

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/171423

Alpuente Frasnedo, M.; Ballis, D.; Sapiña-Sanchis, J. (2020). Efficient Safety Enforcement
for Maude Programs via Program Specialization in the ÁTAME system. Mathematics in
Computer Science. 14(3):591-606. https://doi.org/10.1007/s11786-020-00455-3

https://doi.org/10.1007/s11786-020-00455-3

Springer

Efficient Safety Enforcement for Maude Programs via
Program Specialization in the ÁTAME system

M. Alpuente, D. Ballis and J. Sapiña

Abstract. Program specialization is mainly recognized as a powerful technique for optimizing
software systems. Nonetheless, it can also be productively employed in other application areas.

This paper presents an assertion-guided program specialization methodology for efficiently
imposing safety properties on software systems. The program specializer takes as input a set A
of logical assertions that specifies the expected system behavior plus a software system that is
modeled as a Maude program R that may violate some of the assertions in A. The outcome is a
safe refinement R. of R in which every system computation is a good run of R, i.e., it satisfies
the assertions in A. The specialization technique has been fully automated in the ÁTAME system
and ensures that no good run of R is removed from R., while the number of bad runs is reduced
to zero. The efficiency and scalability of our technique is empirically demonstrated by means of
a thorough experimental evaluation of the ÁTAME system, which shows fast specialization times
and good performance of the computed specializations, even for large assertion sets.

Mathematics Subject Classification (2010). Primary 68N30.
Keywords. Safety properties, Assertions, Program Transformation, Maude.

1. Introduction
Program specialization is the mechanized task of producing a refined executable version of an overly
general input program that meets the user intent expressed by means of some sort of specification
(e.g., logical assertions, functional specifications, reference implementations, examples, contracts,
passing and failing tests). In the literature, program specialization is often used to mean partial
evaluation [11] —a program optimization technique that transforms a program with n inputs into a
simpler and typically faster version where some of the inputs are fixed to specific values.

However, when we pursue program safety rather than program optimization, it is often useful to
consider a kind of dual notion of specialization where a program P of n outputs (or more generally,
a program that explores n program computations) is transformed into a more specific version of
P in which some of the output computations are disregarded according to a formal specification
that rigorously formalizes forbidden and/or allowed program behaviors. This way, we guarantee that
all of the runs of the specialized program are safe in the sense that they cannot reach bad states
(e.g., system-critical states, deadlock states). Safe program behaviors can be elegantly specified by
means of assertions, that is, logical statements that can characterize sets of program states in a purely
declarative way [3].

This work has been partially supported by the EU (FEDER) and the Spanish Ministry of Science, Innovation and Universities
under grant RTI2018-094403-B-C32, and by Generalitat Valenciana ref. PROMETEO/2019/098.

2 M. Alpuente, D. Ballis and J. Sapiña

Maude [9] is a high-level programming language and system that supports functional, con-
current, logic, and object-oriented computations and provides equational rewriting and reasoning
modulo algebraic axioms such as associativity, commutativity, and identity. Maude is well-suited to
specifying software systems. In fact, a Maude program is essentially a rewrite theoryR = (Σ, E,R)
where E is a canonical (i.e., confluent and terminating) equational theory that models system states
as terms of an algebraic data type, andR is a set of rewrite rules that define transitions between states,
i.e., the system’s dynamics that might encompass nondeterminism, concurrency, or even nontermi-
nation. Both equations in E and rewrite rules in R are built upon the operators of a typed signature
Σ.

In this paper, we propose a safety enforcement technique for Maude programs that combines
program specialization with assertional constraints. More precisely, our specialization technique
works with Maude programs that are equipped with system assertions, with each assertion consisting
of a pair Π | ϕ, where Π (the state template) is a term and ϕ (the state invariant) is a quantifier-free
first-order formula with equality that defines a safety property ϕ which must be enforced on all (the
subterms of) the system states that match (modulo equations and axioms) the state template Π. In our
approach, assertions take an active role since they are directly embedded into the specialized pro-
gram to safely guide its execution. Given a set of system assertions A and an overly general Maude
program R = (Σ, E,R) (i.e., a program that deploys all desired computations but may disprove
some of the assertions), our transformation coerces R into a specialized program R. that enforces
A. This means that: (i) every execution of R. is an execution of R (i.e., no spurious computation
states are produced); and (ii) every assertion in A is satisfied by all computation states in R.. The
program R. is obtained from R by inserting suitable conditions (abetted by the assertions of A) in
the rules of R and defining them by means of new equations that are added to E until a suitable
adaptation of the original program is automatically inferred which satisfies all the assertions.

The advantage of this technique is that more refined versions of a program can be incremen-
tally built without any programming effort by simply adding new logical constraints into the given
assertion set. Specifically, this makes it possible to adapt existing Maude programs to predefined
safety policies even for inexperienced users with a basic knowledge of the Maude language.

This article is a revised and extended version of our previous work [4], whose main contribu-
tions can be summarized as follows.

1. Further conceptual and technical content has been included to make the article self-contained.
Specifically, a more in-depth description of the specialization technique has been provided
together with various examples that illustrate each step of the program transformation.

2. The ÁTAME tool that implements our specialization technique has been endowed with an ad-
ditional facility that allows the computation space of the specialized program to be searched.
This feature is especially useful when the user wants to single out a particular safe compu-
tation, which specifies a sequence of actions, within the computation space of a (possibly)
nondeterministic Maude program.

3. A solid, empirical evaluation of the ÁTAME system has been conducted to show the efficiency
and scalability of the proposed approach. Program safety is generally achieved by means of
dynamic verification techniques that execute programs in a monitored runtime environment to
detect assertion violations. In contrast, our specialization approach is static and yields a safe
program by construction that can be executed in a standard runtime environment.

Plan of the paper. After some technical preliminaries in Section 2, we introduce a Maude program
that models a nondeterministic dam controller that will be used as a running example to illustrate
the kind of specialization that we aim to produce automatically. Section 3 shows how safety policies
can actually be defined as system assertions in our rewriting setting and then applied for program
specialization. Section 4 explains how safety enforcement is achieved in the ÁTAME system, which
implements our specialization methodology. Also, this section describes two additional features of

Efficient Safety Enforcement for Maude Programs 3

our system that are well-suited to both inspecting the runtime behavior of the computed special-
ization and extracting selected computations from the specialization computation space. Section 5
presents a complete, step-by-step ÁTAME specialization session that describes all of the main fea-
tures of the system. In Section 6, the specialization technique is empirically evaluated on a large
set of benchmarks that consider different kinds of software systems (e.g. network protocols, web
applications, mutual exclusion algorithms) together with safety policies of increasing size. Section
7 reviews the related work and presents our conclusions.

2. Software Systems as Maude Programs
Nondeterministic as well as concurrent software systems can be formalized through Maude pro-
grams. A Maude program is essentially a rewrite theory (Σ, E,R) where Σ is a signature that
contains the program operators together with their type definition, E is a canonical (membership)
equational theory that models system states as terms of an algebraic data type, and R is a set of
rewrite rules that define transitions between states. Algebraic structures often involve axioms like
associativity (assoc), commutativity (comm), and/or identity (id; also known as unity) of function
symbols, which cannot be handled by ordinary term rewriting but instead are handled implicitly by
working with congruence classes of terms. More precisely, the membership equational theory E is
decomposed into a disjoint union E = ∆] Ax. Here, the set ∆ consists of (conditional) equations
and membership axioms (i.e., axioms that assert the type or sort of some terms) that are implicitly
oriented from left to right as rewrite rules (and operationally used as simplification rules), and Ax
is a set of algebraic axioms that are implicitly expressed as function attributes and are only used for
Ax-matching.

