spectral index
(Flnsmk), the Energy of the Detail Coefficients (EDCk) of Wavelet transform, and even some time
domain indexes like Zero Crossing (ZC), Root Mean Square (RMS), Waveform Lenght (WL), and so
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forth [2, 13, 14, 19, 20, 21]. Non-linear parameters, which are not as commonly used, can also be
implemented in the analysis of muscle fatigue [9]. The use of Non-linear paremeters was proposed by
Nieminen and Takala (1996) [9] who suggested that sEMG signals could be better modeled as outputs
of a nonlinear dynamic system, which opens up more possibilities in the assessment of muscle fatigue
and new techniques like entropy analysis, fractal analysis and recurrence quantification analysis.
Permutation Entropy (PE) is a recently proposed non-linear parameter that has been proved in many
biomedical applications [11, 22]; however, there are limited studies assessing its performance in sEMG
signals during conditions of muscle fatigue. PE is interesting to consider in this application, because
unlike other non-linear features, PE has low computational complexity and is almost parameter free.

The aim of this paper is to asses the performance of PE in distinguishing between three muscle
states (Non-Fatigue, Transition-to-Fatigue and Fatigue) during dynamic contractions using sEMG and
biomechanical signals.

2. Methods

This study was divided into 5 stages, described in Figure 1. First, a muscle fatigue induction
protocol was established in order to acquire the data. Second, the signals were segmented to obtain
each muscle contraction. Third, the signals were characterized, including time and frequency features
and PE. Then, clustering based on biomechanical features was used to label the signals of each
contraction into three classes: Non-Fatigue, Transition-to-Fatigue, and Fatigue. Finally, we assessed
the feature performance in distinguishing among the three muscle states.

Figure 1. Methodological structure.

2.1. Fatigue protocol and data acquisition

Nine healthy young adults (5 women and 4 men) aged 21 +/- 3, who do not frequently perform
physical activity participated in this study. All subjects with injuries in upper limbs and cardiovascular
or neuromuscular pathologies were excluded. This study was approved by the Ethics Committee for
Scientific Research of the Instituto Tecnologico Metropolitano of Medellin. All the participants signed
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an informed consent which explained the study and the risks of their participation.

This study focuses on muscle fatigue induced in the deltoid muscle, as the shoulder is considered
a critical joint in musculoskeletal injuries, therefore the study of the deltoid muscle group has been
useful in implementing algorithms for muscle fatigue detection during dynamic contractions [14, 23].
For that reason, we propose a lateral dumbbell lifting exercise that produces a right or obtuse angle
between the arm and the trunk. During this exercise, the back is held straight without any lateral
movement of the trunk. In this protocol, the participants were seated during the exercise and posture
was visually controlled by an instructor.

The load during the exercise, was determined by the Maximum Repetition Value (MRV) of each
participant and was computed by the Brzycki expression [24] as:

MRV =
w

1.0278 − 0.278Cn
, (2.1)

where w is the weight of the dumbbell and Cn is the number of contractions. Each individual
warmed-up and was given an adjustable dumbbell (21.15 +/- 2.25 lb for men, and 10.2 +/- 1.2 lb for
women). At that point, they were asked to perform as many lateral dumbbell lifts as they could with
each arm (Figure 2)

Once the MRV was determined, the participants performed a first round of the exercise, at 60% of
the MRV with each arm as long as they could or until they started to express fatigue. After a 30-minute
break, they repeated the routine with 50% of the MRV. A total of 4 tests per participant were conducted.
We used a 25-beats-per-minute metronome to control the cadence of the contractions, and participants
were asked to perform as many contractions as possible with the beat of the metronome.

PowerLab 16/35 (AD Instruments Inc.) equipment with a sampling frequency of 2KHz and a Notch
filter for deleting the line interference was used for acquiring sEMG signals. Subsequently, a butter-
worth pass band filter of second order between 30-300 Hz was applied, based on the methodology
proposed in [25] in order to improve burst detection. PowerLab was connected to the participant with
Ag/AgCl surface electrodes of a 20 mm diameter disc, placed on the half zone of the lateral deltoid
with a 20 mm inter-electrode distance and with a reference electrode in the back at the height of the
C7. The study area was previously cleaned with alcohol and was not shaved.

