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Abstract

Throughout the pages of this document, I present the results of the re-
search that was carried out in the context of my PhD studies.

Nowadays, software exists in almost everything. Companies often de-
velop and maintain a collection of custom-tailored software systems that
share some common features but also support customer-specific ones. As
the number of features and the number of product variants grows, soft-
ware maintenance is becoming more and more complex. To keep pace
with this situation, Model-Based Software Engineering Community is ad-
dressing a key-activity: Model Fragment Location (MFL). MFL aims at
identifying model elements that are relevant to a requirement, feature, or
bug. Many MFL approaches have been introduced in the last few years
to address the identification of the model elements that correspond to a
specific functionality. However, there is a lack of detail when the mea-
surements about the search space (models) and the measurements about
the solution to be found (model fragment) are reported. The goal of
this thesis is to provide insights to MFL Research Community of how to
improve the report of location problems. We propose using five measure-
ments (size, volume, density, multiplicity, and dispersion) to report the
location problems during MFL. The usage of these novel measurements
support researchers during the creation of new MFL approaches and
during the improvement of those existing ones. Using two different case
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studies, both real and industrial, we emphasize the importance of these
measurements in order to compare results in a deeply way. The results
of the research have been redacted and published in forums, conferences,
and journals specialized in the topics and context of the research.

This thesis is presented as compendium of articles according the reg-
ulations in Universitat Politécnica de Valéncia. This thesis document
introduces the topics, context, and objectives of the research, presents
the academic publications that have been published as a result of the
work, and then discusses the outcomes of the investigation.
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Resumen

A través de las paginas de este documento, presento los resultados de la
investigacion realizada en el contexto de mis estudios de doctorado.

Hoy en dia, el software existe en casi todo. Las empresas a menudo
desarrollan y mantienen colecciones de sistemas de software personaliza-
dos que comparten algunas caracteristicas entre ellos, pero que también
tienen otras caracteristicas particulares. Conforme el ntumero de carac-
teristicas y el nimero de variantes de un producto crece, el mantenimiento
del software se vuelve cada vez mas complejo. Para hacer frente a esta
situacion la Comunidad de Ingenieria del Software basada en Modelos
estd abordando una actividad clave: la Localizacion de Fragmentos de
Modelo. Esta actividad consiste en la identificaciéon de elementos del
modelo que son relevantes para un requisito, una caracteristica o un bug.

Durante los ultimos anos se han propuesto muchos enfoques para abordar
la identificacion de los elementos del modelo que corresponden a una
funcionalidad en particular. Sin embargo, existe una carencia a la hora
de como se reportan las medidas del espacio de biisqueda, asi como las
medidas de la solucién a encontrar. El objetivo de nuestra tesis radica en
proporcionar a la comunidad dedicada a la actividad de localizacion de
fragmentos de modelo una serie de medidas (tamano, volumen, densidad,
multiplicidad y dispersion) para reportar los problemas de localizacion
de fragmentos de modelo.
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El uso de estas novedosas medidas ayuda a los investigadores durante la
creacion de nuevos enfoques, asi como la mejora de aquellos enfoques ya
existentes. Mediante el uso de dos casos de estudio reales e industriales,
esta tesis pone en valor la importancia de estas medidas para comparar
resultados de diferentes enfoques de una manera precisa. Los resultados
de este trabajo han sido redactados y publicados en foros, conferencias y
revistas especializadas en los temas y contexto de la investigacion.

Esta tesis se presenta como un compendio de articulos acorde a la regu-
lacion de la Universitat Politécnica de Valéncia. Este documento de tesis
presenta los temas, el contexto y los objetivos de la investigacion. Pre-
senta las publicaciones académicas que se han publicado como resultado
del trabajo y luego analiza los resultados de la investigacion.




Resum

A través de les pagines d’aquest document, presente els resultats de la
investigacio realitzada en el context dels meus estudis de doctorat.

Hui en dia, el programari existix en quasi tot. Les empreses sovint desen-
rotllen i mantenen col-leccions de sistemes de programari personalitzats
que compartixen algunes caracteristiques entre ells, pero que també tenen
altres caracteristiques particulars. Conforme el nombre de caracteris-
tiques i el nombre de variants d’un producte creix, el manteniment del
programari es torna cada vegada més complex. Per a fer front a esta
situaci6 la Comunitat d’Enginyeria del Programari basada en Models
esta abordant una activitat clau: la Localitzacié de Fragments de Model.
Esta activitat consistix en la identificacié d’elements del model que son
rellevants per a un requisit, una caracteristica o un bug.

Durant els altims anys s’han proposat molts enfocaments per a abordar la
identificaci6 dels elements del model que corresponen a una funcionalitat
en particular. No obstant aixo, hi ha una caréncia a 'hora de com es
reporten les mesures de ’espai de busca, aixi com les mesures de la soluci6
a trobar. L’objectiu de la nostra tesi radica a proporcionar a la comunitat
dedicada a l'activitat de localitzaci6 de fragments de model una série
de mesures (grandaria, volum, densitat, multiplicitat i dispersio) per a
reportar els problemes de localitzacié de fragments de model.
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Las d’estes noves mesures ajuda als investigadors durant la creacié de
nous enfocaments, aixi com la millora d’aquells enfocaments ja existents.
Per mitja de 1'ts de dos casos d’estudi reals i industrials, esta tesi posa en
valor la importancia d’estes mesures per a comparar resultats de diferents
enfocaments d’'una manera precisa. Els resultats d’este treball han sigut
redactats i publicats en forums, conferéncies i revistes especialitzades en
els temes i context de la investigacio.

Esta tesi es presenta com un compendi d’articles d’acord amb la regu-
laci6 de la Universitat Politécnica de Valéncia. Este document de tesi
presenta els temes, el context i els objectius de la investigacié. Presenta
les publicacions académiques que s’han publicat com resultat del treball
i després analitza els resultats de la investigacio.
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Introduction






Introduction

This chapter introduces this thesis, highlighting the mo-
tivation for the research and the objectives of this work, as
well as providing an overview of the thesis and of the scien-
tific articles included in this compendium document. Finally,
this chapter presents the methodology followed to pursue this
research, and states the structure of the document.



Motivation

Nowadays, software exists in almost everything. Companies often de-
velop and maintain a collection of custom-tailored software systems that
share some common features but also support different, customer-specific
ones. As the number of features and the number of product variants
grows, software maintenance becomes more and more complex. Software
maintenance is an emerging discipline that reduces engineering costs and
Time-to-Market as well as increases the quality of individual develop-
ments. Lehman et al. (Lehman, Ramil, and Kahen 2001) pointed out
that up to 80% of the lifetime of a system is spent on maintenance and
evolution activities. Software maintainers spend from 50% up to almost
90% of their time trying to understand a program in order to make
changes correctly.

To keep pace with this situation, there are three key activities that the
Model-Based Software Engineering Community is addressing: Feature
Location (FL), Traceability Links Recovery (TLR), and Bug Location
(BL). FL is known as the process of finding the set of software artifacts
that realize a specific functionality (Dit et al. 2013). TLR is concerned
with the ability to relate artefacts created during the development of a
software system to describe the system from different perspectives and
levels of abstraction with each other (Spanoudakis and Zisman 2005). BL
aims to identify the location of the artifact that is pertinent to a software
fault (Arcega, Jaime Font, Haugen, and Cetina - 2019). Addressing these
activities is critical to the success of a project, leads to increased main-
tainability and reliability of software systems, and decreases the expected
defect rate in developed software. When these activities (FL, TLR, and
BL) are conducted on a model-based family of software products, they
are encompassed in the term Model Fragment Location (MFL).

Model Fragment Location (MFL) aims at identifying model elements
that are relevant to a requirement, feature, or bug. From the time-
less traceability activity (Winkler and Pilgrim 2010), (P. Méder and A.
Egyed 2012), (Jaber, Sharif, and Liu 2013), (Patrick Madder and Alexan-
der Egyed 2014) to recent research efforts on Feature Location (David
Binkley and Dawn Lawrie 2010), (Rubin and Chechik 2013), (Dit et al.



2013), (Martinez et al. 2015), (Jaime Font, Arcega, et al. 2016), (J. Font
et al. 2017) and Bug Location (Zhang et al. 2016), (Kusumoto et al.
2002), (Arcega, Jaime Font, Haugen, and Cetina 2017), MFL has been
gaining momentum.

Tens of MFL works can be found today. For instance, Winkler et al.
(Winkler and Pilgrim 2010) classify several approaches that have been
created in the past 15 years which try to optimize the automatic iden-
tification of traces in models. De Lucia et al. (De Lucia et al. 2004)
present a TLR method and tool, which are based on Latent Semantic
Indexing (LSI) and include models. Spanoudakis et al. (Spanoudakis,
Zisman, et al. 2004) present a linguistic rule-based approach to support
the automatic generation of Traceability Links between requirements and
models. More recently, Lapena el al. (Lapena Marti et al. 2017) pre-
sented CACAO4M, an approach for ranking relevant model fragments
for the development of specific requirements for a new product. Font et
al. (Jaime Font, Arcega, et al. 2016) presented a Genetic Algorithm to
Feature Location. In (Arcega, Jaime Font, Haugen, and Cetina 2017) the
authors proposed an approach for bug localization in models (BLiM2).
Specifically, there is an emerging interest in leveraging machine learning
techniques to address the challenges of MFL (D. Binkley and D. Lawrie
2014), (Corley, Damevski, and Kraft 2015),(B. Le et al. 2016), (Ana C
Marcén, Pérez, and Cetina 2017), (Ana C. Marcén et al. 2017),(Mills,
Escobar-Avila, and Haiduc 2018).

Prior works leverage Information Retrieval, Linguistic techniques, and
Search-based techniques to achieve the location of relevant model frag-
ments. The aim of these works is focused on providing new MFL ap-
proaches or to propose improvements of those existing ones. Nonethe-
less, all of these works have one thing in common: none of them place
their interest on how to report their results deeply. There is a lack of
detail when the measurements about the search space (models) and the
measurements about the solution space (model fragment) are reported.
Generally, the only reported measure is the model size. However, in most
of the cases, the model size values are not comparable among different
works since different models are measured in different ways.



One major problem for integrating study results into a common body of
knowledge is the heterogeneity of reporting styles. Firstly, it is difficult
to locate relevant information because the same type of information is
located in different sections of different study reports and secondly, im-
portant information is often missing - for example, context information
is reported differently and without taking into account further general-
izability (Jedlitschka, Ciolkowski, and Pfahl 2008). The same problem
applies to current MFL works. In most cases, the results of different
MFL works are not comparable among them since different models are
measured in different ways, being difficult to locate relevant information
because the results are reported differently. It is not the same challenge
to locate a large model fragment in a small model than to locate a small
and scattered model fragment over several large models. Properly re-
porting the location problem is an important challenge that has not get
enough attention yet.

Thesis Objectives

The goal of this thesis is to provide insights to the MFL research com-
munity on how to improve the report of location problems. The work
carried out to date has focused on proposing new MFL approaches or
on improving those existing ones by providing the algorithms and the
parameters to tune them in detail. In contrast, our work is focused on
providing a set of measurements that are strongly related with models
to improve the location problems, enabling researchers to create new
MFL approaches and to improve their existing ones. More specifically,
our work contributes to the MFL research community by providing real
measurements of location problems from the real world, which can be
used as a reference for the community when creating synthetic location
problems. The fact of knowing the influence of our measurements on the
results in advance enables us to limit the information that must be taken
into account in experiment planning, also empowering us to report more
accurate results during these experiments.

The research community has identified different types of measurements
depending on the intended use; these are descriptive, diagnostic, predic-



tive, and prescriptive measurements (Delen and Ram 2018). Descriptive
measurements describe what happened in the past. Diagnostic measure-
ments help with understanding why something happened in the past.
Predictive measurements predict what is most likely to happen in the
future. Prescriptive measurements recommend actions you can take to
affect those outcomes. Regarding our proposal, size and volume are de-
scriptive measurements which measure the search space (models), while
density, multiplicity, and dispersion are diagnostic measurements which
measure the solution space (model fragments). Properly reporting the
location problem is important because otherwise it is not possible to
compare the results of different works with each other.

Of our proposed measurements, size measures the number of elements
that the model contains. Since the larger the model, the larger the search
space, this measurement determines how complex the search space ends
up being in order to find the solution. Volume measures the number of
models that compose the search space where a solution is searched for.
Since the larger the number of models, the larger the search space, this
measurement determines how large the search space becomes based on
the number of models. Density measures the percentage of model ele-
ments that realize a solution. In other words, since the model fragment
is composed of the model elements that realize the solution, the density
is computed as the ratio of model fragment elements to model elements.
Since the larger the model fragment, the larger the density, this mea-
surement determines how large the solution ends up being with respect
to the model. Multiplicity measures the number of times the solution
appears in the search space. Since the more solutions found, the greater
the multiplicity, this measurement determines how complex the search
ends up being, based on the number of solutions that the search space
contains for the same solution. Finally, dispersion measures the ratio of
connected elements in the solution. Dispersion is computed as the ratio
between the number of groups and the number of elements. Since the
more groups found, the larger the dispersion, this measurement deter-
mines how complex the search ends up being depending on whether or
not the model elements that compose a model fragment are linked.



In order to determine the relevance of the proposed measurements, we
studied whether the values of the measurements have an impact on the
results by pushing it to industrial settings. We evaluated our proposal in
two different case studies, both real and industrial. The first one is based
on an Information Retrieval (IR) approach for Feature Location (FL) (see
chapter 5), and the second one is based on a Machine Learning-based
(ML) approach for FL (see chapter 6). Both provide promising results
on how to deeply report the location problems during MFL. Figure 1
shows a quick reference about the scope of the work done as part of this
thesis. It has been divided in order to establish clearly which elements
constitute the background, which are part of the thesis work, and which
are infrastructure for that work.

Based on the context provided in the motivation section, the main goal
of this thesis is to discuss why model size measurement (the widespread
measurement to report MFL) does not provide enough information on the
location problem, and why our proposed measurements are significant for
the research community. To that extent, the following research questions
are defined for the thesis:

RQ1 Determine whether, and to what extent, our proposed measurements
influence Information Retrieval (IR) Model Fragment Location ap-
proaches.

RQ2 Determine whether, and to what extent, our proposed measurements
influence Machine Learning-based (ML) Model Fragment Location
approaches.

The results of the research carried out to fulfill the pursued objectives
have been published in several articles, introduced in the following sec-
tion.
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Thesis Overview

Figure 2 presents an overview of the works that we carried out in order
to respond to the research questions posed by the thesis. We started
the thesis by identifying the most novel, state-of-the-art approaches in
feature location, and concentrated our initial efforts in transforming the
approaches towards their application to model-based software artifacts.
We were able to automate the variability formalization of a given family
of models (provided by one of our industrial partners) into a Software
Product Line, publishing the results of this work in a paper for REVE
SPLC ’15 (Jaime Font, Ballarin, et al. 2015). Later, focusing on the
requirements level, we published a paper for SPLC 16 (Lapena, Bal-
larin, and Cetina 2016). This paper leverages Part-of-Speech tagging
and Latent Semantic Indexing to rank the relevancy of legacy products
for a new development at the requirements level, and to locate their most
significant methods for each of the new product requirements.

After that, we successfully leveraged feature location and code-comparison
techniques identifying the clone-and-own relationships between the same
features in different model-based product variants. We published the re-
sults of the work derived from our initial ideas in a paper for ICSR 16
(Ballarin, Lapena Marti, and Cetina 2016). In addition, this work was
extended and published for IEEE Access 18 (Pérez et al. 2018) present-
ing significant differences with our previous work, such as the application
of the approach in a different industrial domain and a further extension
of the evaluation to measure the performance of our approach in terms
of recall and precision values.

During the development of our first research ideas, we realized the impor-
tance of deeply reporting feature location results. Our first works present
novelty approaches which assist software engineers to build a SPL from
their model-based software products, advise them to the best way of lo-
cating the most relevant methods to each requirement of the new product,
and help them by suggesting improvements on feature reuse. Regardless
of their novelty, none of them reported their results deeply.

Having said that, we began to realize that model size was not enough in
order to report the location problem during Model Fragment Location
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Figure 2: Thesis work overview

(MFL). It did not matter how original a particular approach was, nor
by whom this approach was created, if it was not reporting its results
in a proper way. In general terms, members of the research community
focused in MFL were using the model size measure as the only way to
report their experimental results. Hence, we identified the need for taking
into account other measurements to report the location problem during
MFL as a clearly emergent research issue. Therefore, we focused our
efforts on exploring the particularities of reporting the location problems
during Model Fragment Location.

The MFL research community cannot consider their reporting measures
as a sufficient posture. They must consider other measurements to re-
port the location problems during MFL. Having said that, we were in
charge of providing the usage of measurements to report the location
problems during MFL. We started exploring the particularities of how
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MFL approaches report the results of their experiments. In addition,
we studied the different types of measurements proposed by the research
community with the aim of understanding them and analyzing which
measurements are best suited to report software experiments. At this
time, our emerging interest on how to report location problems started
to gather pace.

We propose using five measurements to report the results of MFL tech-
niques. Of the five proposed measurements, size and volume (both de-
scriptive measurements) measure the search space, while density, multi-
plicity, and dispersion (all of them diagnostic measurements) measure the
solution. We can confirm that our proposal shows that all the proposed
measurements have a direct impact on the results of MFL approaches.
In order to confirm our expectations, we conducted an evaluation with
our industrial partner CAF on a real-world Information Retrieval (IR)
approach. The results of this work, which was published in MODELS
’18 (Ballarin, Marcén, et al. 2018), brought to light certain particulari-
ties of the research challenge related on how to deeply report the location
problems.

Later, during the final stage of this thesis, we have worked towards assess-
ing the impact of the proposed measurements on a real Machine Learning-
based approach for feature location. Our results show that model size
is not the only measurement that has an impact on the feature loca-
tion results. Model Fragment Location approaches should analyze the
influence of our measurements on their case studies not only to properly
report their results but also to be able to compare the approaches fairly,
improving the feature location results of their case studies.

Thesis Structure

This thesis is conformed and presented as compendium of articles. Ac-
cording to the guidelines and regulations for the development of a PhD
thesis in Universitat Politécnica de Valéncia, a PhD thesis that is pre-
sented as a compendium of articles must be structured in four parts:
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I Introduction: The first part of the thesis (Part I) introduces the
motivation for the research, the description of the problem along
with the objectives of the work, the list of scientific articles published
towards the fulfillment of the thesis goals, and the methodology that
was followed to pursue the research presented in this thesis.

IT Publications: The second part of the thesis (Part II, chapters 1
to 6) provides the compendium of scientific articles that result from
the research that was carried out for the thesis. The contributions
are ordered chronologically and adapted to the format of the thesis.

ITI Results: The third part of the thesis (Part III) discusses the results
and contributions of the thesis to the research context, and the
future works that arise as a continuation of the ongoing research.

IV Conclusions: The fourth and final part of the thesis (Part IV)
finishes the thesis by providing a few concluding remarks for the
presented work.

The following section presents more information on the compendium of
articles included in this thesis, and on their relationship with the research
questions, research projects, and case studies.

Articles Compendium

Figure 3 comprises a general overview of the research works that have
been carried out as a result of this thesis. In the figure, it is possible to
appreciate a total of six rows:

e The first row states the main objective of the thesis.

e The second row introduces the Research Questions posed by this
thesis.

e The third row links the publications with the research questions
posed by the thesis.

e The fourth row presents the frameworks and tools which have been
developed as a result of our research.
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e The fifth row presents the research projects that served as a frame-
work for the research.

e Finally, the fifth and final row indicates the industrial and academic
case studies to which the thesis research has been applied.

Propose and evaluate measurements to properly report the location problem during Model Fragment

Thesis Objetive :
Location

Explore the influence of using
Research Propose using five measurements to report the location problem during | the proposed measurements
Questions Model Fragment Location on Model Fragment Location
approach results

Publications REVE SPLC ‘15 ‘ SPLC ‘16‘ ICSR ‘16 ‘ IEEE Access ‘18 | MODELS ‘18 IST ‘20

CAF Variability Tool

Tools FLIM-ML

MINECO projects VARIAMOS (TIN2015-64397-R) and ALPS (RTI2018-096411-B-100), ITEA

Research Projects REVaMP2

Construccion y Auxiliar de Ferrocarriles (CAF), software artifacts for industrial railway solutions

Case Studies BSH group, leading manufacturer of home appliances in Europe

Figure 3: Thesis contributions

Figure 4 shows a roadmap of this thesis. It consists of six chapters
corresponding to the research articles that have been developed as a result
of the research that has been carried out for this thesis. We provide three
different ways to read the chapters of this thesis. The first one is a full
version which includes all the research articles that have been developed
(represented in the figure with a solid line). The second one is to read
a brief version of our work (see the dotted line in the figure). The third
one, which allows the reader to grasp the results of the thesis, is to read
the CORE version (represented with the dashed line in the figure).

1. Automating the variability formalization of a model fam-
ily by means of common variability language (REVE SPLC
’15) (Jaime Font, Ballarin, et al. 2015): In this paper we present
Model Family to SPL, an approach to automate the variability for-
malization of a given family of models into a SPL. In particular,
our approach enables the automatic decomposition of new product
models into model fragments that are incorporated to the model
library.

14



2. Towards clone-and-own support: locating relevant methods
in legacy products (SPLC ’16) (Lapena, Ballarin, and Cetina
2016): In this paper, we propose a novel approach, named Computer
Assisted CAO (CACAO), that leverages Part-of-Speech tagging and
adapts Latent Semantic Indexing to rank the relevancy of legacy
products for a new development at the requirements level, and to
locate their most significant methods for each of the new product
requirements.

3. Leveraging Feature Location to Extract the Clone-and-Own
Relationships of a Family of Software Products (ICSR ’16)
(Ballarin, Lapena Marti, and Cetina 2016): In this paper, we pre-
sented an approach to locate clone-and-own relationships between
features in model-based families of software products. We evaluated
our approach in the industrial domain of Induction Hobs (IH) over
two families of IH products. On one of them, the firmware code
of the products was implemented manually from the models. On
the other, the firmware code of the products was implemented in an
automatic way.

4. Locating Clone-and-Own Relationships in Model-based In-
dustrial Families of Software Products to Encourage Reuse
(IEEE ACCESS ’18) (Pérez et al. 2018): Through this paper,
we extended our prior work through the modification of the step of
our approach that compares the source code of a feature in a prod-
uct with the source code of the same feature in another product in
order to avoid irrelevant textual differences; the application of our
approach in a different industrial domain (the train control PLC
software provided by CAF) in order to prove its generalization; and
an extension of the evaluation to measure the performance of both
our approach and the baseline (the previous version of our approach)
in terms of recall and precision in all the industrial case studies in
use.

5. Measures to report the Location Problem of Model Frag-
ment Location (MODELS ’18) (Ballarin, Marcén, et al. 2018):
In this paper, we propose using five measurements (size, volume,
density, multiplicity, and dispersion) to report the location prob-
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lem during Model Fragment Location. In order to determine the
relevance of the proposed measurements, we studied whether the
values of the measurements have an impact on the results provided
by two distinct MFL approaches. Our results show that all of the
proposed measurements have a direct impact on the results of MFL
approaches.

6. On the influence of Model Fragment Properties in Machine
Learning-based Feature Location (IST ’20) (Ballarin et al.
2021): In prior work, we have proposed using five measurements
to report the location problems. Through this paper, we explore
the influence of three of the measurements (density, multiplicity,
and dispersion) on a machine learning-based approach for feature
location. The analysis of the results shows that both the density
and the dispersion measurements significantly influence the results.

The works that conform this thesis have formed part of the research
context of three funding projects: two Spanish national research plans
named VARIAMOS (TIN2015-64397-R) and ALPS (RT12018-096411-8-
100), devoted to the extraction of software variability in Software Product
Lines, and one international project from the second call of a European
ITEA 3 project named REVaMP?, devoted to the creation of a holistic
platform and process for variability extraction. The approaches proposed
as a result of this research have been validated through two case studies:
(1) a proprietary industrial case study provided by one of our industrial
partners, CAF (Construcciones y Auxiliar de Ferrocarriles), manufac-
turer of railway solutions, and (2) an industrial case study provided by
another of our industrial partners, BSH Group, leading manufacturer of
home appliances in Europe. The various works presented in this thesis
have led to the development of a series of frameworks and tools. One of
those tools, the Train Control and Management Variability Tool, can be
seen in action at: youtube.com/watch?v=Ypcl2evEQBS8
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Research Methodology

For the development of this thesis, we have followed the Action-research
Methodology (Baskerville 1999). Action-research is a collaborative type
of research which seeks to make theory and practice meet, to establish a
link between research and practice by means of a cyclical process. Action-
Research focuses on yielding new knowledge which is useful in practice.
It is gained by introducing changes and by researching into candidate
solutions to different real scenarios which are relevant to a group in prac-
tice (Avison et al. 1999). This is achieved thanks to the intervention of a
researcher in the real circumstances surrounding the group. The results
of these experiences must be beneficial to both the researcher and the
participants. In recent years, there is an increasing tendency towards
the use of Action-research in Software Engineering to address different
research topics (Santos and Travassos 2009).

Action-research does not refer to a specific research method, but rather
to a set of methods of the same type which share the following properties:
(i) Focus on action and change; (ii) Focus on a problem, (iii) An "organic"
process model which involves systematic and interactive phases, and (iv)
Participants’ collaboration. An outline of the use of Action-research in
Information Systems is provided in (Lau 1997), including several exam-
ples published by different authors regarding the analysis, design and
development of Information Systems, and particularly on software im-
plementation and related processes.

Following the guidelines proposed in the methodology, we identify our
research as a research cycle breaking down the generic activities in order
to deeply report the location problem during Model Fragment Location
by providing and evaluating different measurements, not only to properly
report but also to be able to compare the approaches fairly and thus
improve the feature location results. We applied the methodology as
follows 5:

1. Diagnosing: in this phase, we brought to light the main research
problems, and formulated the appropriate research questions.
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. Planning Action: in this phase, we studied the validity of the ap-
proaches through incorporating measurements commonly accepted
by the research community and extensively used in the relevant lit-
erature. In addition, we studied the threats to the validity of the
approaches and how to mitigate them.

. Taking Action: in this phase, we developed the approaches and
applied them to the case studies to obtain results, which have been
embodied into several research articles.

. Evaluating Action: in this phase, we analyzed the obtained re-
sults, obtaining responses to the posed research questions and iden-
tifying novel research opportunities in the process.

. Specify Learning: in this phase, we analyzed the obtained results,
obtaining responses to the posed research questions and identifying
novel research opportunities in the process.

The cyclic process described in Figure 5 has been applied in an iterative
fashion. In this thesis, the first cycle started by transporting Feature
Location approaches from code-based software artifacts towards model-
based software artifacts. The responses to the research questions posed
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by the initial challenge triggered novel research questions, which acted
as starting points for further research.

Bibliography

Arcega, Lorena, Jaime Font, Oystein Haugen, and Carlos Cetina (2017). “On
the Influence of Models at Run-Time Traces in Dynamic Feature Loca-
tion”. In: Modelling Foundations and Applications. Ed. by Anthony An-
jorin and Huéscar Espinoza. Cham: Springer International Publishing,
pp. 90-105. 1SBN: 978-3-319-61482-3. DOI: 10.1007/978-3-319-61482-
3_6 (cit. on p. 5).

Arcega, Lorena, Jaime Font, Oystein Haugen, and Carlos Cetina - (2019). “An
approach for bug localization in models using two levels: model and meta-
model”. In: Software and Systems Modeling 18.6, pp. 3551-3576. ISSN:
1619-1374. pOI: 10.1007/s10270-019-00727-y (cit. on p. 4).

Avison, David E. et al. (Jan. 1999). “Action Research”. In: Commun. ACM
42.1, pp. 94-97. 1sSN: 0001-0782. DOI: 10.1145/291469.291479 (cit. on

p. 18).

B. Le, Tien-Duy et al. (2016). “A Learning-to-rank Based Fault Localiza-
tion Approach Using Likely Invariants”. In: Proceedings of the 25th In-
ternational Symposium on Software Testing and Analysis. ISSTA 2016.
Sarrebruck, Germany: ACM, pp. 177-188. 1SBN: 978-1-4503-4390-9. DOTI:
10.1145/2931037.2931049 (cit. on p. 5).

Ballarin, Manuel, Raal Lapena Marti, and Carlos Cetina (June 2016). “Lever-
aging Feature Location to Extract the Clone-and-Own Relationships of a
Family of Software Products”. In: pp. 215-230. 1SBN: 978-3-319-35121-6.
DOI: 10.1007/978-3-319-35122-3_15 (cit. on pp. 10, 15).

Ballarin, Manuel, Ana Marcén, et al. (Oct. 2018). “Measures to report the
Location Problem of Model Fragment Location”. In: Proceedings of the
21th ACM/IEEE International Conference on Model Driven Engineering

20


https://doi.org/10.1007/978-3-319-61482-3_6
https://doi.org/10.1007/978-3-319-61482-3_6
https://doi.org/10.1007/s10270-019-00727-y
https://doi.org/10.1145/291469.291479
https://doi.org/10.1145/2931037.2931049
https://doi.org/10.1007/978-3-319-35122-3_15

Bibliography

Languages and Systems, pp. 189-199. DOI: 10.1145/3239372. 3239397
(cit. on pp. 12, 15).

Ballarin, Manuel et al. (2021). “On the influence of model fragment properties
on a machine learning-based approach for feature location”. In: Infor-
mation and Software Technology 129, p. 106430. 1SSN: 0950-5849. DOI:
https://doi.org/10.1016/j.infsof .2020.106430 (cit. on p. 16).

Baskerville, Richard L (1999). “Investigating information systems with action
research”. In: Communications of the association for information systems
2.1, p. 19 (cit. on p. 18).

Binkley, D. and D. Lawrie (Sept. 2014). “Learning to Rank Improves IR in
SE”. In: 2014 IEEE International Conference on Software Maintenance
and Evolution. Washington, DC, USA: IEEE, pp. 441-445. bo1: 10.1109/
ICSME.2014.70 (cit. on p. 5).

Binkley, David and Dawn Lawrie (2010). “Maintenance and Evolution: Infor-
mation Retrieval Applications”. In: DOI: 10.1081/E-ESE-120044704 (cit.
on p. 4).

Corley, C. S., K. Damevski, and N. A. Kraft (Sept. 2015). “Exploring the Use
of Deep Learning for Feature Location”. In: 2015 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME). Washington,
DC, USA: IEEE, pp. 556-560. DOI: 10.1109/ICSM.2015.7332513 (cit. on

p. 5).

De Lucia, A. et al. (2004). “Enhancing an artefact management system with
traceability recovery features”. In: 20th IEEE International Conference on
Software Maintenance, 2004. Proceedings. Pp. 306-315. DOI: 10.1109/
ICSM.2004.1357816 (cit. on p. 5).

Delen, Dursun and Sudha Ram (2018). “Research challenges and opportunities
in business analytics”. In: Journal of Business Analytics 1.1, pp. 2-12. DOI:
10.1080/2573234X.2018 . 1507324. eprint: https://doi.org/10.1080/
2573234X.2018.1507324 (cit. on p. 7).

21


https://doi.org/10.1145/3239372.3239397
https://doi.org/https://doi.org/10.1016/j.infsof.2020.106430
https://doi.org/10.1109/ICSME.2014.70
https://doi.org/10.1109/ICSME.2014.70
https://doi.org/10.1081/E-ESE-120044704
https://doi.org/10.1109/ICSM.2015.7332513
https://doi.org/10.1109/ICSM.2004.1357816
https://doi.org/10.1109/ICSM.2004.1357816
https://doi.org/10.1080/2573234X.2018.1507324
https://doi.org/10.1080/2573234X.2018.1507324
https://doi.org/10.1080/2573234X.2018.1507324

Dit, Bogdan et al. (Jan. 2013). “Feature location in source code: A taxonomy
and survey”. In: Journal of Software Maintenance and Evolution: Research
and Practice 25. DOI: 10.1002/smr.567 (cit. on p. 4).

Font, J. et al. (2017). “Achieving Feature Location in Families of Models
through the use of Search-Based Software Engineering”. In: IEEE Trans-
actions on FEvolutionary Computation, pp. 1-1. 1SSN: 1089-778X. DOI:
10.1109/TEVC.2017.2751100 (cit. on p. 5).

Font, Jaime, Lorena Arcega, et al. (2016). “Feature Location in Model-Based
Software Product Lines Through a Genetic Algorithm”. In: International
Conference on Software Reuse. Springer, pp. 39-54. ISBN: 978-3-319-35122-
3. DOI: 10.1007/978-3-319-35122-3_3 (Cit. on p. 5).

Font, Jaime, Manuel Ballarin, et al. (July 2015). “Automating the variability
formalization of a model family by means of common variability language”.
In: pp. 411-418. DOL: 10.1145/2791060.2793678 (cit. on pp. 10, 14).

Jaber, K., B. Sharif, and C. Liu (2013). “A Study on the Effect of Traceability
Links in Software Maintenance”. In: IEEE Access 1, pp. 726-741. DOLI:
10.1109/ACCESS.2013.2286822 (Cit. on p. 4).

Jedlitschka, Andreas, Marcus Ciolkowski, and Dietmar Pfahl (2008). “Report-
ing Experiments in Software Engineering”. In: Guide to Advanced Empir-
ical Software Engineering. Ed. by Forrest Shull, Janice Singer, and Dag
I. K. Sjgberg. London: Springer London, pp. 201-228. 1SBN: 978-1-84800-
044-5. por: 10.1007/978-1-84800-044-5_8 (cit. on p. 6).

Kusumoto, Shinji et al. (Mar. 2002). “Experimental Evaluation of Program
Slicing for Fault Localization”. In: Empirical Software Engineering 7,
pp. 49-76. DOI: 10.1023/A:1014823126938 (cit. on p. 5).

Lapena, Raul, Manuel Ballarin, and Carlos Cetina (2016). “Towards Clone-
and-Own Support: Locating Relevant Methods in Legacy Products”. In:
Proceedings of the 20th International Systems and Software Product Line
Conference. SPLC ’16. Beijing, China: Association for Computing Ma-

22


https://doi.org/10.1002/smr.567
https://doi.org/10.1109/TEVC.2017.2751100
https://doi.org/10.1007/978-3-319-35122-3_3
https://doi.org/10.1145/2791060.2793678
https://doi.org/10.1109/ACCESS.2013.2286822
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1023/A:1014823126938

Bibliography

chinery, pp. 194-203. 1SBN: 9781450340502. DOI: 10 . 1145 /2934466 .
2934485 (cit. on pp. 10, 15).

Lapena Marti, Raul et al. (June 2017). “Model Fragment Reuse Driven by
Requirements”. In: (cit. on p. 5).

Lau, F. (1997). “A Review on the Use of Action Research in Information Sys-
tems Studies”. In: Information Systems and Qualitative Research: Proceed-
ings of the IFIP TC8 WG 8.2 International Conference on Information
Systems and Qualitative Research, 31st May—3rd June 1997, Philadelphia,
Pennsylvania, USA. Ed. by Allen S. Lee, Jonathan Liebenau, and Janice I.
DeGross. Boston, MA: Springer US, pp. 31-68. 1SBN: 978-0-387-35309-8.
DOI: 10.1007/978-0-387-35309-8_4 (Cit. on p. 18).

Lehman, M. M., J. F. Ramil, and G. Kahen (2001). A Paradigm for the Be-
havioural Modelling of Software Processes using System Dynamics. Tech.
rep. (cit. on p. 4).

Méder, P. and A. Egyed (2012). “Assessing the effect of requirements trace-
ability for software maintenance”. In: 2012 28th IEEFE International Con-
ference on Software Maintenance (ICSM), pp. 171-180. DOI: 10.1109/
ICSM.2012.6405269 (cit. on p. 4).

Méder, Patrick and Alexander Egyed (Apr. 2014). “Do developers benefit from
requirements traceability when evolving and maintaining a software sys-
tem?” In: Empir Software Eng 20, pp. 1-29. DOI: 10.1007/s10664-014-
9314-z (cit. on p. 4).

Marcén, Ana C, Francisca Pérez, and Carlos Cetina (2017). “Ontological Evo-
lutionary Encoding to Bridge Machine Learning and Conceptual Mod-
els: Approach and Industrial Evaluation”. In: International Conference
on Conceptual Modeling. Cham, Switzerland: Springer, pp. 491-505. DOI:
10.1007/978-3-319-69904-2_37 (Cit. on p. 5).