The system evolves by rewriting states using equational rewriting, i.e., rewriting with the
rewrite rules in R modulo the equations and axioms in E [14]. Formally, system computations (also
called execution traces) correspond to rewrite sequences t0

r0−→E t1
r1−→E . . ., where t r−→E t′ de-

notes a transition (modulo E) from state t to t′ via the rewrite rule of R that is uniquely labeled with
label r. The transition space of all computations in R from the initial state t0 can be represented as
a computation tree whose branches specify all of the system computations in R that originate from
t0.

As a running example, we use the Maude program RDAM that models a simplified, nondeter-
ministic dam controlling system to monitor and manage the water volume of a given basin1. In the
program code, variable names are fully capitalized.

We assume that the dam is provided with three spillways called s1, s2, and s3, each of which
has four possible aperture widths of increasing discharge capacity close, open1, open2, open3.
Each spillway is formally specified by a term [S,O], where S∈{s1,s2,s3} and
O∈{close,open1,open2,open3}. A spillway configuration [s1,O1][s2,O2][s3,O3]
is a multiset that groups the three spillways together by means of the usual associative and commu-
tative infix, union operator __ (written in mixfix notation with empty syntax)2 whose identity is the
constant empty. System states are defined by terms of the form { SC ; V ; T ; AC } where
SC is a global spillway configuration, V is a rational number that indicates the basin water volume
(in m3), T is a natural number that timestamps the current configuration, and AC is a Boolean flag,

1Maude’s syntax is hopefully self-explanatory. Due to space limitations and for the sake of clarity, we only highlight those
details of the system that are relevant to this work. A complete Maude specification of the dam controller is available at the
ÁTAME website at http://safe-tools.dsic.upv.es/atame. For more information about the Maude language,
see [9].
2Empty syntax operators are supported in Maude by treating blank spaces as binary, infix, operators. Hence, the associative
and commutative operator naturally defines multisets as terms of the form e1 e2 . . . en where blanks are used to juxtapose
elements.

4 M. Alpuente, D. Ballis and J. Sapiña

called apertureCommand, that enables changes of the spillway aperture widths only when its
value is true.

eq inflow = 2000 . --- Basin water inflow
eq aperture(close) = 0 . --- Outflow for a closed spillway
eq aperture(open1) = 200 . --- Outflow for aperture width open1
eq aperture(open2) = 400 . --- Outflow for aperture width open2
eq aperture(open3) = 1200 . --- Outflow for aperture width open3

--- Basin water outflow for a given spillway configuration
eq outflow(empty) = 0 .
eq outflow([S,O] SS) = aperture(O) + outflow(SS) .

FIGURE 1. Equational definition of basin inflow and outflow.

Figure 1 shows the equational specification that formalizes basin water inflow and outflow.
To keep the exposition simple, we assume that the basin water inflow is constant, while the basin
outflow depends on the width of the spillway apertures and can be computed as the sum of the
outflows of each spillway in the spillway configuration. Note that inflow and outflow values are
measured in m3/min and are hard-coded into the dam controller. More realistic scenarios could be
easily defined by making the basin inflow and outflow functions more sophisticated.

rl [nocmd] : { SC ; V ; T ; true } => { SC ; V ; T ; false } .
rl [openC-1] :

{ [S,close] SS ; V ; T ; true } => { [S,open1] SS ; V ; T ; false } .
rl [open1-2] :

{ [S,open1] SS ; V ; T ; true } => { [S,open2] SS ; V ; T ; false } .
rl [open2-3] :

{ [S,open2] SS ; V ; T ; true } => { [S,open3] SS ; V ; T ; false } .
rl [close1-C] :

{ [S,open1] SS ; V ; T ; true } => { [S,close] SS ; V ; T ; false } .
rl [close2-1] :

{ [S,open2] SS ; V ; T ; true } => { [S,open1] SS ; V ; T ; false } .
rl [close3-2] :

{ [S,open3] SS ; V ; T ; true } => { [S,open2] SS ; V ; T ; false } .
crl [volume] : { SC ; V ; T ; false } => { SC ; V’ ; (T + deltaT) ; true }

if V’ := (V + inflow * deltaT) - (outflow(SC) * deltaT) .

FIGURE 2. (Conditional) rewrite rules for the dam controlling system.

The system dynamics is specified by the eight rewrite rules in Figure 2, which implement
system state transitions. The openX-Y rewrite rules progressively increment the aperture width of
a given spillway (e.g., the rule open1-2 increases the aperture of the spillway S from level open1
to level open2). Dually, closeX-Y rewrite rules progressively decrease the aperture width of a
spillway. The rule nocmd specifies the empty command, which basically states that no action is
taken on the spillway configuration by the dam controller at time instant T. The rule is fired only
when the AC flag is enabled, and its application disables the flag to allow a new basin water volume
to be computed in the next time instant. These eight rules, called aperture command rules, implement
instantaneous spillway modifications that do not change the time instant or the basin water volume.

The temporal evolution of the basin water volume is specified by the conditional rewrite rule
volume that computes the volume V’ at time T + deltaT, given the input volume V at time T.
The parameter deltaT is measured in minutes and can be set by the user. The volume computation
changes the input volume V by adding the water inflow and subtracting the corresponding water
outflow over the deltaT interval.

Efficient Safety Enforcement for Maude Programs 5

The use of the apertureCommand flag in the rule definitions guarantees a fair interleaving
between the applications of the rule volume and the remaining aperture command rules. Specif-
ically, this implies that a new basin water volume is computed after each spillway aperture width
modification.

When convenient, we interpret the Maude program RDAM as the rewrite theory RDAM =
(ΣD, ED, RD), where ΣD is the signature of the dam controller, ED consists of the equations of
Figure 1, and RD contains the rewrite rules in Figure 2.

Note that computations in RDAM may reach potentially hazardous system states (e.g., an ex-
tremely high water volume) as shown Example 1. This is because RDAM does not implement any
spillway management policy that safely restricts the applications of the aperture command rules.

Example 1. Consider the rewrite theory RDAM = (ΣD, ED, RD) and assume a critical basin water
volume threshold equal to 50 million cubic meters. Then, there exists the following unsafe computa-
tion inRDAM that reaches a state exceeding the considered threshold.

{[s1,open1] [s2,close] [s3,close] ; 49985000 ; 0 ; true} close1-C−−−−−−→ED

{[s1,close] [s2,close] [s3,close] ; 49985000 ; 0 ; false} volume−−−−−→ED

{[s1,close] [s2,close] [s3,close] ; 49995000 ; 5 ; true} nocmd−−−−→ED

{[s1,close] [s2,close] [s3,close] ; 49995000 ; 5 ; false} volume−−−−−→ED

{[s1,close] [s2,close] [s3,close] ; 50005000 ; 10 ; true}

In the sequel, we describe how the unsafe program RDAM can be statically refined by defining
logical assertions that are used to enforce critical properties at specialization time.