Each test was recorded with Basler high-speed cameras to capture the biomechanical signals. Re-
flective markers were placed on the ribs, forearm, and Acromion of the participants (Figure 2). Kinovea
software was used to track the markers and obtain their position signals.

2.2. Contraction segmentation

sEMG segmentation is an important task in the analysis of dynamic contractions as the muscle
activation is not continuous, unlike isometric contractions where a simple moving window is enough
to analyze fatigue progression. However, in dynamic contractions it is necessary to obtain the segments
of muscle activation to avoid rest segments, where muscles fibers are not activated (sEMG does not
carry any information), enabling us to analyze the fatigue progression based only on the activation
segments. Therefore, it was necessary to implement a preprocessing stage to segment the sEMG and
biomechanical signals (angle, angular speed, and angular acceleration).
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Figure 2. Threshold based on the 25th percentile.

2.2.1. sEMG signals

The threshold-based method proposed in [25] was used for contraction (burst) segmentation. Ac-
cording to their method, initially, a passband filter between 30 and 300 Hz was applied. Subsequently,
we used the Teager-Kaiser (TKEO) energy coefficient (ψ) defined as 2.2:

ψ[xn] = x2
n − xn+1xn−1 (2.2)

where X is a sEMG signal of length N, defined as X = {x1, x2, · · · , xN}. Afterwards, the signals
were rectified and filtered with a 50-Hz low-pass filter. Finally, burst detection was carried out based
on the Approximate Generalized Likelihood Ratio (AGLR) method [26, 27, 28]. AGLR is based on
statistical testing of the null hypotheses H0 (sEMG signal is not a burst) and the alternate hypothesis
H1 (sEMG signal is a burst), describing the statistical properties of a series of sEMG samples and uses
a thresholding approach defined as [25]:

AGLRn = ln

 k∏
n=1

p1(xn)|H1

p0(xn)|H0

 <
> h (2.3)

where p1 and p0, represent the probability that sEMG segments correspond to a contraction (burst)
or not, respectively.

Algorithm 1, describes the pseudocode for the segmentation of a sEMG signal. Parameters µ0, σ0,
µ1 and σ1, refer to the mean and deviation of univariate Gaussian Probability Density Function, which
were obtained after manually segmenting 6 bursts and 6 baseline signals of each subject. Parameters k
(window length) and Th (Threshold) of the AGLR method where set to 300 and 15 respectively after
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a heuristic search (results of this task are not shown in this publication, as it is not relevant to the main
objective).

Algorithm 1: sEMG signal segmentation algorithm
Inputs: X, µ0, σ0, µ1, σ1, k, Th
Output: Events
N = length of X
X f =passband(X,30,300)
XT KEO = X f

for i ∈ [2,N − 1] do
XT KEO[i] = X f [i]2 + X f [i + 1]X f [i − 1]

Xr = |XT KEO|

X f 2=lowpass(Xr, 50)
P0 = GaussianPDF(X f 2,µ0, σ0)
P1 = GaussianPDF(X f 2,µ1, σ1)
for i ∈ [k,N] do

AGLR = log
(
Prod

(
P0[i−k+1:i]
P1[i−k+1:i]

))
if AGLR > Th then

Events[i]=1
else

Events[i]=0
Passband is a function that a applied a second order pass-band Butterworth filter with cutt-off in 30 and 300 Hz. lowpass is a function that applied a second order lowpass
Butterworth filter with cut-off at 50 Hz. GaussianPDF is a function that compute a univariate Gaussian Probability Density Function for every point in a signal, given a mean
(µ) and a deviation (σ)

After segmentation, we removed the border of the sEMG segments in order to ensure that all seg-
ments had the same length (1000 points, equivalent to 0.5 seconds of signal) and to avoid border effects
related to the beginning and the end of the contraction.

2.2.2. Biomechanical signals

The reflective markers were placed on each participant forming a triangle between marker 1 on the
forearm (M1), marker 2 on the acromion (M2) and marker 3 on the ribs (M3), (Figure 3), in order to
obtain the angle between the arm and the trunk during exercise.