Marcén, Ana C. et al. (2017). “Towards Feature Location in Models Through
a Learning to Rank Approach”. In: Proceedings of the 21st International

23


https://doi.org/10.1145/2934466.2934485
https://doi.org/10.1145/2934466.2934485
https://doi.org/10.1007/978-0-387-35309-8_4
https://doi.org/10.1109/ICSM.2012.6405269
https://doi.org/10.1109/ICSM.2012.6405269
https://doi.org/10.1007/s10664-014-9314-z
https://doi.org/10.1007/s10664-014-9314-z
https://doi.org/10.1007/978-3-319-69904-2_37

Systems and Software Product Line Conference - Volume B. SPLC '17.
Sevilla, Spain: ACM, pp. 57-64. 1SBN: 978-1-4503-5119-5. DOI: 10.1145/
3109729.3109734 (cit. on p. 5).

Martinez, J. et al. (Nov. 2015). “Automating the Extraction of Model-Based
Software Product Lines from Model Variants (T)”. In: 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 396—
406. DOI: 10.1109/ASE.2015.44 (cit. on p. 5).

Mills, C., J. Escobar-Avila, and S. Haiduc (Sept. 2018). “Automatic Trace-
ability Maintenance via Machine Learning Classification”. In: 2018 IEFEE
International Conference on Software Maintenance and FEvolution (IC-
SME). Washington, DC, USA: IEEE, pp. 369-380. DOI: 10.1109/ICSME.
2018.00045 (cit. on p. 5).

Pérez, F. et al. (2018). “Locating Clone-and-Own Relationships in Model-Based
Industrial Families of Software Products to Encourage Reuse”. In: IEEFE
Access 6, pp. 56815-56827. DOI: 10.1109/ACCESS.2018.2873509 (cit. on
pp. 10, 15).

Rubin, Julia and Marsha Chechik (May 2013). “A Survey of Feature Location
Techniques”. In: DOI: 10.1007/978-3-642-36654-3_2 (cit. on p. 4).

Santos, Paulo Sergio Medeiros dos and Guilherme Horta Travassos (2009). “Ac-
tion research use in software engineering: An initial survey”. In: 2009 3rd
International Symposium on Empirical Software Engineering and Mea-
surement, pp. 414-417. boI: 10.1109/ESEM. 2009.5316013 (cit. on p. 18).

Spanoudakis, George and Andrea Zisman (Aug. 2005). “Software Traceabil-
ity: A Roadmap”. In: Handbook of Software Engineering and Knowledge
Engineering 3. DOIL: 10.1142/9789812775245_0014 (cit. on p. 4).

Spanoudakis, George, Andrea Zisman, et al. (2004). “Rule-based generation of
requirements traceability relations”. In: Journal of Systems and Software
72.2, pp. 105-127. 1SSN: 0164-1212. DOL: https://doi.org/10.1016/
S0164-1212(03)00242-5 (cit. on p. 5).

24


https://doi.org/10.1145/3109729.3109734
https://doi.org/10.1145/3109729.3109734
https://doi.org/10.1109/ASE.2015.44
https://doi.org/10.1109/ICSME.2018.00045
https://doi.org/10.1109/ICSME.2018.00045
https://doi.org/10.1109/ACCESS.2018.2873509
https://doi.org/10.1007/978-3-642-36654-3_2
https://doi.org/10.1109/ESEM.2009.5316013
https://doi.org/10.1142/9789812775245_0014
https://doi.org/https://doi.org/10.1016/S0164-1212(03)00242-5
https://doi.org/https://doi.org/10.1016/S0164-1212(03)00242-5

Bibliography

Winkler, Stefan and Jens Pilgrim (Sept. 2010). “A survey of traceability in
requirements engineering and model development”. In: Software and Sys-
tem Modeling 9, pp. 529-565. DOI: 10.1007/s10270-009-0145-0 (cit. on

pp. 4, 5).

Zhang, T. et al. (2016). “A Literature Review of Research in Bug Resolution:
Tasks, Challenges and Future Directions”. In: The Computer Journal 59.5,
pp. 741-773. DOI: 10.1093/comjnl/bxv114 (cit. on p. 5).

25


https://doi.org/10.1007/s10270-009-0145-0
https://doi.org/10.1093/comjnl/bxv114




Part 11

Compendium of Scientific Articles






29



Chapter 1. Automating the Variability Formalization of a Model Family By Means of Common

Variability Language

30

Chapter 1

Automating the Variability
Formalization of a Model

Family By Means of Common

Variability Language

The aim of domain engineering process is to define and
realise the commonality and variability of a Software Product
Line. In the context of a family of models, spotting the com-
monalities and differences may become cumbersome and error
prone as the number of models and its complexity increases.
This work presents an approach to automate the formalization
of variability in a given family of models. As output, the vari-
ability is made explicit in terms of Common Variability Lan-
guage. The model commonalities and differences are specified
as placements over a base model and replacements in a model
library. The resulting Software Product Line (SPL) enables
the derivation of new product models by reusing the extracted
model fragments. Furthermore, the SPL can be evolved by the
creation of new models, which are in turn automatically de-
composed as model fragments of the SPL. The approach has
been validated with our industrial partner (BSH), an induction
hobs company. Finally, we present five different evolution sce-
narios encountered during the validation.



1.1 Introduction

1.1 Introduction

A Software Product Line (SPL) enables a planned reuse of software com-
ponents into products within the same scope. The software product
line engineering paradigm separates two processes; domain engineering
(where the variability of the SPL is defined and realized) and application
engineering (where specific software products are derived by reusing the
variability of the SPL) (Pohl, Bockle, and Van Der Linden 2005).

The proactive strategy for the adoption of an SPL is traditionally re-
garded as the typical approach. Following this strategy, the assets of the
SPL are developed prior to the derivation of any product (Krueger 2002).
However, a recent survey reveals that only a minority of industrial SPLs
are planned proactively, being the extractive approach more used (where
existing products are re-engineered into an SPL) (Berger et al. 2013).

In particular, in model-based SPLs, the members of the SPL are specified
in the form of models. However, in the context of a family of models,
manually spotting the commonalities and variability among the models
may become cumbersome and error prone, particularly as the number of
models and its complexity increases.

There are several research efforts towards automating the formalization
of the variability existing among products (Acher et al. 2013; Ziadi et al.
2012; Abbasi et al. 2014; She et al. 2011). However, those works are
mainly based on Feature Models extraction and do not properly support
variability formalization by means of the Common Variability Language
(CVL). In addition, existing works (Zhang, Haugen, and Moller-Pedersen
2011; Rubin and Chechik 2012) are not designed with the evolution of
the SPL on mind. The evolution of SPLs should be considered as the
normal case, not as an anomaly (Dhungana et al. 2008).

This work presents Model Family to SPL, an approach to automate the
variability formalization of a given family of models into an SPL. As
output, the variability is made explicit in terms of CVL (Fleurey et al.
2009). The model commonalities are formalized as a base model and
variabilities are specified as placements over the base model and replace-
ments in a model library. In addition, the resulting SPL can be further
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evolved to include new products. In particular, our approach enables the
automatic decomposition of new product models into model fragments
that are incorporated to the model library.

We have validated the approach with our industrial partner (BSH), the
largest manufacturer of home appliances in Europe. Their induction
division has been producing induction hobs (under the brands of Bosch
and Siemens among others) over the last 15 years. We have applied the
presented approach to a set of their induction hobs models to build an
SPL to generate the firmware for their products. In addition, we present
the five evolution scenarios faced by our industrial partner when evolving
the SPL to incorporate new product models.

The rest of the paper is structured as follows: next section introduces
some background about the CVL and our industrial partner’s domain.
Section 1.3 presents our approach for extracting variability from a set of
product models. In section 1.4 we present our experience applying the
approach to our industrial partner’s domain, focusing on the evolution
scenarios encountered. Section 1.5 discusses related work. Finally we
conclude the paper.

1.2 Background

This section presents the main concepts of the Domain Specific Language
(DSL) used to specify Induction Hobs (hereinafter referred as IHs) and
the CVL. Both, the Induction Hob Domain Specific Language (IHDSL)
and CVL are the techniques which we use to describe the model-based
SPL of our industrial partner.

1.2.1 Induction Hob Domain Specific Language (IHDSL)

The THDSL metamodel used by our industrial partner is composed of
46 metaclasses, 74 references among them and more than 180 metaclass
properties. However, in order to gain legibility and due to intellectual
property rights concerns, in this paper we use a meaningful simplification
of it (see top-left corner of Figure 1.1).
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Figure 1.1: CVL Overview

Induction Hobs use electromagnetic induction phenomenon to
generation of heat on the cookware that is then transferred to the food.
Induction hobs are composed of several elements, being the most im-
portant the inverter (where the energy is modulated) and the inductor
(where the electromagnetic field is generated).

cause the

Top-right corner of Figure 1.1 shows the graphical representation of the
IHDSL. The big rectangle represents the IH itself. It is composed of two
power modules (vertical rectangles at both sides of the IH) and each of
them holds two inverters (squares). Inverters are connected to the induc-
tors (circles). The number inside each inductor represents the diameter
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of the inductor. The line that connects inverters and inductors represent
the channel, which transfers energy from the inverter to the inductor.
The user interface of an TH has buttons to configure the power level of
each inductor. In top-right corner of Figure 1.1, the horizontal rectangle
at the bottom of the IH represents the user interface. It has ports to
connect each inductor with his button.

In order to gain legibility through the rest of the paper we will focus on
the variability regarding the inductor. However, there are several parts
of the induction hobs that are subject to variation such as the inverters
and how are connected with the inductors. Our work with our industrial
partner has covered the variability of the whole induction hob although
only a subset is presented.

1.2.2 Common Variability Language (CVL)

CVL is a DSL for modeling variability in any model of any DSL based on
Meta-Object Facility (MOF), an OMG's specification to define a univer-
sal metamodel for describing modeling languages. CVL defines variants
of the base model by replacing parts of the base model by Model replace-
ments found in a library. Figure 1.1 presents an overview of CVL.

The base model is a model described by a given DSL (here: THDSL)
that serves as the base for different variants defined over it. In CVL
the elements of the base model subject to variations are the placement
fragments (hereinafter placements). A placement can be any element
or set of elements that is subject to variation.

To define alternatives for a placement we use a replacement library, a
model described in the same DSL as the base model that will serve as a
base to define alternatives for a placement. Each one of the alternatives
for a placement is a replacement fragment (hereinafter replacement).
Similarly to placements, a replacement can be any element, or set of
elements, that can be used as variation for a replacement.

CVL defines variants of the base model by means of fragment sub-
stitutions (hereinafter substitution). Each substitution references to a
placement and a replacement and includes the information necessary to
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substitute the placement by the replacement. That is, each placement
and replacement is defined along with its boundaries, which indicate
what is inside or outside each fragment (placement or replacement) in
terms of references among other elements of the model. Then, the sub-
stitution is defined with the information of how to link the boundaries
of the placement with the boundaries of the replacement. When a sub-
stitution is executed, the base model (with a placement substituted by a
replacement) continues to conform to the same metamodel.

Each resolution model represents one variant of the base model. The
resolution model references a set of substitutions that needs to be exe-
cuted in order to create the variant. When a resolution model is materi-
alized, produces a resolved model, which is a variant of the base model
where the substitutions defined by the resolution model have been exe-
cuted. For further details about the inner workings of CVL see (Fleurey
et al. 2009).

1.3 Model Family to SPL

This section presents Model Family to SPL, our software process capable
of turning the implicit variability existing among a given set of similar
models into explicit variability. In particular, Model Family to SPL takes
a product family modeled in any DSL (conforming to MOF') as input and
generates a CVL based SPL where commonalities and variabilities among
the model family are explicitly defined. That is, each of the models of
the given model family are expressed in terms of CVL, resulting in an
SPL capable of generating all the products from the given model family.

Figure 1.2 shows an example of execution of Model Famuly to SPL. Top
part shows the input of the process, the model family. Bottom part shows
the output of the process, an SPL formalized by CVL models. Middle
part shows how the execution of the processes is performed. Product
Family to SPL is composed of two sub-processes, Select Base Model
and Product Model to SPL. Select Base Model analyses the given
family of models and determines which one of them is more suitable to
be the base model. Once the base model is selected, Product Model to
SPL compares a product model from the model family with the base
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Figure 1.2: Model Family to SPL execution
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model and updates CVL models to include the product into the variabil-
ity definition. Product Model to SPL formalizes the variability of each
given product model and incorporates it into the SPL

1.8.1 Select Base Model

The selection of the base model phase designates the base model that is
used through the rest of the process. In this example we use the number
of differences between the base model and the rest of the model family
to determine the base model. Using the number of differences among
the models produces simpler CVL models in terms of the number of
substitutions needed to formalize each model. However, other values can
be used to select the base model, the rest of the process can be executed
no matter which base model is selected.

The first process executed as part of the Model Family to SPL is Select
Base Model. Figure 1.2 shows an example of the execution of the process
(top part). In addition, Figure 1.3 shows the state machine associated
to the Select Base Model process (top part). Given a Product Model
Family, the process Select Base Model takes the model family as input
and proceeds as follows:

1.1 Compare. All the models from the model family (IH1, TH2 and
[H3) are input into the compare operation. The models are paired
two by two in all the possible combinations (the order doesn’t mat-
ter) and then each pair is compared. The comparison is performed
at element level, matching one element from first model with another
from the second model. The process continues comparing pairs until
there are no more pairs. The result is a set of differences between
each pair of models processed. Figure 1.2 shows the result of the
operation. For instance, the comparison between IH1 and IH2 pro-
duces a set of 4 diffs, because the four inductors of IH1 are different
from the inductors of IH2.

1.2 Aggregate. The number of differences among each model and the
rest of the models from the model family is added together. This

is done for each of the models of the model family (IH1, IH2 and
[H3). This aggregate value indicates the total number of differences

37



Chapter 1. Automating the Variability Formalization of a Model Family By Means of Common

Variability Language

pair compared [no remaining pairs] model aggregated [no remaining models] base model selected O

. 1.3 selection
‘aggregate(models.next) copyBaseModel()
createResolution()
[remaining pairs] [remaining models]

process(pairs.next) process(models.next)

®——>( 1.1 compare

Select Model Base
state machine

diffset checklfExists(new checklfExists(new

calculated [diffset.size != 0] from)) in PF] Replacement(diff.to)
2.1 compare 22 23 a ( )
process(diffs.next)
[placement not in PF]
[remaining diffs]

[diffset size = 0] createPlacement(diff.from)

[replacement not in RF]

" [feplacement in RF]

process(diffs.next) ]
checkfExists(new Resolution inFs]
[resolution in R] (substutonsSet) " - [no remaining diffs]

LJ
[resolution not in R] [substitution not in FS]

createResolution( createSubstitution(
substitutionsSet) placement replacement)

checklfExists(new Substitution

createReplacement(diff.to)
copyModelToLibrary()

24

Product model to CVL-SPL
state machine

Figure 1.3: Select Base Model process and Product Model to SPL process state machines

among a given model and the rest of the product models. That
is, the value indicates the number of differences that would need
to be addressed if that particular model were the base model. For
instance, if IH1 were the base model a total number of 7 differences
would need to be addressed (4 differences with TH2 and 3 differences
with TH3).

1.3 Select. When the aggregated values have been calculated for all the
models, the model with the lowest value is designated as the base
model. Therefore, it is included into the SPL, as it will be the base
for all the products generated with the SPL. The model designated
as base model (IH3 in this case) must be derivable from the SPL,
therefore, a resolution model capable of generating the base model
is created (Resolution IH3). As IH3 is the base model itself, there
is no need of substitutions and Resolution IH3 is empty.

1.3.2 Product Model to SPL

After executing the first process (the base model has been designated),
the second phase of the process starts, the population of the SPL. The
population consists of executing the process Product Model to SPL for
each of the product models of the input (except for the base model, that
has been already included into the SPL).
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The Product Model to SPL process, performs compare operations between
each of the models from the given model family and the base model, using
the same compare operation as in the previous process. However, this
time we shall create and update the CVL models that define each of the
differences among the model family as sets of placements, replacements,
substitutions and resolutions.

Figure 1.2 shows an example of the execution of the Product Model to
SPL process for IH1 (middle part, below Select Base Model process) and
a snapshot of the SPL that is being constructed. In addition, Figure
1.3 shows the state machine for Product Model to SPL process (bottom
part). Given a product model and a Base Model (designated by previous
process), Product Model to SPL proceeds as follows:

2.1 Compare. The first model from the input model family (IH1) is
compared with the base model. The result is a list of differences be-
tween the two models, diffset(Base Model,IH1). Each difference has
two elements, the from element references elements from the base
model and the to element references elements from the other com-
pared model (TH1 in this case). They reference the elements spotted
as different by the compare operation. For instance, diff1.from el-
ement references the inductor of size 15 of the base model while
diff1.to element references the inductor of size 21 of the IH1 model.
It is important to notice that the difference not only holds the el-
ement that is different (inductor), but also the references involving
that element (in this case references from the button and from the
inverter).

2.2 Placement. The process checks if a placement holding exactly
the same elements of diffl.from exists in the Placement Fragments
model. As it does not exist, the process defines a placement over
the base model (Placement 1). The references involving the differing
element (the inductor) are defined as the boundaries of the place-
ment (Boundary 1 and Boundary 2). If the placement is already
defined in the Placement Fragments model it is not created again
(see bottom of Figure 1.3).
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2.3 Replacement. Once the placement is retrieved (created a new
one or retrieving the existing one from the Placement Fragments
model), the process continues with the replacement. Similarly as in
previous step, the process checks if a replacement holding the infor-
mation from diff1.to exists in the Replacement Fragments model. It
does not exists, therefore it needs to be created, but this time will be
defined over a model of the Replacements Library. To accomplish
that, the model being processed (IH1) is copied into the fragments
library and then a replacement is defined over it (Replacement 1).
As with placement fragments, the references involving the differing
element (the inductor) are defined as the boundaries of the replace-
ment (Boundary 3 and Boundary 4). If the replacement is already
defined in the Replacement Fragments model, there is no need to
create a new one as indicated by the state machine (see bottom right
part of Figure 1.3).

Family of

product models Product models editor

oty Management Tool Oy x|

Model fragments libraries

Figure 1.4: Resulting SPL for Induction Hobs domain

2.4 Substitution. Once the placement (Placement 1 from step 2.2)
and the replacement (Replacement 1 from step 2.3) had been re-
trieved (creating them if necessary), the process is ready to create
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the substitution of the placement by the replacement. Similarly to
previous steps, the process first checks if the substitution already
exists in the Fragment Substitutions model. As the substitution
does not exist, the process needs to create it. The substitution indi-
cates that the Placement 1 can be substituted by the Replacement
1. As part of the definition of the substitution, links between the
boundaries from the placement and the replacement are established.
Therefore, when the fragment substitution is executed the elements
can be updated properly and the model continues to conform to the
metamodel. Similarly to previous step, if the substitution already
exists there is no need to create it (see bottom of Figure 1.3).

At this point, the first difference (diff1) from the diffset(Base Model,IH1)
has been processed. Now, the steps 2.2, 2.3 and 2.4 are performed for
the rest of differences of the diffset. For each difference, a placement, a
replacement and the proper substitution of the placement by the replace-
ment are obtained (created or retrieved if already exists). The iterations
for diff2 and diff3 are not shown in Figure 1.2.

2.5 Resolution. When all the differences from the diffset had been pro-
cessed, the process is ready to create a resolution for the processed
model (IH1). First, the process checks if the resolution already ex-
ists in the resolutions model. As the resolution does not exist, the
process creates a new one (Resolution IH1). In this case, the pro-
cess indicates that the resolution of IH1, involves the Substitution
1 (substitution of Placement 1 by Replacement 1) corresponding to
the first diff processed. Similarly, substitutions for the rest of the
differences of the diffset are included in this resolution.

This five-step process is repeated for all the models from the input (except
for the base model). After executing IH1 to SPL, comes the execution of
IH2 to SPL. The result is an SPL populated with all the models from the
input family. Bottom part of Figure 1.2 shows the output of the Model
Family to SPL operation. There is a base model and two library models
conforming to the IHDSL. In addition, there are placements defined over
the base model, and replacements defined over the library models. More-
over, substitutions are defined referencing placements and replacements;
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Figure 1.5: Five Scenarios of SPL evolution

resolutions that generate each of the models received as input have been
created based on those substitutions.

With the above process we obtain a CVL-based SPL capable of generat-
ing exactly the same models provided as input of the process. However,
the commonalities and variabilities among the products are now explic-
itly formalized in terms of CVL. In addition, the Product Model to SPL
process presented can be used to further evolve the variability of the SPL,
decomposing new products and expressing them in terms of CVL. Next
section presents the application of the approach to our industrial partner
and the set of evolution scenarios encountered.

1.4 Case Study: Induction Hobs

This section presents our experience building a Product Line from an
existing set of products from our industrial partner (BSH group). This
company is the largest manufacturer of home appliances in Europe and
one of the leading companies in the sector worldwide. Their induction
division has been producing induction hobs (the brand portfolio is com-
posed by Bosch and Siemens among others) over the last 15 years.

In order to implement the approach, several technologies are involved.
Specifically, CVL can be applied to MOF based models, so the ap-
proach is developed within the Eclipse environment using the Ecore im-
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plementation and the Eclipse Modeling Framework (EMF)!. The compar-
isons among models are implemented based on EMF-Compare?, which
is an Eclipse framework to compare instances of EMF models. To build
the frontend of the SPL we have used the Graphical Modeling Project
(GMP)3, a framework that provides a set of generative components and
runtime infrastructures for developing graphical editors based on EMF.
Finally, to add variability management capabilities to the graphical edi-
tor we have integrated the CVL tool from Sintef (Fleurey et al. 2009), a
CVL prototype implementation that can be integrated into editor.

The initial input of the approach is a set of 46 induction hob models,
corresponding to products that are currently being sold or that will be
launched to the market in the immediate future. The set of models
were developed following a clone and own (Pham et al. 2009) approach,
where each TH has been modeled modifying a copy of the most similar
IH present in the collection. For instance, a modification includes taking
some elements from other induction hobs and customize them (if nec-
essary, sometimes the elements do not require further customization).
Therefore, the variability present among the models has not been explic-
itly defined, resulting in a set of models with implicit variability among
its members. With regard to the products complexity, each of the TH
models is composed of more than 500 elements, including around 100
class elements on average.

Figure 1.4 presents the resulting SPL tool that makes use of the vari-
ability information obtained applying the Product Model to SPL process.
Top left part presents the Induction Hobs that have already been de-
rived from the SPL. The set of products is the same as the one used as
input; however, those induction hobs have been expressed in terms of the
reusable model fragments extracted through the Product Model to SPL
process. Bottom part presents the libraries of model fragments, holding
the 102 replacement model fragments obtained by the approach. When
deriving new products, the model fragments presented by the libraries
can be reused. Finally, top right part presents the editor area, where
product models can be derived and customized.

Thttp://www.eclipse.org/modeling/emf/
2https://www.eclipse.org/emf/compare/index.html
Shttp:/ /eclipse.org/modeling/gmp/

43



Chapter 1. Automating the Variability Formalization of a Model Family By Means of Common

Variability Language

The tool contains the variability information extracted from the set of
product models used as input. However, this information is extended
when new product models are derived reusing existing model fragments
(as the variability model needs to include the new product) and when new
reusable model fragments are needed (the fragments need to be added to
the model fragment libraries). For instance, one of our industrial partner
engineer’s creates a new empty model and populates it reusing elements
from the library. Then, the engineer customizes some elements of the
induction hob model using the editor and saves it. The Product Model to
SPL process is automatically executed to include the new induction hob
into the SPL, which can lead to an increment in the variability that is
defined in the SPL or in the reusable model assets available to derivate
further products.

Figure 1.5 presents five different examples that illustrates five different
situations encountered when adding new models to the SPL. Each column
presents one of the five examples. First row present the product model
that is going to be added to the SPL. Second row shows the diffset
generated when each model is compared with the Base Model (see bottom
of Figure 1.2). Third row presents a summary of the changes that the
application of Product Model to SPL produces over the CVL models.
Next subsections present the five different scenarios.

1.4.1 Already existing model

First column is an example of the addition of a model that already exists
in the SPL. The comparison between IH4 and the Base model produces a
set of two differences (second row). When performing steps 2.2, 2.3 and
2.4, the placement, replacement and substitutions necessary to model
diffl already exists in the CVL models. Diffl corresponds to already ex-
isting Substitution 4 (substitute Placement 1 by Replacement 4). There-
fore, no placement, replacement or substitution is created for diffl. The
same happens with diff2, that corresponds to Substitution 5 (substitute
Placement 2 by Replacement 3). During the creation of the resolution
model (step 2.5), the process detects that the resolution already exists in
the SPL (Resolution 3 composed of Substitution 4 and Substitution 5).
Therefore, no resolution is created as part of step 2.5.
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When the step 2.5 does not involve the creation of a new resolution model
(as in this scenario), denotes that the model being processed is already
part of the SPL. The process Product Model to SPL automatically skips
the inclusion of this model in order to avoid duplicates. By means of this
scenario, we avoid the inclusion of redundancy into the SPL.

1.4.2 Model reusing existing variability

Second column is an example of the addition of a model that reuses
the variability already defined in the SPL to generate a new product
model. The comparison between IH5 and the Base model produces a
set of one difference (second row). Execution of steps 2.2, 2.3 and 2.4
detects that diffl corresponds to Substitution 4 (substitute Placement 1
by Replacement 4). During step 2.5 the resolution model does not exist
in the SPL, therefore, a new resolution model that includes Substitution
4 is created.

When Product Model to SPL does not create any substitution means
that already existing variability is being used to create a new product
model. However, if the resolution model does not exist in the SPL, a new
resolution including the substitutions identified for each diff is created.
By means of this scenario, we have created a new product reusing existing
variability.

1.4.3 Model requiring a new substitution

Third column shows the addition of a model that needs the creation of a
new substitution in order to be included into the SPL. The comparison
between TH6 and the Base model produces a set of only one difference
(second row). Then, during step 2.2 a placement for diff1.from is identi-
fied (Placement 1). Similarly, during step 2.3 a replacement for diff1.to
is identified (Replacement 4). However, during step 2.4 no existing sub-
stitution is identified, therefore a new one is created. Then, during step
2.5 a new resolution is created, holding the new substitution created in
previous step.
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Sometimes the placement, replacement and substitution for a given diff
already exists in the SPL (as in previous scenario) while other times only
the placement and replacement exists and a new substitution is created
(as in this scenario). However, in both cases we are reusing already
existing model fragments to create new product models. By means of
this scenario we show how the existing variability is reused in the creation
of new product models.

1.4.4 Model requiring a new replacement

Fourth column is an example of the addition of a model that requires
the creation of a new replacement in order to be formalized and included
into the SPL. The comparison between IH7 and the base model produces
a set of one difference (second row). Step 2.2 determines that diffl.from
correspond to the already existing Placement 1. By contrast, Step 2.3,
determines that there is no replacement corresponding to diffl.to in the
SPL models, therefore it is created. As a new replacement has been
created in step 2.3, step 2.4 creates a new substitution of the Placement 1
by the just created replacement. Finally step 2.5 creates a new resolution
model including the new substitution.

When the step 2.3 involves the creation of a new replacement, the next
step 2.4 will always require the creation of a new substitution (as the
substitution involves a new created placement, it cannot exist in the
SPL). By means of this scenario, the variability defined in the SPL has
been increased, including a new replacement that now is available for the
construction of other models.

1.4.5 Model requiring a new placement

Fifth column is an example of the addition of a model that requires the
creation of a new placement. The comparison between IH8 model and the
base model returns a set of one difference (second row). Then, step 2.2
detects that there is no placement corresponding to diffl.from; therefore
a new placement is defined over the base model. Then, in step 2.3 a new
replacement defined by diffl.to is created in the SPL. As part of step
2.4, a new substitution (that substitutes the new placement by the new
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replacement) is created. Finally, the resolution model including the just
created substitution is created as part of step 2.5.

If the step 2.2 involves the creation of a new placement, then, a new
replacement (step 2.3) and a new substitution (step 2.4) will be also cre-
ated. It is important to notice that during the inclusion of IH8 model into
the SPL a new replacement has been created. This replacement overlaps
with other existing replacements (Replacement 1 and Replacement 3), as
it is defined over the same model elements as other existing placements.
However, this situation does not poses a threat to the stability of the
SPL models. Substitution in CVL can be restricted, to avoid situations
where two overlapping placements try to be replaced. Therefore, it is
safe to define overlapping placements as long as the restrictions among
them are correctly defined.

1.5 Related Work

There are several research efforts in existing literature towards the au-
tomation of the variability formalization among a set of products. How-
ever, most of them are focused on generating Feature Models (FMs) and
not address CVL particularities. For instance, (Acher et al. 2013) present
an approach to reverse engineering and evolve architectural FMs. In par-
ticular, they focus on plugin-based systems, projecting variability and
technical constraints of plugin dependencies into an architectural FM. In
(Abbasi et al. 2014), the authors presents a reverse-engineering tool to
extract variability data from web configurators and transform them into
structured data (for instance, a feature model) in a semi-automated way.
The tool incorporates a component that explores the configuration space
simulating users’ configuration actions in order to generate more variable
data to be extracted.

Other research efforts rely on the source code of the products in order
to extract the variability model. In (She et al. 2011) the authors present
a tool-supported approach for reverse engineering FMs from different
sources, such as Makefiles, preprocessor declarations, and documenta-
tion. They focus on identifying parents and combine logic formulas and
descriptions as complementary sources of information. In addition, (Ziadi
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et al. 2012) propose an approach to identify features from the source code
of products. They reduce the noise induced by spurious differences of
various implementations of the same feature. Then, the process produce
feature candidates that are manually pruned (to remove non-relevant
candidates). However, these approaches rely on the source code level as
input for the process, focusing in the generation of Feature Models. By
contrast, our approach deals with the particularities of the CVL and is
applied at model level.

In (Rubin and Chechik 2012), the authors propose a generic framework
for mining legacy product lines and automating their refactoring to con-
temporary feature-oriented SPLE approaches. In (Martinez et al. 2014)
the authors present MoVaC, an approach to identify and analyse com-
monalities and variability among a set of models, with the focus on the
visualization of the results. In (Zhang, Haugen, and Moller-Pedersen
2011) the authors propose an approach to synthesize an SPL from the
comparison of a set of models. The variability is extracted from the set of
models and then a CVL model for the SPL is proposed. The approach is
further refined in (Zhang, Haugen, and Moller-Pedersen 2012) to enable
the inclusion of new models to the SPL. As output, a CVL model for
the SPL is proposed to be manually enhanced. We further extend those
works, automatically selecting a base model among the input models
based on the metric desired. In addition, we have validated the approach
building an SPL for an industrial environment, extracting the variability
of a set of real induction hob models. Furthermore, we present the five
different evolution scenarios encountered during the validation and how
the approach handles them in order to evolve the variability of the SPL.

1.6 Conclusions

We have presented the Model Family to SPL process, capable of au-
tomating the formalization of the variability among a given set of similar
product models. In addition, the generated SPL can be further extended
in order to increase the variability specification. The presented approach
has been tooled within the Eclipse environment using already existing
technologies such as EMF Runtime, EMF Compare and GMP. Then,
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the approach has been validated with our industrial partner. Finally, we
have presented the five different evolution scenarios encountered when
evolving the variability specification by our industrial partner.

However, our current implementation has some limitations. For instance,
the concrete syntax used to represent each of the elements from the li-
brary is not automatically produced. Therefore, some customization re-
garding the concrete syntax has been performed in order to present the
resulting SPL tool. We plan to provide means for automating the gen-
eration of a graphical syntax following a generative approach (similar to
the Graphical Modeling Project).

CVL materialization generates product models from resolution models.
However, the graphical editor shows diagrams that need to be automat-
ically generated for each resolved model. Therefore, the position of each
graphical element needs to be calculated by custom layouts that auto-
matically position each element in the correct place. Nevertheless, these
limitations constitute our future work.
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Chapter 2

Towards Clone-And-Own

Support: Locating Relevant
Methods in Legacy Products

Clone-and-Own (CAO) is a common practice in families
of software products consisting of reusing code from methods in
legacy products in new developments. In industrial scenarios,
CAO consumes high amounts of time and effort without quar-
anteeing good results. We propose a novel approach, Computer
Assisted CAO (CACAQ), that given the natural language re-
quirements of a new product, and the legacy products from that
family, ranks the legacy methods in the family for each of the
new product requirements according to their relevancy to the
new development. We evaluated our approach in the industrial
domain of train control software. Without CACAQO, software
engineers tasked with the development of a new product had
to manually review a total of 2200 methods in the family. Re-
sults show that CACAQO can reduce the number of methods to
be reviewed, and guide software engineers towards the iden-
tification of relevant legacy methods to be reused in the new
product.
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2.1 Introduction

Clone-and-Own (CAO) (Antkiewicz et al. 2014; Dubinsky et al. 2013;
Pham et al. 2009; Rubin and Chechik 2013a; Rubin, Kirshin, et al. 2012)
is a common practice in the development of new products in families of
software products. It consists of reusing code from legacy products, mod-
ifying it to comply with the functionality particularities of the new prod-
uct. Code reuse enables faster software development and easier tracking
of projects, and helps maintain the code style consistent between prod-
ucts.

In the practice, CAO is carried out manually and relies on the knowl-
edge that software developers have of the family. In industrial scenarios,
families of software products tend to have a myriad of products with
long and complex implementations, coded and maintained over long pe-
riods of time by different developers. In these scenarios, engineers tasked
with new product developments often lack knowledge over the entirety of
the products and their implementation details. Under these conditions,
CAQO is a process that consumes high amounts of time and effort without
guaranteeing good results.

In this paper, we propose a novel approach, named Computer Assisted
CAO (CACAQO), that leverages Part-of-Speech tagging (POS tagging)
(Hulth 2003) and adapts Latent Semantic Indexing (LSI) (Landauer,
Foltz, and Laham 1998) to rank the relevancy of legacy products for
a new development at the requirements level, and to locate their most
significant methods for each of the new product requirements.

Given the natural language specifications of a new product in a family
of software products, and the legacy products that belong to it, our
approach detects which are the legacy products that are the closest to the
new product in terms of requirements. In a second step, our approach
searches the code of the closest legacy products for methods that are
relevant for the new product requirements. As a result, our approach
produces a code relevancy ranking for each of the requirements of the
new product. Software engineers can benefit from the rankings to avoid
the mentioned CAQ issues.
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| I [ Legacy Products Code
New Product Legacy Products
Requirements Requirements
A. Keyword Extraction B. Product Relevancy Analysis! C. Code Relevancy Analysis
(POS Tagging) (Coarse Grain LSI) (Fine Grain LSI)

Requirements Keywords Product Relevancy Ranking Code Relevancy Ranking

Figure 2.1: Approach Overview

We evaluated our approach in the industrial domain of railway control
software. Our industrial partner, Construcciones y Auxiliar de Ferrocar-
riles (CAF), provided a family of five software products used to control
the trains they manufacture. In our evaluation, one product acts as a
new product in the family, and the rest act as legacy products. The
code of the product that acts as the new product is used as an oracle.
We apply our approach to that scenario, and measure its performance
in terms of recall and precision (Salton and McGill 1986) by comparing
the results to the code of the oracle. These steps are followed five times,
having all the products play the role of the oracle.

Results show that it is likely to find relevant code in the rankings. With
CACAQ, the amount of methods that software engineers review when de-
veloping a requirement for a new product is reduced: it is only needed to
review a percentage of the original 2200 methods to build a new product.

The remainder of the paper is structured as follows: Section 2.2 presents
our approach and shows how to apply it to a running example. Section
2.3 shows the evaluation of our work. Section 2.4 discusses the results of
our work. Section 2.5 postulates the threats to the validity of our work.
Section 2.6 comprehends the works related to this paper. Section 2.7
presents the conclusions of our work.

95



Chapter 2. Towards Clone-And-Own Support: Locating Relevant Methods in Legacy Products

2.2 Approach

The goal of our approach is, given a set of natural language requirements
for a new product, and the legacy products, to provide code relevancy
rankings that enable software engineers to reduce the amount of methods
they must review to develop the new product. To this extent, a series of
steps are followed (see Figure 2.1):

A. First, the relevant keywords from the new product requirements and
the legacy product requirements are extracted through extended
POS Tagging techniques.

B. The second step of our approach performs a Coarse Grain LSI (CG-
LSI) process to detect which of the legacy products are the closest
to the new product in terms of requirements.

C. The third and last step of our approach is to perform a Fine Grain
LSI (FG-LSI) process at the code level to detect which of the meth-
ods in the close legacy products are related to the new product
requirements.

In the following pages, we detail the steps of our approach in the above

order. To illustrate them, we use a running example from our industrial

partner, CAF (Construcciones y Auxiliar de Ferrocarriles, at http://www.caf.net/en).
CAF is a worldwide leader company in the railway industry. Since its

foundation more than 100 years ago, they develop rail solutions such as

high speed trains, regional and commuter trains, metros, trams and Light

Rail Vehicles.