3. Specifying Safety Policies via Assertions
A safety policy for a Maude programR = (Σ, E,R), withE = ∆]Ax, is defined by means of a set
A of system assertions that R must satisfy, with each assertion being of the form Π |ϕ. Intuitively,
assertions specify safe system states as follows. A system state s is safe w.r.t. an assertion Π |ϕ iff,
for every subterm of s that matches (modulo the axioms in Ax) the algebraic structure of Π with
substitution σ, the constraints given by the instantiated invariant ϕσ are satisfied in E. Besides the
usual Boolean operators and Maude predefined relational predicates (e.g., equality ==, inequality
=/=), the state invariant ϕ may include user-defined predicates as well as functions that can be
specified via suitable equational definitions.

Example 2. Let us consider the user-defined function openSpillways(SC) that returns the number
of open spillways in the spillway configuration SC, whose equational definition is

eq openSpillways(empty) = 0 .
eq openSpillways([S,O] SC) = if (O =/= close)

then (1 + openSpillways(SC))
else openSpillways(SC) fi .

and the safety policy ADAM of Figure 3 for the dam controller RDAM that specifies some safety con-
straints to prevent critical basin situations.

More specifically, assertion a1 states that, in every system state, the basin water volume must
be less than 50 million m3 to avoid dam bursts and potentially disastrous floods. Assertion a2 spec-
ifies that, whenever the basin water volume is greater than 40 million m3, all of the spillways must
be open and the aperture width of at least one spillway must be maximal (level open3). Assertion
a3 requires the closure of all the spillways when the basin water volume is particularly low (10
million m3). Finally, assertion a4 specifies the spillway handling for an intermediate water volume
(10 million m3 ≤ V ≤ 40 million m3); in this scenario we require that exactly two spillways be
constantly open.

6 M. Alpuente, D. Ballis and J. Sapiña

(a1) { SC ; V ; T ; AC } | (V < 50000000)
(a2) { [S1,O1] [S2,O2] [S3,O3] ; V:Rat ; T:TimeStamp ; AC:Bool } |

(V:Rat > 40000000) implies (
(O1 == open3 and O2 =/= close and O3 =/= close) or
(O2 == open3 and O1 =/= close and O3 =/= close) or
(O3 == open3 and O1 =/= close and O2 =/= close))

(a3) { SC ; V ; T ; AC } | (V < 10000000) implies
(openSpillways(SC) == 0)

(a4) { SC ; V ; T ; AC } | ((V >= 10000000) and (V <= 40000000)) implies
(openSpillways(SC) == 2)

FIGURE 3. Safety policy ADAM for the dam controllerRDAM.

4. Computing Safe Maude Programs with ÁTAME
Program specialization techniques make it possible to automatically transform a program into a
specialized version, according to an execution context.

ÁTAME (Assertion-based Theory Amendment in MaudE) implements the program correction
technique of [5, 6], where we use assertions to set the specialization scenario and guide the refine-
ment technique to transform a Maude programR into a specialized programR. that complies with
the safety policy A. This is done in two phases as follows.

Phase 1. Compiling the assertion setA into an assertional (equational) theory. This phase trans-
lates the safety policy A to be fulfilled into an executable equational definition Eq(A) that can be
used to detect assertion violations within system states. Roughly speaking, given a system state s, a
violation of some assertion inA is detected in s if s can be simplified into the special constant fail
by using an extended equational theory that consists of the equational theory E of R augmented
with Eq(A).

Formally, for each assertion Π|ϕ ∈ A, Eq(A) includes an equation

Π-ren = fail if not(ori(ϕ))

such that
• Π-ren is a renamed version of the state template Π where each operator f in Π has been

replaced by a fresh new operator f.;
• fail is a fresh new constant that does not occur in the signature ofR;
• ori(t.) is a function that takes a renamed term t. and returns its original version t, that is,
ori(t.) = t.

By notation ren(t) we denote the function that returns the renamed version of the term t.
Note that assertion-checking is executed over renamed versions of the original program states.

When a (subterm of a) renamed state matches Π-ren, via a substitution σ., and the associated in-
stance of the state invariant in the original term algebra ori(ϕσ.) does not hold, a fail term is
yielded and consequently an assertion violation is signaled. Renaming is crucial in order to neatly
separate assertion checking from system computations so that they do not interfere: the overall sys-
tem execution uses the original operators and equations in the equational theory, while assertion vio-
lation detection is performed on renamed terms (for a detailed discussion on renaming, see [6, 15]).
Indeed, a naı̈ve approach to assertion-checking that does not involve some form of term renaming
can easily break program executability conditions. In particular, it can lead to nontermination of the
assertion evaluation process, as illustrated in the following example.

Example 3. Consider the assertion a = f(x) | P(f(x)) that holds on all of the system states
that match the state template f(x) and also satisfies the user-defined predicate P. By ingenuously
omitting renaming of the state template f(x), the assertion a would be translated into the flawed
assertion-checking equation e∞

Efficient Safety Enforcement for Maude Programs 7

f(x) = fail if not(P(f(x)) .

whose application is nonterminating. Indeed, any attempt to evaluate (an instance of) the condition
of e∞ would enter an infinite loop that requires using the equation e∞ itself once again. On the
contrary, the appropriately renamed equation

f.(x) = fail if not(ori(P(f(x))) .
prevents nontermination, since the condition not(ori(P(f(x))) is proved in the original pro-
gram while only renamed terms can be rewritten by using the equation e∞.

The following example shows how our equational encoding of assertions works in practice.

Example 4. Given the safety policy ADAM of Example 2 and the Maude program RDAM = (ΣD, ED,
RD), the set Eq(ADAM) includes the following equations3:

(e1) { SC ; V ; T ; AC }. = fail if not(ori((V < 50000000))) .

(e2) { [S1,O1]. [S2,O2]. [S3,O3]. ; V:Rat ; T:TimeStamp ; AC:Bool }. = fail
if not(ori((V:Rat > 40000000) implies (

(O1 == open3 and O2 =/= close and O3 =/= close) or
(O2 == open3 and O1 =/= close and O3 =/= close) or
(O3 == open3 and O1 =/= close and O2 =/= close))
)) .

(e3) { SC ; V ; T ; AC }. = fail if not(ori((V < 10000000) implies
(openSpillways(SC) == 0)
)) .

(e4) { SC ; V ; T ; AC }. = fail if not(ori(((V >= 10000000) and (V <= 40000000))
implies
(openSpillways(SC) == 2)
)) .

Note that the renamed state
{[s1.,open3.]. [s2.,open1.]. [s3.,open1.]. ; 50100000. ; 20. ; true.}.

can be reduced to fail by using the extended equational theory ED ∪ Eq(ADAM) (specifically via
the application of Equation e1).