Kinovea software was used to track the positions of the three markers. Kinovea returns the posi-
tion of the marker as Cartesian coordinates (based on pixels) in every frame of the video (500 frames
per second). Then, we computed the distance d1 (distance between forearm and ribs), d2 (distance
between forearm and acromion) and d3 (distance between acromion and ribs) in pixels using the Eu-
clidean norm. Distances d2 and d3 are constant, representing the anthropometric measurements of
any subject. However, these distances presented small changes between frames, due to tracking errors
and involuntary subject movement, for this reason, we set d2 and d3 as the average distance during all
frames.

Being θn the angle signal formed between the trunk and the forearm, it was computed using law of
cosines as:
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M1
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M3

d1

d2

d3

Figure 3. Angle calculation during exercise. M1: ulnar fossa. M2: acromion. M3: trunk.

θn = cos− 1
(
d22 + d32 − d12

n

2d2d3

)
(2.4)

where d1n is the distance between forearm and ribs, in the moment n.
Biomechanical signals angular velocity (ωn) and angular acceleration (αn) were computed as the

first and second derivative of θn. Then, the signals were filtered using third order Butterworth low-pass
filters at cut-off frequencies of 100 Hz (for θn and ωn) and 30 Hz (for αn).

Algorithm 2 shows the process for computing biomechanical signals θn, ωn and αn. Inputs M1,
M2 and M3 are the matrix of dimensions N × 2, that represent the Cartesian position at N time of the
markers according to the figure 3.

Finally, every contraction in the signals (θ, ω and α) was segmented. For this purpose, we employed
a segmentation approach based on a threshold for the θ signal, and used the same times to construct a
remaining signal, as follows:

Maskn =

{
θn > Th, 1
θn < Th, 0

(2.5)

when Maskn = 1 refers to a contraction, in this work we used the 25thpercentile of θ as the threshold
(Th) (Figure 4).

2.3. Fatigue progression labeling based on clustering and biomechanical features

Assuming that biomechanical changes are due to muscle fatigue progression, we propose to obtain
features from θ, ω and α as described in Table 1.

Each of the biomechanical features obtained was normalized intra-subject, as some biomechanical
variables such as Maxθ and Maxω present great variability between subjects. Next, the features were
correlated with the contraction number in order to identify biomechanical features related to muscle
fatigue progression. In this study, values with an absolute correlation greater or equal to 70% were
chosen as relevant biomechanical features and were used for clustering.
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Algorithm 2: Biomechanical signal calculation
Inputs: M1, M2, M3, Ts

Output: θ, ω, α
N = number of rows in M1, M2 or M3 for i ∈ [1,N] do

d1[i] = ‖ M1[i, :] − M3[i, :] ‖
d2[i] = ‖ M1[i, :] − M2[i, :] ‖
d3[i] = ‖ M2[i, :] − M3[i, :] ‖

for i ∈ [1,N] do
θ[i] = cos−1

(
d2[i]2+d3[i]2−d1[i]2

2d2[i]d3[i]

)
ω[1]=0
for i ∈ [2,N] do

ω[i] = θ[i−1]−θ[i]
Ts

α[1]=0
α[2]=0
for i ∈ [3,N] do

α[i] = ω[i−1]−ω[i]
Ts

θ=lowpass(θ,100)
ω=lowpass(ω,100)
α=lowpass(α,30)
lowpass is a function that applied a second order lowpass Butterworth filter. Operator ‖D‖ makes referece to the euclidean norm of a vector
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Figure 4. Threshold based on the 25th percentile.

We employed an unsupervised learning algorithm in order to label the contraction into three groups,
which has a direct relation with changes in the biomechanical variables of the subject, for practical
effects we refer to these different stages as: Non-Fatigue, Transition-to-Fatigue, and Fatigue, although
this does not involve a clinical diagnosis of muscle fatigue. Most of the literature in this topic suggests
that muscle fatigue has two stages (Non-Fatigue and Fatigue) [11, 29]; however, other works show that
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Table 1. Computed biomechanical features.