2.2.1 Keyword Extraction

The first step of our approach extracts keywords from the natural lan-
guage requirements of the new product and the legacy products in the
family. There are plenty of techniques that perform text mining and in-
formation retrieval from natural language requirements such as the ones
in (Ferrari, Spagnolo, and Dell’Orletta 2013; Bakar, Kasirun, and Salleh
2015; Alves et al. 2008; Dumitru et al. 2011). The analysis of POS
tags in search for nouns and nominal structures in documents has shown
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Domain terms

Requirement

—— —— . - - — — Domain term Panto
The PLC will inhibit the connection with the panto whenever the lowering button in the active cabin is pushed, as long as the panto is in closed extraction Active cabin
state and more than five seconds have passed after the closing of the circuit breaker, being the doors in off position. Circuit breaker
¥

Requirement without domain terms

The PLC will inhibit the connection with the whenever the lowering button in the is POS Tagging
pushed, as long as the is in closed state and more than five seconds have passed after the

closing of the, being the doors in off position.

Stopwords

POS Tags PLC

Nouns: PLC, connection, button, state, seconds, doors, position. Filtering | COQS;Z:M %i
Verbs: inhibit, pushed, lower, push, close, pass, be. Seconds

Position

Software
Engineer

‘ Keywords ‘
‘ panto, active cabin, circuit breaker, doors ‘

Figure 2.2: Keyword Extraction

promising results when extracting keywords from technical documents
(Hulth 2003; F. Liu et al. 2009). The removal of stopwords (frequently
occurring words meaningless to information retrieval) also helps produce
more accurate results when mining data in documents (Saif et al. 2014;
Lo, He, and Ounis 2005; Silva and Ribeiro 2003).

The combination of the analysis of POS tags and removal of stopwords
is a frequent practice that our approach adopts to extract the most rel-
evant keywords from the requirements documents. First, our approach
searches for domain terms, provided by the software engineers, in the
requirements. Then, the POS tags of the words that form the require-
ments, domain terms excluded, are analyzed. Afterwards, the words are
filtered by their syntactic role in the sentences, and finally refined with
a set of stopwords, also provided by the software engineers.

In Figure 2.2, a requirement from our running example is provided. This
requirement describes part of the functionality of the pantograph of a
train. The pantograph is the element that is used to harvest energy from
the overhead wires installed in train lines.

First, the terms from the list of domain terms present in the requirement
are subtracted from the requirement and introduced into the keywords
list. Afterwards, the POS tags of the words that compose the require-
ment, domain terms excluded, are extracted. In Figure 2.2, the result of
tagging the example requirement is shown. In the figure, it is possible to
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appreciate words like 'panto’ or 'doors’ as nouns, and ’inhibit’ or ’close’
as verbs. The rest of the words are omitted in the figure.

After the POS tagging, a filtering process takes place. Nouns are taken
as keyword candidates due to their importance for keyword extraction
Hulth 2003. The rest of the words are discarded. Nouns are filtered with
a set of stopwords provided by the software engineers. The nouns that do
not belong to the list of stopwords are added to the keywords list. Figure
2.2 shows a sample of the stopwords provided by a software engineer, as
well as the final list of keywords extracted from the example requirement.

Keywords from all the requirements in all the documents are combined
into a single set of terms, removing duplicates. The output of the first
step of our approach is a set of terms with all the keywords extracted.
These terms are used in the next steps of our approach.

2.2.2 Product Relevancy Analysis

In the second step of our approach, the keywords are used along with the
new product and the legacy products requirements to perform a Coarse
Grain LSI (CG-LSI). The aim of the CG-LSI process is to order the legacy
products in a ranking that reflects their similarity to the new product
development in terms of requirements.

Carrying out this step of our approach is relevant in industrial domains,
where software families are conformed by a myriad of legacy products.
In these scenarios, developers of a new product may lack knowledge of
all the legacy products details. Through the product ranking, developers
can appreciate whether the legacy products they know are relevant for
the new development.

LSI (Rubin and Chechik 2013b) is an automatic mathematical /statistical
technique that analyzes relationships between queries and documents
(bodies of text). It constructs vector representations of both a user query
and a corpus of text documents by encoding them as a term-by-document
co-occurrence matrix, and analyzes the relationships between those vec-
tors to get a similarity ranking between the query and the documents.
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Requirement specifications Query Singular Value Decomposition Ranking

Product
relevancy
ranking

B
PANTO 194 114 160 154 150
Houston
e 2 2 33 30 37 : H
Q Budapest
DOORS 152 144 167 155 150 K Auckland
x

Kaohsiung

KAOHSIUNG | AUCKLAND BUDAPEST HOUSTON CINCINNATI

Keywords

Figure 2.3: Product Relevancy Analysis

In the second step of our approach, we adapted LSI to extract a ranking
of the legacy products according to their similarity to the new product in
terms of requirements. In our adapted CG-LSI, terms are the keywords
extracted in the first step of our approach, documents are the legacy
products requirements documents, and the query column is formed by
the new product requirements document. Values of term occurrences
in both the legacy product requirements documents and the new prod-
uct requirements document are counted, and used to build the term-
by-document co-occurrence matrixz. The documents and the query are
then transformed into vectors, and the relationships between the legacy
product requirements documents and the new product requirements doc-
ument are analyzed to extract the legacy product relevancy ranking.

Figure 2.3 shows the term-by-document co-occurrence matriz with the
values associated to our running example, the vectors, and the resulting
ranking. In the following paragraphs, an overview of the elements of the
matrix is provided.

e Each row in the matrix stands for each unique keyword (term) ex-
tracted in the first step of our approach. In Figure 2.3, it is possible
to appreciate a set of representative keywords in the domain such
as 'PANTO’ or 'DOORS’ as the terms of each row.

e Each column in the matrix stands for the requirements document of
each legacy product. In Figure 2.3, it is possible to appreciate the
names of the legacy products in the columns such as ' KAOHSIUNG’
or "AUCKLAND’, representing the requirements documents of those
products.
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e The final column stands for the query. In our approach, the query
column stands for the requirements of the new product. In Figure
2.3, the name of the new product in the query column ("CINCIN-
NATT’) represents its requirements document.

e Each cell in the matrix contains the frequency with which the term
of its row appears in the document denoted by its column. For
instance, in Figure 2.3, the term 'PANTQO’ appears 114 times in the

"AUCKLAND’ legacy product and 150 times in the '"CINCINNATT
new development.

We obtain vector representations of the documents and the query by
normalizing and decomposing the term-by-document co-occurrence ma-
triz using a matrix factorization technique called singular value decom-
position (SVD) (Landauer, Foltz, and Laham 1998). SVD is a form
of factor analysis, or more properly the mathematical generalization of
which factor analysis is a special case. In SVD, a rectangular matrix is
decomposed into the product of three other matrices. One component
matrix describes the original row entities as vectors of derived orthog-
onal factor values, another describes the original column entities in the
same way, and the third is a diagonal matrix containing scaling values
such that when the three components are matrix-multiplied, the original
matrix is reconstructed.

In Figure 2.3, a three-dimensional graph of the SVD is provided. On the
graph, it is possible to appreciate each product, represented in the form
a vector. The graph reflects the "Houston’ train vector as the closest to
the new product vector, followed by the 'Budapest’ train vector.

To measure the similarity degree between vectors, our approach calcu-
lates the cosine between the query vector and the documents vectors. Co-
sine values closer to one denote a higher degree of similarity, and cosine
values closer to minus one denote a lower degree of similarity. Similarity
increases as vectors point in the same general direction (as more terms
are shared between documents). Having this measurement, our approach
orders the legacy products according to their similarity degree to the new
product in terms of requirements. The most similar legacy products are
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the ones that can be of the most relevance to the development process
of the new product.

As the output of the second step of our approach, the product relevancy
ranking (which can be seen in Figure 2.3) is produced according to the
calculated similarity degrees. In our running example, our approach re-
turns the legacy trains 'Houston’ and 'Budapest’ in the first and second
position of the product relevancy ranking due to the cosines being ’0.9243’
and '0.8454’°, implying a high similarity degree with the new product in
terms of requirements. On the opposite, the legacy train 'Kaohsiung’
is returned in a latter position of the ranking due to its cosine being
’-0.7836’, a lower similarity degree.

The product relevancy ranking enables developers to decide whether to
keep the legacy products familiar to them in the next step of CACAO,
making a mixture between known and unknown products, or disregard
them and only involve non-familiar products. Involving familiar prod-
ucts in the process is positive, since it is easier for software engineers to
understand and reuse code known to them, but it should never enforce
reusing code from non-relevant products.

2.2.3 Code Relevancy Analysis

In the third step of our approach, keywords are used along with the new
product requirements, the product relevancy ranking, and the legacy
products code to perform a Fine Grain LSI (FG-LSI) at the code level.
The aim of the FG-LSI process is to order the methods of the legacy
products in a ranking that reflects how similar they are to each of the
new product requirements.

In the third step of our approach, we adapted LSI to extract a ranking of
the methods in the relevant products that are of importance to the devel-
opment of each new product requirement. In our adapted FG-LSI, terms
are the keywords extracted in the first step of our approach, documents
are the methods of the relevant legacy products, and there are several
query columns, each of them a requirement of the new product develop-
ment. Notice that in the third step of our approach, several instances of
the term-by-document co-occurrence matriz are generated (one per query
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Methods of the products Queries Rankings

Cincinnati Requirements
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Figure 2.4: Code Relevancy Analysis

column). Values of term occurrences in both the methods and each of
the requirements are counted, and used to build the matrices. The docu-
ments and the queries are transformed into vectors, and the relationships
between the documents and each query are analyzed to extract a code
relevancy ranking for each new product requirement.

For the sake of legibility, Figure 2.4 shows the LSI term-by-document
co-occurrence matriz in a unified fashion (showing the values of the oc-
currences of the terms only once and grouping the queries to the right of
the matrix). The figure also shows the values associated to this step of
our running example and the resulting rankings. In the following para-
graphs, an overview of the elements that a matrix contains is provided.

e Each row in the matrix stands for each of the unique keywords
(term) extracted in the first step of our approach. In Figure 2.4,
it is possible to appreciate a set of representative keywords in the
domain such as 'PANTO’ or 'DOORS’ as the terms of each row.

e Each column in the matrix stands for each of the methods of the
most relevant legacy products obtained in the previous step of our
approach. A method document is composed by the name of the
method, its variables, and the comments that appear in its body.
External comments are not taken in account since we cannot en-
sure their belonging to a certain method. In Figure 2.4, columns
M1 to MN represent the documents of those methods. Columns are
labeled with method names, such as 'Detector versions’ or 'Propul-
sion get TCU’.

e In this step of our approach, there are several query columns. Each
query column stands for each requirement of the new product. In
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Figure 2.4, columns R1 to RN represent the requirements of the new
"CINCINNATT train. The top part of Figure 2.2 on page 57 shows
the R1 requirement of the "CINCINNATT train.

e Each cell in the matrix contains the frequency with which the key-
word of its row appears in the document denoted by its column. For
instance, in Figure 2.4, the term 'PANTOQO’ appears twice in both
M1 and R1.

We use the SVD technique presented in the second step of our approach
to calculate the vectors of the documents and the query for each one of
the matrices. The vectors are represented in graphs similar to the one in
Figure 2.3, that, for space reasons, were omitted in the figure.

For each graph, our approach calculates the cosines between the query
vector and the document vectors to measure the similarity degrees be-
tween them. Having the measurement of the similarity of the legacy
product methods with each requirement, and reasoning that the most
similar legacy products methods to a particular requirement are the ones
that can be of the most relevance to its development, we provide an or-
dered list of the legacy products methods for each requirement according
to their relevance in the new requirement development.

As the output of the third step of our approach, the code relevancy rank-
ings for each requirement (which can be seen in Figure 2.4) are returned.
In our running example, our approach returns the legacy methods 'm1’
and 'm2’ in the first and second position of the code relevancy ranking
for the requirement 'R1’ due to their cosines being '0.8743" and ’0.6354,
implying a high similarity degree between the code of those methods and
the requirement. On the opposite, the legacy method 'mn’ is returned in
a latter position of the code relevancy ranking for the requirement 'R1’
due to its cosine being -0.7891°, a lower similarity degree between code
and requirement. This process is applied to all the requirements.

Software engineers in the company faced with the development of the new
product can use these rankings to browse the most relevant methods for
each requirement that they need to implement, avoiding the CAQO issues.
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Requirements and Code

Product - Legacy Products |—>[ CACAO ]—>| Method ranking per requirement |
Famil Role Assignment

Code Oracle |—>[ Comparison ]—>| Recall and Precision Reports

Figure 2.5: Evaluation Overview

2.3 Evaluation

This section evaluates our approach by applying it to a case study from
our industrial partner, comprising a product family composed by five
trains with an average of about 420 requirements each. Requirements
have an average of around 50 words. Trains are coded by an average of
550 methods, with an approximate extension of 310 LOC each. There-
fore, each train is coded in about 170.5 KLOC, and the family compre-
hends about 2750 methods that account for around 852.5 KLOC.

2.3.1 FEwvaluation Steps

Figure 6.4 shows the steps followed to evaluate our approach. We use
the products in the roles of either legacy or new products to perform
CACAOQO and get method rankings. Methods of the legacy products in
the rankings are then compared with the real code of the new product,
which acts as an oracle, to obtain precision and recall values that enable
further analysis of the method rankings.

First, roles are assigned to products in the family. One product acts as the
new product and the rest act as legacy products. The requirements and
code of the products that act as legacy products, and the requirements of
the product that acts as the new product are used to perform CACAO,
while the code of the latter is kept apart to be used as an oracle.

CACAO performs the steps described in our approach (see Section 2.2)
to provide a method ranking for each requirement of the new product.
Notice the dimensions of the rankings extracted by CACAOQO. Products, on
average, feature 420 requirements and 550 methods. For a new product,
on average, 420 rankings are generated. Taking in account all the legacy

64



2.8 Evaluation

products in our set as relevant products for the new development, each
ranking orders about 2200 methods on average.

Then, the methods that compose the rankings are compared one by one
with the code of the oracle. We perform the code comparison by carrying
out a diff not only because version control software is really popular, and
therefore there is a wide amount of tool support that calculates differences
between two source codes available, but also because code comparison
techniques have been used successfully for large scale systems (Li et al.
2006; Kamiya, Kusumoto, and Inoue 2002), proving the computational
cost of the operation to be affordable for large documents like ours.

The effectiveness of information retrieval techniques is typically measured
by recall and precision (Salton and McGill 1986). For a given query, recall
is defined as the percentage of retrieved documents that are relevant to
the total number of relevant documents, and precision is defined as the
percentage of retrieved documents that are relevant to the total number of
retrieved documents. All measures have values between 0 and 1 (Salman,
Seriai, and Dony 2014). We calculate the recall and precision for every
method by analyzing the results of the diff.

In our evaluation, the recall of a certain method represents the percentage
of the oracle that is covered by the method. The recall of a method
is calculated by counting the number of equal code lines between the
method and the oracle code and measuring it against the total number
of code lines of the oracle. The formula that represents the recall of a
method is as follows:

LOC(Method N Oracle)
LOC(Oracle)

Recall(Method) =

The precision of a certain method, on the other hand, represents the
percentage of the method that appears inside the code of the oracle. The
precision of a method is calculated by counting the number of equal code
lines between the method and the oracle code and measuring it against
the total number of code lines of the method. The formula that represents
the precision of a method is as follows:
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LOC(Method N Oracle)

Precision(Method) = LOC(Method)

In both formulas, the LOC function retrieves the number of lines of the
element contained inside the parentheses, and the intersection between
the method and the oracle represents the lines of code that are common
to both the method and the oracle.

The steps of the evaluation described in the previous paragraphs are
repeated as many times as the number of products in the product family,
changing the product that acts as the new product in every iteration
until every product in the product set has acted as the new product.

2.3.2 Implementation Details

The different steps carried out to perform and evaluate CACAO have
been implemented using the following implementation frameworks:

e For the Keyword Extraction process (see section 2.2.1), the POS
tags of the words that compose the requirements were extracted by
using OpenNLP, a Natural Language Processing library developed
by the Apache Software Foundation (at http://opennlp.apache.org/).
This library provides a POS tagger implementation, along with POS
tags models trained with machine learning techniques.

e To perform the necessary SVD in Latent Semantic Indexing (see Sec-
tions 2.2.2 and 2.2.3), EJML was used. EJML is a basic linear alge-
bra package for Java (available at https://code.google.com /archive/p/efficient-

java-matrix-library/). Along with other features, this library pro-
vides an implementation of SVD.

e In the evaluation of the results of the code rankings retrieved by CA-
CAOQO against the oracle, the code diffs were carried out by leverag-
ing the DiffUtils library. The DiffUtils library is a Java open source
library which provides methods that enable us to perform the neces-
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Figure 2.6: Recall and Precision results of the rankings

sary comparison operations between texts (at https://code.google.com /archi
diff-utils/).

For the evaluation of CACAQO, we used a Lenovo E330 laptop, with a
processor Intel(R) Core(TM) i5-3210M@2.5GHz with 16GB RAM and
Windows 10 64-bit.

2.3.3 Results

Five iterations of the evaluation steps were run, with each of the five
products playing the role of the new product and therefore being their
code used as the oracle. Figure 2.6 shows two graphs that correspond
to recall and precision results for CACAO when the ’Cincinnati’ (solid
line), "Kaohsiung’ (dashed line), 'Budapest’ (discontinuous line), "Hous-
ton’ (dotted line), and ’Auckland’ (crossed line) trains act as the new
product.

For every requirement in the new product, CACAO generates one rank-
ing. Each result in a ranking is composed by a method name, and the
recall and precision values associated to that method. Results in each
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ranking are ordered by their relevance to the requirement development,
determined by LSI.

Rankings can be shown with different numbers of results. For instance, a
ranking showing its first result comprises the name of the most relevant
method to the requirement, its recall value, and its precision value (i.e.:
First result: ml method, 2.76% recall, 63.41% precision). The same
ranking, showing the first three results, comprises the names of three
methods, their recall values, and their precision values (i.e.: First result:
ml method, 2.76% recall, 63.41% precision, Second result: m5 method,
3.52% recall, 72.49% precision, Third result: m8 method, 1.48% recall,
82.2% precision).

The left part of Figure 2.6 shows recall results of CACAO for the five new
products. The horizontal axis represents the number of results shown in
the rankings for all the requirements of the new product. The vertical
axis represents the recall percentage, resulting from adding the recall of
all the rankings generated. The formula for recall for one ranking, when
k results are taken in account, is as follows:

k
Recall@k =Y~ Recall(i) — C
=1

Where C is calculated by adding the recall of the second and subsequent
repetitions of the methods that have already appeared in the summation
once.

For instance, a value of 37 in the horizontal axis, which returns a value of
around the 26% total recall for ’Auckland’ and around the 60% total re-
call for 'Kaohsiung’” and 'Cincinnati’, represents that when 37 results are
shown in all the rankings, the recall of all the methods shown (not count-
ing duplicate methods), adds up to around the 26% when the ’Auckland’
train is the new product and up to around the 60% when either the
'Kaohsiung’ train or the ’Cincinnati’ train act as the new product.

By looking at recall results, it is possible to appreciate that the maxi-
mum recall (maximum percentage of the oracles that CACAO can cover)
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reaches up to the 67% for ’Cincinnati’, 61% for 'Kaohsiung’, 55% for
"Houston’, 52% for 'Auckland’, and 34% for 'Budapest’, when each one
is treated as the new product. In the cases of 'Kaohsiung’ and 'Budapest’,
taking 60 results would suffice to fulfill the maximum recall, while in the
case of Cincinnati’ it would be necessary to increase the rankings size
up to nearly 70 results, and more than 90 would be needed for "Houston’
and ’Auckland’. In the cases of 'Cincinnati’, 'Budapest’, and ’Kaohsi-
ung’, with rankings of 40 elements, around the 90% of the maximum
recall would be achieved, while in the cases of "Houston’ and ’Auckland’
about 80 results would be needed.

The right part of Figure 2.6 shows the precision results of CACAO for
the five new trains. The horizontal axis represents the number of results
shown in the rankings. The vertical axis represents the precision per-
centage associated to the results shown in the rankings, resulting from
calculating the average precision of all the rankings, including duplicate
methods. The formula for precision for one ranking, when k results are
taken in account, is as follows:

S | Precision(i)
k

PrecisionQk =

For instance, a value of 12 in the horizontal axis, which is around the 15%
precision for ’Auckland’ and around the 21.5% precision for 'Budapest’,
represents that when 12 results are shown in all the rankings, the average
precision of all the rankings shown revolts around the 15% when the
’Auckland’ train is the new product and around the 21.5% when the
'Budapest’ train is the new product.

Putting the focus on precision results, it can be appreciated that the
maximum average precision (maximum average percentage of the meth-
ods that is present in the oracles) reaches up to around the 21.7% for
‘Budapest’, the 21% for ’'Cincinnati’, the 19.9% for ’Kaohsiung’ and
’Auckland’, and 16.9% for 'Houston’, when each one is the new prod-
uct. Rankings of around 5 positions would have precision values from
around the 80% to almost 90% of the total precision in all cases ex-
cept ’Auckland’, where precision descends as the number of positions in
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the rankings augments. As more positions in the rankings are taken in
account, values of precision become stable.

Data shows that it is likely to find relevant code in the rankings. CACAO
results show that by reviewing a reduced percentage of the products pre-
sented, enough code can be found to cover a percentage of a new product.
For instance, results show that by reviewing the first 37 positions of the
rankings, relevant code can be found to cover between the 26% and the
60% of the new product.

We have pondered about the number of results in the rankings that
software engineers need to look at in order to achieve useful code results,
and we concluded that, in practice, it will not be necessary to review 37
methods per requirement to that extent. As pointed out by the second
reviewer of our work, our metrics are affected due to oracles used in
our evaluation being far from optimum. With an oracle that reflected
all the possible code reuse, our recall and precision would improve, thus
needing less ranking positions to achieve meaningful results. Further
discussion about this fact can be found in the following section. Besides,
it is reasonable to think that software engineers using CACAO will stop
reviewing methods after finding out the code they need.

2.4 Discussion

By means of a Focus Group and semi-structured interviews with the
software engineers, we compared their current CAO practice with the
results of CACAQO. The software of the five trains presented was de-
veloped by two different teams of software engineers. The two teams
are geographically separated, but communicate through e-mail, periodic
video-conferences, and weekly physical meetings. One of the teams (T1)
developed the "Houston’ and ’Auckland’ trains, while the other team (T2)
developed the 'Budapest’, ’Kaohsiung’ and ’Cincinnati’ trains.

We inquired the teams on whether they reviewed the code of the other
team, and if so, on which percentage, when they develop a new product.
T1 reported reviewing just a 5% of the code developed by T2, being that
5% mostly helper functions like signal delaying. T2 reported reviewing
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a 0% of the code developed by T1. However, the results of the CG-LSI
performed by CACAOQO indicate that, given a train produced one team,
the trains developed by the other team should be reviewed to obtain the
maximum recall. In other words, given a new development by one team,
the trains produced by the other team are relevant to perform CAO.

In Figure 2.3 it is possible to appreciate that for ’Cincinnati’ (produced
by T2), the most relevant train in terms of requirements is "Houston’
(produced by T1). Engineers confirmed that, with manual CAQO, the code
from "Houston’ was not used in the ’Cincinnati’ development, and that
it would never be used for a T2 development. With CACAQ, engineers
in T2 are suggested to use 'Houston’ and its methods for their future
products, even if they were not behind its development.

Through this kind of situations, we noticed that:

1. Since there is an independence between teams, methods from prod-
ucts developed by one team can be false positives in the rankings for
oracles developed by the other team. The products of both teams
may be similar regarding the terms used, but few lines of code will
be actually shared between them since no code is reused in practice.
These false positives appear in the method rankings, and present low
recall and precision, affecting the metrics of our approach. Finding
the proper way to filter out these false positives remains as future
work.

2. We are lacking an ideal evaluation scenario. The ground truth is
that the oracles used through our evaluation are software products
coded through manual CAO. Due to the CAO limitations mentioned
throughout this work, the code of the products used as oracles is far
from perfection in the reuse aspect.

Therefore, in our evaluation, we are comparing a version of code
reuse that has been designed attending to the requirements spec-
ifications with oracles that are not built in this same manner but
rather on a manual fashion and relying on human factors. It is not
possible for developers to perfectly discern how much code can and
should be reused for the development of a new product.
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Comparing the methods extracted by our approach with scenarios
that lack the ideal conditions lowers our precision and recall. Should
we encounter an oracle with the ideal code reuse conditions, where
all the code from legacy products that could and should be reused
has been reused and modified to some extent, values of recall and
precision would increase as more lines of code would be shared be-
tween the methods and the oracle.

In addition, we analyzed why 'Budapest’ presents much worse recall re-
sults than the rest of the trains presented in this study when it acts as
the oracle. Inspecting the code, we could note that the variables are
coded with a different naming convention than the one in the rest of the
products. When evaluating CACAQ, on the diff performed between the
methods and the oracle, code deltas that represent modifications of the
code are treated as completely different lines such as new lines or deleted
lines. As the train variables are named different, recall levels lower. In
the light of the results, code modifications should be analyzed instead of
directly discarded.

To avoid this issue, we should consider using more Natural Language
Processing techniques in future developments of CACAQO. For instance,
stemming (Porter 2001) should be used at some point of our approach.
Stemming reduces words to their root. The objective is to unify words
to avoid duplicity of terms. For example, 'coupling’ will be stemmed to
‘couple’ or ’brakes’ to 'brake’. This will allow us to retrieve concepts
and keywords in an optimized fashion. As of today, applying this sort of
techniques and analyzing their implications in our approach remains as
future work.

2.5 Threats to validity

In this section we discuss some of the issues that might have affected the
results of the evaluation and may limit the generalization of the results.
We use the classification of threats to validity of (Runeson and Host 2009;
Wohlin et al. 2012) to acknowledge the limitations of our approach.
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Construct validity: This aspect of validity reflects the extent to which
the operational measures that are studied represent what the researchers
have in mind. To minimize this risk, we measured the factors of recall
and precision. These measures are widely accepted in the software en-
gineering research community (Salton and McGill 1986; Salman, Seriai,
and Dony 2014).

Internal validity: This aspect of validity is of concern when causal
relations are examined. There is a risk that the factor being investigated
may be affected by other neglected factors. The number of members in
the family of trains may look small, but the products presented cover a
wide range of railway types, from trams to medium-long distance trains.
Furthermore, the products used in this study have been developed by
different developer teams working for our industrial partner.

External validity: This aspect of validity is concerned with to what
extent it is possible to generalize the finding, and to what extent the
findings are of relevance for other cases. Software in the railway domain
is representative of safety-critical systems like those present in the auto-
motive domain or the aerospace domain. Nonetheless, CACAO should
be applied to other domains before assuring its generalization.

Reliability: This aspect is concerned with to what extent the data and
the analysis are dependent on the specific researcher. For our research,
the data was recovered from trains chosen and provided by our industrial
partner. The evaluation is performed by comparing the data with the
trains themselves, acting as oracles.

2.6 Related Work

Approaches related to the one presented in this paper comprehend fea-
ture location techniques carried out at the code level. Typechef (Késtner
et al. 2011) provides an infrastructure to locate the code associated to
a given feature by means of analyzing the #ifdef directives. Trace anal-
ysis (Eisenberg and Volder 2005) is a run-time technique used to locate
features. When the technique is executed, it produces traces indicating
which parts of code have been executed.
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Some approaches related to feature location use LSI to extract the code
associated to a feature. Poshyvanyk et al. (Poshyvanyk et al. 2007)
combine a scenario-based probabilistic ranking of events and informa-
tion retrieval via LSI. Given a query formulated by the user to identify
the feature and two sets of scenarios (one that exercises the feature and
other that do not), their system ranks the program methods using LSI.
They rank each executed method based on the frequency of its appear-
ance in the trace. Liu et al. (D. Liu et al. 2007) combine information
from an execution trace and from the comments and identifiers from the
source code. They executed a single scenario, which exercises the desired
feature, and all executed methods are identified based on the collected
trace using LSI.

The prior techniques have been generally applied to searching the code
of a feature that has to be extended or is involved in the fixing of a
bug. Our approach extends the ideas of the previous works by involving
the analysis of requirements and leveraging the fact that products form
a family, instead of treating them as independent items. Unlike the
previous works, our approach analyzes the requirements of the family of
software products to determine which are the most relevant for reuse in
the scenario of a new development, and later calculate rankings of the
most relevant methods in the legacy products for the implementation of
each requirement in the new product.

Feature location approaches in a product family such as the one presented
in Xue, Xing, and Jarzabek 2012 center their efforts in finding the code
that implements a feature between the different products by combining
techniques such as FCA and LSI. In our approach, we are not interested in
the best representation of a feature in the family, but in locating the most
relevant methods that implement a requirement (regardless of whether it
represents a feature, a fragment of a feature, or several features). Since
engineers must review the proposed methods to decide what to reuse,
our approach also differentiates from (Xue, Xing, and Jarzabek 2012) by
introducing a step (Product Relevancy Analysis) where engineers decide
over which products the location is made, balancing product relevancy
and knowledge about the family: potentially, more code can be found on
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relevant products, but with a good level of knowledge of a product, it
becomes easier for engineers to reuse code.

Other work (She et al. 2011) focuses on applying reverse engineering
to the source code to obtain the variability model. In (Czarnecki and
Wasowski 2007) the authors use propositional logic which describes the
dependencies between features. In (Nadi et al. 2014) the authors combine
Typechef techniques and propositional logic to extract conditions among
a collection of features.

These works engage explicitly the variability of the legacy products, but
do not indicate the most relevant methods in the legacy products for the
development of each requirement in the new product, as our work does.

2.7 Conclusions

To keep pace with the increasing demand for custom-tailored software
systems, companies often apply the Clone-and-Own practice, through
which a new product in a software product family is built by copying and
adapting code from other family products. Clone-and-Own is imperfect
and in industrial scenarios, it can be a time and effort-consuming process
without guaranteeing good results.

In this work, we show our approach, named Computer Assisted CAO
(CACAO). Given a set of natural language requirements for a new prod-
uct in a software product family, and the requirements and code of the
legacy products, CACAQO leverages Part-of-Speech tagging and Latent
Semantic Indexing to rank the most relevant products to the new devel-
opment at the requirements level first, and to locate the most relevant
methods to each requirement of the new product in the second place.
CACAQOQ produces, for each requirement of the new product, a ranking
of the most relevant methods in the family for the development of the
requirement. Software engineers can use the rankings to avoid the men-
tioned CAO issues.

We have evaluated our approach on the railway domain with our in-
dustrial partner, Construcciones y Auxiliar de Ferrocarriles (CAF), who
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provided a family of five train control software products. The results
of CACAQO show that it is likely to find relevant code in the rankings.
Furthermore, CACAOQ revealed products that were not considered to be
reusable by the software engineers to be relevant for code reuse, as in the
case of the 'Houston’ train for the 'Cincinnati’ train development. Fi-
nally, as future work, we plan to apply more Natural Language Processing
techniques such as stemming to avoid the issues related to different nam-
ing conventions as seen in the 'Budapest’ train, which achieved the lower
recall values in our evaluation.
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Chapter 3

Leveraging Feature Location to
Extract the Clone-and-Own
Relationships of a Family of

Software Products

Feature location is concerned with identifying software ar-
tifacts associated with a program functionality (features). This
paper presents a novel approach that combines feature location
at the model level with code comparison at the code level to ex-
tract Clone-and-Own Relationships from a family of software
products. The aim of our work is to understand the different
Clone-and-Own Relationships and to take advantage of them
in order to improve the way features are reused. We have
evaluated our work by applying our approach to two families
of software products of industrial dimensions. The code of one
of the families is implemented manually by software engineers
from the models that specify the software, while the code of the
other family is implemented automatically by a code genera-
tion tool.
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The results show that our approach is able to extract re-
lationships between features such as Reimplemented, Modifi-
cated, Adapted, Unaltered, and Ghost Features, thus providing
insight into understanding the Clone-and-Own relationships of
a family of software products. Furthermore, we suggest how to
use these relationships to improve the way features are reused.



3.1 Introduction

3.1 Introduction

Feature location is concerned with identifying software artifacts associ-
ated with a program functionality (features). Feature location is one
of the most important and common activities performed by developers
during software maintenance and evolution (Dit et al. 2013). Most of
the approaches carry out feature location at the code level (Dit et al.
2013),(Eaddy et al. 2008),(Czarnecki and Wasowski 2007), but in recent
years feature location at the model level is gaining momentum (Font,
Ballarin, et al. 2015),(Rubin and Chechik 2012),(Martinez et al. 2015).

This paper presents the first approach that combines the recent tech-
niques on feature location at the model level with code comparison at
the code level. We combine both to extract Clone-and-Own Relation-
ships from a family of software products where the software has been
specified through models, and implemented either in a manual or in an
automatic way. The extracted Clone-and-Own Relationships reflect how
features have been reused throughout the development of the family of
software products.

In order to combine both techniques, we used the information that the
techniques on feature location provide to develop an algorithm that iso-
lates features at the model level. Then, our approach uses that infor-
mation to guide code comparisons at the code level. This enables us to
isolate features at the code level and retrieve their source code. Finally,
we make one-to-one comparisons of the source code of a feature isolated
in a product with the source codes of the different isolations of the same
feature in other products.

We have evaluated our approach in the industrial domain of Induction
Hobs (IH) over two families of IH products. On one of them, the firmware
code of the products was implemented manually from the models. On
the other, the firmware code of the products was implemented in an
automatic way.

The results show that it has been possible to identify several different
Clone-and-Own Relationships between features such as Reimplemented,
Modified,Adap-ted, Unaltered, and Ghost Features. These relationships
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Figure 3.1: Stages of the Approach

are then used to suggest improvements on how features are reused. In the
case of automatic implementation, extracted relationships are used to an-
alyze whether it is necessary to carry out changes over the model-to-code
transformation. In the case of manual implementation, extracted rela-
tionships are used to detect reuse impediments, to analyze cost-benefit
and to detect opportunities to improve the reuse maturity.

The rest of the paper is structured as follows: Section 2 presents our
approach and shows how to apply our approach to a simple example.
Section 3 shows the evaluation of our work. Section 4 comprehends the
work related to this paper. Section 5 summarizes the conclusions of our
work.

3.2 Clone-and-Own Extraction Approach

The aim of our approach is to extract Clone-and-Own Relationships that
enable us to understand and improve how features are reused among the
products. The input of our approach is a family of software products
where the software has been specified through models. The models are
translated into code by humans or in an automatic way using a model-
to-text transformation (Selic 2003). Our Clone-and-Own Extraction ap-
proach builds up on feature location at the model level and code com-
parisons. The main stages of our approach are: Model-based feature
location, Feature Isolation, Code Comparison and Similarity Compari-
son. Fig. 4.3 depicts the inputs and outputs of these stages, which are
described in the following subsections.
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We use a running example in order to illustrate our approach. The
Linked List Example is based on a family of software products where
the variability is not formalized. The products have associated models,
from which the code of the products has been manually implemented by
a human (see left side of Fig. 4.4). The products are lists, which can
be singly or doubly linked lists. Each list has a different combination
of added functionality: sorting functionality (using the bubble method),
functionality that enables calculating the number of elements of the list,
and functionality that prints the elements of the list.

3.2.1 Model-based Feature Location

The first stage of our approach extracts the features from the products
at the model level by using already existing techniques that identify fea-
tures given a set of models. Feature location consists of identifying a
fragment in the source code or software model that corresponds to a spe-
cific functionality. It is one of the most frequent maintenance activities
undertaken by developers because it is a part of the incremental change
process (Dit et al. 2013).

There are several research efforts in existing literature towards feature lo-
cation from a set of models (Zhang, Haugen, and Mgller-Pedersen 2011),
(Martinez et al. 2015), (Rubin and Chechik 2012). For this stage we
have adopted Conceptualized Model Patterns to feature location (here-
inafter CMP-FL) (Font, Arcega, et al. 2015), which identify model pat-
terns by human-in-the-loop (domain experts and application engineers
become part of the decision-making process) and conceptualize the ex-
tracted patterns as reusable model fragments. We have adopted CMP-FL
because the authors show CMP-FL improves the results obtained with
previous approaches, providing features that are more recognizable by
the engineers.

In CMP-FL, the elements that differ between the product models are
extracted as alternatives for a feature. The elements that do not have a
counterpart in the rest of the models are extracted as optional features.
As a result, the models will be divided into reusable model fragments.
Each of the reusable fragments will correspond with one of the features
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Figure 3.2: Clone-and-Own Relationships Extraction applied to the Linked List Example
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of the family of software products. The output of our first stage is a list
for each product, that contains the features of the product which have
been located at the model level by CMP-FL.

The Linked List Example (see 1 Model-based Feature Location of Fig. 2)
tags the products with the located features. In the figure, the products,
their features, and the names associated with the features are shown. In
this example, five features are identified in the product family.