Phase 2. Transforming the rewrite rules into guarded rewrite rules. This phase transforms the
original rewrite rules ofR into guarded, conditional rewrite rules that can only be fired if no system
assertion is violated. Intuitively, this is achieved by transforming each rewrite rule r : (λ⇒ ρ if C)
of R into a specialized version r. : (λ ⇒ ρ if C ∧ ren(ρ) =/= fail) of r that contains the extra
constraint ren(ρ) =/= fail that holds when the renamed instances of the right-hand side ρ cannot
by simplified to fail by using the extended equational theoryE∪Eq(A). This way, we ensure that

any state transition t1
r.−→E∪Eq(A) t2, which yields the system state t2 by means of the application

of the rule r., is enabled only if t2 is a safe state w.r.t. the assertions in A.

Example 5. Given the safety policy ADAM of Example 2 and the Maude program RDAM = (ΣD, ED,
RD), the rewrite rules in RD are specialized as follows:
rl [nocmd] : { SC ; V ; T ; true } => { SC ; V ; T ; false }

if ren({ SC ; V ; T ; false }) =/= fail .
rl [openC-1] :

{ [S,close] SS ; V ; T ; true } => { [S,open1] SS ; V ; T ; false }
if ren({ [S,open1] SS ; V ; T ; false }) =/= fail .

3Note that, in the case of mixfix operators, we just rename one operator symbol. For instance, the constructor operator for
system states { ; ; ; } is renamed { ; ; ; }..

8 M. Alpuente, D. Ballis and J. Sapiña

rl [open1-2] :
{ [S,open1] SS ; V ; T ; true } => { [S,open2] SS ; V ; T ; false }

if ren({ [S,open2] SS ; V ; T ; false }) =/= fail .
rl [open2-3] :

{ [S,open2] SS ; V ; T ; true } => { [S,open3] SS ; V ; T ; false }
if ren({ [S,open3] SS ; V ; T ; false }) =/= fail .

rl [close1-C] :
{ [S,open1] SS ; V ; T ; true } => { [S,close] SS ; V ; T ; false }

if ren({ [S,close] SS ; V ; T ; false }) =/= fail .
rl [close2-1] :

{ [S,open2] SS ; V ; T ; true } => { [S,open1] SS ; V ; T ; false }
if ren({ [S,open1] SS ; V ; T ; false }) =/= fail .

rl [close3-2] :
{ [S,open3] SS ; V ; T ; true } => { [S,open2] SS ; V ; T ; false }

if ren({ [S,open2] SS ; V ; T ; false }) =/= fail .
crl [volume] : { SC ; V ; T ; false } => { SC ; V’ ; (T + deltaT) ; true }

if V’ := (V + inflow * deltaT) - (outflow(SC) * deltaT) /\
ren({ SC ; V’ ; (T + deltaT) ; true }) =/= fail .

As formally proven in [6], computations in the resulting program R. are both reproducible
in R and guaranteed to meet A. In other words, for each computation C in R., (i) C is also a
computation inR, and (ii) there is no system state t in C that violates one or more system assertions
of A whenever the initial state of C meets the assertions in A.

ÁTAME has been coded in Maude itself by using Maude’s meta-level capabilities. It integrates
a RESTful Web service that is written in Java and an intuitive Web user interface that is based
on AJAX technology and is written in HTML5 and Javascript. The implementation contains about
600 lines of Maude source code, 600 lines of C++ code, 750 lines of Java code, and 700 lines of
HTML5 and JavaScript code. The tool is publicly available together with a number of examples at
http://safe-tools.dsic.upv.es/atame.

4.1. ÁTAME Additional Features
In addition to program specialization w.r.t. logical assertions, we endowed ÁTAME with additional
features that allow the runtime behaviour of the computed safe program specializations to be an-
alyzed and improved. More specifically, the ÁTAME tool supports the incremental exploration of
the computation space for the specialized program as well as the selection of specific computations
within it.
Incremental Exploration. Roughly speaking, given a system state s, the computation tree that is
rooted at s can be inspected step-by-step by expanding any frontier state si in the currently deployed
tree fragment (stemming from s) with all rewrite steps si −→E s′i. Thanks to this feature, ÁTAME
provides a bird’s-eye view over the computation space of the computed specialization R. that can
be inspected to check whether the desired runtime behaviour of R. was achieved or the considered
safety policyA needs to be recalibrated in order to discharge a stronger/weaker specialization (which
can be obtained by re-applying the transformation). This facility is implemented by interconnecting
ÁTAME with ANIMA [8] —a program animator for Maude programs that allows programs to be ex-
ecuted by incrementally building and visualizing their computation trees. Moreover, it also supports
a graph representation of the state space that can improve the user’s understanding of the program
behavior.
Computation picking. ÁTAME allows searching for a particular computation inside the computa-
tion space of the transformed program as well as the original program. The search is modeled as a
reachability problem

(si ⇒∗ Sr such that C)

where si is a system state, Sr is a state template, and C is a Boolean condition that is used to
filter out undesired solutions. Solving (si ⇒∗ Sr such that C) essentially amounts to generating

Efficient Safety Enforcement for Maude Programs 9

a computation that connects si with a reachable state sr such that sr matches the state structure
Sr (modulo Ax) with a substitution σ and Cσ holds. If such a computation does not exist, the
reachability problem has no solution. This feature plays a fundamental role in a scenario in which
the Maude program models a nondeterministic system controller and a distinguished computation
must be extracted from the system computation space, which is done by identifying a sequence of
actions that allow a critical configuration to transition to a safe configuration.

Example 6. As an illustrative example, consider the Maude programRDAM and its safe specialization
R.

DAM that meets the safety policy ADAM of Example 2. Let si be the initial state

{ [s1,open3] [s2,open3] [s3,open2] ; 49970000 ; 0 ; true }

that describes a dam configuration at time 0 where the basin water volume is particularly high.
Then, by feeding ÁTAME with the following reachability problem

{ [s1,open3] [s2,open1] [s3,open1] ; 49970000 ; 0 ; true } ⇒∗

{ [s1,open3] [s2,open2] [s3,open1] ; V:Rat ; T:TimeStamp ; true }
such that V:Rat < 49965000 and T:TimeStamp < 60

a computation Csafe in R.
DAM is automatically delivered that represents a sequence of actions

that must be taken to bring the basin water volume from 49970000 m3 to a safer volume below
49965000 m3 in less than 60 time units. Furthermore, note that the computation Csafe is safe, since
it has been searched in the safe-by-construction specialized programR.

DAM. Hence, each intermediate
state in Csafe does not break any assertion in ADAM.

Computation picking has been implemented by making use of the (meta-)search Maude capa-
bility that solves reachability problems by visiting the program computation tree in a breadth-first
fashion. Since computation trees may include nonterminating computations, a depth bound must be
set to limit the search within the tree and make the search feasible. A search with depth d analyzes
the finite computation tree fragment that consists of all the computations with at most d rewrite rule
applications.

Also, ÁTAME is interconnected with iJULIENNE [2], a trace slicer for Maude programs that
allows the delivered computation to be graphically visualized and simplified by applying a slicing
technique that removes undesired data (i.e., data the user does not want to observe) from the trace.
More precisely, the user first selects a set of symbols to be observed from the last state of the compu-
tation (i.e., a slicing criterion); then, trace slicing automatically deletes from the computation all the
data that are irrelevant to the criterion of interest (i.e., that are not needed to produce the observed
data). For a detailed discussion on trace slicing, please refer to [1].

5. ÁTAME in Action
This section shows how ÁTAME works in practice by describing a typical program specialization
session in which the dam controllerRDAM is specialized w.r.t. the safety policy ADAM.