Feature Abbreviation Formula
Maximum angle Maxθ max θn

Mean angle Meanθ 1
N

∑N
n=1 θn

Integral of angle Intθ
∑N

n=1 θn

Maximum velocity Maxω maxωn

Minimum velocity Minω minωn

Mean velocity Meanω 1
N

∑N
n=1 ωn

Integral of velocity Intω
∑N

n=1 ωn

Mean speed Mean|ω| 1
N

∑N
n=1 |ω|

Maximum acceleration Maxα maxαn

Minimum acceleration Minα minαn

Mean acceleration Meanα 1
N

∑N
n=1 αn

Integral of acceleration Intα
∑N

n=1 αn

using a three stage approach allows for the development of a prediction system able to detect fatigue
before its clinical appearance [30]. Therefore, we implemented a type of agglomerative hierarchical
clustering based on Ward’s method. The clustering procedure was conducted using the contractions
obtained from all the tests. In agglomerative clustering, initially every point (in this application, a point
is a contraction) in the data set is an individual cluster and clusters are progressively merged according
to a similarity criterion. Ward’s method states that a cluster should be fused with the cluster that causes
the least increase in within-cluster sum of squares [31]. Formally, the within-cluster sum of squares is
defined as the sum of the squares distance between points in the cluster and the centroid of the cluster.
The resulting sum of squares that joins clusters a and b can be computed as [32]:√

2nanb

(na + nb)
||xa − xb|| (2.6)

where na and nb are the number of elements in the clusters, xa, and xb are the cluster centroids.

2.4. Muscle fatigue analysis

Once the fragments of the sEMG signal were obtained and labeled as described in Section 2.3,
we computed different sEMG features PE, RMS, ZC, FM and Fmed to confirm that the changes in
biomechanical variables were due to muscle fatigue progression. Then, we evaluated if there was a
statistically-significant difference between the sEMG features of the three groups. For this purpose, we
used an Analysis of Variance (ANOVA) to establish the existence of a statistical difference between
the 3 groups (Non-Fatigue, Transition-to-Fatigue, and Fatigue). Subsequently, we performed a post-
hoc analysis using the Less Significant Difference Test (LSD) to directly compare pairs of groups, i.e.
Non-Fatigue vs Transition-to-Fatigue, Transition-to-Fatigue vs. Fatigue, and Non-Fatigue vs. Fatigue.

Finally, we carried out a Receive Operator Curve (ROC) analysis, which uses logistic regression
as classifier, in order to assess the discriminant capacity of the more promising sEMG features to
distinguish between Non-fatigue, Transition-to-Fatigue and Fatigue.
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2601

2.4.1. Permutation Entropy

Entropy measures are very common for quantifying the complexity of a time series; however, com-
mon approaches, such as Shannon entropy, neglect to take into account effects from the temporal order
of the values in the time series. Bandt and Pompe proposed in [33], a natural encoding which refiects
the rank order of successive (xn) in sequences of length (N). In this regard, given an sEMG signal
X = {x1, x2, · · · xN}, if we take signal segments of m points (Embedded dimension) with a time delay
of τ as S i = {Xi, Xi+τ, Xi+2τ, · · · Xi+τ(m−1)}. Sorting S i in ascending order as Xi+r0 < Xi+r1 < · · · < Xi+r(m−1) ,
we can obtain its ordinal pattern as π j = {r0, r1, · · · r(m−1)} [34]. Then, the set of ordinal patterns is
Π = {π1, π2, · · · πm!}. The permutation entropy (PE) is computed using the Shannon form, but taking
the relative frequency of the ordinal patterns as:

PE =

m!∑
j=1

−p′(π j) log2 p′(π j) (2.7)

where (p′(π j)) represents the relative frequencies of the ordinal pattern π j. PE essentially measures
information based on the occurrence or absence of certain permutation patterns of length m, in the
ranks of values of a time series [35]. A detailed explanation of PE calculation can be found in [35].

In this study, after computation, PE values were normalized intra-subject with the aim of reducing
the impact of between subject differences, and we conducted an exhaustive search of the embedded
dimension m (between 2 and 10) and the time delay τ (between 1 and 10).

2.4.2. Other muscle fatigue features

We analyzed features in the time domain, such as the Root Mean Square (RMS) which is commonly
used in studies on muscle fatigue [9, 14, 21]. We applied fast Fourier transform to sEMG signals and
computed features such as FM and Fmed which are considered traditional indicators of muscle fatigue
[9, 16, 36]) in each of the Burst obtained. These features are very common in muscle fatigue analysis,
and some studies have shown that during static contractions the FM usually decreases [9, 15], and Fmed
has been shown to have a similar behavior [14, 29]. All the features described were computed according
to table 2 and were normalized intra-subject to reduce the impact of between subject difference.