Current techniques used to locate features at the model level (Zhang,
Haugen, and Mgller-Pedersen 2011), (Martinez et al. 2015), (Rubin and
Chechik 2012) (Font, Arcega, et al. 2015) do not provide meaningful
names, only synthetic names (F1, F2, etc). We have decided to add more
meaningful names to the features in order to improve understanding of
the example: F1, (Forward Linking), F2 (Sorting), F3 (Printing), F4
(Backwards Linking) and F5 (Measuring).

In the first product (PA), features F1, F2 and F3 have been detected. In
the second product (PB), features F1, F2, and F4 have been detected.
Finally, in the third product (PC), features F1, F4, and F5 have been
detected.

Notice that some of the features are present in more than one product.
For instance, F2 is present in both product PA and product PB. In order
to avoid ambiguity in feature names through this example, a feature FN
that belongs to a product PX will be referred to as FN(PX).

3.2.2 Feature Isolation

This stage performs subtractions between the different products at the
model level to identify the features that can be potentially isolated in
code. We developed an algorithm that performs the second stage. The
algorithm’s input is a list of the existing products and their features. The
result of the algorithm is the list of the features that can be isolated at the
model level, accompanied by one operation per feature which expresses
the code subtractions that need to be carried out between products in
order to isolate the mentioned feature. The implementation of the algo-
rithm is described as follows:
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e The algorithm creates an empty list to store the features that it is

able to isolate.

For each feature (FN) of every product (PX), the algorithm calcu-
lates the Complementary Feature Set (CFS). A CFS is a product,
combination of products, or combination between products plus al-
ready isolated features which contains all the features in PX except
for FN. A CFS is valid even if it contains features that are not
present in PX. Subtracting the found CFS to PX results in isolating
EFN. The isolation operation becomes FN(PX) = PX - CFS (e.g.:
F1(P7) = P7 - P6 - F3(P4)).

The isolated features and their isolation operations are added to the
list. The addition of new features to the list of isolated features
enables for new CFS, hence new feature isolations, so we make iter-
ations while new isolated features are added to the list.

The first iteration of the algorithm will include into the list those features
that can be isolated by a CF'S composed only of a product or combination
of products. Isolation operations found in the first iteration constitute the
base cases of our algorithm. Following iterations will use combinations
between products plus already isolated features to calculate the CFS.
Isolation operations found this way constitute the recursive cases of our
algorithm.

The Linked List Example (see 2 Feature Isolation at model level of Fig.
2) shows the application of our feature isolation algorithm as follows.
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e First Iteration: For all the features in PA, the feature isolation

algorithm searches for the CFS that can isolate them. It is not
possible to calculate the CFS for F1 nor F2, but it is possible to
calculate it for F3. Subtracting PB and PC from PA, we eliminate
from PA the code from F1, F2, F4, and F5. Eliminating F1 and
F2 from PA leaves us with F3. We have found the first isolation
operation. Notice that it would be enough to subtract PB from PA
to achieve the same result, but we follow the criteria of eliminating
the maximum possible CFS expression to get a purer result.
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The feature isolation algorithm performs the same search in the rest
of the products. In PB, it is possible to isolate its F'2 by eliminating
F1 and F4 from PC, and it is also possible to isolate its F4 by
disposing of F1 and F2 via PA. In PC, we can isolate F5 in a similar
fashion as F3 from PA.

At this point, the feature isolation algorithm has gone through all
the features of the product family, so the iteration ends. In this
iteration, the feature isolation algorithm has calculated the isolation
operations for F3(PA), F2(PB), F4(PB), and F5(PC). As there are
still features that lack an isolation operation and we have unlocked
new isolation operations, the feature isolation algorithm makes a
new iteration.

e Second Iteration: For all the features in PA that lack an isolation
operation, the feature isolation algorithm searches for the CFS that
can isolate them. In order to isolate F1, we need to eliminate both
F2 and F3. In the first iteration, our algorithm located F2(PB) and
F3(PA). They conform the CFS for F1(PA). We can isolate F2(PA)
by subtracting PC and F3(PA).

We can repeat the same steps in both PB and PC. By combining
the different products and the features that we isolated in the first
iteration, it is possible to get all the isolation operations for the
features that lacked them in the previous step (F1(PB), F1(PC),
F4(PC)).

The second iteration has calculated the isolation operations for F1(PA),
F2(PA), F1(PB), F1(PC), and F4(PC). At the end of the second it-
eration, the feature isolation algorithm has isolated all the features,
so no more iterations are needed.

As the output of the Stage 2 of the Linked List Example, three tables
are returned. Each one of these tables contains the product name, the
features that belong to it, and the isolation operations found by the
feature isolation algorithm.
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3.2.83 Code Comparison

The third stage runs the code comparisons specified by the operations
in order to isolate the features in the source code of the products. In
a family of software products, the newest products are implemented by
carrying out increments or decrements of the previous products in the
family. Version control software has become really popular, and there is
a wide amount of tool support that calculates differences between two
source codes available. Apart from this, code comparison techniques
have been used successfully for large scale systems (Kamiya, Kusumoto,
and Inoue 2002) (Li et al. 2006), proving the computational cost of the
operation to be affordable should we scale up our approach. For all these
reasons, we use textual code comparison techniques (diff) to execute the
code comparisons dictated by the operations given by the second step of
our approach.

The Linked List Example (see 3 Code Comparison of Fig. 4.4) shows
how features are isolated. In our approach, all the features isolated at
the model level in the second stage are isolated at the code level in the
third stage. Due to space restrictions, this example isolates only two
features: F2(PB), and F2(PA). According to the operations, F2(PB) can
be automatically isolated by subtracting the code belonging to PC from
PB. In this example, subtracting the code results in eliminating from PB
the inner class Node and the variable declaration section (PB, lines 1 to
8). Therefore, the approach isolates the Sorting Feature from PB (PB,
lines 9 to 30).

In order to isolate F2(PA), we must first isolate F3(PA). We subtract
both PB and PC to PA, and after eliminating the corresponding code,
the approach isolates the Printing Feature (PA, declaration at line 6). We
can now isolate F2(PA) by removing from PA the code that is common
between PA and PC, and disposing of the F3(PA) code that we just
isolated. By doing this, the approach isolates the Sorting Feature from
PA (PA, lines 8 to 22). The third stage concludes when the features are
isolated in code. The output of the third stage is, for each FN(PX), the
code that isolates the feature.
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3.2.4 Similarity Comparison

In this stage, the isolated pieces of code that implement the features that
belong to more than one product are compared one to one in order to
calculate the similarity between them. In order to calculate the simi-
larity between the same feature in two different products, our approach
performs a diff between them.

Diff returns the equal parts and the differences in the code of the two
features. We discard the code differences and retain the parts of the
code that are equal between them. Similarity between features is then
measured in terms of the Total Number of Statements (TNOS) (Dit et al.
2013), which is a size metric for measuring code size. TNOS counts the
number of statements (e.g. for, if, return, switch, while) in each method
for assessing the entire code size. This size metric is not dependent on
the coding style of programmers, unlike the Lines Of Code metric.

The Linked List Example (see 4 Similarity Comparison of Fig. 4.4)
compares F2(PB) and F2(PA). From the lines of code present in the
figure, it can be appreciated that the two order methods, while very
similar, do not have the exact same code (notice the marked changes
from line 20 to line 28 on PB). It is reasonable, as PA implements a
singly linked list and PB implements a doubly linked list. Even if the
sorting technique is the same (bubble sort), it cannot be implemented
the same way with a different number of links between elements. In fact,
F2(PA) has 6 statements and F2(PB) has 7 statements. Considering
that 4 of the 7 statements are equal and represent the same conditions
in the code, the similarity percentage between F2(PA) and F2(PB) is
around the 57%. From this example, we can conclude that some sort of
modification has occurred to the feature since it was first implemented
on PA until its appearance on PB.

Summarizing, our approach is applied to a family of software products
where variability is not formalized. The first stage identifies the features
from the products at a model level, tagging the products with them.
Then, in the second stage, the operations to isolate the features are
calculated. After that, in the third stage, the approach executes the
code comparisons dictated by the operations. Finally, in the fourth stage,
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Figure 3.3: THDSL Metamodel, Syntax and Model

the approach quantifies the degree of similarity between the features that
appear in more than one product. Our approach returns, for the different
features in the family, the feature isolation at the code level and the
degree of similarity between the features that appear in more than one
product.

3.3 Evaluation

We have evaluated the presented ideas with our industrial partner (BSH
group). Their induction division has been producing induction hobs (un-
der the brands Bosch and Siemens among others) over the last 15 years.

3.3.1 The Induction Hobs Domain

The newest Induction Hobs (IHs) include full cooking surfaces, where
dynamic heating areas are automatically calculated and activated or de-
activated depending on the shape, size, and position of the cookware
placed on top. In addition, there has been an increase in the type of
feedback provided to the user while cooking, such as the exact temper-
ature of the cookware, the temperature of the food being cooked, or
even real-time measurements of the actual consumption of the TH. All
of these changes are being possible at the cost of increasing the software
complexity.

The Domain Specific Language used by our industrial partner to specify
the Induction Hobs (IHDSL) is composed of 46 meta-classes, 74 references
among them and more than 180 properties. However, in order to gain
legibility and due to intellectual property rights concerns, in this paper we
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use a simplified subset of the IHDSL (see Fig. 3.3). The main concepts
of IHDSL are: Inverter, Induction Hob, Inductor, Provider Channel,
Power Manager and Consumer Channel. The firmware code of each TH

is implemented in ANSI C and includes about four hundred thousand
TNOS.

In order to gain legibility and due to intellectual property rights concerns,
in the following lines, we explain a subset of IHDSL to present the TH
domain, although in the evaluation, the complete models have been used.
The main concepts of IHDSL are: Inverter, Induction Hob, Inductor,
Provider Channel, Power Manager and Consumer Channel.

Inverters are in charge of converting the input electric supply to match the
specific requirements of the Induction Hob. Specifically, the amplitude
and frequency of the electric supply needs to be precisely modulated in
order to improve the efficiency of the IH and to avoid resonance. Then,
the energy is transferred to the hotplates through the channels. There can
be several alternative channels, which enable different heating strategies
depending on the cookware placed on top of the IH at run-time. The
path followed by the energy through the channels is controlled by the
power manager.

Inductors are the elements where the energy is transformed into an elec-
tromagnetic field. Inductors are composed of a conductor that is usually
wound into a coil. However, inductors vary in their shape and size, re-
sulting in different power supply needs in order to achieve performance
peaks. Inductors can be organized into groups in order to heat larger
cookware while sharing the user interface controllers. Each group of in-
ductors can have different particularities; for instance, some of them can
be divided into independent zones while others can grow in size adapting
to the size of the cookware being placed on top of them. Some of the
groups of inductors are made at design time, while others can form at
run-time (depending on the cookware placed on top).
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Figure 3.4: Clone-and-own Relationships Extraction applied to both family of products

3.3.2 Extracted Clone-and-Own Relationships

We have applied our Clone-and-Own approach to two families of products
of our industrial partner. The first family of products was specified using
IHDSL. After the specification, the IH’s firmware was manually imple-
mented (MI) in ANSI C by software engineers. This family of products
contains a total of 46 products. Since this family of products uses IHDSL
and manual implementation we refer to this family as ITHDSL+MI. The
second family of products was also specified using IHDSL. After the spec-
ification, the IH’s firmware was automatically implemented (AI) using
m2t (model-to-text) transformation. This transformation was produced
by Acceleo (Corredor et al. 2012). This family is composed by a total of
66 products. Since this family of products uses IHDSL and automatic
implementation we refer to this family as IHDSL+AL

The IHDSL+MI family has a total of 81 different features. On the other
side, the IHDSL+AI family contains a total of 47 features. After applying
our Clone-and-Own Relationship extraction approach to both families
of products we were able to isolate a total of 49 features belonging to
[HDSL+MI and a total of 34 features belonging to IHDSL-+AIL. As a
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result, we detected five types of Clone-and-Own Relationships. Given the
extracted code of FN(PX) and FN(PY), being product (PX) previous in
time to product (PY), and being the same feature (FN) present in both
products, we have identified the following feature relationships (see top
part of Fig. 3.4).

¢ Reimplemented Feature, FN(PX) and FN(PY) do not share code
between them. The implementations of these features are entirely
different.

e Modified Feature, it exists shared code between both features.
The part of code from FN(PX) which is present in FN(PY) is
referred to as Legacy. The differences between FN(PX) and the
Legacy are referred to as Negative modifications. The differences
between FN(PY) and the Legacy are referred to as Positive modifi-
cations.

e Adapted Feature, FN(PY) includes all code from FN(PX), and
additional code which is not present in FN(PX). The part of FN(PX)
is referred to as Legacy. Adapter represents the difference between
FN(PY) and the Legacy.

e Unaltered Feature, the code of FN(PX) and FN(PY) is strictly
the same.

e Ghost Feature, FN(PY) is specified at the model level but the
extraction approach reveals that the code is missing.

We have the intuition that another type of relationship exists, Non-
documented Features. Non-documented Features are those features that
are not present at the model level, but they are at the code level. Software
engineers reported that sometimes they implemented new code in later
stages of the development without updating the corresponding ITHDSL
models. However, the full set of features of neither software family was
completely isolated. The unclassified code may belong to either Non-
1solated Features or Non-documented Features. Therefore, we have not
evidence that this feature genuinely exists in IHDSL-+MI or IHDSL+AL
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3.3.83 Clone-and-Own Relationships for Automatic
Implementation

In the IHDSL+ AT family our approach extracted the following relation-
ships: 0% Reimplemented, 8% Modified, 11% Adapted, 81% Unaltered
and 0% Ghost. The presence of Modified and Adapted Features reveals
that the implementation code of those features was refined (Modified
Feature) or extended (Adapted Feature) by hand after the execution of
the m2t transformation. Each feature classified as Unaltered Feature ex-
hibits the same implementation code across all the members of the family
that implement that particular feature. Unaltered Features suggest that
the code of those features was not altered by software engineers after the
execution of the m2t transformation.

In THDSL-+AI, the presence of Unaltered Features (81%) surpasses the
presence of both Modified and Adapted Features (19%). This indicates
that the m2t transformation actually saves implementation time to soft-
ware engineers. Furthermore, the size of Positive modifications is smaller
than the size of the Legacy feature on average (Modified Features) and
the size of the Adapter is smaller than the Legacy feature on average
(Adapted Features). These evidence contributes to concluding that the
m2t transformation requires little human intervention.

We suggest that the Modified Feature and Adapted Feature relationships
are useful to analyze whether it is necessary to carry out changes over
the model-to-code transformation. If it is determined that it is neces-
sary to update it, then the information provided by the occurrences of
these relationships can be used to refine the metamodel and the code
transformation rules.

In the IHDSL+AI family, modified features enabled to adjust the trans-
formation rules. Negative parts of modified features reflected eliminated
code introduced by obsolete transformation rules, and positive parts of
modified features reflected manual code additions. The information pro-
vided by analyzing both the negative and positive parts enabled the com-
pany to update transformation rules with recurring changes that were
predicted to keep occurring in the future.
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3.3.4 Clone-and-Own Relationships for Manual Implementation

In the IHDSL+MI family our approach extracted the following relation-
ships: 3% Reimplemented, 52% Modified, 23% Adapted, 16% Unaltered
and 6% Ghost. The presence of Modified and Adapted Features re-
veals that the implementation code was reused from another product as
source and then refined to meet the particularities of the target product.
F2(PA) and F2(PB) of the Linked List example (see Fig. 4.4) are in-
stances of the Modified Feature relationship. On one hand, both F2(PA)
and F2(PB) implement the same functionality (sorting the lists using
the bubble method). On the other hand the implementation details of
F2(PA) are different than those of F2(PB) to accommodate a feature (F4
= Backwards Linking) of PB which is not a feature of PA.

Unaltered Features were copied from previous products and used directly
in new products. It turns out, Unaltered Features are reused among
different products without requiring refinements on part of the engineer
to accommodate the rest of the features of the product.

In THDSL+MI, Unaltered, Adapted and Modified Features (91%) reveal
reuse opportunities identified by the software engineers. The presence of
Reimplemented Features (3%) indicates that software engineers did not
realize former implementations of the feature. The implementation of
these features was done from scratch, revealing missed reuse opportuni-
ties. Finally 6% of isolated features were cataloged as Ghost Features.
Ghost Features reveal inconsistencies between the model specification
and the implemented code. The model specification should be updated
to keep software engineers from failing to locate the code of those fea-
tures.

We suggest that Reimplemented Feature relationships are useful to detect
feature reuse impediments. In IHDSL+MI, for instance, they were use-
ful to detect that a developer had left the company without performing
knowledge transfer, and that the new developer in his place eventually
reimplemented some code from scratch. Apart from detecting the situa-
tion, now we have awareness of both implementations, therefore widening
the reuse possibilities.
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We propose that Modified Feature and Adapted Feature relationships are
useful for analyzing cost-benefit payoffs of reusing code fragments against
reimplementing them. In THDSL+MI, for instance, 12 cases were found
where it had become more costly to create adapters that allowed reusing
the legacy part of a feature than to reimplement the feature as needed.

We propound that Unaltered Feature relationships are useful to detect
the opportunities to improve the reuse maturity of a family of software
products. In ITHDSL+MI, for instance, they were useful to build an
implementation framework that has been used in further developments.

3.3.5 Limatations

There are some limitations that must be acknowledged. To begin with,
there are companies that implement the code directly from the software
requirements. This leads to software product families implemented with-
out models. In such an scenario, our approach is not applicable. Devel-
oping and using techniques that permit to carry out feature location at
the requisites level would widen the scope of our approach.

Second, depending on the configuration of the products in the software
family, it is possible for our feature isolation algorithm to not find the
isolation operations for every feature in every product. In the future,
our approach might suggest the addition of products to the family with
specific feature configurations that would allow the algorithm to isolate
non-isolated features.

In addition, determining the kind of Clone-and-Own Relationships be-
tween products entails some degree of uncertainty. Specifically in the
cases of reimplementation and feature modification, the current criteria
is very rigid. This results in reimplemented features that, due to having
low amounts of common code, are incorrectly classified as modified ones.

Finally, inspecting the isolated features with domain experts, we detected
that in some cases, not all the lines of code provided in an isolated piece
of code belong to the isolated feature and, in some other cases, some
lines that do belong to the isolated feature are missing. Nevertheless,
we have confirmed that the isolated code is a good heuristic for feature
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location, and domain experts have validated that the behavior detected
by the described Clone-and-Own Relationships is the right one at the
code level.

3.4 Related Work

Approaches related to the one presented in this paper can be distin-
guished into two areas: feature location at the model level and feature
location at the code level. First we introduce the state-of-the-art of fea-
ture location at the code level and secondly, the state-of-the-art of feature
location at the model level.

3.4.1 Feature Location at the Code Level

Some works apply type systems to extract relevant information when
constructing the variability model. For instance, Typechef (Késtner, Gi-
arrusso, et al. 2011) provides an infrastructure to analyze the variability
with the #ifdef directives. In (Késtner, Ostermann, and Erdweg 2012)
the authors extend Typechef in order to support the variability at run-
time.

Text similarity techniques are based on mathematical methods to de-
termine the similarity in a collection of texts. As an example, Latent
Semantic Indexing (LSI) (Landauer and Psotka 2000) takes into account
the number of occurrences in a set of words in large texts. LSI can be used
to obtain similarity measurement metrics between features and the code
used to implement them. These similarity can be represented by Vector
Space Models (VSM). On some occasions text similarity techniques are
combined with dynamic analysis (Asadi et al. 2010).

Other works focus on applying reverse engineering to the source code to
obtain the variability model (Czarnecki and Wasowski 2007), (She et al.
2011). In (Czarnecki and Wasowski 2007) the authors use propositional
logic which describes the dependencies between features. In (Nadi et al.
2014) Typechef and propositional logic are used to extract conditions
among a collection of features.
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Several approaches (Walkinshaw, Roper, and Wood 2007), (Trifu 2009)
apply Program Dependence Analysis (PDA) to locate features. PDA can
be represented by Program Dependence Graphs (PDG) where the nodes
represent functions or global variables and the edges represent function
calls or accesses to global variables.

Trace analysis is a run-time technique used to define a variability model
through relevant information. When the technique is executed, it pro-
duces traces indicating which parts of code have been executed. Some
approaches (Eisenberg and Volder 2005) are based on traces analysis.
There are also works that combine dynamic analysis and static analy-
sis as is the case of LSI (Poshyvanyk et al. 2007), PDA (Eisenberg and
Volder 2005) or VSM (Eaddy et al. 2008).

Compared to the above works, our approach introduces software models
as a new source of knowledge for feature location at the code level. Fur-
thermore, our approach not only isolates the implemented code of the
features but it also extracts Clone-and-Own Relationships among these
features. These relationships are used to better understand how features
are reused, and to suggest improvements on the way they are reused.

3.4.2 Feature Location at the Model Level

In (Rubin and Chechik 2012), the authors propose a framework for min-
ing legacy product lines and automating their refactoring to contempo-
rary feature-oriented SPLE approaches. They compare the elements of
the input with each other, matching those whose similarity is above a
certain threshold and merging them together. In (Zhang, Haugen, and
Mgller-Pedersen 2011), the authors propose a generic approach to au-
tomatically compare products and extract the variability among them
in terms of Common Variability Language (CVL) (Haugen et al. 2008),
(Svendsen et al. 2010). In (Font, Arcega, et al. 2015) an approach to
automate the formalization of variability in a given family of models
is presented. The model commonalities and differences are specified as
placements over a base model and replacements in a model library. The
resulting Software Product Line (SPL) enables the derivation of new
product models by reusing the extracted model fragments. In (Martinez

100



3.5 Conclusions

et al. 2015) the authors propose another approach based on compar-
isons to extract the variability of any kind of asset. These works focus
on formalizing the variability in a SPL. Finally, (Font, Ballarin, et al.
2015) identifies model patterns in a set of models and conceptualizes the
extracted patterns as reusable model fragments.

The above approaches limit their application to finding fragments of a
model which represent features in order to formalize the variability in a
SPL. In contrast, our approach combines feature location at the model
level with code comparison in order to isolate the implemented code of
the features. Furthermore, our work identifies several different Clone-
and-Own Relationships among the located features. These relationships
enable us to make improvement suggestions based on the knowledge gath-
ered on the way features are reused.

3.5 Conclusions

To keep pace with the increasing demand for custom-tailored software
systems, companies often apply the clone-and-own practice, through
which a new product in a software product family is built by copying
and adapting code from other products in the family.

In this work, we show our approach, which leverages feature location
to identify and extract the Clone-and-Own Relationships from a family
of software products. We have proposed an approach that extracts the
features at the model level and, with that information, calculates isolation
operations that enable to isolate the features at the code level. This
work allows us to isolate the features of the different products in the
code. With the achieved code isolation, features are compared at the
code level in order to define the relationships between them.

We have evaluated the approach with our industrial partner, extracting
the Clone-and-Own Relationships presented in two product families of
induction hob models. One of the families had its code implemented
manually and the other one, in an automatic way.
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A total of five different relationships have been extracted. These relation-
ships entitle Reimplemented, Modified, Adapted, Unaltered, and Ghost
Features. The results of our approach provide insight into understanding
the Clone-and-Own relationships of the features in a family of software
products. These relationships are then used to suggest improvements on
how features are reused.

In the case of families where automatic code generation is applied, the
Modified and Adapted Features are used to analyze whether it is nec-
essary to carry out changes over the model-to-code transformation. If
it is determined that it is necessary to improve it, then the information
provided by the occurrences of these relationships can be used to refine
the metamodel and the code transformation rules.

In the case of families where the code is manually implemented, Reim-
plemented Features are used to detect feature reuse impediments; Mod-
ified and Adapted Features are used for analyzing cost-benefit payoffs
of reusing code fragments against reimplementing them; and Unaltered
Features are used to detect opportunities to improve the reuse maturity
of a family of software products.
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Chapter 4

Locating Clone-and-Own
Relationships in Model-based
Industrial Families of Software
Products to Encourage Reuse

Companies often develop similar product variants that
share a high degree of functionality (i.e., features) by copy-
ing and modifying code (the clone-and-own approach). In
an industrial context with a large amount of variants, soft-
ware reuse can become complex for engineers. Identifying the
clone-and-own relationships between the same feature in dif-
ferent product variants can encourage reuse (e.g., suggesting
improvements on how features are reused or detecting feature
reuse impediments). This work presents our approach to lo-
cate the clone-and-own relationships. To do this, our approach
proposes an algorithm that combines feature location and code-
comparison techniques. We evaluated our approach in three
model-based industrial families of two domains (firmware for
induction hobs and train control software).
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In our evaluation, we measure the performance (in terms
of precision and recall) and we compare our approach with its
previous version (baseline), which uses a different technique to
compare the code of each feature with its variants. The results
show that our approach s able to locate clone-and-own rela-
tionships in different domains of real world environments, and
it outperforms the baseline up to 65.37% in terms of precision.



4.1 Introduction

4.1 Introduction

Recent research has pointed out that a family of software products in-
evitably contains a large amount of similar code (Pham et al. 2012) that
could be reused. Companies often develop a portfolio of similar product
variants which share a high degree of common functionality (i.e., fea-
tures) and code, mostly due to the copy-and-paste programming practice
(the clone-and-own approach). In an industrial context, engineers could
face thousands of products that share features among them, so software
maintenance and reuse could be complex.

Identifying the clone-and-own relationships across the family of products
can encourage reuse. For example, clone-and-own relationships can help
developers to suggest improvements on how features are reused, detect
feature reuse impediments, analyze the cost-benefit payoffs of reusing
code fragments against reimplementing them, and detect the maturity of
a family of software products.

To encourage reuse, previous approaches have been proposed to locate
features from the source code or the models of a family of products. At
the code level, there are approaches (Landauer and Psotka 2000; Asadi
et al. 2010; Czarnecki and Wasowski 2007; She et al. 2011) that isolate
the implementation of the features but they do not extract the clone-and-
own relationships among features. In (Fischer et al. 2014), associations
between artifacts are obtained by comparing the source code of existing
product variants to provide hints at what features could not be separated,
or for which artifacts there are multiple order options available. In (Lin
et al. 2017), templates are extracted from recurring designs in source
code. However, these approaches target code and do not leverage mod-
els as a source of feature location knowledge. Models have been proved
to increase efficiency and effectiveness in software development (Bram-
billa, Cabot, and Wimmer 2012). Therefore, companies that develop
their software products using models cannot apply these approaches to
encourage reuse. At the model level, approaches target the formaliza-
tion of the variability in the family of products to encourage the reuse of
model fragments (Rubin and Chechik 2012; Zhang, Haugen, and Mgller-
Pedersen 2011; Font, Arcega, et al. 2015; Martinez et al. 2015). However,
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these approaches do not incorporate both feature location at model level
and comparisons at code level with the goal of isolating implementations
of individual features.

To cope with this lack, we propose an approach that locates the clone-
and-own relationships between features in a model-based family of soft-
ware products, reflecting how features are reused throughout its devel-
opment. Our approach first leverages the information that existing tech-
niques on feature location provide in order to develop an algorithm that
is able to retrieve the code associated with each feature. Afterwards,
our approach compares the source code of an isolated feature in a par-
ticular product against the source code of the different isolations of the
same feature in other products, locating the clone-and-own relationships
between the different feature isolations.

To show the feasibility and generalization of our approach, we have ap-
plied it in three industrial model-based families of software products from
two domains: two model-based families of firmware for induction hobs
provided by our industrial partner BSH, and a model-based family of
train control PLC software provided by our industrial partner CAF. The
BSH! group produces firmwares for their induction hobs (sold under the
brands of Bosch and Siemens) over more than 15 years. CAF? produces
PLC software to control the trains that they manufacture over more than
25 years.

The results of our evaluation show that our approach can be applied in
different domains of real world environments and it is able to locate the
following clone-and-own relationships between features: Reimplemented,
Modified, Adapted, Unaltered, and Ghost Features. In addition, the
results show that our approach outperforms the baseline in terms of pre-
cision for modified (up to 65.37%) and adapted (up to 37.5%) clone-and-
own relationships, and in terms of recall for adapted (up to 48.72%) and
unaltered (up to 17.95%) relationships thanks to the improved code com-
parison between features, which avoids that unaltered clone-and-own re-
lationships are incorrectly classified as adapted or modified, and adapted
clone-and-own relationships are incorrectly classified as modified.

Lyww.bsh- group.com
2www . caf .net/en
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4.2 Background

This paper is an extension of a conference paper (Ballarin, Lapenia Marti,
and Cetina 2016) and the significant differences with the conference ver-
sion include: 1) The modification of the step of our approach that com-
pares the source code of a feature in a product with the source code of
the same feature in another product in order to avoid irrelevant textual
differences; 2) The application of our approach in a different industrial
domain (the train control PLC software provided by CAF) in order to
prove its generalization; and 3) The evaluation has been further extended
to measure the performance of both our approach and the baseline (the
previous version of our approach) in terms of recall and precision in the
three industrial case studies.

The remainder of the paper is structured as follows: Section 4.2 provides
a background of the clone-and-own relationships. Section 4.3 presents
our approach and shows how to apply it to a simple example. Section
4.4 shows the evaluation of our approach in three case studies of two
industrial domains. Section 4.5 summarizes the related work, and Section
4.6 states the relevant conclusions.

4.2 Background

This section presents the different clone-and-own relationships as well as
how these relationships can help developers to suggest improvements on
how features are reused.

Figure 4.1 shows an example of a family of software products. Product A
consists of two features (F1 and F2). After some time, another product
(Product B) is constructed from a variant of F1 from Product A (using
the clone-and-own approach), so Product B holds a clone-and-own (CAO)
relationship with a previous product, Product A. Moreover, Product B
comprehends a new feature (F3), which has been created from scratch.
After, another product (Product C) is built with a new feature (F4), a
variant of F3 from Product B, and a variant of F2 from Product A. Hence,
Product C holds two clone-and-own relationships with Product A and
Product B, one for each reused feature. In total, this family of products
comprises 3 products, 4 features, and 3 clone-and-own relationships.
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Product A Product B Product C
Fl—————1->F1 F4
F3—T——T—F3
28— — —-—>F2
[] Products
FN Features
- Clone-and-Own relationships

Figure 4.1: Clone-and-own relationships in a family of products

Different clone-and-own relationships may exist in a product family. The
existing relationships depend on the reuse possibilities of FN(PX) and
EN(PY), where (PX) is a product that existed priorly to another product
(PY), and where (FN) is a feature that is present in both (PX) and (PY)
(e.g., F1(PA) and F1(PB) in Figure 4.1). We identified in (Ballarin,
Lapena Marti, and Cetina 2016) the clone-and-own relationships that
Figure 4.2 depicts:

1. Reimplemented Feature: There is no shared code between FN(PX)
and FN(PY). Therefore, their implementations are entirely different.

2. Modified Feature: There is, to some extent, code that is shared
between both features. Code from FN(PX) that is also present
in FN(PY) is denoted as Legacy. Differences among FN(PX) and
FN(PY) are denoted as modifications.

3. Adapted Feature: FN(PY) includes all the code from FN(PX),
plus additional novel code. Code of FN(PX) is denoted as Legacy.
The novel code that causes FN(PY) and the Legacy to differ is
denoted as Adapter.

4. Unaltered Feature: The implementations of FN(PX) and FN(PY)
contain the exact same code.

5. Ghost Feature: The FN feature is theoretically included in PY,
but the approach uncovers that the code of FN is not present in PY.

112



4.2 Background

1.Reimplemented Feature 2. Modified Feature

EN(PX) EN(PY) FN(PX)  FN(PY)

3.Adapted Feature 4. Unaltered Feature  5.Ghost Feature

QD L&

FN(PX)  FN(PY) FN(PX)  FN(PY) FN(PX) FN(PY)

Figure 4.2: Types of clone-and-own relationships

The identified clone-and-own relationships may assist developers sug-
gest improvements on feature reuse in the following ways: (1) Reim-
plemented Feature relationships help detect feature reuse barriers, in-
dicating the existence of former implementations of features that were
unrecognized by software engineers and therefore recreated from scratch,
revealing missed reuse opportunities; (2) Modified Feature and (3)
Adapted Feature relationships aid on the analysis of the cost-benefit
trade-offs of code fragment reuse opposite to code fragment reimple-
mentation; (4) Unaltered Feature relationships help detect chances
to improve the reuse maturity of a software product family; and (5)
Ghost Feature relationships highlight discrepancies between the re-
quirements and the implementations, and therefore, the specification
should be amended to refrain software engineers from wasting time trying
to locate the code of those features for reuse.

For instance, Reimplemented Feature relationships may denote that a
software engineer terminated his contract without transferring his knowl-
edge of the software (Ballarin, Lapenia Marti, and Cetina 2016), eventu-
ally causing a fresh development of an already existing feature by another
software engineer in his place. In addition to the discovery of the situa-
tion, the relationship raises awareness on both implementations, broaden-
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Product Product
Models Codes

| |
1 - Model-based 2 - Feature Isolation 3 - Feature Isolation 4 - Similarity
Feature Location at model level at code level Comparison

Outputs ‘ Stages ‘ Inputs

Product Isolation Code
Features Operations Fragments

Figure 4.3: Overview of our approach

Feature
Similarity

ing the reuse possibilities. Furthermore, Unaltered Feature relationships
can be utilized to assemble an implementation framework that can help
in the construction of future developments.

4.3 The Clone-and-Own Extraction Approach

Our approach takes as input the product models that specify a family of
software products, and the product codes obtained as a result of either
the translation of the models by developers or the automatic translation
using a model-to-text transformation (Selic 2003). Next, our approach
extracts Clone-and-Own Relationships in order to enable developers to
understand and improve how features are reused among the products.
Our approach builds up on feature location at the model level and code
comparisons.

Figure 4.3 depicts the four main stages of our approach (Model-based
Feature Location, Feature Isolation at model level, Feature Isolation at
code level and Similarity Comparison) as well as the inputs and outputs
of these stages.

We exemplify our work through the Linked List running example, based
on a software products family where the variability is undefined. The
products of the family have linked models, in which the code has been
manually developed by a human (see left side of Figure 4.4). The prod-
ucts are either singly or doubly linked lists. Each one has a different
mixture of added functionality: functionality that prints the elements of
the list, functionality to sort the list through the bubble algorithm, and
functionality to calculate the amount of elements of the list.
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Linked List Family of Software Products (Input)

Clone-and-Own Relationships Extraction
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Figure 4.4: The Linked List example to show the extraction of Clone-and-own relationships
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Each stage of our approach is described in the following subsections.

4.3.1 Model-based Feature Location

In the first stage of our approach, features are extracted from the models
of the products. Given a set of models, already existing Feature Location
techniques can be leveraged to identify features in the models. Feature
Location (identifying a fragment of source code or software model, cor-
responding to a specific functionality) is one of the most frequent main-
tenance activities undertaken by developers (Dit et al. 2013).

Several research works in literature tackle feature location in models
(Zhang, Haugen, and Mgller-Pedersen 2011; Martinez et al. 2015; Rubin
and Chechik 2012). For our work, we adopted Conceptualized Model Pat-
terns to Feature Location (CMP-FL) (Font, Arcega, et al. 2015). CMP-
FL identifies model patterns by human-in-the-loop (that is, through the
domain knowledge of experts and engineers who participate in the pro-
cess) and then conceptualizes the extracted patterns as reusable model
fragments. We adopted this technique since it allows humans to be
involved in the extraction process, which improves the results since it
makes that the model fragments obtained are more recognizable for hu-
mans than the model fragments obtained through automatic approaches
(Font, Arcega, et al. 2015).

Through CMP-FL, the elements that differ between the models are con-
sidered as alternatives for a feature, and the elements from a model that
do not have a match in the rest of the models are extracted as optional
features. As a result, the models are broken down into reusable frag-
ments. Each of these reusable fragments will correspond with one of the
features of the software products family. The output of the first stage
of our approach is a collection of the features located in the models that
belong to each product.

For example, the Linked List example of Figure 4.4 (see 1 in the upper-
right part of the figure) tags the products (PA, PB, and PC) with the
names associated with the located features (F1-F5). In the example, five
features are identified within the product family. In product PA, features
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F1, F2, and F3 are detected. In product PB, features F1, F2, and F4 are
detected. Finally, in product PC, features F1, F4, and F5 are detected.

Current techniques that locate features at the model level (Zhang, Hau-
gen, and Mgller-Pedersen 2011), (Martinez et al. 2015), (Rubin and
Chechik 2012) (Font, Arcega, et al. 2015) do not provide meaningful
names, only synthetic names (such as F1 or F2, for instance). We have
decided to add more meaningful names to the features in order to improve
the understanding of the example as the figure shows: F1 represents the
Forward Linking feature, F2 represents the Sorting feature, F'3 represents
the Printing feature, F4 represents the Backwards Linking feature, and
F5 represents the Measuring feature.