Maude programs can be uploaded in ÁTAME as simple .maude module files, written from
scratch inside a dedicated edit area, or selected from a preloaded collection of Maude programs that
is provided with the tool for demonstration purposes. In this case, to start the program specialization
session, we select the DAM-CONTROLLER Maude module from the preloaded programs (see Figure
4 (Left)), which models the dam controller RDAM. Next, we input the system assertions that specify
the safety policyADAM of Example 2 together with the additional function openSpillways, which
is used in the formalization of ADAM itself (see Figure 4 (Right)).

10 M. Alpuente, D. Ballis and J. Sapiña

P������ ��� M���� ����� �������

 Dam Controller Upload

 

mod DAM-CONTROLLER is

 --- Rationals are needed to model basin water volume and
 --- its related parameters (e.g. inflow, outflow)
 protecting RAT .

 sorts SpillwayId Aperture Spillway Spillways DamState TimeStamp .
 subsort Spillway < Spillways .
 subsort Nat < TimeStamp . --- we consider a Discrete time domain modeled by th
 sort State .

 --- We assume our dam is provided with three spillways called s1, s2 and s3
 --- (albeit this code can work with an arbitrary number of spillways provided t
 ops s1 s2 s3 : -> SpillwayId [ctor] .

 --- We consider 4 kinds of spillway openings of increasing discharge capacity
 ops close open1 open2 open3 : -> Aperture [ctor] .

 --- A spillway is a pair (spillwayId,aperture).
 op `[_`,_`] : SpillwayId Aperture -> Spillway [ctor] .

 --- We consider a multiset of spillways with identity empty (that is, empty rep
 op empty : -> Spillways [ctor] .
 op __ : Spillways Spillways -> Spillways [ctor assoc comm id: empty] .

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Fix Program

P������ ��� ����� ���������� ��� ��� �� ����������

Add the extra predicates used in your assertions:
mod DAM-CONTROLLER-PRED is
 pr DAM-CONTROLLER .
 sort Assertion .
 op _|_ : Universal Bool -> Assertion [ctor prec 125 gather (e e) poly (1)] .

endm

Based on your program and predicates, specify your assertions (one per line):



var S : SpillwayId .
var O : Aperture .
var SC : Spillway .

op openSpillways : Spillways -> Nat .
eq openSpillways(empty) = 0 .
eq openSpillways([S,O] SC) =
 if O =/= close
 then 1 + openSpillways(SC)
 else openSpillways(SC)
 fi .

{ SC:Spillways ; V:Rat ; T:TimeStamp ; AC:Bool } | V:Rat < 50000000
{ [S1:SpillwayId , O1:Aperture] [S2:SpillwayId , O2:Aperture] [S3:SpillwayId ,
{ SC:Spillways ; V:Rat ; T:TimeStamp ; AC:Bool } | (V:Rat < 10000000 implies openSp
{ SC:Spillways ; V:Rat ; T:TimeStamp ; AC:Bool } | (V:Rat >= 10000000 and V:Rat <=

FIGURE 4. (Left) Loading the DAM-CONTROLLER Maude module in ÁTAME.
(Right) Loading the safety policy ADAM in ÁTAME.

At this point, by pressing the FIX PROGRAM button, ÁTAME automatically generates the
program specialization R.

DAM of RDAM, which is safe w.r.t. ADAM. Figure 5 (Left) shows a fragment
of such a specialization that includes Eq(ADAM) (i.e., the equations for detecting assertion violations
described in Example 4) and the specialized rewrite rules of Example 5.

Pick a Computation Animate

F���� ������� ������ (�������� ������� �������)



mod DAM-CONTROLLER-FIXED is
 inc BOOL .
 pr RAT .
 sorts Aperture DamState Spillway SpillwayId Spillways State TimeStamp .
 subsort Nat < TimeStamp .
 subsort Spillway < Spillways .
 op __ : Spillways Spillways -> Spillways [assoc comm ctor id: empty] .
 op __-ren : Spillways Spillways -> Spillways [assoc comm ctor id: empty-ren
 op `[_`,_`] : SpillwayId Aperture -> Spillway [ctor] .
 op `[_`,_`]-ren : SpillwayId Aperture -> Spillway [ctor] .
 op `{_;_;_;_`} : Spillways Rat TimeStamp Bool -> State .
 op `{_;_;_;_`}-ren : Spillways Rat TimeStamp Bool -> State .
 op aperture : Aperture -> Rat .
 op aperture-ren : Aperture -> Rat .
 op close : -> Aperture [ctor] .
 op close-ren : -> Aperture [ctor] .
 op deltaT : -> TimeStamp .
 op deltaT-ren : -> TimeStamp .
 op empty : -> Spillways [ctor] .
 op empty-ren : -> Spillways [ctor] .
 op fail : -> Universal [poly (0)] .
 op inflow : -> Rat .
 op inflow-ren : -> Rat .
 op open1 : -> Aperture [ctor] .
 op open1-ren : -> Aperture [ctor] .
 op open2 : -> Aperture [ctor] .

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


Zoom: - 100% +

FIGURE 5. (Left) A fragment of the safe specialization for RDAM computed by
ÁTAME. (Right) A graph representation of the computation tree in Figure 6.

Once the specialization R.
DAM has been computed, the user is given the possibility to analyze

it in two ways. First, by pressing the ANIMATE button, R.
DAM is executed by incrementally building

and exploring the computation tree of R.
DAM w.r.t. a given initial state. For instance, in Figure 6, we

show a fragment of the computation tree ofR.
DAM w.r.t. the initial state

s = { [s1,open3] [s2,open3] [s3,open3] ; 49990000 ; 0 ; true }.

Efficient Safety Enforcement for Maude Programs 11

 