3. Results and discussion

3.1. Fatigue protocol and data acquisition

The data for this study was obtained from only nine subjects; however, this does not seem to be
a disadvantage, as several studies have used a similar number of subjects [37, 38, 39] or less [12,
21, 40, 41, 42]. This number of subjects is feasible as several samples are recorded per subject; for
example, in isometric exercises long signals can be recorded [42] and it is possible to apply windows
of time in order to increase the number of samples per subject [12]. On the other hand, muscle activity
during dynamic contractions can be analyzed by means of a contraction set, as these signals change
greatly over time, like in [14], where the authors did an analysis of different parameters based on their
behaviour in each contraction of a given exercise.

In this study, the nine subjects performed 2 tests, first, with 60 % of the MRV and then with 50
%. This process was repeated for each arm, obtaining 4 signals per subject, for a total of 36 signals.
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Table 2. Features computed from sEMG signals.

Feature Equation

Permutation Entropy (PE)
∑m!

j=1 −p′(π j) log2 p′(π j)

Root Mean Square (RMS)
√

1
N

∑N
n=1 |x2

n|

Mean Frecuency (MF)
∑Fmax

f =Fmin
f S [ f ]∑Fmax

f =Fmin
S [ f ]

Median Frecuency (Fmed)
∑Fmed

f =Fmin
S [ f ] =

∑Fmax
f =Fmed

S [ f ]
p′(π j) is the relative frequency of the ordinal pattern π j

X is a sEMG signal as X = {x1 , x2 , · · · xN }

S [ f ] is the power spectrum density of a signal at frequency f

Additionally, signals were treated as a set of contractions, thus obtaining a collection of 950 samples
that include sEMG and position signals.

3.2. Contraction segmentation

3.2.1. sEMG

The segmentation process is described step by step in Figure 5 and Algorithm 1. (a) presents the
original signal obtained in one of the tests. (b) shows the signal after applying the 30–300Hz bandpass
filter. (c) is the signal after applying the TKEO. (d) plots the signal of TKEO after passing through a
50-Hz low pass filter and rectification. Finally, (e) describes the way the signal is segmented using the
approximate generalized likelihood ratio (AGLR) method.

The AGLR method using the TKEO seems to be an adequate method for sEMG signal segmen-
tation. In another study [25], the inclusion of the TKEO in signal conditioning significantly reduced
the detection error of muscle activation, which is reflected in the precision of fragmentation of the
sEMG burst. However, in this study, intra-subject preprocessing was necessary since a general model
presented significant errors in burst detection. By adopting this method, we were able to segment all
the contractions in sEMG signals.

3.2.2. Biomechanical signals

Figure 6 shows the filtering process of biomechanical signals. Noise can be observed due to the
marker tracking process in Kinovea and the involuntary movements of the subject. The applied filters
present a suitable correction of the signal under study.

The proposed segmentation method is based on thresholding using the 25th percentile of θ signal,
which has shown to be effective because only one of the 36 tests had to be manually segmented. Since
the signals are equal in time, the same mask was applied to the three of them. In Figure 6, we can
observe the preprocessing stage applied to the biomechanical signals. (a), (b), and (c) show the signals
obtained from the motion analysis system using the methods described in Section 2.3.2. In turn, (d),
(e), and (f) are filtered biomechanical signals with low pass filters. Finally, (g), (h), and (i) present the
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(e) Segmentation using the approximate generalized likelihood ratio method

Figure 5. sEMG segmentation procedure.
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resulting segmentation applied to biomechanical signals.
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Figure 6. Pre-processing of biomechanical signals.

As a result of the segmentation process, we obtained 944 contractions associated with sEMG bursts
with an average duration of 1.34 s (2683 points approximately); however, they were trimmed to a
duration of 0.5 seconds, to avoid border effects. Finally, the same number of biomechanical signals (θ,
ω and α) were obtained from 36 trials.

3.3. Fatigue progression labeling based on clustering and biomechanical features

Several biomechanical features were calculated in this study, in order to identify which of them are
related to fatigue progression. We identified features with a Pearson’s correlation greater than or equal
to 70%. This correlation analysis is summarized in Table 3. The results show that all features obtained
from θ are related to fatigue progression, while Maxω is the only feature related to angular velocity.
On the other hand, angular acceleration features were not related to fatigue progression.