Notice that some of the features are present in more than one product:
for instance, feature F2 is present in both the PA and PB products. To
avoid ambiguity in the names of the features, a feature FN that belongs
to a product PX will be referred to as FN(PX). For example, F2(PA)
refers to F2 of PA.

4.3.2 Feature Isolation at model level

This second stage takes as input the list of the existing products and
their features (which has been obtained in the previous stage) in order to
perform subtractions between the different products at the model level,
with the aim of isolating the code of individual features. To that ex-
tent, we developed an algorithm that determines the features that can
be isolated at the model level. Each feature is accompanied by one op-
eration, which expresses the code subtractions that need to be carried
out between products to isolate the feature. The implementation of the
algorithm is described through the following paragraphs.

e First of all, the algorithm creates an empty list, used to save the
features that can be isolated.

e Then, the algorithm calculates the Complementary Feature Set (CFS)
for each feature FN of every product PX. The CFS is a product,
combination of products, or combination of products plus already
isolated features, that contains all the features in PX except for FN.

117



Chapter 4. Locating Clone-and-Own Relationships in Model-based Industrial Families of Software

Products to Encourage Reuse

A CFS that contains features that are not present in PX is still
valid. Subtracting the calculated CFS to PX results in the isolation
of FN. With the definition of the CFS, the isolation operation is
built as FN(PX) = PX — CFS.

e The isolated features are added to the list of isolated features along
with their isolation operations. The addition of new features to
the list enables for new CFS, and hence, for new feature isolation
possibilities. Therefore, the algorithm performs iterations while new
features are added to the isolated features list.

In the first iteration, the features that can be isolated by a CFS built
through a single product or through a combination of products are in-
cluded into the list. The operations found via the first iteration establish
the base cases of the algorithm. In the iterations that follow, combina-
tions between products and already calculated features serve as the CFS.
The isolation operations that are found in this manner form the recursive
cases of the algorithm.

Following the Linked List Example, the right side of Figure 4.4, part 2,
shows the application of two iterations of the described algorithm:

e First Iteration: For all the features in PA (that is, features F1,
F2, and F3), the algorithm searches for their CFS, which is only
possible to calculate for F3: by removing PB and PC from PA, the
code from F1, F2, F4, and F5 is eliminated from PA. Removing
F1 and F2 from PA leaves us with F3, and thus, the first isolation
operation is found. Notice that, while it would be enough to subtract
PB from PA to achieve the same result, the criteria of eliminating
the maximum possible CFS expression is followed, in order to get a
purer result.

The algorithm performs the same operation in all the products. In
PB, it is possible to isolate F2 by eliminating F1 and F4 from PC,
and it is also possible to isolate F4 by disposing of F1 and F2 through
the removal of PA. In PC, we can isolate F5 in the same way as F3 is
isolated from PA. At this point, the algorithm has gone through all
the features of the family of software products, ending the iteration.
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As a result of the first iteration, the algorithm has finally retrieved
the operations for F3(PA), F2(PB), F4(PB), and F5(PC). Since
there are features that still lack an isolation operation, and since
new isolation operations have been discovered in the iteration, the
algorithm performs a new iteration.

e Second Iteration: The algorithm searches for the CFS that can
isolate all the features in PA that lack an isolation operation. In
order to isolate F1(PA), the algorithm removes F2 and F3 through
F2(PB) and F3(PA). Moreover, F2(PA) can be isolated by subtract-
ing PC and F3(PA) from PA.

The same steps are followed in PB and PC. Through combinations of
the different products and the features that were previously isolated,
it is possible to get the isolation operations for the features that have
not been isolated yet (F1(PB), F1(PC), F4(PC)).

Therefore, the second iteration of the algorithm has produced the
isolation operations for features F1(PA), F2(PA), F1(PB), F1(PC),
and F4(PC). Therefore, the algorithm has isolated all the features
at this point, rendering a third iteration unnecessary.

At the end, three tables are returned as output of Stage 2 (Feature Iso-
lation at model level) of the Linked List Example (see 2 of the right part
of Figure 4.4). Each table contains: the product name, the features that
belong to it, and the isolation operations found by the algorithm.

4.3.3 Feature Isolation at code level

This third stage performs the feature isolation at the code level so as
to isolate the source code of the features in the products. In a software
products family, novel products are implemented through increments or
decrements of already existing family products. Version control software
is really popular nowadays, and a wide amount of tool support for calcu-
lating differences between two source codes is available. Moreover, code
comparison techniques have been used with success for large scale sys-
tems (Kamiya, Kusumoto, and Inoue 2002; Li et al. 2006), being the
computational cost of the operation affordable should we scale up our
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approach. Due to all these reasons, we use diff techniques (textual com-
parisons) to perform code comparisons in this stage.

Following the Linked List example, features that were isolated at the
model level in the second stage are now isolated at the code level. Right
side of Figure 4.4, part 3, shows as an example the isolation of features
F2(PB), F3(PA) and F2(PA). According to operation F2(PB) = PB-PC,
F2(PB) can be isolated through subtracting the code of PC from PB
(lines 1 to 8). Hence, the approach isolates F2 from PB (lines 9 to 30).

In order to isolate F2(PA), it is necessary to isolate F3(PA) first according
to the operation F2(PA)=PA-PC-F3(PA). To do this, PB and PC are
subtracted from PA according to the operation F3(PA)= PA-PB-PC. The
result is the isolation of the F3 (the Printing feature from PA, declared
at line 6). After, F2(PA) can be isolated by removing the code that is
common between PA and PC from PA, thus removing the F3(PA) code
that we just isolated. As a result, the approach isolates the F2 from PA
(Sorting feature, lines 8 to 22). This stage comes to an end when the
code of the features is isolated. The final output of the algorithm is the
retrieved group of code fragments (one for each isolated feature).

4.3.4  Similarity Comparison

In this last stage, the isolated code fragments that implement the fea-
tures, which are in more than one product, are compared one to one in
order to calculate the similarity between them. To do this, our approach
performs a comparison between two fragments of code that implement
the same feature.

To avoid the detection of some irrelevant textual differences in our ap-
proach, we use the technique described in (Horwitz 1990) that computes
semantic and textual differences between two programs. Although this
technique does not determine precisely the set of semantic changes since
it is currently limited to scalar variables, assignment statements, condi-
tional statements, while loops, and output statements, it could detect
renaming local variables as textual differences and it does not flag differ-
ent extra spaces and line breaks as differences.
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This technique first tries to match every component of a New version of a
code fragment with an Old version that is both semantically and textually
equivalent. Next, the procedure considers all unmatched components of
New, attempting to match them with unmatched components of Old that
are semantically equivalent but textually different. These components of
New are classified as textual changes. Components of New that remain
unmatched are classified as semantic changes.

Since textual changes are related to program text rather than program
behavior, we only flag the semantic changes as different parts in the code.
Once we obtain the equal and different parts in the code, we discard
the differences and retain the equal parts of code. Feature similarity is
then measured using a size metric. Size metrics are perhaps the most
frequently used metrics in practice (Dagpinar and Jahnke 2003). The
simplest and most commonly used size metric is lines of code (LOC)
but it highly depends on coding style of programmers (Dagpinar and
Jahnke 2003). There are other more advanced size metrics such as NIM
(Number of Instance Methods) or TNOS (Total Number Of Statements).
NIM counts the number of instance methods in a class, i.e., all public,
protected and private methods defined in the interface of instances of
a given class. The TNOS is a size metric that measures code size by
counting the number of statements (e.g. for, if, return, switch, while)
in each method. Since TNOS does not depend on the coding style of
programmers and it is a significant predictor for the maintainability of
software (Dagpinar and Jahnke 2003), we measure feature similarity in
terms of the TNOS (Dit et al. 2013).

Following the Linked List example of Figure 4.4, the Similarity Com-
parison (part 4) compares the code of F2(PB) and F2(PA). As the code
shows, the two methods are very similar, although they do not have the
exact same code (the semantic changes being highlighted from lines 20 to
28 on product PB). It is reasonable for the code to differ, with PA imple-
menting a list that is linked in a single fashion and PB implementing a list
that is doubly linked. Even if the lists are sorted through the same bubble
sort algorithm, said algorithm cannot be implemented in the exact same
way considering the distinct number of links present between elements.
From the example, it is possible to deduct that some the feature has
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been somehow modified since its PA implementation until its PB imple-
mentation. As a matter of fact, measuring the code, F2(PA) presents 6
statements while F2(PB) presents 7 statements. Taking in account that
4 of the 7 statements are equal, representing the same conditions in the
code, the similarity percentage between F2(PA) and F2(PB) is around
the 57%.

To sum up, our approach is applied to a model-based software products
family with non-formalized variability. In the first stage, features from
the products are identified at the model level. The second stage calcu-
lates all the possible isolation operations for the features. In the third
stage, the code comparisons dictated by the calculated operations are ex-
ecuted to isolate the code of the features. Finally, the approach assesses
the similarity degree between the features that appear in more than one
product by performing a comparison in the fourth stage. The similarity
between the features enables the classification of the clone-and-own re-
lationships in one of the types described in Section 4.2 (Reimplemented,
Modified, Adapted, Unaltered, or Ghost features).

4.4 Evaluation

This section presents the evaluation of our approach and the baseline,
the description of the case studies where we applied the evaluation, the
results obtained, the discussion, and the limitations. To evaluate the
approach, we applied it to three long-living industrial case studies from
two of our industrial partners: BSH, the leading manufacturer of home
appliances in Europe; and CAF, an international provider of railway
solutions all over the world.

4.4.1 Experimental Setup

The goals of this experiment are both measuring the performance of our
approach in terms of precision and recall and comparing our approach
with the baseline.

Figure 4.5 shows an overview of the process that was followed to evaluate
our approach. The left part of the figure shows the input for the evalu-
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Figure 4.5: Evaluation process

ation process, provided by our industrial partners, which is the product
family that has been specified through models. The product family is
used to run our approach and the baseline. Although our industrial part-
ners are not immune to the problem of knowledge vaporization (Ven et al.
2006), they provided us with documentation about some clone-and-own
relationships and the identification of each relationship (reimplemented,
modified, adapted, unaltered, or ghost). This documentation is used to
build the oracle, which will be considered the ground truth and will be
used to evaluate the results of our approach and the baseline.

The baseline is a previous version of our approach (Ballarin, Lapena
Marti, and Cetina 2016) that does not avoid the detection of irrelevant
textual differences during the comparison of the source code of features
(as described in Subsection 4.3.4). We compare the clone-and-own rela-
tionships obtained in both the baseline and our approach with the oracle
in order to obtain precision and recall values.

Precision measures the number of elements from the solution (Solution-
CAO) that are correct according to the the oracle (OracleCAQ), and
recall measures the number of elements of the solution (SolutionCAO)
that are retrieved by the proposed solution (OracleCAO). A measure that
combines both recall and precision is the harmonic mean of precision and
recall, which is called the F-measure.

The recall and precision are calculated as follows:

SolutionCAO N OracleC AO
SolutionCAO

Precision =
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SolutionCAO N OracleC AO

fecall = OracleC AO

The F-measure that combines recall and precision is calculated as follows:

Precision * Recall
F — measure = 2

Precision + Recall

To calculate the precision and recall, we need to compute the true pos-
itives (TP); the number of elements in the solution that are actually
correct according to the ground truth (the oracle), i.e., the clone-and-
own relationships that are classified equal in both the solution and the
ground truth (SolutionC'AO N OracleC'AO). The precision is calculated
by dividing the TP by the total number of clone-and-own relationships
in the solution (SolutionCAO). The recall is calculated by dividing the
TP by the total number of clone-and-own relationships in the oracle (Or-
acleCAQ). In our case, each identified clone-and-own relationship that is
present in both the results and the oracle will be a TP.

Precision values can range between 0% (which means that no single clone-
and-own relationship of a given type from the results is present in the
oracle) to 100% (which means that all the clone-and-own relationships
of a given type from the results are present in the oracle).

Recall values can range between 0% (which means that no single clone-
and-own relationship of a given type obtained from the oracle is present
in the results) to 100% (which means that all the clone-and-own rela-
tionships of a given type from the oracle are present in the results). A
value of 100% precision and 100% recall implies that both identifications
are the same.
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BSH: The Induction Hobs Domain

One of our industrial partners, the BSH group (www.bsh-group.com),
has produced firmwares for their Induction Hobs (labeled under the Bosch
and Siemens brands) for the last 15 years. The newest Induction Hobs
(IHs) include the full cooking surface functionality, which calculates dy-
namic heating areas in an automatic fashion, activating or deactivating
the areas depending on factors such as the utilized cookware shape, size,
or position. In addition, more feedback is now provided to the user during
the cooking process, including factors such as the exact cookware tem-
perature, the temperature of the food being cooked, or real-time power
consumption measurements. All of these changes have become possible
through an increase of software complexity.

BSH provided us two case studies. The first case study entails a family
of products that was specified using a Domain Specific Language (DSL)
identified as IHDSL. After the specification, the IH’s firmware was man-
ually implemented (MI) in ANSI C by software engineers. Since this
family of products belongs to BSH and uses manual implementation, we
refer to this family as BSH-MI. Table 4.1 shows the characteristics of the
BSH-MI case study. As the table shows, this family of products contains
a total of 46 products and 81 features. In addition, Table 4.1 shows that
the extracted oracle is composed by both 68 clone-and-own relationships
that the features have across the different products of the family, and the
identification of each clone-and-own relationship (e.g., 12 clone-and-own
relationships are identified as reimplemented).

Table 4.1: Characteristics of the BSH-MI case study

Products 46
Features 81
Total clone-and-own

relationships in the oracle 68
Reimplemented 12
Modified 19
Adapted 21
Unaltered 9
Ghost 7

The second case study entails a family of products that was also specified
using IHDSL. After the specification, the IH’s firmware was automati-
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Table 4.2: Characteristics of the BSH-AI case study

Products 66
Features 47
Total clone-and-own

relationships in the oracle 38
Reimplemented 0
Modified 8
Adapted 11
Unaltered 19
Ghost 0

cally implemented (AI) using M2T (model-to-text) transformation. This
transformation was produced by Acceleo (Corredor et al. 2012). Since
this family of products belongs to BSH and uses automatic implemen-
tation, we refer to this family as BSH-AI. Table 4.2 shows the char-
acteristics of the BSH-AI case study, which has a total of 66 products
and 47 features. The oracle has 38 clone-and-own relationships in total.
These relationships are identified as modified (8 relationships), adapted
(11 relationships), or unaltered (19 relationships).

CAF: The Train Control Domain

Our other industrial partner, CAF (www.caf.net/en), has produced a
family of PLC software to control the trains that they have been manufac-
turing over more than 25 years. Their different kinds of trains (regular
trains, subway, light rail, monorail, etc.) are installed all around the
globe. Train units are geared with multiple pieces of equipment through
their vehicles and cabins. Equipments come from different providers that
design and manufacture them with the aim of carrying out specialized
tasks in the train. Some examples are the traction equipment, the brake
compressors, or the power-harvesting pantograph. The train unit is also
equipped with control software, which is in charge of the cooperation
of the installed equipments. The control software is created with two
goals in mind: (1) orchestrating the equipments to achieve flawless train
functionality, and (2) guaranteeing the compliance of the train unit with
the prevalent regulations of the country where the train unit is to be
installed.
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The DSL of CAF has enough expressiveness to describe both the interac-
tions between the main pieces of equipment installed in a train unit and
the non-functional aspects related to regulation (such as signal quality
or installed redundancy levels).

An example of the functionality that the DSL can specify is the coupling
between train units. A train unit can physically connect to a second
train unit and control it in order to increase its passenger capacity or to
rescue the second train unit in case the former suffered any damage while
functioning. After the specification using the DSL, the code is obtained
by means of manual implementation (MI) in C. We refer to the family
of products of this case study as CAF-MI.

Table 4.3 shows the characteristics of the CAF-MI case study. It has a
total of 23 products and 121 features, whereas the oracle has 175 clone-

and-own relationships in total. These relationships are identified as reim-
plemented (27), modified (23), adapted (78), unaltered (39), or ghost (8).

Table 4.3: Characteristics of the CAF-MI case study

Products 23
Features 121
Total clone-and-own

. . 175
relationships in the oracle

Reimplemented 27
Modified 23
Adapted 78
Unaltered 39
Ghost 8

4.4.2 Results

In this section, we present the results obtained for each case study in
our approach and the baseline. Table 5.2 shows the values of precision,
recall, and F-measure for each type of clone-and-own relationship (reim-
plemented, modified, adapted, unaltered and ghost) for the three case
studies (BSH-MI, BSH-AI, and CAF-MI).

In both our approach and the baseline, the BSH-MI case study obtains
the same results for precision and recall in the following relationships:
reimplemented (88.89% of precision and 66.67% of recall), unaltered
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Table 4.4: Values for Precision, Recall, and F-measure in the three case studies

Precision Recall F-measure

Case Study Relationship Approach Baseline Approach Baseline Approach Baseline

BSH-MI Reimplemented  88.89 88.89 66.67 66.67 76.19 76.19
BSH-MI Modified 70.59 42.86 63.16 63.16 66.67 51.06
BSH-MI Adapted 86.36 81.82 90.48 42.86 88.37 56.25
BSH-MI Unaltered 87.50 87.50 7778 77.78 82.35 82.35
BSH-MI Ghost 100 100 42.86 42.86 60 60
BSH-AI Reimplemented - - - - - -
BSH-AI Modified 100 77.78 87.5 87.5 93.33 82.35
BSH-AI Adapted 100 100 90.91 72.73 95.24 84.21
BSH-AI Unaltered 100 100 89.47 89.47 94.44 94.44
BSH-AI Ghost - - - - - -
CAF-MI Reimplemented  72.73 72.73 88.89 88.89 80 80
CAF-MI Modified 85.71 20.34 52.17 52.17 64.86 29.27
CAF-MI Adapted 87.50 50 62.82 14.10 73.13 22
CAF-MI Unaltered 66.67 69.23 41.03 23.08 50.79 34.62
CAF-MI Ghost 100 100 75 75 85.71 85.71

(87.5% of precision and 77.78% of recall) and ghost (100% of precision
and 42.86% of recall). Our approach reaches better results for precision
in the modified and adapted relationships, and for recall in the adapted
relationship (see the shaded cells in Table 5.2).

In the BSH-AI case study, our approach and the baseline obtain the same
results for precision and recall in the unaltered relationship, whereas our
approach outperforms the baseline for precision in the modified relation-
ship and for recall in the adapted relationship.

In the CAF-MI case study, our approach and the baseline obtain the
same results for precision and recall in the reimplemented and ghost
relationships. The baseline outperforms our approach for precision in
the unaltered relationship, whereas our approach outperforms the base-
line for precision in the modified relationship, precision and recall in the
adapted relationship, and recall in the unaltered relationship.
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4.4.83 Discussion

The results show that there is no difference between our approach and the
baseline for the reimplemented and ghost clone-and-own relationships.
This is because our approach and the baseline use the same operations
for the isolation of code fragments, so the code fragments used as input
in the similarity step for the code comparison (which is different between
our approach and the baseline) are the same in both approaches.

Reimplemented relationships are features that have been implemented
from scratch, without using the source code as a template for the target
code, and that have been, in some cases, developed by different teams
of software engineers. Hence, the two codes that implement a reimple-
mented feature do not present common code. Since the two codes that
implement a reimplemented feature do not share any code fragment, the
result of the code comparison step is the same in both the approach and
the baseline.

In case of the ghost relationships, since there is no code that implements
the features, our approach and the baseline always coincide in the results.

In case of the unaltered, adapted, and modified relationships, our ap-
proach improves the results of the baseline. In both our approach and
the baseline, once the source and target codes of a feature are isolated,
they must be compared in order to determine which code fragments are
equal between them. In case of unaltered features, incorrect code com-
parisons made by the baseline cause unaltered relationships to be incor-
rectly identified as adapted or modified relationships. In addition, the
incorrect code comparisons made by the baseline cause adapted relation-
ships to be incorrectly identified as modified. This makes the precision of
the baseline worse with regard to our approach in all the case studies as
follows: 27.73% for the modified relationship in the BSH manually im-
plemented case study (BSH-MI), 22.22% for the modified relationship in
the BSH automatically implemented case study (BSH-AI), and 65.37%
for the modified relationship and 37.5% for the adapted relationship in
the CAF manually implemented case study (CAF-MI).
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Comparing the results of the automatically implemented case study with
those of the two manually implemented case studies, it is possible to
appreciate that the recall and precision values obtained are higher in the
automatically implemented case study for both our approach and the
baseline. In this scenario, the code is obtained by using a code generator,
and in some cases, manually refined afterwards. Automatically generated
code favors code comparisons in both our approach and the baseline
because (1) the source and target code of a clone-and-own relationship
that has not been manually refined should be identical and (2) when
a human introduces code modifications, the refined code often uses the
generated variables and methods.

4.-4.4 Limitations

There are some limitations of our approach that must be acknowledged.
To start with, some companies implement the code directly from require-
ment specifications, leading to families of software products implemented
without the usage of models. Our approach, in its current state, is not
applicable to said scenarios. The only stage of our approach that de-
pends on models is the Model-based Feature Location. In order to adapt
our approach to the mentioned circumstance, it would be necessary to
develop techniques able to carry out feature location at the requisites
level. In addition, if the features of each product are known beforehand,
our approach could be adapted to start in Stage 2 (Feature Isolation).

Secondly, although in the evaluation we have chosen relationships for the
oracle that can be isolated by our approach, depending on the products
in the family of software products and on their particular configurations,
it may not be possible for our approach to calculate all the isolation
operations, or in other words, some features from some products may
lack an isolation operation at the end of the execution of the algorithm.
To solve this issue, our approach could suggest a selection of products
with specific feature configurations designed to allow the algorithm to
isolate non-isolated features. A software engineer could manually add
these products to the family, enhancing the results of the algorithm.
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Moreover, there is some degree of uncertainty associated with the dis-
closing of Clone-and-Own Relationships between products. In particular,
the followed criteria is very rigid for the reimplementation and feature
modification relationships. For instance, some results in reimplemented
features could be incorrectly classified as modified features due to their
low amounts of common code. The classification in these borderline cases
is yet to be polished, and will be tackled in future works.

4.5 Related Work

The works related to the one presented can be found in two main knowl-
edge areas: feature location at the code level, and feature location at the
model level.

4.5.1 Feature Location at the Code Level

In this area, some works apply type systems to obtain relevant data
when building the variability model. As an example, Typechef (Késtner,
Giarrusso, et al. 2011) supplies an infrastructure to analyze variability
through #ifdef directives. In (Késtner, Ostermann, and Erdweg 2012),
the authors enhance Typechef so as to support variability at run-time.

Text similarity techniques build on mathematical methods to determine
textual similarity. Latent Semantic Indexing (LSI) (Landauer and Psotka
2000) uses the number of occurrences in a set of words in large texts to
obtain similarity measurements between features and source code, repre-
sented by Vector Space Models (VSM). These text similarity techniques
have also been combined with dynamic analysis (Asadi et al. 2010).

Other works apply reverse engineering to source code in order to ob-
tain variability models (Czarnecki and Wasowski 2007; She et al. 2011).
In (Czarnecki and Wasowski 2007), propositional logic is used to de-
scribe dependencies between features. In (Nadi et al. 2014), Typechef
and propositional logic are combined to extract conditions among fea-
tures.
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Program Dependence Analysis (PDA) is applied by several Feature Loca-
tion approaches (Walkinshaw, Roper, and Wood 2007; Trifu 2009). PDA
can be represented by Program Dependence Graphs (PDG), where nodes
entail functions or global variables, and edges depict calls to functions or
global variable accesses.

Trace analysis at run-time is used to define variability models through sig-
nificant information. Upon execution, the technique produces traces that
indicate which code has been run. Some authors (Eisenberg and Volder
2005) base their approaches on the analysis of the traces. In addition,
other works mix dynamic and static analysis, such as LSI (Poshyvanyk
et al. 2007), PDA (Eisenberg and Volder 2005) or VSM (Eaddy et al.
2008).

Apart from isolating the implementations of the features, our approach
also extracts Clone-and-Own Relationships among features. The rela-
tionships can be utilized by software engineers to understand in a better
manner the reuse patterns of said features, and to plan and propose reuse
opportunities and improvements.

Other works enhance code reuse by comparing the source code of ex-
isting product variants. In (Fischer et al. 2014), associations between
artifacts and their modules (i.e., features) are extracted to provide hints
at what features could not be separated, or for which artifacts there are
multiple order options available. In (Lin et al. 2017), recurring designs
are detected in source code to extract templates as reuse opportuni-
ties. The templates can be managed and customized to generate code
skeleton for the reusable features. This generated code skeleton contains
semi-implemented code that is annotated with hints and comments of
necessary modifications.

In contrast to the works mentioned above that take as input source code,
our approach leverages models of different product variants. When com-
panies such as our industrial partners use models as the main software
artifact to develop software in the context of the Model-Driven Develop-
ment (MDD) paradigm, it is necessary to provide feedback to developers
at the model level. The works mentioned above such as (Fischer et al.
2014) and (Lin et al. 2017) do not consider the models, so their results are
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not applicable for MDD engineers. Instead, our approach considers the
models, so the results are traced to the models and MDD engineers can
make decisions at the model level, which is the main artifact in MDD.

4.5.2 Feature Location at the Model Level

In (Rubin and Chechik 2012), a framework for legacy product lines min-
ing and automated refactoring is proposed. The authors contrast the
input elements, matching those with a certain degree of similarity and
merging them together. The work presented in (Zhang, Haugen, and
Mpgller-Pedersen 2011) proposes an approach to automatically compare
products, extracting their variability in terms of the Common Variability
Language (CVL) (Haugen et al. 2008; Svendsen et al. 2010). In (Font,
Arcega, et al. 2015), the authors present an approach for automating the
formalization of variability in a given models family. The common and
different parts of the models are specified as a set of placements over
a base model and a library of model replacements. The ensuing Soft-
ware Product Line (SPL) enables the derivation of new product models
through the reuse of the extracted model fragments. Another approach
can be found in (Martinez et al. 2015), where the authors propose com-
parisons to extract variability from all the possible kinds of assets. All the
mentioned works target the formalization of the variability inherent to
an SPL. Finally, (Font, Ballarin, et al. 2015) identifies model patterns in
a models set, conceptualizing the obtained patterns as model fragments
that can be reused.

All of these approaches are limited to finding model fragments that rep-
resent features, with the ultimate goal of formalizing the variability of a
particular SPL. Opposite to said works, we built an approach that incor-
porates both feature location at the model level and comparisons at the
code level, with the goal of isolating the implementations of individual
features. In addition, our work discloses Clone-and-Own Relationships
among the detected features. The relationships can be used by software
engineers to suggest improvements and reuse opportunities, based on the
knowledge about feature reuse that the relationships expose.
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4.6 Conclusions

Identifying the clone-and-own relationships that are inherently present
across a family of software products can help software engineers to sug-
gest reuse improvements, to detect impediments, to analyze the cost-
benefit payoffs of reuse against reimplementing, and to detect the matu-
rity of the family.

In this paper, we have presented our approach to locate clone-and-own re-
lationships between features in model-based families of software products.
Our approach proposes an algorithm that retrieves the code associated
with each feature by taking as input the information that the techniques
on feature location provide. Next, our approach makes feature isolation
at model and code level to obtain the source code of each feature in a par-
ticular product. Finally, our approach compares the code of the features
that belong to more than one product by avoiding the detection of irrele-
vant textual differences in order to locate the clone-and-own relationships
as Reimplemented, Modified, Adapted, Unaltered, or Ghost.

We have also shown the feasibility and generalization of our approach by
applying it to real world environments of three industrial case studies in
two different domains. We have successfully located the clone-and-own
relationships presented in two product families of induction hob models,
and in one product family of train control software. In the case of the
induction hobs, one of the families had its code implemented manually
and the other one, in an automatic way. In the case of the train control
software, the product family had its code implemented manually.

When faced with unaltered, adapted, and modified relationships, our
approach improves the results presented by the baseline. In the case
of unaltered features, the baseline incorrectly classifies some of them as
adapted or modified relationships. In the case of adapted relationships,
the baseline sometimes makes incorrect classifications, flagging them as
modified relationships. The precision of the baseline is worse than that of
our approach in all the case studies: 27.73% for the modified relationship
in the BSH manually implemented case study (BSH-MI), 22.22% for
the modified relationship in the BSH automatically implemented case
study (BSH-AI), and 65.37% for the modified relationship and 37.5% for
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the adapted relationship in the CAF manually implemented case study
(CAF-MI).
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Chapter 5

Measures to report the Location
Problem of Model Fragment
Location

Model Fragment Location (MFL) aims at identifying
model elements that are relevant to a requirement, feature, or
bug. Many MFL approaches have been introduced in the last
few years to address the identification of the model elements
that correspond to a specific functionality. However, there is
a lack of detail when the measurements about the search space
(models) and the measurements about the solution to be found
(model fragment) are reported. Generally, the only reported
measure s the model size. In this paper, we propose using five
measurements (size, volume, density, multiplicity, and disper-
sion) to report the location problems. These measurements are
the result of analyzing 1,308 MFLs in a family of industrial
models over the last four years. Using two MFL approaches,
we emphasize the importance of these measurements in order
to compare results. QOur work not only proposes improving
the reporting of the location problem, but it also provides real
measurements of location problems that are useful to other re-
searchers in the design of synthetic location problems.
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5.1 Introduction

From the timeless traceability activity (Winkler and Pilgrim 2010) to
recent research efforts on Feature Location (J. Martinez et al. 2015),
(Jaime Font et al. 2016), (J. Font et al. 2017) and Bug Location (Arcega,
Jaime Font, Oystein Haugen, et al. 2017), Model Fragment Location
(MFL) has been gaining momentum. Overall, these MFL approaches
address the identification of the model elements that are relevant to a
requirement, feature, or bug.

Current MFL approaches have leveraged Information Retrieval, Linguis-
tic techniques, and Search-based techniques to achieve the location of
relevant model fragments. These approaches provide the algorithms and
the parameters used to tune them in detail. Nonetheless, there is a lack of
detail when the measurements about the search space (models) and the
measurements about the solution (model fragment) are reported. Gen-
erally, the only reported measure is the model size. However, in most
of the cases, the model-size values are not comparable among different
works since different models are measured in different ways.

In this paper, we propose using five measurements (size, volume, density,
multiplicity, and dispersion) to report the location problems during MFL.
On the one hand, size and volume measure the search space. On the other
hand, density, multiplicity, and dispersion measure the solution to be
located. Our proposed measures are the result of analyzing 1,308 MFLs

performed over the last four years in models of the industrial dimensions
of CAF 1.

Properly reporting the location problem is important because otherwise
it is not possible to compare the performance of different approaches with
each other. It is not the same challenge to locate a large model fragment
in a small model than to locate a small and scattered model fragment
over several large models. We illustrate this phenomenon by comparing
the performance of two MFL approaches in terms of precision and recall,
which are performance measures that are widely used by the research
community.

Thttp://www.caf.net/en
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We not only proposes improving the reporting of the location problem,
but we also provide real measures of location problems during MFL on
industrial models. The aim of these values is twofold: (1) to provide
researchers who create synthetic location problems with a reference from
real-world problems and (2) to raise awareness among researchers of MFL
approaches regarding the profile of real-world MFL problems.

The remainder of the paper is structured as follows. Section 5.2 pro-
vides an overview of MFL. Section 5.3 clarifies the way to count model
elements and introduces our measurements for the location problem. Sec-
tion 5.4 presents the values in the CAF case study. Section 5.5 performs
a statistical analysis to provide evidence of the significance of the results.
Section 5.6 discusses the outcomes of the paper. Section 5.7 discusses
the works that are related to our work. Finally, Section 5.8 concludes
the paper.

5.2 Overview of Model Fragment Location

Traceability Links Recovery (TLR) is one of the most common activities
performed during the software system maintenance phase. TLR is con-
cerned with establishing the model fragment that implements a specific
natural language requirement. TLR among requirements and models is
one type of MFL. Following, we illustrate MFL using TLR.

Figure 5.1 shows an excerpt taken from a real-world train of a Train Con-
trol and Management Language (TCML) model. TCML is the domain-
specific language that is used by our industrial partner and was designed
following UML conventions. TCML has the expressiveness required to
describe both the iteration between the main pieces of equipment in-
stalled in a train unit and the non-functional aspects related to regula-
tion.

For TLR, the input query is a natural language requirement for which
the model fragment must be retrieved. The example depicted in Fig-
ure 5.1 shows a natural language requirement describing the high volt-
age functionality of one of the projects of our industrial partner. This
requirement is as follows: "The PLC will command the raise of panto-
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Figure 5.1: Example of

a CAF model and model fragment

graph (AT PANT RAISE ORDER) if the AT PANTO_RAISE push
button is enabled in the active cabin while the pantograph is down

(AT _PANT_ DOWN), being the HSCB disabled (AT HSCB_OFF)".

In TLR, as in other MFL activities such as feature location or bug lo-
cation, their is a search space (a model defining the set of all possible

solutions) and a solution (model

elements to be found). Focusing on the

example shown in Figure 5.1, the search space corresponds to the model
(see the top part of the figure) and the solution corresponds to the model
fragment (see the bottom right part of the figure).
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The top part of Figure 5.1 shows a train unit that is furnished with
multiple pieces of equipment. The equipment shown includes: Knife
switch, Cabin A, Pantograph, ACR, and HSCB. Each piece of equipment
(e.g., PANTOGRAPH) in a train unit has a collection of properties (e.g.,
AT PANT UP) and a collection of orders (e.g., AT INHIB PANT
ORDER). The communications among the pieces of equipment are ad-
dressed through the state machines. For instance, to go from a panto-
graph in the down state to a pantograph in the up state, the transition
CABIN PANTO_RAISE is triggered.

The bottom right part of Figure 5.1 shows the model fragment to be
located. The model fragment is comprised of several model elements
including the HSCB and its property, the PANTOGRAPH with its cor-
responding property and order, and the CABIN A with its order. Also,
the model fragment comprises a part of a state machine that represents
the functionality associated with the raising of the pantograph.

5.3 Counting Model Elements

In this paper, we propose using five measurements (size, volume, density,
multiplicity, and dispersion) to report the location problems. The count
of model elements is important in these measurements. Currently, there
are several approaches that are in charge of carrying out this task. [21].

C1 Counting the number of elements in a model: This approach
is computed as the number of elements of the model. However,
this approach neglects both the complexity of the elements and the
differences among diagrams.

C2 Weight factors per model element: This approach measures the
size of a model taking into account the complexity of the elements
because the complexity and information that is provided by the dia-
gram elements are not the same for all of the elements. Based on the
findings of (Koffka 2013), (Storrle 2014) proposes defining complex-
ity levels (e.g., simple, medium, and large) where each complexity
level is related to a weight (e.g., simple = 1, medium = 1.5, large =
2). From these weights, this approach is computed as the number
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of elements weighted by complexity. Unfortunately, this approach
neglects the inherent differences among diagrams.

C3 Weight factors per model element per diagram type: This
approach measures the size of a model taking into account not only
the complexity of the elements but also the differences among di-
agrams. To do this, in (Storrle 2014), the weight of each diagram
element is calculated as weight(e) = logs(|F|), where e is the el-
ement whose weight is being calculated and E is the class of the
element according to the diagram.

After applying these three approaches to a set of models, (Storrle 2014)
came to the conclusion that their results are extremely correlated. In
fact, none of these approaches yields significant better results than the
other ones. Therefore, even though any of these approaches can be used
to count model elements, C1 is strongly recommended since it is the
easiest to implement and compute.

Based on the above, we propose reporting the size of models by means
of C1. However, the size of a model is not enough to measure the search
space and the solution in MFL. In the following section, we propose
measurements to report the location problem.

5.3.1 Measurements for Model fragment Location

This section presents the measurements that we propose for reporting
the location problem of MFL. Some of these measurements focus on
measuring the search space, and the rest of them focus on measuring the
solution to be searched for. Figure 6.3 shows the measurements of the
search space (Size, and Volume) and the measurements of the solution
(Density, Multiplicity, and Dispersion).

In order to measure the search space, we propose the following two mea-
surements:

e Size measures the number of elements that the model contains from
the metric C1. Since the larger the model, the larger the search
space, this measurement determines how complex the search space

146



5.8 Counting Model Elements

ends up being in order to find the solution.

The first row of Figure 6.3 represents this measurement conceptu-
ally, where a solution is searched for in two different models. The
first model is smaller than the second one, so the search space for
the first model is smaller than the search space for the second model.