-+

{[s1,open3] [s2,open3] [s3,open2] ; 49970000 ; 0
 ; true}

{[s1,open3] [s2,open3] [s3,open2] ; 49970000 ; 0
 ; true}

s1

crl: nocmd

{[s1,open3] [s2,open3] [s3,open2] ; 49970000 ; 0
 ; false}

{[s1,open3] [s2,open3] [s3,open2] ; 49970000 ; 0
 ; false}

s2
+ crl: close2-1

{[s1,open3] [s2,open3] [s3,open1] ; 49970000 ; 0
 ; false}

{[s1,open3] [s2,open3] [s3,open1] ; 49970000 ; 0
 ; false}

s5
+ crl: open2-3

{[s1,open3] [s2,open3] [s3,open3] ; 49970000 ; 0
 ; false}

{[s1,open3] [s2,open3] [s3,open3] ; 49970000 ; 0
 ; false}

s8
+ crl: close3-2

{[s1,open2] [s2,open3] [s3,open2] ; 49970000 ; 0
 ; false}

{[s1,open2] [s2,open3] [s3,open2] ; 49970000 ; 0
 ; false}

s11
+ crl: close3-2

{[s1,open3] [s2,open2] [s3,open2] ; 49970000 ; 0
 ; false}

{[s1,open3] [s2,open2] [s3,open2] ; 49970000 ; 0
 ; false}

s14

+ crl: volume

{[s1,open3] [s2,open3] [s3,open3] ; 49962000 ; 5
 ; true}

{[s1,open3] [s2,open3] [s3,open3] ; 49962000 ; 5
 ; true}

s18

crl: nocmd

{[s1,open3] [s2,open3] [s3,open3] ; 49962000 ; 5
 ; false}

{[s1,open3] [s2,open3] [s3,open3] ; 49962000 ; 5
 ; false}

s19
+ crl: close3-2

{[s1,open2] [s2,open3] [s3,open3] ; 49962000 ; 5
 ; false}

{[s1,open2] [s2,open3] [s3,open3] ; 49962000 ; 5
 ; false}

s22
+ crl: close3-2

{[s1,open3] [s2,open2] [s3,open3] ; 49962000 ; 5
 ; false}

{[s1,open3] [s2,open2] [s3,open3] ; 49962000 ; 5
 ; false}

s25
+ crl: close3-2

{[s1,open3] [s2,open3] [s3,open2] ; 49962000 ; 5
 ; false}

{[s1,open3] [s2,open3] [s3,open2] ; 49962000 ; 5
 ; false}

s28

+ crl: volume

{[s1,open3] [s2,open3] [s3,open3] ; 49954000 ; 1
0 ; true}

{[s1,open3] [s2,open3] [s3,open3] ; 49954000 ; 1
0 ; true}

s31
+ crl: volume

{[s1,open2] [s2,open3] [s3,open3] ; 49958000 ; 1
0 ; true}

{[s1,open2] [s2,open3] [s3,open3] ; 49958000 ; 1
0 ; true}

s34
+ crl: volume

{[s1,open3] [s2,open2] [s3,open3] ; 49958000 ; 1
0 ; true}

{[s1,open3] [s2,open2] [s3,open3] ; 49958000 ; 1
0 ; true}

s37
+ crl: volume

{[s1,open3] [s2,open3] [s3,open2] ; 49958000 ; 1
0 ; true}

{[s1,open3] [s2,open3] [s3,open2] ; 49958000 ; 1
0 ; true}

s40

Zoom: - 100% +

 Enter your query here and press enter.

FIGURE 6. A computation tree fragment of R.
DAM w.r.t. the initial state

{[s1,open3] [s2,open3] [s3,open2] ; 49970000 ; 0 ; true}.

Note that all of the states in the considered tree fragment fulfill the system assertions formalized in
ADAM. Specifically, it can be observed that the basin water volume is below the established critical
threshold (50 millions m3) in every system state (as specified by Assertion a1). Furthermore, in
each state, all of the spillways are open and at least one has a maximum aperture width (open3)
as required by Assertion a2 whenever the water volume is greater than 40 million m3. A more
compact, graph representation of the deployed computation tree can be visualized by selecting the
Draw computation graph option in the settings menu, which is accessible through the wheel icon
(see Figure 5 (Right)).

Second, by pressing the PICK A COMPUTATION button, the system asks to input a reachability
problem (si ⇒∗ Sr where Cond) plus an integer that indicates the maximum search depth within
the computation tree. Then, a search starts and a suitable deterministic computation is singled out (if
any). Thanks to the interconnection with the iJULIENNE trace slicer, the produced computation can
be automatically visualized in a tabular form or as a browsable sequence of state transitions that the
user can navigate through and eventually simplify by means of IJULIENNE trace slicing capabilities.
For instance, the reachability problem of Example 6 yields the safe computation Csafe in Figure 7
when the associated computation tree is searched with a search depth equal to 50. Csafe consists of
28 systems states (including both rule applications and equational and axiomatic simplifications) and
pinpoints a deterministic sequence of actions that brings the initial critical state { [s1,open3]
[s2,open1] [s3,open1] ; 49970000 ; 0 ; true } to the safe state {[s1,open3]
[s2,open2] [s3,open1] ; 49963000 ; 25 ; true} in exactly 25 units of time.

Finally, the browsable version of Csafe is shown in Figure 8 together with a companion com-
putation slice that has been obtained from Csafe by choosing a slicing criterion that ignores the
timestamp and apertureCommand flag.

6. Experimental evaluation
We benchmarked the performance of the ÁTAME system against the following collection of Maude
programs, which are all available and fully described within the ÁTAME Web platform: Bank model,
a conditional Maude specification that models a distributed banking system; Blocks World, a Maude
encoding of the classical AI planning problem that consists of setting one or more vertical stacks of
blocks on a table using a robotic arm; BRP, a Maude implementation of the Bounded Retransmis-
sion Protocol; Container, a Maude specification that models the cargo manipulation in a container
terminal; DAM controller, our running example; Dekker, a Maude specification of Dekker’s mutual
exclusion algorithm; Maude NPA, an analysis tool for cryptographic protocols that takes into ac-
count the algebraic properties of cryptosystems; Philosophers, a Maude specification of Dijkstra’s
classical concurrency example; Semaphore, a classical mutual exclusion protocol with semaphores
written in Maude; Stock Exchange, a simplified stock exchange concurrent system in which traders
operate on stocks via limit orders; Webmail app, a Maude specification of a rich webmail application

12 M. Alpuente, D. Ballis and J. Sapiña

 

-EQ1

rue}rue}

s27 builtIn

{[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; 5 + 20 ; true}{[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; 5 + 20 ; true}

s28
{[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; 25 ; true}{[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; 25 ; true}

  Slice  

Zoom: - 100% + States 27-28 of 28

 Enter your query here and press enter.

××Trace information (trusted mode)