Figure 7 shows the results of the clustering process and the evolution of states within the exercise
progression. Furthermore, the clustering process identified the 3 following groups:

Group 1 (Non-Fatigue): these are the contractions at the beginning of the test, indicating that
muscles are in an optimal state during the contractions and the biomechanical conditions have not
been compromised (Non-Fatigue).

Group 2 (Transition-to-Fatigue): these are the contraction in the middle of Group 1 and Group 3,
we assume this group of contractions corresponds to a slight change in the biomechanical features of
the subject. This stage was called Transition-to-Fatigue.
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Table 3. Correlation of biomechanical features with Exercise Progression.

Biomechanical features Correlation
Maxθ 0.82
Intθ 0.81

Meanθ 0.81
Maxω 0.7

Mean|ω| 0.68
Minω 0.55
Intα 0.46

Maxα 0.31
Meanα 0.3
Minα 0.23
Intω 0.22

Meanω 0.15

Group 3 (Fatigue): these are the contractions at the end of the exercise. During these contractions
the subject can not continue the exercise and there is a big change in the biomechanical features,
indicating the possible presence of muscle fatigue.

In other hand, Figure 7 (b) shows the results of the correct labeling of the signals, while Figure 7
(c) highlights some clustering errors. We identified that 72.3 % of the signals have some mislabeled
contractions; however, this represents just 8.06 % of the contractions.

It is important to state that this labeling is not proof of clinical fatigue, but shows a significant
variation in the subject’s biomechanical variables, which can lead to possible musculoskeletal injuries
during sport or work-related movements. Although this labeling process can not confirm the presence
of clinical fatigue in the muscle, it is still relevant as it can identify changes in the biomechanical
variables, possibly preventing injuries.

Such variability in biomechanical features is difficult to quantify between subjects [43], which
means that every subject has their own range of motion according to their age and physical condition,
among other factors. For this reason, we evaluated the changes in biomechanical features after intra-
subject normalization. Figure 8 shows the distribution of 2 biomechanical features Maxθ & Maxω)
after intra-subject normalization. From both box-plots it is clear that biomechanical features decrease
with fatigue progression, however Maxω shows a larger variability than Maxθ.

Several researches have used strategies for labeling muscle fatigue stages, based on biomechanical
or kinematic features, but the majority have not demonstrated it clinically, as it is an invasive and
expensive procedure. For instance, some authors have assumed a fatigue stage after a set of intensive
exercises [44, 45] or have carried out the same activity until the participants were exhausted [46, 47,
48]. Others have implemented a threshold when a biomechanical variable such as force, velocity,
or distance has decreased enough to assume muscle fatigue [6, 49]. Our labeling method is more
reliable than establishing a threshold for a biomechanical variable or than assuming muscle fatigue
after an exercise set, as it not make any assumptions but rather groups the contractions according to
their biomechanical similarities.
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(c) Test with mislabeled contractions

Figure 7. Results of agglomerative hierarchical clustering based on biomechanical indices.

3.4. Analysis of sEMG during the exercise prolongation

In order to confirm that the biomechanical changes used to labeled the contractions were due to
muscle fatigue progression, we computed sEMG features and compared them between the three mus-
cle fatigue states. Figure 9 shows a Heat-map of the ANOVA test p-values between Non-Fatigue,
Transition-to-Fatigue and Fatigue for PE using different values of m and τ (Embedded dimension and
time delay). The greatest statistical difference was obtained with m = 7 and τ = 6. Taking into account
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Figure 8. Biomechanical features distribution among the 3 different fatigue states.

that the sEMG length was of 1.34 s (i.e. N = 2683) and the recommendation N >> m! stated in [33],
we found that with m = 7 (m! = 5040) the number of possible ordinal patterns is larger than the num-
ber of signal points, indicating that the recommendation of N >> m! is not fulfilled and therefore, the
obtained PE values are not a good approximation of sEMG complexity. However, these results confirm
that for classification purposes,it is not necessary for this rule to be satisfied as was demonstrated in
[34].
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Figure 9. Heat-map of p-values for PE at different embedded dimension (m) and time delay
(τ).