Given the example of Figure 5.1, the model is composed of five
pieces of equipment (knife switch, pantograph, HCSB, cabin, and
ACR). Moreover, the state diagrams of the model contain six states
and eight transactions. Since the size of the model is computed as
the sum of all of these elements, the size is 19 model elements. This
measurement is frequently used in most MFL works. However, event
through this measurement is not a novelty for our work, we include
it for the sake of completeness.

e Volume measures the number of models that compose the search
space where a solution is searched for. Since the larger the number
of models, the larger the search space, this measurement determines
how large the search space becomes based on the number of models.

The second row of Figure 6.3 represents this measurement concep-
tually, where a solution is searched for in two different search spaces.
The first search space is composed of a single model; in contrast,
the second search space is composed of several models.

In the example of Figure 5.1, there is only one model. Since the
search space is only composed of one model, the volume in this
example is equal to one model.

In order to measure the solution, we propose the following three mea-
surements:

e Density measures the percentage of model elements that realize a
solution. In other words, since the model fragment is composed of
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Measurements Conceptual Representation
for Model Search 2 g +

Size: number of
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Figure 5.2: Conceptual representations of the measurements
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the model elements that realize the solution, the density is computed
as the ratio of model fragment elements to model elements. Since
the larger the model fragment, the larger the density, this measure-
ment determines how large the solution ends up being with respect
to the model.

The third row of Figure 6.3 represents this measurement conceptu-
ally, where a model realizes two different solutions. The first solution
is realized by a model fragment that contains a few model elements;
in contrast, the second solution is realized by a model fragment that
contains the majority of the model elements.

In the example of Figure 5.1, the size of the model is equal to 19,
and the size of the model fragment can be computed as the num-
ber of elements that are highlighted, therefore the size of the model
fragment is equal to six. The density is equal to 31.57% meaning
that the model elements are part of the solution model fragment.

Multiplicity measures the number of times the solution appears in
the search space. Since the more solutions found, the greater the
multiplicity, this measurement determines how complex the search
ends up being, based on the number of solutions that the search
space contains for the same solution.

The fourth row of Figure 6.3 represents this measurement concep-
tually, where a solution is searched for in two models. The search in
the first model reveals one model fragment as the solution. In con-
trast, the search in the second model reveals three model fragments,
so there are three solutions in the model.

In the example of Figure 5.1, none of the model elements are re-
peated, so it is not possible to find two model fragments with the
same elements. A bigger model may contain more complex state
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machines, so it might be possible to find patterns that are repeated.
However, in the Figure 5.1, none of the model elements are repeated,
so the multiplicity is equal to 1.

e Dispersion measures the ratio of connected elements in the so-
lution. Specifically, a model fragment is composed of the model
elements that realize a solution, but these elements may or may not
be connected in the model. Therefore, the elements of the model
fragment can be divided into different groups in the model. Disper-
sion is computed as the ratio between the number of groups and the
number of elements. Its value is from 0 to 1, where values around 0
indicate a strong connection among the solution elements and values
around 1 indicate a strong dispersion among the solution elements.
Since the more groups found, the larger the dispersion, this measure-
ment determines how complex the search ends up being depending
on whether or not the model elements that compose a model frag-
ment are linked.

The fifth row of Figure 6.3 represents this measurement conceptu-
ally, where a solution is realized by two models. In the first model,
all of the elements that realize the solution are linked, so the model
fragment is a unity. However, in the second model, the elements
that realize the solution are disconnected, so the model fragment is
divided into groups where each group is composed of one or more
model elements.

In the example of Figure 5.1, none of the elements of the model
fragment are connected to the others, so there are as many groups
as number of elements in the model fragment. Since the model frag-
ment is composed of the elements that are highlighted, the model
fragment contains six elements and the number of groups is equal
to six. Therefore, when the dispersion is computed as the ratio be-
tween the number of groups and the number of elements, we obtain
a dispersion value that is equal to 1 this means there is a strong
dispersion among the model fragment elements.
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Figure 5.3: Maximum, Minimum, and Mean values of the Case study Measurements

5.4 Values in the CAF Case Study

This section presents the resulting values after applying MFL on the
industrial models of CAF as part of their migration process between
their model set to a Model-based Software Product Line. We analyze
the result of applying 1,308 MFLs. We provide the results in Figure 5.3
and Table 5.1 as reference from real-world MFL problems.

Figure 5.3 depicts a box plot with the values including the maximum,
the minimum, and the mean of the values for each of the proposed mea-
surements. Each column in the plot corresponds to one of the proposed
measurements (correspondingly named at the bottom of the plot). The
results obtained are as follows:

e The Size measurement of the search space is between 196.0 model
elements and 356.0 model elements. In other words, the largest
search space used in the case study is composed of 356 model ele-
ments. In contrast, the smallest search space used is composed of
a total of 196 model elements. In addition, most MFLs were per-
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formed in search spaces with sizes between 264 model elements and
309 model elements, with the search space with a size of 272 model
elements being the most frequent.

e The Volume measurement of the search spaces is between 5 models
and 21 models. This means that the search spaces where the MFL
approach were performed are between these values. Most MFLs
were performed in search spaces with a volume between 9 models
and 14 models, with 10 models being the most common volume
among all of the search spaces.

e The Density measurement of the solutions is between 1% and 6%,
with the most common density interval being between 2% model ele-
ments and 3% model elements. In the case study, the most repeated
solution has a density of 2% model elements.

e The Multiplicity measurement of the solutions is between 1 time
and 21 times, with the most repeated range for each of the solutions
oscillating between 1 time and 8 times. This means that, given a so-
lution, the total of times that the solution can be located is between
1 time and 8 times as maximum. The most frequent multiplicity of
our solutions has a value of 1 times.

e The Dispersion measurement of the solutions is between 0.8 groups
/ elements and 1.0 groups / elements. The range is between 0.83
groups / elements and 0.92 groups / elements. This means that the
total of connected elements is between of these values. In the case
study, the most repeated number of connected model elements for
each solution is 0.85 groups / elements.

It is important to emphasize that the MFL was not performed on all of the
existing models of our industrial partner. Domain experts were involved
during the MFL approach, contributing their domain knowledge. A way
to contribute with this domain knowledge is by restricting the location
approach to those models in which the domain experts estimate that the
solution will be found (in the case of the initialization of the Software
Product Lines, i.e., the features).
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Table 5.1: TOP 10 most frequent obtained results during Model Fragment Location in
Industrial Models

Search Frequency
Size Volume Density Multiplicity | Dispersion
Value | MFLs | Value | MFLs | Value | MFLs | Value | MFLs | Value | MFLs
1 272 82 10 240 0.0267 34 1 608  0.857 | 425
2 321 82 9 189 | 0.0257 29 7 129 | 0.889 | 229
3 262 80 11 176 0.028 29 5 128 | 0.875 200
4 287 73 14 168 | 0.0249 28 6 111 0.833 162
5 279 48 8 104 | 0.0218 27 8 87 1.0 114
6 281 44 12 96 0.0297 25 9 74 0.9 60
7 322 43 16 64 0.03 25 10 51 0.8 53
8 292 43 13 52 0.0197 24 11 32 0.909 50
9 233 42 15 45 0.0265 21 13 27 0.923 10
10 332 41 7 42 0.0244 21 12 25 0.917 5

Table 5.1 shows the relationship between the value obtained from a spe-
cific measurement and the number of MFLs that use this value. In other
words, Table 5.1 presents an overview of the top frequently MFLs car-
ried out on the industrial models. Each column in the table identifies one
of the proposed measurements in this work. The columns below these
correspond to the most frequently obtained value (named Value in Table
5.1) regarding the number of MFLs.

According to the values shown in the table, 272 model elements are the
most frequent Size of the search spaces in the case study, with a total
of 82 MFLs carried out. According to Volume, the most frequent value
is 10, meaning that 10 is the number of models that compose the search
space where a model fragment is located.

With regard to the solution measurements (Density, Multiplicity, and
Dispersion), 2.67 % is the most common percentage of model elements
that realize the solutions, which was obtained in a total of 34 MFLs. Also,
1 time is the most common Multiplicity obtained during 608 MFLs, and
0.857 is the most frequent ratio of groups/elements, obtained during 425
MFLs.
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5.4.1 FEzxperimental Setup

The goal of this experiment is to determine if MFL is influenced by the
measurements presented. In other words, this experiment empowers us
to determine whether the results of MFL depend on the values of mea-
surements or MFL obtains the same results whatever the values of the
measurements are. To do this, the experiment addressed the searches
in the models of the CAF Case Study by means of two approaches that
obtain the best results to recover Traceability between requirements and
models (Winkler and Pilgrim 2010). The first one (Spanoudakis et al.
2004) is a Linguistic Rule-Based (Linguistic) approach that is based on
Parts-of-Speech (POS) Tagging and Traceability rules. The second one
(De Lucia et al. 2004) is an Information Retrieval (IR) approach that is
based on Latent Semantic Indexing (LSI) and Singular Value Decompo-
sition (SVD). The results were analyzed based on the following measure-
ments:

e Size is already studied in other research, in fact, this measurement
is frequently used in most MFL works. Therefore, although this
measurement is included in our research for the sake of completeness,
we did not evaluate the relevance of this measurement in this work.

e Volume measures the number of models. Therefore, to evaluate the
impact of this measurement, we took into account searches where
the search space is composed of one or more models and only one
of them contained the solution. Moreover, the search spaces had to
have models with a similar size, the solutions had to have similar
density values and dispersion values, and the multiplicity values had
to be equal to one, which means that there is only one solution in
the search space. Therefore, the values for the other measurements
(Size, Density, Multiplicity, and Dispersion) are similar or equal for
all of the searches.

e Density measures the ratio of model fragment elements to model
elements. Therefore, to evaluate the impact of this measurement,
we took into account searches where the search space was composed
of the same model and the solutions had different numbers of ele-
ments so that the density was not the same for all of the searches.
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Given that the search space was the same for all of the searches,
the size and the volume values were the same for all of the searches.
Moreover, the solutions had to have similar multiplicity and disper-
sion values. Therefore, the values for the other measurements (Size,
Volume, Multiplicity, and Dispersion) are similar or equal for of the
searches.

Multiplicity measures the number of times the solution appears in
the search space. Therefore, to evaluate the impact of this mea-
surement, we took into account searches where each search space
contains a different model and the searched solution is the same.
Moreover, the search spaces had to have similar volume values and
size values, and the solutions had to have similar density values and
similar dispersion values. Therefore, the values for the other mea-
surements (Size, Volume, Density, and Dispersion) are similar or
equal for all of the searches.

Dispersion measures the ratio of connected elements in the solution.
Therefore, to evaluate the impact of this measurement, we took into
account searches where the search space was composed of the same
model and the elements of the solutions were scattered in the model
to a greater or lesser extent. Thus, the dispersion values were not the
same for all the searches. Given that the search space was the same
for all of the searches, the size and the volume values were the same
for all of the searches. Moreover, the solutions had to have similar
density values and multiplicity values. Therefore, the values for the
other measurements (Size, Volume, Density, and Multiplicity) are
similar or equal for all of the searches.

For each search, each approach generates a model fragment as a possible
solution. Then, we compare this possible solution with the real solution,
which we know beforehand based on the CAF Case Study. Once the
comparison is performed, a confusion matrix is calculated. Therefore, we
obtain two confusion matrices, one for the Linguistic approach and one
for the IR approach.

A confusion matrix is a table that is often used to describe the perfor-
mance of a classification model (in this case, the approaches) on a set
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of test data (the resulting model fragments) for which the true values
are known (from the CAF Case Study). In our case, each solution that
is generated by the approaches is a model fragment that is composed of
a subset of the model elements that are part of the model (where the
solution is being searched for). Since the granularity will be at the level
of model elements, the presence or absence of each model element will
be considered as a classification. The confusion matrix distinguishes be-
tween the predicted values and the real values by classifying them into
four categories:

True Positive (TP): values that are predicted as true (in the solution)
and are true in the real scenario (the oracle).

False Positive (FP): values that are predicted as true (in the solution)
but are false in the real scenario (the oracle).

True Negative (TN): values that are predicted as false (in the solu-
tion) and are false in the real scenario (the oracle).

False Negative (FN): values that are predicted as false (in the solu-
tion) but are true in the real scenario (the oracle).

Then, some performance metrics are derived from the values in the con-
fusion matrix. Specifically, we create a report that includes four perfor-
mance metrics (precision, recall, the F-measure, and MCC) for each of
the searches for each approach.

Precision measures the number of elements from the solution that are
correct according to the ground truth (the solutions in the CAF Case
Study) and is defined as follows:

TP

Precision = ZFP—F—FP
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Recall measures the number of elements of the solution that are retrieved
by the proposed solution and is defined as follows:

TP

RGCG” = m—m

The F-measure corresponds to the harmonic mean of precision and recall
and is defined as follows:

Precision * Recall 2xTP

F — measure = 2 % - =
Precision + Recall 2TP+ FP+ FN

However, none of these previous measures correctly handle negative examples
(TN). The Matthews Correlation Coefficient (MCC) is a correlation
coefficient between the observed and predicted binary classifications that takes

into account all of the observed values (TP, TN, FP, FN) and is defined as
follows:

TP-TN—-FP-FN

MCC =
V(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

Recall values can range between 0% (which means that no single model element
from the solution from the CAF Case Study is present in the model fragment
of the obtained solution) to 100% (which means that all the model elements
from the CAF Case Study are present in the obtained solution). Precision
values can range between 0% (which means that no single model element from
the obtained solution is present in the solution from CAF Case Study) to 100%
(which means that all of the model elements from the obtained solution are
present in the solution from the CAF Case Study). A value of 100% precision
and 100% recall implies that both the obtained solution and the solution from
the oracle are the same. MCC values can range between —1 (which means that
there is no correlation between the prediction and the solution) to 1 (which
means that the prediction is perfect). Moreover, a MCC value of 0 corresponds
to a random prediction.
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Table 5.2: Mean Values and Standard Deviations for Precision, Recall and the F-Measure
for the approaches depending on the measurement evaluated

Precision Recall F-Measure MCC
Vol Linguistic 26.84 + 18.78 50.75 + 17.12 30.46 + 17.72 0.32 + 0.16
olume
IR 34.52 £ 27.29 34.19 £ 20.26 27.28 £ 12.57 0.29 + 0.13
Densit Linguistic  22.96 + 22.92 43.90 4+ 29.45 25.89 + 22.25 0.25 + 0.23
ensity
IR 66.22 + 27.19 48.08 £+ 18.85 52.09 + 18.46 0.53 + 0.18
o Linguistic 68.43 + 21.06 55.56 = 0.00  60.15 + 7.96 0.60 + 0.10
Multiplicity
IR 77.08 £ 25.66 18.06 + 8.27  27.41 + 9.30 0.35 + 0.08
) ) Linguistic 23.50 £ 21.86 48.48 4+ 25.96 27.25 + 20.59 0.27 + 0.21
Dispersion
IR 66.41 £+ 28.25 43.47 £ 19.57 49.28 £ 19.61 0.51 &+ 0.20

5.4.2 Results

In Table 5.2, we outline the results aggregated for each of the approaches. Each
row shows the Precision, Recall, the F-measure, and MCC obtained by each
approach taking into account the selected searches for each new measurement.

The IR approach achieved the best precision results for all of the measurements.
However, the best results for the other performance indicators depend on which
measurement is evaluated. According to Density, the IR approach achieved the
best results for all of the performance indicators, providing a mean precision
value of 66.22%, a recall value of 48.08%, a combined F-measure value of
52.09%, and a MCC value of 0.53. In contrast, according to Multiplicity and
Volume, the Linguistic approach achieved the best results for recall, the F-
measure, and MCC. Moreover, both approaches achieved the best precision
results for searches that evaluate Multiplicity, providing mean precision values

up to 68%.

158



5.5 Statistical Analysis

5.5 Statistical Analysis

To properly compare the different searches, the data resulting from the empir-
ical analysis was analyzed using statistical methods.

5.5.1 Statistical Significance

A statistical test must be run to assess whether there is enough empirical
evidence to claim that the new measurements have an impact on the results.
Therefore, we have to consider their values to search in models. To achieve this,
two hypotheses for each new measurement are defined: the null hypothesis Hy,
and the alternative hypothesis H;. The null hypothesis Hj is typically defined
to state that there is no impact on the searches even though the measurements
have different values. The alternative hypothesis H; states that there is an
impact on the searches depending on whether the measurement values differ.
In such a case, a statistical test aims to verify whether the null hypothesis H
should be rejected.

The statistical tests provide a probability value, p — Value. The p — Value
obtains values between 0 and 1. The lower the p — Value of a test, the more
likely that the null hypothesis is false. It is accepted by the research community
that a p—Value under 0.05 is statistically significant (Arcuri and Briand 2014),
and so the hypothesis Hy can be considered false.

The test carried out depends on the properties of the data. Since our data
does not follow a normal distribution in general, our analysis requires the use
of nonparametric techniques. There are several tests for analyzing this kind
of data; however, the Quade test is the most powerful when working with real
data (Garcia et al. 2010).

Table 6.6 shows the Quade test statistic and p—V alues for recall and precision.
The values that are pointed out indicate which ones are statistically significant,
so the hypothesis Hj can be considered false. At least one of the values for recall
or precision for one of the approaches is statistically significant. Consequently,
we can state that the new measurements have an impact on the searches,
although the degree of this impact is an issue that remains as future work.
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Table 5.3: Quade test statistic and p — Values

Precision Recall
) o p-Value 0.013 0.629
Linguistic
Statistic 18.00 0.27
Volume
R p-Value 0.013 0.031
Statistic 18.00 10.59
] o p-Value 0.561 0.024
Linguistic
) Statistic 0.62 0.024
Density
R p-Value 0.020 0.047
Statistic 6.58 4.59
.. . p-Value 0.882 0.125
Linguistic
S Statistic 0.02 NaN*
Multiplicity
p-Value 0.769 0.015
IR
Statistic 0.10 25
.. . p-Value 0.220 0.700
Linguistic
] ) Statistic 1.63 0.15
Dispersion
R p-Value 0.003 0.451
Statistic 12.03 0.60

*The recall values are equal for all of the searches in this case.
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5.6 Discussion

The results highlight that the proposed measurements have an impact on the
outcomes of the studied approaches. In this work, we have identified a series
of facts that serve as a starting point for discussing why the proposed mea-
surements and the provided values are significant for the research community.
These facts are discussed in the following paragraphs:

1 From the results, it is possible to conclude that size reports do not provide
enough information on the search problem. This is due to the inability
of the size measurement to accurately represent the inherent challenge
levels of models.

This issue is better illustrated through an example taken from the case
study. In the example, there are two models of sizes 37 and 113 elements
(respectively) and a feature that is present in both models. At first glance,
one may expect it to be easier to find the feature in the smaller model.
However, in the first model, the feature is implemented by a model frag-
ment that contains only two elements, and all of the elements in the
model contain similar texts and word patterns. In the second model, the
feature is implemented by 28 elements, which are clearly differentiated
from the rest of the elements in the model in terms of text and word
patterns. In the depicted scenario, both approaches are able to find the
second model fragment with much greater accuracy than the first model
fragment, rendering the size of the model insufficient to depict the search
problem.

2 Search problems in models are relatively new when compared to search
problems in other kinds of documents such as the web or source code.
Hence, search problems in models have inherited measurements that are
accepted by the community in similar fields. However, the novelty of ap-
plying searches to models is the models, and it is not possible to directly
apply measurements to models from webs and code. In that sense, our
work puts into perspective that this novel search problem requires more
attention on how to report it in a correct manner so that performance
results can be properly evaluated.

3 Due to the absence of real work datasets, synthetic datasets are very com-
mon and popular in the research community. These synthetic datasets
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are useful in testing extreme scenarios and situations. Since our findings
show that the proposed measurements are significant and impactful with
regard to the performance of search approaches, we provide their real-
world values so that designers can carry out a real-world, search-problem
profiling process when designing synthetic test cases and extreme search-
problem scenarios. Therefore, the reference values for the measurements
that have been presented in this paper can be useful for other researchers.

4 The results clearly show that the defined measurements have an impact
on the results of the approaches. However, it may be possible to define
new measurements or derive other measurements that are from the ones
presented. Moreover, it may be possible to try and identify patterns in
the results of the approaches based on the values of the measurements.
Finally, we have not studied how different approaches are affected by
each measurement; in other words, some approaches may be more sen-
sitive to the values of certain measurements while not being affected by
other measurements. All of these possibilities for further exploration of
the measurements and their impact remain as future work.

In summary, the results of our work are promising and open the door for the
study of the particularities of reporting the location problem of MFL.

5.7 Related Work

We focus our research on Model Fragment Location (MFL), so the most im-
portant knowledge areas where our research can be applied are: Bug Location,
Feature Location, and Traceability Links Recovery. For this reason, in this
section, we analyze some of the existing works in these areas and compare our
work with them.

Most of the existing works focus on searches in source code; therefore, their
measurements are oriented to measuring the number of code lines or the num-
ber of methods in the code. For instance, (Wong et al. 2016) present a system-
atic literature survey of bug location in source code. In (Dit et al. 2013),(Rubin
and Chechik 2013), the authors present systematic literature surveys of feature
location techniques in source code. Javed et al. (Javed and Zdun 2014) present
a systematic literature review to discover the existing traceability approaches
and tools between software architecture and source code. In contrast to them,
our work focuses on models instead of source code, so the measurements that
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are presented in this work are oriented to measuring models (search space) and
model fragments (solution space).

5.7.1 Related works on MFL on models

Some recent works center their efforts on MFL on models. Winkler et al.
(Winkler and Pilgrim 2010) classify several approaches that have been cre-
ated in the past 15 years which try to optimize automatic identification of
traces in models. De Lucia et al. (De Lucia et al. 2004) present a Trace-
ability Links Recovery method and tool, which are based on Latent Semantic
Indexing (LSI) and include models. Spanoudakis et al. (Spanoudakis et al.
2004) present a linguistic rule-based approach to support the automatic gener-
ation of Traceability Links between requirements and models. In (Wille et al.
2013),(Holthusen et al. 2014),(Zhang, Oystein Haugen, and Mgller-Pedersen
2011),(Zhang, O. Haugen, and Moller-Pedersen 2012),(Jabier Martinez et al.
2015) the authors focus on the location of features in models by comparing
the models with each other to formalize the variability among them in the
form of a Software Product Line. For instance, in (Holthusen et al. 2014), the
authors present an improved version of a family mining approach for automati-
cally discovering commonality and variability between related system variants.
They apply their approach to function block diagrams that are used to de-
velop automation software, and they show its feasibility in a manufacturing
case study.

Wille et al. (Wille et al. 2013) present an approach for analyzing related
models and determining the variability among them. Their analysis provides
crucial information about the variability (changed parts, additional parts, and
parts without any modification) between the models in order to create family
models. In (Zhang, Qystein Haugen, and Mgller-Pedersen 2011), an approach
for synthesizing a software product line using model comparison is presented.
During model difference detection, the approach applies EMF Compare, a
generic model comparison tool. To specify the variability, the approach applies
the Common Variability Language (CVL) (Qystein Haugen, Wasowski, and
Czarnecki 2013), a generic language for expressing variability. Based on the
comparison results, a preliminary product line model (CVL model) can be
automatically induced and the SPL developer may further enhance the product
line model. Just like us, the authors applied their research in the railway
domain to illustrate their work.

Zhang et al. (Zhang, O. Haugen, and Moller-Pedersen 2012) present an ap-
proach for automating the augmentation of product lines using model com-
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parison and variability modeling techniques. Their approach aims to reduce
the manual effort involved in this process by automatically suggesting a ten-
tative augmented product line model. The approach applies CVL Compare,
a generic approach for automating the synthesis of a CVL-based product line
from a set of existing product models. Martinez et al. (Jabier Martinez et al.
2015) introduced a generic and extensible framework for a bottom-up approach
to Software Product Line Engineering. They presented the principles of the
approach in order to reduce the current high up-front investment required for
a systematic reuse end-to-end adoption.

All of these works (see the top of Table 5.4) are evaluated by means of different
case studies that are measured to a greater or lesser extent. The most popular
measurement reported is the size. However, none of them take into account the
same measurements to work with models, and the measurements are selected
by the researchers based on their own judgment. In contrast, we propose a set
of measurements that are strongly related with models to measure the search
space and the solution space.

5.7.2 Owur previous related works on MFL on models

Finally, some of our previous works (J. Font et al. 2017), (Jaime Font et al.
2016), (Arcega, Jaime Font, Qystein Haugen, et al. 2016), (Marcén et al. 2017),
(Lapena Marti et al. 2017) present Feature Location approaches to discover
software artifacts that implement the feature in models.

Marcen et al. (Marcén et al. 2017) propose a feature location approach to
discover model elements that implement the feature functionality in a model.
Through a model and a feature description, model fragments that are extracted
from the model and the feature description are encoded based on a domain
ontology. Then, a Learning-to-Rank algorithm is used to train a classifier that
is based on the model fragments and encoded feature description. Lapena et
al. (Lapena Marti et al. 2017) presented Computer Assisted Clone-and-Own
form Models (CACAO4M), an approach for ranking relevant model fragments
for the development of specific requirements for a new product. Through their
approach, the authors aim to prioritize the model fragments that are easier to
understand from the perspective of a software engineer.

Arcega et al. (Arcega, Jaime Font, Oystein Haugen, et al. 2016) propose an
approach that combines architecture models at run-time and information re-
trieval for feature location. Specifically, their approach uses a scenario that
executes the desired feature to be located. Also, the approach ranks all of
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Table 5.4: Overview of related works regarding their searches and the five presented mea-
surements: Size (S), Volume (V), Density(DE), Multiplicity (M), and Dispersion (DI)

Measurements
Search .
Related Searches Solution
Space

Works in Models
S|V |DE|M| DI

Wong et al. 2016

Dit et al. 2013
Rubin and Chechik 2013
Javed and Zdun 2014

Winkler and Pilgrim 2010

De Lucia et al. 2004

Spanoudakis et al. 2004
Wille et al. 2013
Holthusen et al. 2014

Zhang, Oystein Haugen, and Mgller-Pedersen 2011

Zhang, O. Haugen, and Moller-Pedersen 2012

Jabier Martinez et al. 2015

J. Font et al. 2017
Jaime Font et al. 2016

Arcega, Jaime Font, Oystein Haugen, et al. 2016

works
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w0
=)
o
2
9]
=
a,
-
3
o
~

AR A A AN A A A A N LS AN A R el e e
S A A A AN A B A I A A Il
AR L S L o e el e Rl el el e
R R R Rl R el e e R R R
IR AR AR AR R A R R R R e e ol el
R R R R R Rl R el R R e

Lapenia Marti et al. 2017

165



Chapter 5. Measures to report the Location Problem of Model Fragment Location

the model elements that are executed to extract the model elements that are
related to the feature. Font et al. (Jaime Font et al. 2016) presented a Genetic
Algorithm to Feature Location. They provide a custom encoding that en-
ables the genetic algorithm to work with model fragments and a set of genetic
operations that can be applied to individuals following that encoding. In ad-
dition, they present a fitness function, a parent selection operator, a crossover
operation, and a mutation operation.

Font et al. (J. Font et al. 2017) propose and compare five search algorithms
to locate features in a family of models: Evolutionary Algorithm (EA-MFL);
Random Search (RS-MFL) used as a sanity check; steepest Hill Climbing (HC-
MFL); Iterated Local Search with random restarts (ILS-MFL); and a hybrid
between Evolutionary and Hill Climbing (EHC-MFL). They applied Latent Se-
mantic Analysis (LSA) as the fitness function. Their results show that Search-
based Software Engineering techniques can be applied to locate features in
product models. They evaluate their work in two families of industrial models,
demonstrating that Search-based Software Engineering for feature location at
the model level can be applied in real-world environments.

Most of these works are evaluated by means of case studies that take into ac-
count the size of the models or the volume of models (see the bottom of Table
5.4). However, none of the case studies take into account all of the measure-
ments that are presented in this paper: size, volume, density, multiplicity, and
dispersion.

5.8 Conclusions

Traceability Links Recovery, Feature Location, and Bug Location are popular
activities in the context of software maintenance. When the artifacts where
the requirements, features, or bugs are located are models, many approaches
focus on identifying relevant sets of model elements (Model Fragments). These
Model Fragment Location (MFL) approaches leverage Information Retrieval,
Linguistic techniques, and Search-Based Software Engineering techniques to
locate the model fragments.

However, there is a lack of detail in the reporting of the measurements of both
the search space and the solution, with model size being the only reported
measure. Since different models are measured in different ways, model size
values are not a valid comparison.
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In this paper, we have proposed the usage of five measurements to report the
results of MFL techniques. Apart from the size measurement, we introduced
four novel measurements: volume, density, multiplicity, and dispersion. Of the
five measurements, size and volume measure the search space, while density,
multiplicity, and dispersion measure the solution.

In order to determine the relevance of the proposed measurements, we studied
whether the values of the measurements have an impact on the results provided
by two distinct MFL approaches. We evaluated these approaches in terms
of precision and recall, and we analyzed their outcomes with regard to the
measurements of the case study.

The results presented in the paper show that all of the proposed measure-
ments have a direct impact on the results of the MFL approaches. Therefore,
we strongly recommend their study and reporting. Furthermore, we alsion
problems during MFL on industrial models. These values can be a reference
for researchers who create synthetic location problems.
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Context: Leveraging machine learning techniques to address
feature location on models has gained attention in the Software
Product Line community. Machine learning techniques empower
the software product companies to take advantage of the knowledge
and the experience generated for years in their companies to im-
prove the performance of the feature location process. Nonetheless,
i feature location on models, the knowledge base contains different
artifacts from the ones used in feature location on source code. In
fact, the model fragments in the knowledge bases, which are used
for feature location on models, have properties that may influence
results.

Objective: In this paper, we analyze the influence of three
model fragment properties in feature location: density, multiplicity,
and dispersion.

Method: The analysis of these properties was based in an in-
dustrial case study (268 test cases and 7500 samples in the knowl-
edge base) provided by CAF, a worldwide provider of railway solu-
tions.



Results: The density and dispersion properties have a direct
impact on the feature location results.  The model fragments
with extra-small density values achieve results with up to 43%
more precision, 41% more recall, 42% more F-measure, and 0.53
more Matthews Correlation Coefficient (MCC) than the model
fragments with other density values. On the other hand, the model
fragments with extra-small and small dispersion values achieve
results with up to 53% more precision, 52% more recall, 52% more
F-measure, and 0.57 more MCC than the model fragments with
other dispersion values.

Conclusions: The statistical analysis of the results shows
that both density and dispersion properties significantly influence
the results in our case study. Therefore, the results of this work can
serve not only to improve the reporting of machine learning-based
feature location on models, but also to fairly compare approaches
and thereby improve the feature location results.

173



Chapter 6. On the influence of Model Fragment Properties in Machine Learning-based Feature

Location

6.1 Introduction

Feature location is a key activity in reengineering a set of products in a Product
Line. Feature location is known as the process of finding the set of software
artifacts that realize a specific feature (Font et al. 2017). In the case of feature
location in models, the goal is to identify the model fragment that is associated
to a specific feature. Therefore, a model fragment contains the elements of the
product model that make the software functionality described in a feature
possible.

Increasingly, some recent works have focused on machine learning techniques
to address the challenge of feature location (Corley, Damevski, and Kraft
2015),(B. Le et al. 2016),(Ye, Bunescu, and C. Liu 2014),(Ana C. Marcén
et al. 2017),(Binkley and Lawrie 2014). In these works, machine learning tech-
niques take advantage of the knowledge and the experience generated for years
in software companies to perform the feature location process. Specifically,
the knowledge and experience make up part of the knowledge bases, which
are used by machine learning techniques to learn how to locate features. To
report machine learning-based feature location problems, most of the works
describe in detail the machine learning techniques, the tuning parameters, and
the knowledge bases. Nonetheless, in feature location on models, the knowl-
edge bases contain different artifacts from the ones used in feature location on
source code.

Figure 6.1 shows an example of a sample of a knowledge base for feature
location in models. Each sample in the knowledge base is composed of a
feature description, a model fragment, and a score. In the sample of this
example, the feature, which is described using natural language, is related to a
model fragment by means of a score. The model fragment, which is highlighted
in gray, consists of a set of three model elements (Pantograph 2, Circuit Breaker
2, and the relation between them). These three elements belong to a model
that has more elements that are not included in the model fragment, such as
Pantograph 1 or Converter 1. The score determines the similarity between the
feature description and the model fragment. In this example, a score equal to
4 means that the model fragment contains all of the model elements associated
to a feature. In contrast, a score equal to 0 means that none of the elements
of the model fragments are related to the feature.

In this paper, we analyze the influence of three model fragment properties
(Ballarin et al. 2018) density, multiplicity, and dispersion. The analysis of
these properties is based on an industrial case study (268 test cases and 7500
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Knowledge Base

Feature Description Model Fragment Score
Pantograph 1 Pantograph 2| i
COSMOS will inhibit the = e 3.5/4
Circuit Circuit |} .
permission to close the !
circuit breaker if the Converter 1 Converter2

order to lower the
pantographs is active.

Figure 6.1: Example of a sample of the knowledge base for feature location on models

samples in the knowledge base) provided by CAF!, a worldwide provider of
railway solutions. The test cases were evaluated taking into account different
values of the properties of the model fragments in the knowledge base. For
example, one of the performed tests consisted of the evaluation of the test
cases using only the model fragments in the knowledge base with small density
values.

Our results show that the multiplicity property does not have an impact on
the feature location results. However, the density and dispersion properties
do have a direct impact on the feature location results. In our case study,
the model fragments with extra-small density values achieved results of up to
43% more precision, 41% more recall, 42% more F-measure, and 0.53 more
MCC than the model fragments with other density values. On the other hand,
the model fragments with extra-small and small dispersion values achieved
results of up to 53% more precision, 52% more recall, 52% more F-measure,
and 0.57 more MCC than the model fragments with other dispersion values.
The statistical analysis of the results show that both density and dispersion
properties significantly influenced the results. Moreover, this analysis shows
the magnitude of the influence of the density and dispersion in our case study.

Taking into account the results of the evaluation, research works should report
density and dispersion in order to enable replication of their works. Moreover,
these results also provide evidence that model fragment properties are rele-
vant in order to be able to fairly compare properties and improve the feature
location results. If we wanted to fairly compare two machine learning-based
approaches for feature location in models, we would have to take into account
that both approaches can need model fragments with different property val-
ues for their knowledge bases. For example, a deep learning technique usually
requires a knowledge base with a greater number of samples than a learning-

Lyww.caf .net/en
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to-rank algorithm, although both are machine learning techniques. Therefore,
an approach based on deep learning requires a knowledge base with a differ-
ent number of samples than an approach that is based on learning to rank.
Likewise, an approach based on deep learning may need model fragments with
different density values for the knowledge base than an approach based on
learning to rank. Therefore, in order to obtain the best performance of the
compared approaches, the model fragment properties for the knowledge base
must be configured for each approach.

On the other hand, the evaluation results show that by taking into account
specific values for one property, we can improve the feature location results.
For example, by taking into account only extra-small density values, we can
surpass the results obtained using other density values. Likewise, by taking
into account extra-small and small dispersion values, we can surpass the re-
sults obtained using other dispersion values. Therefore, we can improve the
feature location results of our case study by configuring the knowledge base
using model fragments with extra-small density or extra-small and small dis-
persion. In summary, in machine learning-based feature location on models,
the results of this work can serve not only to improve the reports by means of
the model fragment properties, but can also fairly compare machine learning-
based feature location approaches and thereby improve the feature location
results.

The remainder of this paper is structured as follows: Section 6.2 provides
background on our case study. Section 6.3 highlights the properties of knowl-
edge bases that include the model fragment properties. Section 6.4 details the
means used to evaluate our work, the results of the evaluation, and the statis-
tical significance of the obtained results. Section 6.5 discusses the performed
experiment and the obtained results. Section 6.6 describes the threats to the
validity of our work. Section 6.7 introduces the existing works that are related
to our work. Finally, Section 6.8 concludes the paper.

6.2 Background

This section presents the Train Control and Management Language (TCML),
which is used to formalize the products manufactured by our industrial part-
ner. Then, an illustration of an equipment-focused simplified subset of the
DSL is presented. In addition, we present the Common Variability Language
(CVL) (Haugen et al. 2008), which is the language used to formalize the model
fragments.
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The Train Control and Management Language (TCML) has the expressiveness
required to describe both the iteration between the main pieces of equipment
installed in a train unit and the non-functional aspects related to regulation. A
train unit is furnished with multiple pieces of equipment. Some examples are:
the traction equipment, the compressors that feed the brakes, the pantograph
that harvests power from the overhead wires, and the circuit breaker that
isolates or connects the electrical circuits of the train. The TCML will be used
through the rest of the paper to present a running example.

For the sake of understandability and legibility, and due to intellectual prop-
erty rights concerns, we present a simplified equipment-focused subset of the
DSL. The top of Figure 6.2 depicts one example, which is taken from a real-
world train. It presents a converter assistance scenario where two separate
pantographs (High Voltage Equipment) collect energy from the overhead wires
and send it to their respective circuit breakers (Contactors), which in turn send
it to their independent Voltage Converters. The converters then power their
assigned Consumer Equipment: the HVAC on the left (the train’s air condi-
tioning system), and the PA (public address system) and CCTV (television
system) on the right.