State Label Trace

1 'Start {[s1,open3] [s2,open1] [s3,open1] ; 49970000 ; 0 ; true}

2 fromBnf {([s1,open3] [s3,open1]) [s2,open1] ; 49970000 ; 0 ; true}

3 open1-2 {([s1,open3] [s3,open1]) [s2,open2] ; 49970000 ; 0 ; false}

4 toBnf {[s1,open3] [s2,open2] [s3,open1] ; 49970000 ; 0 ; false}

5 volume {[s1,open3] [s2,open2] [s3,open1] ; 49971000 ; deltaT + 0 ; true}

6 Label-EQ1 {[s1,open3] [s2,open2] [s3,open1] ; 49971000 ; 5 + 0 ; true}

7 toBnf {[s1,open3] [s2,open2] [s3,open1] ; 49971000 ; 0 + 5 ; true}

8 builtIn {[s1,open3] [s2,open2] [s3,open1] ; 49971000 ; 5 ; true}

9 fromBnf {([s1,open3] [s3,open1]) [s2,open2] ; 49971000 ; 5 ; true}

10 open2-3 {([s1,open3] [s3,open1]) [s2,open3] ; 49971000 ; 5 ; false}

11 toBnf {[s1,open3] [s2,open3] [s3,open1] ; 49971000 ; 5 ; false}

12 volume {[s1,open3] [s2,open3] [s3,open1] ; 49968000 ; deltaT + 5 ; true}

13 Label-EQ1 {[s1,open3] [s2,open3] [s3,open1] ; 49968000 ; 5 + 5 ; true}

14 builtIn {[s1,open3] [s2,open3] [s3,open1] ; 49968000 ; 10 ; true}

15 nocmd {[s1,open3] [s2,open3] [s3,open1] ; 49968000 ; 10 ; false}

16 volume {[s1,open3] [s2,open3] [s3,open1] ; 49965000 ; deltaT + 10 ; true}

17 Label-EQ1 {[s1,open3] [s2,open3] [s3,open1] ; 49965000 ; 5 + 10 ; true}

18 builtIn {[s1,open3] [s2,open3] [s3,open1] ; 49965000 ; 15 ; true}

19 nocmd {[s1,open3] [s2,open3] [s3,open1] ; 49965000 ; 15 ; false}

20 volume {[s1,open3] [s2,open3] [s3,open1] ; 49962000 ; deltaT + 15 ; true}

21 Label-EQ1 {[s1,open3] [s2,open3] [s3,open1] ; 49962000 ; 5 + 15 ; true}

22 builtIn {[s1,open3] [s2,open3] [s3,open1] ; 49962000 ; 20 ; true}

23 fromBnf {([s1,open3] [s3,open1]) [s2,open3] ; 49962000 ; 20 ; true}

24 close3-2 {([s1,open3] [s3,open1]) [s2,open2] ; 49962000 ; 20 ; false}

25 toBnf {[s1,open3] [s2,open2] [s3,open1] ; 49962000 ; 20 ; false}

26 volume {[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; deltaT + 20 ; true}

27 Label-EQ1 {[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; 5 + 20 ; true}

28 builtIn {[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; 25 ; true}

Size: 1426 bytes

Export Maude trace to clipboard Untrusted mode Extended view
FIGURE 7. The computation Csafe delivered by ÁTAME as the outcome of the
reachability problem of Example 6.

 

el-EQ1

true}true}

s27 builtIn

{[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; 5 + 20 ; true}{[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; 5 + 20 ; true}

s28
{[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; 25 ; true}{[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; 25 ; true}

s•27
{[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; • ; •}{[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; • ; •}

s•28
{[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; • ; •}{[s1,open3] [s2,open2] [s3,open1] ; 49963000 ; • ; •}

  Slice  

Zoom: - 100% + States 27-28 of 28

 Enter your query here and press enter.

FIGURE 8. A browsable version of Csafe and its sliced counterpart.

Efficient Safety Enforcement for Maude Programs 13

that provides typical email management, system administration capabilities, login/logout functional-
ity, etc; Wolfram’s Rule 30, a one-dimensional binary cellular automaton rule introduced by Stephen
Wolfram.

To conduct our experiments, we have used the following modus operandi.

1. Each Maude programR in the benchmark set is specialized w.r.t. three safety policies with an
increasing number of system assertions (10, 25, 50 assertions); the generation time GR. for
building each safe program specialization R. is recorded. Furthermore, the number of equa-
tions4 inR andR. is used as a measure of their size (columns #ER and #ER. , respectively).

2. The execution times of the original program (TR) and of each program specialization (TR.)
are measured w.r.t. computations that consist of about 500 Maude computation steps, which
amounts to 5,000 rewrite steps on average including equational simplification steps. Times are
measured in milliseconds. Each measure has been repeated 10 times and the average has been
taken to reduce the computation noise.

The experiments have been performed on a machine equipped with a 3.3GHz Intel Xeon E5-
1660 CPU and 64GB RAM. The results are shown in Table 1. Our figures show that, on average, the
increasing in the program size grows linearly to the number of newly declared operators and the size
of the corrected code is 11.8 times the size of the original code. For instance, for the bank model, the
increase in size ranges from 7.1 for 10 assertions to 8.1 for 50 assertions. Nonetheless, column GR.

shows rather good generation times (a few milliseconds) in each case. On average, generating a new
equation ofR. takes less then 1ms. Generation times also scale well w.r.t. the size (column #A) of
each safety policy under examination. This demonstrates that our approach works well in practice
even when large assertion sets are considered.

Efficiency of computed program specializations highly depends on the complexity of the func-
tions and predicates involved in the specified assertions —e.g., an assertion encoded by means of an
exponential time algorithm is likely to negatively affect the overall performance of the specializa-
tion. In this scenario, bad performance is due to an inefficient assertional specification, rather than to
the transformation methodology itself. Therefore, to fairly evaluate the efficiency of our methodol-
ogy, we considered low complexity assertional specifications where the reason of possibly good/bad
performance is essentially rooted in our specialization method. Under this assumption, we computed
the execution times TR and TR. . Our figures show that TR. is slightly greater than TR for every
experiment.

This slowdown is obviously expected since R. comes with a more complex equational struc-
ture that is used to perform the safety checks that are encoded in the conditional rewrite rules of
R.. However, even when the size of R. is much bigger than the size of R, the running times scale
linearly with the number of assertions. Actually, our figures reveal reasonable overheads (Column
OR.), which we compute as (TR. −TR)/TR, with the average overhead being less than one (0.89).
And moreover, the incurred cost is negligible when compared to the high execution costs of moni-
tored runtime environments, which can be up to five times the running time of the original program
(e.g., for the Bank Model with only five assertions, see [6]). Overall, the correction transformation is
useful since the transformed program is demonstrably safe and corrections are generated fast enough
that they could be computed during active development, thus reducing the debugging burden.

7. Concluding Remarks
The technique described in this paper presents similarities with automated program correction and
related problems such as code fixing and repair techniques. The discussion of these similarities is
outside the scope of this paper; a detailed comparison can be found in [6].

4We do not include rewrite rules in the computation of the program size of R and R., since both programs have the same
number of rewrite rules.

14 M. Alpuente, D. Ballis and J. Sapiña

TR #ER #A #ER. GR. TR. OR.

Bank model
10 271 15 37 1.18

17 38 25 286 16 42 1.47
50 311 24 51 2.00

Blocks world
10 211 9 40 1.11

19 12 25 226 15 48 1.53
50 251 25 55 1.89

BRP
10 87 8 8 0.60

5 12 25 102 13 9 0.80
50 127 24 10 1.00

Container
10 226 16 20 0.43

14 20 25 241 26 21 0.50
50 266 41 25 0.79

Dam Controller
10 329 21 23 1.08

11 66 25 344 24 24 1.18
50 369 39 26 1.36

Dekker
10 341 23 52 0.30

40 25 25 356 25 53 0.33
50 381 36 55 0.38

Maude-NPA
10 179 6 40 0.21

33 11 25 194 9 42 0.27
50 219 19 44 0.33

Philosophers
10 144 8 15 0.25

12 12 25 159 11 15 0.25
50 184 25 16 0.33

Semaphore Problem
10 131 9 17 1.43

7 10 25 146 12 22 2.14
50 171 28 24 2.43

Stock Ex. model
10 419 33 56 0.56

36 106 25 434 62 74 1.06
50 459 81 85 1.36

Webmail app
10 1167 113 194 0.41

138 191 25 1182 128 198 0.43
50 1207 138 201 0.46

Wolfram’s Rule 30
10 138 9 10 0.43

7 13 25 153 16 12 0.71
50 178 25 15 1.14

TABLE 1. Experimental results of the specialization technique.