On the other hand, Figure 10 shows the behaviour of the PE in different subjects. In this figure the
mean value of PE from all the tests applied to each subject was extracted in each of the assessed states
(Non Fatigue, Transition-to-Fatigue and Fatigue), and they were superimposed in order to evidence
inter-subject trends. It can be observed thaty in all the subjects the PE value decreases progressively,

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2592–2615.



2608

in some subjects with a higher slope than others. The mean PE value (intra-subject normalized) for all
subjects was 0.75 in Non-Fatigue state, 0.54 for Transition-to-Fatigue and 0.37 for Fatigue. The PE
value decreased around 50.6% from Non-fatigue to Fatigue contractions, indicating a clear reduction
in sEMG complexity in the presence of fatigue.

1 1.5 2 2.5 3 3.5

States
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0.4
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0.8

1

P
E

Non-Fatigue                Transition-to-Fatigue                      Fatigue

Subject1

Subject3

Subject5

Subject7
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Figure 10. Behavior of PE during the exercise prolongation in different subjects.

Table 4 shows a comparison of the ANOVA test results of each sEMG feature and LSD between the
groups defined in Section 3.2, considering p<<0.01 as statically significant difference. Results show
that biomechanical changes are due to the progression in muscle fatigue and the retrieved groups from
the clustering correspond to different states of the muscle during exercise, as the statistical test revealed
that all the sEMG features exhibited changes in at least 2 of the 3 comparisons. Additionally, these
findings are comparable to other muscle fatigue studies during dynamic contractions [9, 14] where
the Fmed and ZC shows statistically significant differences between stages of rest and after exercises,
with decreasing behavior. This result is contrary to [50] who reported a increment of Fmed during the
fatiguing exercise.

Table 4. Statistical comparison of sEMG features between three labeled contractions.

Feauture ANOVA test LSD
G1 vs G2 G1 vs G3 G2 vs G3

PE p<<0.01 p<<0.01 p<<0.01 p<<0.01
Fmed p<<0.01 p<<0.01 p<<0.01 p<<0.01
FM p<<0.01 0.0074 p<<0.01 0.25

RMS p<<0.01 0.4856 0.0073 p<<0.01

A ROC analysis was applied to the more promising features (PE and Fmed) in order to observe
how they distinguish between the different classes, the Area Under Receive Operator Curve (AUROC)
help us to analyze the performance of our algorithm in the classification task. As shown in Figure 11,
the performance of PE is slightly higher than Fmed, although both features have a high performance
for distinguish between Non Fatigue and Fatigue states. This result was expected as several studies
have previously found significant changes between these stages [9, 51, 52].The worst performance was
obtained when the algorithm distinguished between Transition-to-Fatigue and Fatigue, possibly due to
the fact that the biomechanical changes were not so important in this case; however, we observed that
PE performs better than Fmed in these two stages and both are greater than FM (AUROC = 0,54). The
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(a) Non-fatigue/Transition-to-Fatigue using PE AUROC=0,77
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(b) Non-fatigue/Transition-to-Fatigue using Fmed AUC=0,77
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(c) Non-Fatigue/Fatigue using PE AUROC=0,88
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(d) Non-Fatigue/Fatigue using Fmed AUROC=0,86
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(e) Transition-to-Fatigue/Fatigue using PE AUROC=0,66
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(f) Transition-to-Fatigue/Fatigue using Fmed AUROC= 0,65

Figure 11. Sensitivity/specificity report using ROC curve analysis.

use of both features (PE and Fmed) as inputs does not improve the classification performance between
the groups. 11 sEMG muscle fatigue features and 6 mathematical operators

Authors like [14, 29] describe the behavior of some frequency and time domain features. We found
correspondence in the Fmed feature because (as can be observed from Table 4) it is highly variable with
respect to the three groups of muscle fatigue. However, FM and RMS fail to identify the 3 states of
muscular fatigue and only differentiate between Non-Fatigue and Fatigue. Another study presents the
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behavior of PE in the evaluation of muscle fatigue, finding that the PE value decreases with exercise
prolongation [11]. We obtained similar results; however, we demonstrated a constant change of PE
during exercise, while [11] only considered the first and last of the six equal segments using time
scales. Therefore, this could indicate that PE is the most adequate feature for assessing muscle fatigue
in the three states.