To formalize the Model fragments used throughout the rest of our work, we
use the Common Variability Language (CVL) (Haugen et al. 2008), which ex-
presses variability among models in terms of Model Fragments such as Place-
ment Fragments (variation points) and Replacement Fragments (variants).
The materialization of product models is performed by means of Fragment
Substitutions between a Base Model (Placements) and a Model Library (Re-
placements). In the top right of Figure 6.2, the element highlighted in gray is an
example of a model fragment, which includes one circuit breaker that connects
Converter 2 to a Consumer Equipment assigned to Converter 1. This model
fragment is the realization of the "converter assistance" feature, which allows
the passing of current from one converter to equipment assigned to its peer
for coverage in case of overload or failure of the first converter. A simple ex-
ample of model fragment manipulation in the Train Control and Management
Language (TCML) can be found at: youtube.com/watch?v=Ypcl2evEQBS
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Product Model Product Fragment Model

Pantograph 2

Circuit
Breaker 2
I

‘ Converter 2 ‘

TCML Syntax
High Voltage Voltage Consumer
Equipment | Contactors Conver%ers Equipment (TR ]

Figure 6.2: Example of a TCML model, model fragment, and sample of the knowledge
base

6.3 Properties of the knowledge base

The knowledge base condenses the knowledge and the experience that have
been generated in the companies for years in order to take advantage of this
information. In machine learning-based feature location, the knowledge bases
are used to learn how to automatically locate features. To do this, the known
features stored in the knowledge base are compared by means of different
machine learning techniques to find similarities and differences that can help
to locate unknown features. Specifically, in feature location in models, the
knowledge base is composed of samples, where each sample contains a feature
description, a model fragment, and a score. Figure 6.1 shows an example of a
sample of a knowledge base for feature location in models.

Since the success of the feature location depends on properly learning how
to locate unknown features, the knowledge base must contain the information
necessary to learn how to do it. In other words, the completeness and hetero-
geneity of the knowledge base facilitates or limits the learning of how to locate
unknown features. For this reason, both the size and the class distribution of
the knowledge base have been widely discussed in the literature:

e Size is the number of samples in the knowledge base, which can greatly
impact classification accuracy. As a consequence, the analysis of the size
has been a major point of interest in research, generally finding a positive
relationship between the size of the knowledge base and classification
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Figure 6.3: Example of a model fragment with its values for the properties: density,
multiplicity, and dispersion

accuracy for a wide range of classifiers (Zhuang et al. 1994),(Foody and
Mathur 2004),(Foody, Mathur, et al. 2006).

e Class distribution is the percentage of samples for each possible class
in the knowledge base. It is conventional wisdom that classifiers tend
to perform worse when the knowledge base is imbalanced. For this rea-
son, many research works have been tackling the problems of learning
from data sets with imbalanced distributions and where the costs of mis-
classifying examples is non-uniform (Weiss and Provost 2001),(Weiss and
Provost 2003),(Buda, Maki, and Mazurowski 2018). In our case, as the
example of Figure 6.2 shows, the samples of our knowledge base depend
on their scores. Therefore, our knowledge base depends on a score distri-
bution that is balanced when there is the same number of samples with
scores between 0 and 1, between 1 and 2, between 2 and 3, and between
3 and 4.

We consider that these properties should be used to report our knowledge
bases. Nevertheless, we also think that the nature of the problem may require
other more specific properties in order to provide all of the necessary infor-
mation for the replication of the experiments. For example, the properties
identified in (Ballarin et al. 2018) to report the search space and the solutions
in feature location problems are specifically based on models. In fact, of the
identified properties, three of them (density, multiplicity, and dispersion) focus
on reporting property model fragments.
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e Density measures the percentage of model elements that are present in a
model fragment. The density is computed as the ratio of model fragment
elements to model elements. Figure 6.3 shows an example of how to
calculate the density of a model fragment. In this example, the model
has 19 elements in total. The model fragment contains four elements (the
Pantograph 1; the relation between Pantograph 1 and Circuit Breaker 1;
the Circuit Breaker 1; and the HVAC). Therefore, the density value is
equal to 21.05%, which means that the model fragment is composed of
21.05% of the model elements.

e Multiplicity measures the number of times that the model fragment
appears in the model. Figure 6.3 shows an example of how to calculate
the multiplicity of a model fragment. In this example, the model frag-
ment contains four elements: a pantograph that is connected to a circuit
breaker; the relation to connect the pantograph and the circuit breaker;
the circuit breaker connected to the pantograph; and a HVAC. Taking
into account these elements, the multiplicity value is equal to 2, which
means that there are two possible model fragments that contain these
elements with their connections.

e Dispersion measures the ratio of connected elements in the model frag-
ment. Specifically, a model fragment is composed of the model elements,
but these elements may or may not be connected in the model. There-
fore, the values for this property are from 0 to 1, where values around 0
indicate a strong connection among the elements of the model fragment
and values around 1 indicate a strong dispersion among the elements of
the model fragment. Figure 6.3 shows an example of how to calculate
the dispersion of a model fragment. In this example, the model fragment
contains four elements: the Pantograph 1, the relation between Panto-
graph 1 and Circuit Breaker 1, the Circuit Breaker 1, and the HVAC.
The first three elements are connected so they compose the first group;
since the last element is not connected to the other elements, it composes
the second group. Since the dispersion is computed as the ratio between
the number of groups and the number of elements, the dispersion value
is equal to 0.5, which means that the model fragment has a medium
dispersion.

Based on these properties, three domain experts discussed whether any of
these three properties should be used to populate the knowledge base. The
first expert believed that none of the properties would have an impact on the
results. The second one believed that since density and dispersion would have
an impact on the results, the knowledge base should be balanced with regard to
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these properties. The third one believed that since the three properties would
have an impact on the results, the knowledge base should be balanced with
regard the three properties. However, the greater the number of properties
that have to be balanced, the more expensive and complex the generation of
the knowledge base will be. For example, consider a knowledge base where half
of the samples have a score value equal to 0 and half of the samples have a
score value equal to 1. If the knowledge base must be balanced from both the
score values (0 or 1) and the density values (lesser than <=50 or >50), the
knowledge base must have the same number of samples for all of the possible
combinations between the score values and the density values: samples with a
score value equal to 0 and a density value <=50; samples with a score value
equal to 0 and a density value >50; samples with a score value equal to 1
and a density value <=50; and samples with a score value equal to 1 and a
density value >50. In this example, there are only four combinations, but the
problem appears when the properties have more than two values and there are
more than two properties to be balanced.

In fact, our industrial partner has been developing firmware since 1995 and
7,500 samples have been documented in their knowledge base. However, if
the knowledge base had to be balanced taking into account only one of the
properties without losing the balanced score distribution, the knowledge base
would be approximately reduced to 300 samples. Also the balance regarding all
of the properties would reduce the knowledge base to a few hundred samples.

Therefore, event though the different beliefs of the domain experts indicate
that density, multiplicity, or dispersion in the model fragments of the knowl-
edge base may have an impact on the results, the problem is complex enough
to require an experiment in order to reach an agreement. Since balancing a
knowledge base according to the density, multiplicity, and dispersion values
would require a high cost, before balancing the knowledge base, an experiment
would help determine whether or not balancing any of the properties makes
sense. These two facts have motivated us to propose the research questions
and the experiment that are defined in Section 6.4.
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6.4 Evaluation

Since the model fragments of the knowledge base have different properties
(density, multiplicity, and dispersion), the goal of this paper is to research the
influence of these properties on the results in model fragment location. To do
this, this paper provides answers to several research questions. The first three
research questions are focused on determining which property influences the
results:

RQ1: Do the density values of the model fragments in the knowledge base in-
fluence the results?

RQ2: Do the multiplicity values of the model fragments in the knowledge base
influence the results?

RQ3: Do the dispersion values of the model fragments in the knowledge base
influence the results?

The following two research questions are focused on determining how the prop-
erties influence the results. Therefore, taking into account the previous research
questions, this paper provides answers to the following questions for each prop-
erty that influences the results:

RQ4: What values of a property should be covered by the model fragments in
the knowledge base to obtain the best results?

RQ5: If the solution searched for in the test cases have different property values
than the model fragments in the knowledge base, is it possible to obtain
good results?

This section presents the evaluation that was performed to answer the RQs. It
includes a description of the experimental setup, a description of the case study,
the implementation details, the results obtained, and the statistical analysis
performed.

6.4.1 FEzxperimental Setup

The goal of this experiment is to provide answers to the RQs. To do this, the
experiment was addressed by means of the Feature Location in Models based
on the Machine Learning (FLiM-ML) approach. However, instead of using the
entire knowledge base, we performed several selections of the knowledge base
covering different values of each property. Then, the approach was used to
evaluate all of the test cases taking into account each selection. Finally, the
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Figure 6.4: Experimental Setup

results of the approach were analyzed to provide the required answers. Figure
6.4 shows an overview of the process.

The left part of Figure 6.4 shows the inputs. Most of these inputs are extracted
from the documentation provided by our industrial partner. The first input
that is provided by our industrial partner is the approved solution. The
approved solution is the best realization of a feature. We know beforehand
what the best realization for each described feature is. This helps us to compare
the results of the approach with the expected solution in order to determine
how good the obtained results are.

The following two inputs are the feature descriptions and the sets of model
fragments. Each feature description defines in natural language a feature
that is searched for in a set of model fragments. Each set of model fragments
is composed of different model fragments that include the realization of the
searched feature. Specifically, each feature description and the set of model
fragments, where this feature is going to be searched, make up a test case. All
of the test cases are evaluated through the FLiM-ML approach.

On the other hand, the ontology and the knowledge base are necessary
so that the approach can be used to evaluate the test cases. The ontology
contains the main concepts, properties, and relations of a domain. Specifically,
the ontology is used by the approach to characterize and encode the model
fragments and feature descriptions into a format that is understandable for
the machine learning techniques. In contrast, the knowledge base is used by
the approach to learn how to evaluate the test cases. The knowledge base is
composed of samples, where each sample relates a feature description and a
model fragment according to a score. Specifically, since the model fragment
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realizes the feature description to a greater or lesser extent, this score indicates
the degree of similarity between the model fragment and feature description.

The last input is the set of configurations that are defined to answer the RQs.
Specifically, from the same knowledge base, each configuration indicates what
samples are going to be selected to evaluate the all of the test cases. Therefore,
these configurations are defined to cover different values of the property that
is being analyzed. In order to answer RQ1, we defined five configurations in
order to select samples with different density values:

Density-XS selects samples that have a density value between 0 and 25.
Therefore, the view of the knowledge base that is generated by means of
this configuration only contained samples whose model fragment had an
extra-small density value.

Density-S selects samples that have a density value between 25 and 50.
Therefore, the view of the knowledge base that was generated by means
of this configuration only contained samples whose model fragment had
a small density value.

Density-M selects samples that have a density value between 50 and 75.
Therefore, the view of the knowledge base that was generated by means
of this configuration only contained samples whose model fragment had
a medium density value.

Density-L selects samples that have a density value between 75 and 100.
Therefore, the view of the knowledge base that was generated by means
of this configuration only contained samples whose model fragment had
a large density value.

Density-A selects samples that have a density value between 0 and 100.
Specifically, a quarter of the selected samples had a density value between
0 and 25, a quarter of the selected samples had a density value between
25 and 50, a quarter of the selected samples had a density value between
50 and 75, and a quarter of the selected samples had a density value
between 75 and 100. Therefore, the view of the knowledge base that was
generated by means of this configuration contained samples covering all
density values.

In order to answer RQ2, we defined three configurations to select samples with
different multiplicity values:
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Multiplicity=1 selects samples that have a multiplicity value equal to
1. Therefore, the view of the knowledge base that was generated by
means of this configuration only contained samples whose model fragment
appeared one time in the product model.

Multiplicity>1 selects samples that have a multiplicity value greater
than 1. Therefore, the view of the knowledge base that was generated by
means of this configuration only contained samples whose model fragment
appeared two or more times in the product model.

Multiplicity-A selects samples that have any multiplicity value. Specif-
ically, half of the selected samples had a multiplicity value equal to 1,
and half of the selected samples had a multiplicity value greater than 1.
Therefore, the view of the knowledge base that was generated by means
of this configuration contained samples covering all multiplicity values.

In order to answer RQ3, we defined three configurations to select samples with
different dispersion values:

Dispersion-XS selects samples that have a dispersion value between 0
and 0.25. Therefore, the view of the knowledge base that was generated by
means of this configuration only contained samples whose model fragment
had an extra-small dispersion value.

Dispersion-S selects samples that have a dispersion value between 0.25
and 0.50. Therefore, the view of the knowledge base that was generated by
means of this configuration only contained samples whose model fragment
had a small dispersion value.

Dispersion-M, selects samples that have a dispersion value between 0.50
and 0.75. Therefore, the view of the knowledge base that was generated by
means of this configuration only contained samples whose model fragment
had a medium dispersion value.

Dispersion-L selects samples that have a dispersion value between 0.75
and 1. Therefore, the view of the knowledge base that was generated by
means of this configuration only contained samples whose model fragment
had a large dispersion value.

Dispersion-A selects samples that have a dispersion value between 0 and
1. Specifically, a quarter of the selected samples had a dispersion value
between 0 and 0.25, a quarter of the selected samples had a dispersion
value between 0.25 and 0.50, a quarter of the selected samples had a
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dispersion value between 0.50 and 0.75, and a quarter of the selected
samples had a dispersion value between 0.75 and 1. Therefore, the view
of the knowledge base that was generated by means of this configuration
contained samples covering all dispersion values.

Each configuration is used to generate a different view of the knowledge base,
and each view is used to evaluate all of the test cases. Each combination (be-
tween a view of the knowledge base and a test case) provides a ranking of model
fragments as output. The top fragment of this ranking is the best realization
of the feature found by means of the FLiM-ML approach. Therefore, this top
model fragment is compared with the correspondent approved feature in order
to determine how good the obtained model fragment is. This comparison is
performed by means of a confusion matrix.

A confusion matrix is a table that is often used to describe the performance of
a classification model (in this case, the performance of each configuration) on
a set of test data (the test cases) for which the true values are known (from the
approved features). In our case, each model fragment in the test cases obtains
a score in the feature location process. Since the granularity is at the level of
model elements, the presence or absence of each model element is considered to
be a classification. The confusion matrix distinguishes between the predicted
values and the real values, classifying them into four categories:

e True Positive (TP): values that are predicted as true (in the model frag-
ment obtained as the solution) and are true in the real scenario (the
approved feature used as the oracle).

e False Positive (FP): values that are predicted as true (in the solution)
but are false in the real scenario (the oracle).

e True Negative (TN): values that are predicted as false (in the solution)
and are false in the real scenario (the oracle).

e False Negative (FN): values that are predicted as false (in the solution)
but are true in the real scenario (the oracle).

Then, some performance measurements are derived from the values in the con-
fusion matrix. Specifically, we create a report that includes four performance
measurements (recall, precision, the F-measure, and the MCC) for each com-
bination of a configuration and a test case.

Recall measures the proportion of elements of the solution that are correctly
retrieved by the proposed solution and is defined as follows:
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TP

Recall = 75N

Precision measures the proportion of elements from the solution that are cor-
rect according to the ground truth (the oracle) and is defined as follows:

TP

P .. -ttt
recision TP+ FP

The F-measure corresponds to the harmonic mean of precision and recall and
is defined as follows:

Precision * Recall B 2+ TP

F— =9 —
measure ¥ Precision + Recall 2TP+ FP+ FN

However, none of these previous measures correctly handle negative examples
(TN). The MCC is a correlation coefficient between the observed and pre-
dicted binary classifications that takes into account all of the observed values
(TP, TN, FP, FN) and is defined as follows:

TP-TN —FP-FN
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC =

Recall values can range between 0% (i.e., no single model element from the
oracle is present in the model fragment of the solution) and 100% (i.e., all
of the model elements from the oracle are present in the solution). Precision
values can range between 0% (i.e., no single model element from the solution
is present in the oracle) and 100% (i.e., all of the model elements from the
solution are present in the oracle). A value of 100% precision and 100% recall
means that both the solution and the feature realization from the oracle are
the same. MCC values can range between —1 (i.e., there is no correlation
between the predicted solution and the oracle) to 1 (i.e., the predicted solution
is perfect). Moreover, a MCC value of 0 corresponds to a random prediction.
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6.4.2 Case Study

The case study where we applied feature location was CAF, a worldwide
provider of railway solutions. Their trains can be found all over the world
and in different forms (regular trains, subway, light rail, monorail, etc.). A
train unit is furnished with multiple pieces of equipment in its vehicles and
cabins. These pieces of equipment are often designed and manufactured by
different providers, and their aim is to carry out specific tasks for the train.
Some examples of these devices are: the traction equipment, the compressors
that feed the brakes, the pantograph that harvests power from the overhead
wires, and the circuit breaker that isolates or connects the electrical circuits of
the train. The control software of the train unit is in charge of making all of the
equipment cooperate in order to achieve the train functionality, while guaran-
teeing compliance with the specific regulations of each country. The following
video illustrates the CAF models: www.youtube.com/watch?v=Ypcl2evEQBS.

Our evaluation includes 268 test cases and 13 configurations of the knowledge
base that are defined in the experimental setup. Each test case is composed
of a feature description and a set of model fragments. Specifically, the feature
description is defined using natural language and contains about 25 words. The
set of model fragments has about 100 model fragments with different values of
density, multiplicity, and dispersion.

Moreover, our case study also includes the ontology and the knowledge base
that are necessary for the feature location approach. The ontology contains
a total of 54 elements between concepts and relations. The knowledge base
has about 7500 samples. These samples were selected according to each con-
figuration generating 13 different views of the knowledge base, one for each
configuration. Specifically, each view has about 1600 samples, where about
400 samples have a score between 0 and 1, about 400 samples have a score
between 1 and 2, about 400 samples have a score between 2 and 3, and about
400 samples have a score between 3 and 4. Therefore, score values can range
between 0 (i.e., no single model element from the oracle is present in the solu-
tion) and 4 (i.e., all of the model elements from the oracle are present in the
solution). Moreover, the density, multiplicity, and dispersion values for each
view depend on the configuration used. The first five configurations, which are
related to RQ1, allow us to generate five views of the knowledge base based
on density. Figure 6.5 shows the distribution of these views according to the
score and the density value of the samples selected for these views.

Then, the following three configurations, which are related to RQ2, allow us to
generate three views of the knowledge base based on multiplicity. Figure 6.6
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Figure 6.6: Distribution of the model fragments selected from the following three con-
figurations (Multiplicity=1, Multiplicity>1, Multiplicity-A) according to their scores and
multiplicity values

shows the distribution of these views according to the score and the multiplicity
value of the samples selected for these views.

Finally, the last five configurations, which are related to RQ3, allow us to
generate five views of the knowledge base based on dispersion. Figure 6.7
shows the distribution of these views according to the score and the dispersion
value of the samples selected for these views.

For each view of the knowledge base, we evaluated the all of the test cases.
Moreover, each combination of view and test case was run 30 times. As sug-
gested by (Arcuri and Fraser 2013), given the stochastic nature of the eval-
uation, several repetitions are needed to obtain reliable results. Finally, the
results were compared to the approved features (oracle). In our case study,
the approved features consist of a set of model fragments, where each model
fragment contains the model elements that are required by a feature descrip-
tion. In other words, the approved features contain the solutions for each test
case, so the oracle had 268 model fragments (one for each test case). Figure
6.8 shows the distribution of the oracle regarding the density, multiplicity, and
dispersion properties. Moreover, since the model fragments in the oracle are
the correct solutions, they always have a score equal to 4. Therefore, the score
of the model fragments in the oracle is not considered in the plots.
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6.4.3 FLiM-ML Approach

The FLiM-ML (Ana C. Marcén et al. 2017) is an approach for locating features
in models that are based on machine learning. In this work, the FLiM-ML
approach was used to evaluate the different configurations that serve to answer
the RQs of this work. Figure 6.9 shows an overview of the FLiM-ML approach,
whose objective is to provide a ranking of model fragments. The top model
fragment in the ranking is the best realization found for a feature description.
To do this, the approach has two phases: training and testing.

In the training phase, a classifier is trained to learn how well each model
fragment realizes a specific feature description. To do this, the input consists
of an ontology and a knowledge base. The ontology is composed of concepts,
properties, and relations of a domain. The knowledge base is composed of
samples, where each sample relates a feature description and a model fragment
according to a score. Specifically, since the model fragment realizes the feature
description to a greater or lesser extent, this score indicates the degree of
similarity between the model fragment and the feature description. In our
case, instead of using the whole knowledge base, we used the views of the
knowledge base that are described in the experimental setup and the case
study.

The training phase consists of four steps:

1. Encoding: the ontology is used to encode the samples of the knowledge
base into feature vectors, as described in (Ana C Marcén, Pérez, and
Cetina 2017). Moreover, since both feature descriptions and model frag-
ments are based on natural language, the terms used in the ontology do
not always align well with the terms in the feature description and with
the terms in the model fragments. For this reason, before encoding, the
feature descriptions and the model fragments are processed by a combina-
tion of NLP techniques defined in (Lapena et al. 2017), which consists of
tokenizing, lowercasing, removal of duplicate keywords, syntactical anal-
ysis, lemmatization, and stopword removal.

2. Feature selection: applies a mask to select only the most relevant features
in the feature vectors. To do this, a set of masks is generated and evolved
by means of an evolutionary algorithm as in (Ana C Marcén, Pérez, and
Cetina 2017). As a result, the top mask in the ranking, which is obtained
from the evolutionary algorithm, indicates the selected characteristics.
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3. Tuning: determines what parameters must be used to obtain the best
performance of the machine learning technique. The parameter tuning
in the FLiM-ML approach is performed in (Kirag, Aktemur, and Sozer
2018). First, a grid search is built to determine the values of the param-
eters, which depend on the machine learning technique selected. Then,
the FLiM-ML approach uniformly samples each of the parameters in their
range and evaluates all of the combinations of the sampled values.

4. Training with a machine learning technique: the training set is used to
train the classifier, which learns a rule-set through the comparison of the
feature vectors of the training set (Shabtai et al. 2009). However, before
using this classifier in the testing phase, it is worth analyzing the per-
formance of the classifier through cross-validation. Cross-validation is a
statistical method of evaluating and comparing machine learning tech-
niques by dividing data into two segments: one used to train a classifier,
and the other used to validate the classifier (Refaeilzadeh, Tang, and
H. Liu 2009). Moreover, to reduce variability, multiple rounds of cross-
validation are performed using different partitions, and the results are
averaged over the rounds (Song et al. 2011).

The results of the cross-validation provide the performance of the clas-
sifier. If this performance is not considered suitable, it is necessary to
perform another training iteration. In this iteration, some artifacts of the
training phase (e.g., the encoding, the ontology, the knowledge base, or
the machine learning technique) must be modified in order to improve
the classifier. Otherwise, if the performance is considered suitable, the
classifier obtains the go-ahead, so the classifier trained with the whole
knowledge base is used in the testing phase. Once the classifier has been
generated, the training phase does not have to be repeated again. The
same classifier is used to evaluate all of the test cases for a configuration
in the testing phase. Therefore, the classifier is considered to be both an
artifact (output of Step 4 in the training phase) and a step (responsible
for testing the test cases in the testing phase). For this reason, Figure 6.9
shows the classifier in a black, rounded rectangle to point out its double
meaning.

In the testing phase, the classifier is used to rank the set of model fragments
according to a feature description described in natural language. To do this,
the input consists of the set of model fragments, the feature description, and
an ontology. Each model fragment realizes the feature description to a greater
or lesser extent.
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The testing phase consists of two steps:

5. Encoding: The ontology is used to encode each model fragment and the
feature description. To be fair, both the characteristics of the encoding
and the ontology must be the same for the the training phase and the test-
ing phase. As a result, each model fragment and the feature description
are encoded as a feature vector in the testing set.

6. Classifier: Then, each feature vector of the testing set is tested by the
classifier, which uses the learned rule-set to assign a score to each one
of them. This score is a numerical value that is greater than 0. The
higher the score, the closer the model fragment to the feature description.
Therefore, this model fragment would be a better realization of the feature
description than any other model fragment with a lower score. Taking
into account the scores, the model fragments can be ordered in a ranking
where the top positions are occupied by the model fragments with the
highest relevance to the feature description. This ranking is the final
result of the FLiM-ML approach.

6.4.4 Implementation details

We used the Eclipse Modeling Framework to manipulate the models and CVL
to manage the model fragments. For the Machine Learning technique, we se-
lected Rankboost (Freund et al. 2003). RankBoost belongs to the family of
Learning to Rank, whose algorithms are specifically designed to perform rank-
ing tasks. Moreover, Rankboost is well known for its efficiency and effectiveness
in different domains (Canuto et al. 2013),(Cao et al. 2018). RankBoost was
implemented using the RankLib library (Dang 2013) and tuned as in (Kirag,
Aktemur, and Sozer 2018). Specifically, the parameters were tuned with iter-
ation = 200 and metric equal to ERR10.

6.4.5 Results

In Table 6.1, we outline the mean results for the test cases regarding the
configurations (Density-XS, Density-S, Density-M, Density-L, and Density-A)
that answer RQ1. Each column shows the Precision, Recall, F-measure, and
MCC obtained through each configuration.

In response to RQ1, there are clear differences between the results ob-
tained for the different configurations. In fact, as Table 6.1 shows, Density-XS
achieves the best results for all of the performance indicators, providing a
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Table 6.1: Mean Values and Standard Deviations for Precision, Recall, F-Measure, and
MCC for the test cases regarding the configurations (Density-XS, Density-S, Density-M,
Density-L, and Density-A) that answer RQ1

Precision Recall F-measure MCC
Density-XS 89.74 £ 25.46 82.26 4+ 32.11 84.16 £ 29.50 0.81
Density-S 60.73 & 43.47 58.62 £ 45.21 5841 £+ 44.07 0.47
Density-M ~ 59.17 £ 44.34 57.22 + 45.32 57.47 £ 44.44 0.48
Density-L. ~ 46.74 £ 40.57 41.22 + 41.35 42.71 £ 40.85 0.28
Density-A  82.06 £ 32.84 74.84 + 37.50 76.35 £ 35.47 0.72

mean precision value of 89.74%, a recall value of 82.26%, a F-measure value of
84.16%, and a MCC value of 0.81. In contrast, Density-L presents the worst
results in all of the indicators, providing a mean precision value of 46.74%, a
recall value of 41.22%, a F-measure value of 42.71%, and a MCC value of 0.28.
These results indicate that the density values of the model fragments in the
knowledge base influence the results. However, the statistical analysis is the
final step to claim that the results of the five configurations are significantly
different and to assess the magnitude of the improvement from Density-XS.

Therefore, since RQ1 was answered positively, we needed to answer RQ4 and
RQ5 for the density property. In response to RQ4, Table 6.1 shows that
Density-XS achieves the best results for all the performance indicators. More-
over, there is about a 7% of difference between the recall, the precision, and
the F-measure obtained for Density-XS and the rest of the configurations. For
the MCC, the difference between Density-XS and the rest of the configurations
is at least equal to 0.09. These results indicate that the model fragments in the
knowledge base should cover the extra-small density values. In other words,
the model fragments in the knowledge base should have density values between
0 and 25 in order to obtain the best results.

On the other hand, to answer RQ5, Table 6.2 shows the mean results taking
into account the density values of the oracle (approved features) for the test
cases. HFach column shows the Precision, Recall, F-measure, and MCC ob-
tained through each configuration. Moreover, Figure 6.8 shows the number of
approved features in the oracle according to their density values.

In response to RQ5, as Table 6.2 shows, Density-XS achieves the best re-
sults for all of the performance indicators regardless of the test cases. In fact, a
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Table 6.2: Mean Values and Standard Deviations for Precision, Recall, F-Measure, and
MCC for the test cases grouped by the density values of their approved features, regarding
the configurations: Density-XS, Density-S, Density-M, Density-L, and Density-A

Density values

] Configuration Precision Recall F-measure MCC
in test cases

Density-XS 87.85 + 27.18 86.83 + 30.40 86.80 + 29.08 0.86

Density-S 59.40 + 45.88 59.44 + 47.76 59.11 + 46.87  0.58

[0,25) Density-M 55.76 + 48.52 56.86 + 49.00 56.24 + 48.71  0.55
Density-L 41.86 4+ 44.02 39.75 + 44.85 40.08 £+ 44.55 0.38

Density-A 85.21 4+ 30.43 84.03 + 32.82 83.87 +31.94 0.83

Density-XS 96.30 & 17.52 90.74 £ 25.16 92.10 £ 21.94 0.92

Density-S 61.33 + 39.08 60.62 + 41.52 59.06 + 39.57 0.49

[25,50) Density-M 4592 + 43.43 4444 + 44.78 43.99 £+ 4295 0.35
Density-L 41.96 + 39.69 36.48 + 39.83 37.79 + 39.31 0.28

Density-A 76.61 + 40.63 73.33 + 41.57 73.72 +40.59 0.73

Density-XS 75.93 £ 37.71 63.37 = 35.24 68.16 + 35.40 0.55

Density-S 45.85 4+ 45.07 44.59 £+ 44.44 44.70 £ 44.17  0.20

[50,75) Density-M 51.57 + 43.13 45.06 + 40.06 47.09 + 40.33 0.27
Density-L 42.86 + 39.96 36.61 + 35.70 38.64 + 36.57 0.14

Density-A 72.84 £ 35.66 59.67 + 35.88 63.70 4+ 34.48 0.49

Density-XS 95.37 + 11.27 83.49 + 32.46 85.66 + 27.67 0.83

Density-S 72.57 £ 41.26 66.36 + 45.33 67.36 4+ 43.84 0.56

[75,100] Density-M 81.44 + 33.09 79.48 + 37.48 79.94 + 35.80 0.70
Density-L 59.18 + 36.38 50.84 4+ 42.47 53.25 + 40.57 0.28

Density-A 91.36 + 19.08 78.80 + 35.72 81.15 + 31.59 0.77
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Table 6.3: Mean Values and Standard Deviations for Precision, Recall, F-Measure,
and MCC for the test cases for the configurations (Multiplicity=1, Multiplicity>1, and
Multiplicity-A) that answer RQ2

Precision Recall F-measure MCC
Multiplicity=1 91.13 £ 23.44 89.91 £+ 26.10 89.86 £ 24.83 0.89
Multiplicity>1 90.26 £ 24.77 87.94 £ 28.26 88.16 £ 26.56 0.88
Multiplicity-A  92.14 4+ 21.99 89.97 £+ 26.12 90-06 + 24.25 0.90

knowledge base that is configured using model fragments with extra-small den-
sity values (Density-XS) obtained the results for the test cases whose approved
features have density values between 0 and 25, providing a mean precision value
of 87.85%, a recall value of 86.83%, a F-measure value of 86.80%, and a MCC
value of 0.86. The same configuration obtained the best results for the test
cases whose approved features have density values between 25 and 50, provid-
ing a mean precision value of 96.30%, a recall value of 90.74%, a F-measure
value of 92.10%, and a MCC value of 0.92. This configuration also obtained
the best results for the test cases whose approved features have density values
between 50 and 75, providing a mean precision value of 75.93%, a recall value
of 63.37%, a F-measure value of 68.16%, and a MCC value of 0.55. Finally, the
same configuration obtained the best results for the test cases whose approved
features have density values between 75 and 100, providing a mean precision
value of 95.37%, a recall value of 83.49%, a F-measure value of 85.66%, and
a MCC value of 0.83. Therefore, although the searched solutions in the test
cases have different density values than the model fragments in the knowledge
base, the obtained results can be even better than the results obtained using
model fragments with similar density values.

In Table 6.3, we outline the mean results for the test cases regarding the con-
figurations (Multiplicity=1, Multiplicity>1, and Multiplicity-A) that answer
RQ2. Each column shows the Precision, Recall, F-measure, and MCC obtained
through each configuration.

In response to RQ2, the results obtained for all of the configurations are
very similar. Therefore, Table 6.3 does not provide enough evidence to say
with certainty that multiplicity influences the results. For this reason, RQ2 is
answered taking into account the statistical analysis.

In Table 6.4, we outline the mean results for the test cases for the configurations
(Dispersion-XS, Dispersion-S, Dispersion-M, Dispersion-L, and Dispersion-A)
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Table 6.4: Mean Values and Standard Deviations for Precision, Recall, F-Measure, and
MCC for the test cases for the configurations (Dispersion-XS, Dispersion-S, Dispersion-M,
Dispersion-L, and Dispersion-A) that answer RQ3

Precision Recall F-measure MCC
Dispersion-XS 86.84 4+ 30.38 86.96 £ 26.29 85.63 + 28.72 0.85
Dispersion-S 86.79 £ 30.24 87.21 £ 26.56 85.75 £ 28.83 0.85
Dispersion-M  33.61 4+ 32.31 34.61 £+ 33.88 32.72 + 32.48 0.28
Dispersion-L. ~ 66.58 + 39.97 67.20 £ 35.98 65.86 + 37.77 0.64
Dispersion-A  73.73 £ 37.16 78.77 £ 29.27 73.80 £+ 33.89 0.73

that answer RQ3. Each column shows the Precision, Recall, F-measure, and
MCC obtained through each configuration.

In response to RQ3, there are clear differences between the results obtained
for the different configurations. In fact, as Table 6.1 shows, Dispersion-XS
and Density-S achieve the best results: Density-XS attains 86.84% precision,
86.96% recall, 85.63% F-measure, and 0.85 MCC; and Dispersion-S attains
86.79% precision, 87.21% recall, 85.75% F-measure, and 0.85 MCC. In contrast,
Dispersion-M presents the worst results in all of the indicators, providing a
mean precision value of 33.61%, a recall value of 34.61%, a F-measure value of
32.72%, and a MCC value of 0.28. These results indicate that the dispersion
of the model fragments in the knowledge base influences the results. However,
the statistical analysis is the final step to claim that the results of the five
configurations are significantly different and to assess the magnitude of the
improvement from Density-XS or Density-S.

Therefore, since RQ3 was answered positively, we needed to answer RQ4 and
RQ5 for the dispersion property. In response to RQ4, Table 6.4 shows that
Dispersion-XS and Dispersion-S achieve the best results for all of the perfor-
mance indicators. Moreover, the difference between the recall, the precision,
and the F-measure obtained for these two configurations and the rest of config-
urations is greater than 12%. For the MCC, the difference between these two
configurations and the rest of the configurations is at least equal to 0.12. To all
appearances, these results indicate that the model fragments in the knowledge
base should cover at least one of these configurations: extra-small dispersion
values or small dispersion values. In other words, the model fragments in the
knowledge base should have dispersion values between 0 and 25 or between 25
and 50 in order to obtain the best results. However, a statistical analysis can
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Table 6.5: Mean Values and Standard Deviations for Precision, Recall, F-Measure, and
MCC for the test cases grouped by the dispersion values of their approved features re-
garding the configurations: Dispersion-XS, Dispersion-S, Dispersion-M, Dispersion-L, and

Dispersion-A

Dispersion values

. Configuration Precision Recall F-measure MCC
n test cases

Dispersion-XS 100.00 £ 0.00 88.56 £ 7.79  93.76 £ 4.25  0.93

Dispersion-S 100.00 = 0.00 89.55 £ 8.12  94.30 £ 443 0.94

[0,0.25) Dispersion-M  30.27 + 12.57 17.41 + 11.76 21.75 + 11.37 0.14
Dispersion-L 100.00 £ 0.00 88.56 £ 7.79  93.76 £ 4.25 0.93

Dispersion-A  100.00 + 0.00 89.30 + 8.05  94.17 + 4.39  0.94

Dispersion-XS 95.24 £+ 15.82 93.37 4+ 20.20 93.68 + 18.84 0.93

Dispersion-S 95.14 + 15.07 92.87 + 21.60 93.43 £ 19.58 0.92

[0.25,0.50) Dispersion-M  54.04 + 44.00 51.14 4+ 45.02 51.79 + 44.75 0.46
Dispersion-L 77.11 + 36.41 73.51 +40.10 74.69 4+ 38.64 0.71

Dispersion-A  94.89 + 15.98 92.44 + 21.65 93.02 + 19.96 0.92

Dispersion-XS 73.96 + 42.87 74.13 4+ 42.36 73.82 + 4244 0.73

Dispersion-S 74.10 £ 42.54 74.63 + 42.49 T74.14 + 42.27 0.73

[0.50,0.75) Dispersion-M  23.66 + 37.42 27.36 &+ 36.55 24.88 + 36.71 0.21
Dispersion-L 58.21 + 49.50 56.72 + 49.06 57.16 + 49.04 0.54

Dispersion-A  74.23 + 42.73 75.12 4+ 42.82 74.14 + 4244 0.72

Dispersion-XS  78.17 + 34.87 91.79 + 18.78 81.28 £+ 30.45 0.82

Dispersion-S 77.92 + 35.13 91.79 £+ 18.78 81.13 + 30.63 0.81

[0.75,1] Dispersion-M  26.46 + 13.39 42.54 +21.91 32.47 + 1640 0.30
Dispersion-L 31.00 &£ 8.22  50.00 £+ 15.19 37.81 £9.60  0.37

Dispersion-A 25.81 £9.30 5821 £ 20.72 33.86 £8.85 0.35

determine whether or not there are significant differences between these two
configurations (Dispersion-XS and Dispersion-S).