In order to guarantee that a program satisfies a property, three kinds of approaches have been
considered in the literature: static, dynamic, and mixed approaches [10]. Static approaches such as
program derivation, static analysis, and type-checking can ensure properties without any runtime
penalty. However they are generally dedicated to limited properties and may reject perfectly correct
programs. Dynamic approaches such as code instrumentation and runtime monitors rely on some
kind of state machine that closely follows the program execution and halts the program whenever it
is about to violate the property. The main drawback of dynamic approaches is their runtime costs.
Policy weaving [12] is a mixed program transformation technique that rewrites a program so that it

Efficient Safety Enforcement for Maude Programs 15

is guaranteed to be safe with respect to a security policy. Its strength stems from the possibility of
blending the best aspects of static and dynamic analysis as it relies on (i) static analysis to identify
program points at which policy violations might occur, and (ii) runtime analysis to implement dy-
namic enforcement. Policy weaving is often combined with transactional introspection, which allows
the state resulting from the execution of a statement to be examined and, if the policy is about to be
violated, the state is suppressed. Our approach is certainly hybrid but differs from “mixed program
transformation” in that we do not perform any kind of static analysis nor we instrument the code for
performing just-in-time transactional introspection, meaning that the effects of an execution are com-
puted and examined without committing their effects to the environment. The ability to introspect
on actions prior to applying their effects involves speculative execution and is only necessary when
dealing with programs that perform irrevocable actions, such as the initiation of an HTTP request.
Moreover, even if our approach is essentially static in the sense that it applies a (source-to-source)
program transformation that specializes the program code to the properties of interest, it could also
be classified as a dynamic, programming language approach according to [10] in the sense that it
integrates the runtime checks within the program itself, yet achieves them with no prohibitive run-
time overhead. Moreover, our technique does not reject correct programs and supports the efficient
enforcement of strong, customized, invariant properties that are specified in a purely declarative way.

Related work

The framework for assertion-based debugging of constraint logic programs of [15] defines a program
transformation that can be used for checking at runtime those assertions that cannot be decided at
compile time. Similarly to our work, any meta-interpretation level is eliminated since the process
of assertion checking is compiled into a transformed program which checks the assertions while
running on a standard (CLP) execution system. However, the transformation of [15] does not apply
to the complex rewrite theories that we consider in this work, which support inductively nested
structures that may obey structural axioms such as associativity, commutativity and unity [6].

Liquid Haskell (LH) [16] allows Haskell code to be annotated with data type invariants that
complement the invariants imposed by the types with logical predicates; this allows safety properties
to be enforced at compile time. A liquid type has the form {v : τ |e}, where τ is a Hindley-Milner
type and e is a boolean expression and represents all the values u of type τ such that the expression
e[u/v] evaluates to true. Liquid type annotations are provided by the programmer in the input file as
Haskell comments that are ignored by GHC but are processed by LH instead. The first phase of LH
uses the Haskell compiler GHC to resolve the external references, to type-check the program in the
Hindley-Milner sense, and to transform it to its internal core representation. As a result, a set of type
constraints is generated in the second phase, which are solved in a third phase with the help of a SMT
solver. In contrast to [16], which defines constraints at the type-level, our approach specifies asser-
tions at a specification level and uses them to statically direct a program specialization technique that
produces a safe version of the input program. Then, safety checks are dynamically performed over
the specialized program in the standard Maude runtime environment without resorting to external
artifacts.

Also, loosely related to this work is the concept of program specialization of terminating pro-
grams based on output constraints (i.e., program post-conditions) [13]. This methodology translates
the output constraints into a characterization function for the program’s input that is used to guide a
partial evaluation process. In contrast, we deal with non-terminating concurrent programs, and the
specialization that we achieve cannot be produced by any (conventional or unconventional) partial
evaluation technique for Maude programs [7].

To our knowledge, the assertion-based functionality for molding programs supported by ÁTAME
is indeed beyond the capabilities of all existing Maude tools.

16 M. Alpuente, D. Ballis and J. Sapiña

References
[1] Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Using Conditional Trace Slicing for Improving Maude

Programs. Science of Computer Programming 80, Part B, 385 – 415 (2014)
[2] Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Slicing-Based Trace Analysis of Rewriting Logic Spec-

ifications with iJULIENNE. In: Proc. of the 22nd European Symposium on Programming (ESOP 2013),
LNCS, vol. 7792, pp. 121–124. Springer (2013)

[3] Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Assertion-based Analysis via Slicing with ABETS. The-
ory and Practice of Logic Programming 16(5–6), 515–532 (2016)

[4] Alpuente, M., Ballis, D., Sapiña, J.: Inferring Safe Maude Programs with ÁTAME. In: Mathematical Soft-
ware - ICMS 2018 - 6th International Conference, LNCS, vol. 10931, pp. 1–10. Springer (2018)

[5] Alpuente, M., Ballis, D., Sapiña, J.: Imposing Assertions in Maude via Program Transformation. Meth-
odsX 6, 2577–2583 (2019)

[6] Alpuente, M., Ballis, D., Sapiña, J.: Static Correction of Maude Programs with Assertions. Journal of
Systems and Software 153, 64–85 (2019)

[7] Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Partial Evaluation of Order-sorted Equational
Programs modulo Axioms. In: Proc. of the 26th International Symposium on Logic-Based Program Syn-
thesis and Transformation (LOPSTR 2016), LNCS, vol. 10184, pp. 3–20. Springer (2016)

[8] The Anima Website (2015). Available at: http://safe-tools.dsic.upv.es/anima
[9] Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.: Maude

Manual (Version 2.7.1). Tech. rep., SRI International Computer Science Laboratory (2016). Available at:
http://maude.cs.uiuc.edu/maude2-manual/

[10] Colcombet, T., Fradet, P.: Enforcing Trace Properties by Program Transformation. In: Proc. of POPL 2000,
pp. 54–66. ACM (2000)

[11] Danvy, O., Glück, R., Thiemann, P. (eds.): Proc. of the International Seminar on Partial Evaluation
(Dagstuhl 1996), LNCS, vol. 1110. Springer (1996)

[12] Joiner, R., Reps, T., Jha, S., Dhawan, M., Ganapathy, V.: Efficient Runtime-enforcement Techniques for
Policy Weaving. In: Proc. of the 22nd ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (FSE 2014), pp. 224–234. ACM (2014)

[13] Khoo, S.C., Shi, K.: Program Adaptation via Output-Constraint Specialization. Higher-Order and Sym-
bolic Computation 17(1), 93–128 (2004)

[14] Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Computer
Science 96(1), 73–155 (1992)

[15] Puebla, G., Bueno, F., Hermenegildo, M.V.: Combined Static and Dynamic Assertion-Based Debugging of
Constraint Logic Programs. In: Proc. of the 9th International Workshop on Logic Programming Synthesis
and Transformation (LOPSTR 1999), Selected Papers, LNCS, vol. 1817, pp. 273–292. Springer (2000)

[16] Vazou, N., Seidel, E.L., Jhala, R.: Liquid Haskell: Experience with Refinement Types in the Real World.
In: Proc. of the 2014 ACM SIGPLAN Symposium on Haskell, 2014, pp. 39–51 (2014)

M. Alpuente
VRAIN, Universitat Politècnica de València
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain
e-mail: alpuente@upv.es

D. Ballis
DMIF, University of Udine,
Via delle Scienze, 206, 33100, Udine, Italy
e-mail: demis.ballis@uniud.it

J. Sapiña
VRAIN, Universitat Politècnica de València
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain
e-mail: jsapina@upv.es