Other authors have analyzed the behavior of several biomechanical variables in terms of the evolu-
tion of a repetitive task, finding that biomechanical variables can adapt with muscular fatigue progres-
sion [44, 53]. In addition, another works have demonstrated how the muscle fatigue influences directly
the biomechanical and kinematic behavior of some joints [49, 54]. Similar results have been found in
this work because changes in variables like angle and velocity enabled to identify the three states of
muscle fatigue progression. Thus, these results suggest a relation between the subject’s biomechanical
variables and muscle fatigue progression.

The classification accuracy of PE between transitions between states can be seen in Table 5, as well
as in other reports in the literature. Initially, our method did not perform as well as other approaches,
however, there are several reason behind this. Firstly, the highest performances are obtained for iso-
metric contractions, while our method works in dynamics contractions, the latter which are more chal-
lenging to analyze due to non-stationary signal and the movement artifacts [9]. Secondly, most studies
only distinguish between Non-Fatigue and Fatigue, while our study aims to classify between the three
states. Thirdly, most muscle fatigue analyses has been conducted in biceps muscle, while our approach
is with the deltoid muscle. Finally, it is important to clarify that our method uses a single feature
to classify the signals, this means that logistic regression classifier is acting as a simple thresholding
approach. In this regard, other methods such SVM or k-NN represent a more robust framework for
classifying the signals, but their use is justified when one is using multiple features.

Table 5. Comparison with other classification methods.
States Reference Contraction Type Muscle Classification method Features Accuracy

Non-Fatigue
vs

Transition-to-Fatigue

[30] Isometric Biceps LDA 1D spectro-composite feature 90.37%
[12] Isometric Biceps deep belief networks Raw Signal 66.32%

In this Work Dynamic Deltoid Logistic Regression PE 71.0%

Transition-to-Fatigue
vs

Fatigue
In this Work Dynamic Deltoid Logistic Regression PE 68.0%

Non-Fatigue
vs

Fatigue

[12] Isometric Biceps DBNs Raw Signal 97.60%
[30] Isometric Biceps Logistic Regression 1D spectro-composite feature 84.8%
[55] Dynamic Biceps k-NN Multifractal features 88%
[56] Dynamic Biceps SVM Renyi entropy 86.7%
[57] Dynamic Biceps Logistic Regression Multifractal features-Infomation Gain 84%
[57] Dynamic Biceps k-NN Multifractal features-Infomation Gain 82%
[55] Dynamic Biceps Logistic Regression Multifractal features 82%
[58] Dynamic Biceps LDA Pseudo-wavelet 78.45%

In this Work Dynamic Deltoid Logistic Regression PE 80.0%

‘

PE offers a low computational complexity cost compared to other non-linear descriptors like Lya-
punov exponents or Correlation dimension [33]. However, when the embedded dimension is large
(usually above m > 12), the number of possible ordinal patterns (Permutation) increases dramatically
and the memory consumption required to maintain the counting of those pattern is insufficient in most
machines. Despite the above, for this particular application we found that an embedded dimension of
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7 is optimal for characterizing the EMG signal in order to detect muscle fatigue. This means that the
number of possible ordinal patterns is only 5040 and the required memory to maintain the counting is
around 20.1 Kilo bytes (using an integer of 32 bits for counting), such memory capacity is available
in low cost devices such as an Arduino UNO (32 KB). Regarding computational complexity, in the
literature there are several proposals for computing PE in a fast and robust way, such as Piek et al. that
proposed a PE algorithm based on a binary vector representation of ordinal patterns and achieved a
computational complexity of O(m2 · N · log N) [59], their implementation is based on bit shift oper-
ations which are very efficient in execution time, resulting in an attractive possibility for using PE in
real time application.

4. Conclusions

This work presents the analysis of muscle fatigue progression, during dynamic contractions, based
on Permutation Entropy and biomechanical features. Results reveal that biomechanical features can
be used to distinguish between different stages of muscle fatigue, mainly, features derived from angle
(θ) and angular velocity (ω). Additionally, Permutation Entropy (PE) of surface electromyography
(sEMG) signal, had the best discriminant capacity between Muscle Fatigue, Transition-to-Fatigue and
Non-fatigue, over-performing classical sEMG features as Mean and Median Frequency (Fmed and
MF), and Root Mean Square (RMS).

In future work, it would be valuable to look into the use of PE for predicting muscle fatigue from
sEMG signals.
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