On the other hand, to answer RQ5, Table 6.5 shows the mean results taking
into account the dispersion values of the oracle (approved features) for the
test cases. Each column shows the Precision, Recall, F-measure, and MCC
obtained through each configuration. Moreover, Figure 6.8 shows the number
of approved features in the oracle according to their dispersion values.

In response to RQ5, Table 6.5 shows that four configurations (Dispersion-
XS, Dispersion-S, Dispersion-L, and Dispersion-A) achieve similar results for
the test cases where the searched solutions have dispersion values between 0
and 0.50. Moreover, three configurations (Dispersion-XS, Dispersion-S, and
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Dispersion-A) achieve similar results for test cases where the searched solu-
tions have dispersion values between 0.75 and 1 or between 0.50 and 0.75.
Finally, for the test cases where the searched solutions have dispersion val-
ues between 0.75 and 1, two configurations (Dispersion-XS and Dispersion-S)
achieve similar results. Therefore, for the dispersion property, there is more
than one configuration that obtain the best results for test cases where the
searched solutions have different dispersion values than the model fragments
in the knowledge base.

6.4.6 Statistical Analysis

A statistical test must be run to assess whether there is enough empirical
evidence to claim that there is a difference between two approaches (e.g., A is
better than B). To achieve this, two hypotheses are defined: the null hypothesis
Hjy, and the alternative hypothesis H;. The null hypothesis Hy is typically
defined to state that there is no difference between the approaches, whereas
the alternative hypothesis H; states that the configurations differ. In such a
case, a statistical test aims to verify whether the null hypothesis Hy should be
rejected.

Statistical tests provide a probability value, p— Value. The p— Value obtains
values between 0 and 1. The lower the p— Value of a test, the more likely that
the null hypothesis is false. It is accepted by the research community that a
p — Value under 0.05 is statistically significant (Arcuri and Briand 2014), and
so the hypothesis H, can be considered false.

The test carried out depends on the properties of the data. Since our data
does not follow a normal distribution in general, our analysis required the use
of nonparametric techniques. There are several tests for analyzing this kind of
data; however, the Quade test is the most powerful one when working with real
data (Garcia et al. 2010). In addition, according to Conover (Conover 1999),
the Quade test is the one that has shown the best results for a low number of
configurations (no more than 4 or 5 configurations).

Table 6.6 shows the Quade test statistic and p — Values for precision, recall,
F-measure, and MCC. For density and dispersion, the p — Values are smaller
than 0.05, so we could reject the null hypothesis. In contrast, for multiplicity,
the p — Values are not smaller than 0.05, so we could not reject the null
hypothesis. Consequently, we can state that there are significant differences
among the five configurations for density and among the five configurations
for dispersion. However, there are no significant differences among the three
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Table 6.6: Quade test statistic and p — Values
Precision Recall F-Measure MCC
Densit p-Value <220x 107 <220x 107 <2.20x10716 <2.20x 10716
Y Statistic 79.79 63.62 71.41 65.50
= d . . 5 . 5 .
Multiplicity p V’)flufe 0.41 0.15 0.35 0.51
Statistic 0.87 1.86 1.06 0.67
. . p-Value <220x1071% <220x1071% <220x 107 <2.20x 10716
Dispersion —
Statistic 118.7 126.6 111.89 117.41

configurations for multiplicity. Therefore, in response to RQ1, the statistical
analysis determines that the density influences the results. In response to
RQ2, the statistical analysis determines that the multiplicity does not influence
the results. In response to RQ3, the statistical analysis determines that the
dispersion influences the results.

Nevertheless, with the Quade test, we cannot answer the following questions:
Which of the configurations regarding density gives the best performance? and
Which of the configurations regarding dispersion gives the best performance In
this case, the performance of each configuration should be individually com-
pared with all of the other alternatives. In order to do this, we performed
an additional post hoc analysis. This kind of analysis performs a pair-wise
comparison among the results of each configuration, determining whether sta-
tistically significant differences exist among the results of a specific pair of
configurations.

Table 6.7 shows the p — Values of Holm’s post hoc analysis for each specific
pair of configurations according to the RQs. Most of the p — Values shown in
this table are smaller than 0.05, so these comparisons have significant differ-
ences for all of the performance measurements. However, Table 6.7 shows that
there are no significant differences between Density-S and Density-M, between
Dispersion-XS and Dispersion-S, and between Dispersion-L and Dispersion-A.
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Table 6.7: Holm’s Post Hoc p — Values

Precision Recall F-Measure MCC
Density-XS vs Density-S <2.0x1071%  58x 107! 7.6 x 10714 1.4 x 10718
Density-XS vs Density-M <20x1071%  1.4x10712 1.0 x 107 4.9 x 1071
Density-XS vs Density-L <20x1071% <20x107'% <2.0x107'% <20x10716
Density-XS vs Density-A 1.7 x 1073 9.7 x 1073 7.1 x 10? 3.9%x 1073
. Density-S vs Density-M 0.37 0.5 0.64 1.0
Density - - =

Density-S vs Density-L 1.4 x 107° 4.9x 1078 6.3 x 1077 9.8 x 1077
Density-S vs Density-A 4.7 x 10712 6.4 x 1078 8.1 x 10710 3.5 x 10710
Density-M vs Density-L 1.1x 1077 2.2 x107° 9.8 x 107 1.0 x 1077
Density-M vs Density-A <20x107%  1.6x 107! 2.0 x 1071 5.4 x 10716
Density-L vs Density-A <20x107% <20x107% <20x107'% <20x10716
Dispersion-XS vs Dispersion-S 0.99 0.49 0.61 0.6
Dispersion-XS vs Dispersion-M < 2.0 x 1076 <2.0x 107¢ <2.0x 1071 <2.0x 1076
Dispersion-XS vs Dispersion-L. 2.4 x 1071 1.6 x 10713 6.2 x 10710 2.8 x 10710
Dispersion-XS vs Dispersion-A 1.0 x 107!} 1.1 x 107 1.2 x 1078 <2.7x107°

) . Dispersion-S vs Dispersion-M < 2.0x 10716 <2.0x107'% <2.0x107'% <2.0x 10716

Dispersion - - - -

Dispersion-S vs Dispersion-L 8.7 x 10711 3.1x 1071 7.2 x 10711 2.1 x 1071
Dispersion-S vs Dispersion-A 2.3 x 10710 1.4 x 1078 9.7 x 10710 4.4 x 10710

Dispersion-M vs Dispersion-L. < 2.0 x 1076 <2.0x 107¢ <2.0x 107 <2.0x 10716
Dispersion-M vs Dispersion-A < 2.0 x 1076  <2.0x 1071¢ <2.0x 1071 <2.0x 10716
Dispersion-L vs Dispersion-A 0.56 2.7 x107° 0.38 0.068

6.4.7 Effect Size

Statistically significant differences can be obtained even if they are so small
as to be of no practical value (Arcuri and Briand 2014). It is then important
to assess whether a configuration is statistically better than another and to
assess the magnitude of the improvement. Effect size measures are needed to
analyze this.

For a non-parametric effect size measure, we used Vargha and Delaney’s A
(Vargha and Delaney 2000). Ay, measures the probability that running one
configuration yields higher values than running another configuration. If the
two configurations are equivalent, then Ay, will be 0.5.

For example, Ays = 0.7 means that we would obtain better results in 70% of
the runs with the first of the pair of configurations that have been compared,
and Alg = 0.3 means that we would obtain better results in 70% of the runs
with the second of the pair of configurations that have been compared. Thus,
we have an A, value for every pair of configurations.
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Table 6.8: /112 statistic for each pair of configurations
Precision Recall F-Measure MCC
Density-XS vs Density-S 0.68 0.64 0.66 0.66
Density-XS vs Density-M 0.69 0.65 0.67 0.67
Density-XS vs Density-L 0.77 0.76 0.76 0.76
Density-XS vs Density-A 0.56 0.55 0.55 0.55
. Density-S vs Density-M 0.51 0.52 0.51 0.50
Density - -
Density-S vs Density-L 0.58 0.59 0.58 0.59
Density-S vs Density-A 0.37 0.40 0.39 0.38
Density-M vs Density-L 0.57 0.57 0.57 0.59
Density-M vs Density-A 0.36 0.39 0.38 0.37
Density-L vs Density-A 0.28 0.29 0.29 0.28
Dispersion-XS vs Dispersion-S 0.50 0.50 0.50 0.50
Dispersion-XS vs Dispersion-M 0.84 0.84 0.84 0.84
Dispersion-XS vs Dispersion-L 0.63 0.67 0.65 0.65
Dispersion-XS vs Dispersion-A 0.60 0.59 0.60 0.60
. . Dispersion-S vs Dispersion-M 0.84 0.84 0.84 0.84
Dispersion - - - -
Dispersion-S vs Dispersion-L 0.63 0.67 0.65 0.66
Dispersion-S vs Dispersion-A 0.59 0.60 0.60 0.60
Dispersion-M vs Dispersion-L 0.28 0.27 0.27 0.26
Dispersion-M vs Dispersion-A 0.24 0.19 0.22 0.20
Dispersion-L vs Dispersion-A 0.46 0.41 0.45 0.44

Table 6.8 shows the values of the effect size statistics between every pair of con-
figurations. In response to RQ4 regarding density, Density-XS obtains
the best results, and Table 6.8 shows the superiority of this configuration in
comparison to the others. Specifically, the A, measure indicates that Density-
XS would obtain better results than Density-S in 68% of the runs for precision,
in 64% of the runs for recall, in 66% of the runs for F-measure, and in 66%
of the runs for MCC. Density-XS would obtain better results than Density-M
in 69% of the runs for precision, in 65% of the runs for recall, in 67% of the
runs for F-measure, and in 67% of the runs for MCC. Density-XS would obtain
better results than Density-L in 77% of the runs for precision, in 76% of the
runs for recall, in 76% of the runs for F-measure, and in 56% of the runs for
MCC. Density-XS would obtain better results than Density-S in at least 55%
of the runs for precision, in 55% of the runs for recall, in at least 66% of the
runs for F-measure, and in at least 55% of the runs for MCC.
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Table 6.8 shows the values of the effect size statistics between every pair of
configurations. In response to RQ4 regarding dispersion, Dispersion-XS
and Dispersion-S obtain the best results. Moreover, according to the post hoc
analysis, there are no significant differences between these configurations. In
fact, Table 6.8 shows that they are equivalent because all of the Ay, values for
all of the indicators are equal to 0.5. The table also shows the superiority of
these configurations in comparison to the others. Specifically, the Ay, measure
indicates that Dispersion-XS and Dispersion-S would obtain better results than
Dispersion-M in 84% of the runs for precision, in 84% of the runs for recall, in
84% of the runs for F-measure, and in 84% of the runs for MCC. Dispersion-
XS and Dispersion-S would obtain better results than Dispersion-L in 63%
of the runs for precision, in 67% of the runs for recall, in 65% of the runs
for F-measure, and in at least 65% of the runs for MCC. Dispersion-XS and
Dispersion-S would obtain better results than Dispersion-A in at least 59% of
the runs for precision, in at least 59% of the runs for recall, in 60% of the runs
for F-measure, and in 60% of the runs for MCC.

6.5 Discussion

The results highlight that the Density-XS configuration achieves better results
than any other configuration regarding density. There is not a significant dif-
ference between the configurations regarding multiplicity. The Dispersion-XS
and Dispersion-S configurations achieve better results than the other configu-
rations regarding dispersion and there is not a significant difference between
Dispersion-XS and Dispersion-S.

The first aspect of the results that can be discussed is the fact that none of the
model fragment properties must be balanced in order to obtain the best fea-
ture location results. The density requires extra-small values, the multiplicity
does not matter, and the dispersion requires extra-small or small values. This
may be surprising since it is conventional wisdom that an imbalanced knowl-
edge base tends to produce worse results. Therefore, we might hope that the
configurations of the knowledge base with balanced model fragment properties
(Density-A, Multiplicity-A, and Dispersion-A) we produce the best results. In
fact, when this research started, three domain experts discussed if whether any
of the three model fragment properties should be used to report the knowledge
base. None of the domain experts considered to configure the knowledge base
with model fragments that only have some specific property values because
this means that the knowledge base would be imbalanced for that property.
However, taking into account our results, none of the three properties had to
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be balanced for our case study. Although these are surprising results, they are
indeed positive and beneficial for reducing costs.

The greater the number of properties that have to be balanced, the more
expensive and complex the generation of the knowledge base will be. For
example, given a knowledge base where half of the samples have a score value
equal to 0 and half of the samples have a score value equal to 1, if the knowledge
base had to be balanced for both the score values (0 or 1) and also the density
values (<=50 or >50), the knowledge base would have to have to be the same
number of samples for all of the possible combinations between the score values
and the density values: samples with a score value equal to 0 and density value
<=50, samples with a score value equal to 0 and density value >50, score value
equal to 1 and density value <=50, and samples score value equal to I and
density value >50. In this example, there are only four combinations, but the
problem appears when the properties have more than two values and there are
more than two properties to be balanced. Therefore, since for our case none
of the properties has to be balanced, we only have to balance the scores, and
therefore the cost is affordable. Nevertheless, if several properties had to be
balanced, we would have to think if the improvement of the results compensates
for the cost.

The second aspect of the results that can be discussed is the relation among
the configurations.

With regard to density, the model fragments with extra-small density val-
ues achieve results with up to 43% more precision, 41% more recall, 42% more
F-measure, and 0.53 more MCC than the model fragments with other density
values. However, the improvement in the results is progressive. The lower
the density, the better the results are. Density-L obtains the worst result.
Density-M obtains better results than Density-L. Density-S obtains better re-
sults than Density-M. Finally, Density-XS obtain better results than Density-S.
For Density-A, that configuration has model fragments for all density values,
so it obtains better results than Density-L but it obtains worse results than
Density-XS. Table 6.1 and Table 6.2 show this progressive improvement in the
results.

It can be observed that this progression is very logical. With extra-small model
fragments, we can compose a bigger model fragment by joining several extra-
small model fragments like pieces of a puzzle. No matter what density value
of the model fragment search for is, the machine learning classifier can locate
a small, medium, or large model fragment, locating each extra-small model
fragment that composes the small, medium, or large model fragment searched.
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6.5 Discussion

Therefore, the knowledge base with extra-small model fragments has enough
information to locate any model fragment regardless of its density value. Like-
wise, the small model fragments can be joined to compose medium and large
model fragments. In this case, the machine learning classifier may have prob-
lems locating extra-small model fragments because it is not possible to divide
small model fragments into extra-small model fragments. For this reason, the
configuration of the knowledge base with small model fragments (Density-S)
does not obtain better results than the configuration of the knowledge base
with extra-small density model fragments (Density-XS). The same behaviour
is shown for the results of Density-M and Density-L configurations.

With regard to multiplicity, the three different configurations of the knowl-
edge base no significant differences. This may be due to the definition of the
property. The multiplicity property relates a model fragment and a model,
determining how many times the model fragment appears in the model. In
contrast, both the density property and the dispersion property involve not
only the model fragment and model, but also the elements of the model frag-
ment. The density property determines the relation between the number of
elements in the model fragment and the number of elements in the model. The
dispersion determines the number of elements in the model fragment that are
connected among them. Therefore, since the multiplicity property does not
involve the content (elements) of the model fragment, the multiplicity prop-
erty may not help to differentiate one model fragment from another one. For
this reason, this property may not be significant from the point of view of the
knowledge base.

With regard to dispersion, the model fragments with extra-small and small
dispersion values achieve results with up to 53% more precision, 52% more re-
call, 52% more F-measure, and 0.57 more MCC than the model fragments
with other dispersion values. Although the relation between the results is not
as clear as in the case of the density property, the stronger the connection is
between the lements of a model fragment, the easier it is to find that model
fragment. In fact, four different configurations (Dispersion-XS, Dispersion-S,
Dispersion-L, and Dispersion-A) achieve good results when the model frag-
ments searched for are strongly connected, so the searched model fragments
have values between 0 and 0.25. The same behaviour is shown for the rest of
the results; the less connected the model fragments are, the better results the
lower configurations obtain. Therefore, there may be a relation between the
connected elements in a model fragment and the ease with which the model
fragment is located. However, future research about dispersion could help to
clarify this relation.
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6.6 Threats to Validity

In this section, we use the classification of threats to validity of (Wohlin et al.
2012) to acknowledge the limitations of our experiment.

Construct validity: This aspect of validity reflects the extent to which the
operational measures that are studied represent what the researchers have
in mind. To minimize this risk, our evaluation is performed using four
measures: precision, recall, F-measure, and MCC. These measures are
widely accepted in the software engineering research community.

Internal Validity: This aspect of validity is of concern when causal relations
are examined. There is a risk that the factor being investigated may be
affected by other neglected factors. To reduce this threat, the knowledge
base of our case study is large enough to generate suitable views for all of
the properties: (density, multiplicity, and dispersion), so the views of the
knowledge base are not negatively affected due to imbalance. Moreover,
all of the views of the knowledge base contain a similar number of samples
(about 1600), so that all of the views are compared taking into account
the same conditions.

External Validity: This aspect of validity is concerned with to what extent
it is possible to generalize the findings, and to what extent the findings
are of relevance for other cases. We reduced this threat by using formats
that are frequently leveraged to specify all kinds of different software, for
example, MOF. Moreover, our experiment does not rely on the specific
conditions of our domain feature descriptions and models. Nevertheless,
the experiment and its results should be replicated in other domains be-
fore assuring their generalization.

Reliability: This aspect is concerned with to what extent the data and the
analysis are dependent on the specific researchers. To reduce this threat,
most of the inputs were provided by our industrial partner. Moreover, the
only input that was not provided by our industrial partner consisted of the
configurations. These configurations were specifically defined to answer
the research questions independently of the content of the knowledge
base. Moreover, to prevent the researchers from influencing the results
by looking for a specific outcome, all of the test cases were evaluated for
all of the defined configurations; none of the test cases were removed for
any reason whatsoever.
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6.7 Related Work

6.7 Related Work

Some existing works focus on machine learning for feature location. For in-
stance, Corley et al. (Corley, Damevski, and Kraft 2015) explore the use of
deep learning applied to feature location by the usage of document vectors.
Tien-Duy et al. (B. Le et al. 2016) focus on learning to rank through feature
vectors that are based on likely invariants. The authors in (Ye, Bunescu, and
C. Liu 2014) focus on terms that are defined in a vocabulary to build the fea-
ture vectors. Marcen et al. (Ana C. Marcén et al. 2017) presented a feature
location approach that targets model fragments as the feature realization arti-
facts using learning to rank. In (Ana C Marcén, Pérez, and Cetina 2017), the
authors propose an evolutionary ontological encoding approach to enable ma-
chine learning techniques to be used to perform Software Engineering tasks in
models. All of these works propose new approaches to address machine learn-
ing techniques in feature location, reporting algorithms, and how to tune them.
Our work is focused on reporting the importance of the feature properties when
we are training the knowledge base classifier.

Recent years have seen an increasing interest in traceability-based machine
learning approaches. Binkley et al. (Binkley and Lawrie 2014) further illus-
trate the benefits of using the learning-to-rank technique in the context of
traceability by applying learning-to-rank algorithms to improve several feature
models for software maintenance. In (Falessi et al. 2017), the authors used
machine learning classifiers to estimate the number of valid links remaining in
a set of candidate links that are returned by IR techniques. More recently,
Mills et al. (Mills, Escobar-Avila, and Haiduc 2018) propose TRAIL, a tech-
nique for automating traceability maintenance by considering TLR as a binary
classification problem. They address this problem using machine learning al-
gorithms that are trained on historical traceability information. In contrast to
their works, our work has been evaluated in an industrial domain with SPL
engineers by suggesting feature properties to be considered during classifier
training.

Several research studies apply machine learning approaches to bug location.
For instance, Ye et al. (Ye, Bunescu, and C. Liu 2014) propose a learning-to-
rank approach for information retrieval (IR) based on bug localization using
features extracted from textual bug reports and source code files. In (Shi et
al. 2017), eight learning-to-rank techniques in bug localization are compared.
The features are selected from previous hybrid bug localization studies, and the
feature weight values in learning-to-rank techniques are learned from historical
bug data and source code information. Zhao et al. (Zhao et al. 2015) defined
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Table 6.9: Overview of the related work regarding the industrial evaluation and the prop-
erties of the knowledge base: size, class distribution (CD), density (DE), multiplicity (MU),
and dispersion (DI)

Related Properties Industrial
Works Size CD DE MU DI | Evaluation

(Corley, Damevski, and Kraft 2015) y X X X X X

(B. Le ot al. 2016) J X X X X X

Feature (Ye, Bunescu, and C. Liu 2014) X X X X X X

Location (Ana C. Marcén et al. 2017) v v/ X X X Vv

(Ana C Marcén, Pérez, and Cetina 2017) | +/ v X X X 4

(Vale and Santana de Almeida 2018) X X X X X X

B (Binkley and Lawrie 2014) v X X X X X

L “ff (Falessi et al. 2017) J v X X X X
ion

OCAHON T Mills, Escobar-Avila, and Haiduc 2018) | X X X X X

Traceability (Ye, Bunescu, and C. Liu 2014) X X X X X X

Links (Shi et al. 2017) J X X X X X

Recovery (Zhao et al. 2015) v X X X X X

v vV VY v

Our work ‘

three effort-aware metrics, which are all based on lines of code, to examine the
actual performance of learning-to-rank bug localization. The authors claimed
that the learning-to-rank method is similar or even worse than the standard
vector support machine (VSM). All of these works focus on locating bugs by
machine learning at the code level; in contrast, our work focuses on the model
level.

In summary, our work differs from the previous ones in four aspects: 1) we do
not propose a new approach, but rather we focus on assessing the impact of
feature properties in the training of the classifier; 2) we evaluate our work in
an industrial domain, taking advantage on domain knowledge; 3) we focus our
efforts in a model-based approach; and 4) when training classifiers, we are the
only ones who have carefully evaluated the impact of feature properties on the
quality of the results.

210



6.8 Conclusions

6.8 Conclusions

Feature location (FL) is the task of finding the features that implement a spe-
cific, user-observable functionality in a software system. It plays a key role in
Software Product Lines initiation when products already exist. The emerging
interest of leveraging machine learning to address the challenge of feature lo-
cation is rapidly growing (Ana C Marcén, Pérez, and Cetina 2017),(Ana C.
Marcén et al. 2017),(Corley, Damevski, and Kraft 2015),(Binkley and Lawrie
2014),(Mills, Escobar-Avila, and Haiduc 2018),(B. Le et al. 2016). Signifi-
cantly, machine learning techniques are presented as an interesting perspective
for automatically locating features. To do this, the knowledge and the expe-
rience of the companies are collected in knowledge bases so that the machine
learning techniques can benefit from this information for feature location.

Nevertheless, feature location on models involves specific properties, which
may not be relevant in other domains. Although most of the works report
the machine learning techniques, the tuning parameters, and the size and class
distribution of the knowledge base, they do not discuss the model fragment
properties. In models, the knowledge base contains model fragments, whose
properties (density, multiplicity, and dispersion) may or may not influence the
feature location results. Therefore, since model fragments make up part of the
knowledge base, they should be properly reported in case they have an impact
on the feature location results.

In this paper, we have analyzed the influence of three model fragment proper-
ties: density, multiplicity, and dispersion. After the evaluation in the industrial
domain of train control firmware, our results show that the density and dis-
persion properties significantly influenced the results in our case study. In
contrast, the multiplicity property did not influence the results, no matter
which multiplicity values of the model fragments were used. Based on the
results of our case study, for future reports, the model fragments in the knowl-
edge base regarding the density and dispersion properties should be described.
Likewise, works on machine learning-based feature location on models should
also analyze the influence of model fragment properties on their case studies
not only to properly report but also to compare the approaches fairly, thereby
improving the feature location results of their case studies.
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Discussion

Through the pages of this chapter, we discuss the rationale
for the development of the thesis. We also discuss the results of
our work by connecting the research questions posed at the start of
the thesis with the research articles that conform the compendium
included in chapters 1 to 6. In addition, we describe our ongoing
research and ideas for future works.
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Thesis Development Rationale

Not so very long ago, the Software Engineering Community addressed activities
such as Feature Location or Traceability Links Recovery solely on code. We
could identify a shortcoming with regards to the available research on the topic
within artifacts other than code. In particular, we identified a lack of research
with regards to model-based software artifacts in general, and more specifically,
within the context of retrieving model-based artifacts.

As mentioned above, search problems in models are relatively new when com-
pared to search problems in other kinds of documents such as the web or source
code. This has led the Model-Based Software Engineering Community to in-
vest efforts and resources in the growth of this area. In line with this situation,
we invested our efforts and initiatives with the goal of trying to make our
contribution there.

Therefore, our first efforts were aimed at transforming the state-of-the-art ap-
proaches in code-based software artifacts, so that they could be transported to
model-based software artifacts. We focused our efforts on automating the vari-
ability formalization of a given family of products into a Model-based Software
Product Line (SPL). We published this work in the 3rd International Work-
shop on REverse Variability Engineering (REVE SPLC ’15), chapter 1. After
that, we were able to rank the relevancy of legacy products for a new develop-
ment at the requirements level, and to locate their most significant methods for
each of the new product requirements. Focusing our efforts on a new artifact
level, the requirements level, we published a paper for the 20th International
Systems and Software Product Line Conference (SPLC ’16), chapter 2. As a
result of this work, we suggested to software engineers the best way of locating
the most relevant methods to each requirement.

Afterwards, we focused on abstracting the clone-and-own relationships of dif-
ferent families of Model-based software products. We successfully leveraged
feature location at the model level and code comparisons in order to identify
the clone-and-own relationships between the same features in different model-
based product variants. This work was published in the 15th International
Conference on Software Reuse (ICSR ’16), chapter 3 and later improved, ex-
tended, and published in IEEE Acess 18, chapter 4.

While our initial works were substantially successful, we identified a series of
problems related to how the location problems were reporting their results.
In particular, we realized that our initial works were not reporting the case
studies experiments deeply, since we were considering the model size as the

216



only measurement for reporting the results of our experiments. This problem
extended to most works by the research community.

Going on, we identified a series of facts that served as a starting point for dis-
cussing why more measurements should be considered for reporting location
problems. There is an inability of the reported measurements to accurately
represent the inherent challenge posed by the model level. We were able to
identify a set of five measurements which should be considered during the re-
port of location problems. We propose the usage of the model size and the
usage of the model volume as measurements to report the search space (mod-
els), and the usage of density, multiplicity, and dispersion as measurements to
report the solution space (model fragments). Size and volume are descriptive
measurements. Density, multiplicity, and dispersion are diagnostic measure-
ments. Both descriptive measurements and diagnostic measurements look to
the past to explain what happened and why it happened. We evaluated our
proposal pushing it to industrial settings, using an Information retrieval real-
world approach based on feature location. This work was published in the
21st International Conference on Model Driven Engineering Languages and
Systems (MODELS ’18), chapter 5.

At this point, we recapped our work, integrating our measurements on a Ma-
chine Learning approach for feature location. We were able to demonstrate
on an industrial environment that the model size measurement (widespread
measurement so far) is not the only one that should be considered in order
to report location problems, being other measurements such as density and
dispersion needed to deeply report the location problems during MFL. This
work was published in a paper for the Information and Software Technology
journal (IST ’20), chapter 6.

Finally, I built this book, and commenced working towards the rest of the
ideas and issues exposed by my previous research. The results of this discussion
highlight that ours is a promising work that opens the door for the study of the
particularities of reporting the location problems of Model Fragment Location.
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Research Questions

The two research questions posed at the introduction of this thesis have been
tackled throughout the research works presented in chapters 1 to 6. In the fol-
lowing paragraphs, we present how each of the research articles has contributed
to the study of the research questions:

RQ1 Determine whether, and to what extent, our proposed measurements in-
fluence Information Retrieval (IR) Model Fragment Location approaches.

Response to RQ1 : All of the previous works use at least one Model Frag-
ment Location technique, but only the last one discusses the need of
deeply improving the task of reporting location problems. The results
show that all of the proposed measurements (size, volume, density, mul-
tiplicity, and dispersion) have a direct impact on the results of the MFL
approaches. All of this points towards the fact that the proposed mea-
surements and the provided values are significant for the MFL research
community.

RQ2 Determine whether, and to what extent, our proposed measurements
influence Machine Learning-based (ML) Model Fragment Location ap-
proaches.

Response to RQ2 : Evaluating the proposed measurements on a Machine
Learning-based approach for feature location we have realised that not
all of the measurements have a direct impact on the results. Our results
show that density and dispersion significantly influence feature location
results. By contrast, our results show that the multiplicity does not
have an impact on the feature location results. Those Machine Learning-
based approaches which use training datasets should describe the model
fragments regarding the density and dispersion measurements.

As a result of the experiments we carried out, we were able to discuss
why the proposed measurements and the provided values are significant
for the research community. Regarding the results obtained by applying
our measurements to an Information Retrieval-based approach for fea-
ture location, it is possible to conclude that size reports do not provide
enough information. This is due to the inability of the size measurement
to accurately represent the inherent challenge posed by the model level.
Also, due to the absence of real work datasets, synthetic datasets are very
common and popular in the research community. Since our findings show
that the proposed measurements are significant and impactful with regard
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to the performance of search problems, we provide their real-world val-
ues so that designers can carry out a real-world search-problem profiling
process when designing synthetic test cases and extreme search-problem
scenarios.

On the other side, regarding the results obtained by applying our mea-
surements to a Machine Learning-based approach for feature location,
it is possible to conclude that none of the measurements has to be bal-
anced in order to obtain the best feature location results. In addition,
another aspect that can be discussed is the relation among the training
datasets. With regard to density, the lower the density, the better the
results are, being the model fragments with extra-small density values
those that achieve best results. With regard to multiplicity, since this
measurement does not involve the content (elements) of the model frag-
ment, the multiplicity may not help to differentiate a model fragment
from another one, and consequently, this measurement does not influence
the feature location results. Finally, with regard to dispersion, there is
a relation between the connected elements in a model fragment and the
complexity to locate the model fragment. In other words, the stronger
the connection between the elements is, the easier it is to find the model
fragment.

By acknowledging and incorporating the proposed measurements in this
thesis, the approaches are better equipped to deal with the challenge of
Model Fragment Location, and thus obtain deeper results, than those
baseline approaches that do not take in account this novel knowledge.
Hence, our research proves that the reporting activity of these approaches
and techniques can be successfully refined to improve the task under
study.
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Future Work

This section presents some of the ideas and opportunities for future work that
arose from our latest research:

1. The results show that our proposed measurements properly report the
location problem. We focused on both descriptive and diagnostic mea-
surements to explain what happened (search space) and why it happened
(solution space). However, it is possible to find other types of measure-
ments, such as predictive measurements, which use historical data to
forecast what will happen in the future and what actions can be taken to
affect those outcomes. Thus, a novel research question arises: Are there
predictive measurements that can exert a positive or a negative influence
on feature location?

To answer this question, it would be necessary to analyze those mea-
surements which have been accepted by the community in similar fields
and then conduct an evaluation to check whether acknowledging these
measurements leads MFL approaches to significantly enhanced results.

2. The analysis of the results shows that both the density and the dispersion
measurements significantly influence the results on a machine learning-
based approach. Thus, a novel research question arises: Can the same
results be obtained through another machine learning-based approach?

To answer this question, it would be necessary to devise mechanisms for
incorporating those measurements into the new approaches, and to ana-
lyze the impact of the proposed measurements on this new developments.

3. Inindustrial scenarios, the usage of several Architectural Description Lan-
guages to specify different software systems is common. Thus, related to
works which apply MFL techniques to Architecture Models, the follow-
ing question arises: Do the proposed measurements influence the results of
Traceability Links Recovery among requirements and architecture models?

To answer this question, it would be necessary to take advantage of all
of the proposed measurements and use architecture models, which have
not taken into consideration so far during Traceability Links Recovery
processes, as a valid artifact.

These ideas constitute seeds for a yet uncharted but clear path towards future
improvements, and allow us to keep working in a topic that is still an open,
interesting, and relevant issue for the Software Engineering community.
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Conclusions

This chapter presents the final concluding remarks of the the-
sis, summarizing the challenge, scope, and outcomes of our work.
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Nowadays, software exists in almost everything. Companies often develop
and maintain a collection of custom-tailored software systems that share some
common features but also support customer-specific ones. As the number of
features and the number of product variants grows, software maintenance is
becoming more and more complex. To keep pace with this situation, the Soft-
ware Engineering Community is addressing a key-activity: Model Fragment
Location (MFL). Model Fragment Location (MFL) aims at identifying model
elements that are relevant to a requirement, feature, or bug. Many MFL ap-
proaches have been introduced in the last few years to address the identification
of the model elements that correspond to a specific functionality. The emerg-
ing interest in leveraging machine learning to address the challenge of MFL
has been growing rapidly (Corley, Damevski, and Kraft 2015), (B. Le et al.
2016), (Ye, Bunescu, and Liu 2014), (Marcén et al. 2017), (Binkley and Lawrie
2014). Although most of the works report the machine learning techniques, the
tuning parameters, and the size and score distribution of the training datasets,
they do not discuss the model fragment measurements, with model size being
the only reported measure. Since different models are measured in different
ways, model size values are not a valid comparison. Nevertheless, despite the
popularity of different MFL approaches, the question of how the usage of mea-
surements influences MFL results has not yet received much attention.

In the last decade, different types of measurements have been discussed in
order to analyze and report information (descriptive, diagnostic, predictive,
and prescriptive measurements, among others) (Delen and Ram 2018). Both
descriptive measurements and diagnostic measurements look to the past to
explain what happened and why it happened. Predictive measurements and
prescriptive measurements use historical data to forecast what will happen in
the future and what actions can be taken to affect those outcomes. Through
this thesis, we have proposed using five measurements to report the location
problems during MFL. Size and volume are descriptive measurements, while
density, multiplicity, and dispersion are diagnostic measurements. We have
evaluated the influence of these measurements on two different case studies,
the first one based on an Information Retrieval-based (IR) approach for fea-
ture location, and the second one based on a Machine Learning-based (ML)
approach for feature location. To that extent:

1. In the first stages of the thesis, our first efforts were aimed at transform-
ing the state-of-the-art approaches in code-based software artifacts, so
that they could be transported to model-based software artifacts. In par-
ticular, we worked towards helping software engineers by automating the
variability formalization of their software products into a Model-based
Software Product Line. In addition, we focused on ranking the relevancy
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of legacy products for a new development at the requirements level and
to locate their most significant methods for each of the new product re-
quirements. Also, through other works, we identified the clone-and-own
relationships that are inherently present across a model-based family of
software products.

2. As a result of our initial work, we identified a series of problems related
to how the results of the experiments are reported. In particular, our first
work was evaluated only taking into account the size of the models. Size
was already studied in other research works, in fact, this measurement is
frequently used in most MFL works. We noticed that size should not be
the only reported measure.

3. Afterwards, we proposed using five measurements for reporting the loca-
tion problem of MFL. Some of these measurements focus on measuring
the search space, and the rest of them focus on measuring the solution to
be searched for. Our goal is to determine the relevance of the proposed
measurements on the results provided by different Information Retrieval-
based (IR) MFL approaches.

4. In the final stages of the thesis, we worked on evaluating the proposed
measurements by applying them to a Machine Learning-based (ML) ap-
proach for feature location. Some of the measurements significantly in-
fluence the results.

Our research has been validated through two real-world industrial case studies.
In addition, our research has contributed to several national and international
projects. Partial results of our research have been published in several scien-
tific articles in workshops and conferences, relevant in the field of our studies.
Overall, the results of our research have concluded that: (1) properly report-
ing the location problem is important because otherwise it is not possible to
compare the performance of different approaches against each other, and (2)
taking into account the proposed measurements may be relevant to enable the
replication of research works that locate features by applying a machine learn-
ing technique. This uncharted territory leaves room for future work in such an
interesting and relevant topic.

To close this book, we reflect that, while there is still much work to do in the
field, we have conclusively developed a PhD thesis that successfully contributes
to advancing the available research knowledge in the Definition of Descriptive
and Diagnostic Measurements for Model Fragment Retrieval.
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