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gràcies per la vostra consideració en tantes coses.
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GRÀCIES A TOTS.





Al club de Fa





Abstract

Diabetes Mellitus (DM) embraces a group of metabolic diseases which main
characteristic is the presence of high glucose levels in blood. It is one of the
diseases with major social and health impact, both for its prevalence and also
the consequences of the chronic complications that it implies.

One of the research lines to improve the quality of life of people with
diabetes is of technical focus. It involves several lines of research, includ-
ing the development and improvement of devices to estimate “online” plasma
glucose: continuous glucose monitoring systems (CGMS), both invasive and
non-invasive. These devices estimate plasma glucose from sensor measure-
ments from compartments alternative to blood. Current commercially avail-
able CGMS are minimally invasive and offer an estimation of plasma glucose
from measurements in the interstitial fluid

CGMS is a key component of the technical approach to build the artificial
pancreas, aiming at closing the loop in combination with an insulin pump.
Yet, the accuracy of current CGMS is still poor and it may partly depend on
low performance of the implemented Calibration Algorithm (CA). In addition,
the sensor-to-patient sensitivity is different between patients and also for the
same patient in time.

It is clear, then, that the development of new efficient calibration algo-
rithms for CGMS is an interesting and challenging problem.

The indirect measurement of plasma glucose through interstitial glucose
is a main confounder of CGMS accuracy. Many components take part in the
glucose transport dynamics. Indeed, physiology might suggest the existence
of different local behaviors in the glucose transport process.

For this reason, local modeling techniques may be the best option for the
structure of the desired CA. Thus, similar input samples are represented by
the same local model. The integration of all of them considering the input
regions where they are valid is the final model of the whole data set.

Clustering is the technique chosen in this application for local modeling,
as it is able to find automatically knowledge inherent to a database.

The general goal of this work is to design a new calibration algorithm
capable of improving the accuracy of plasma glucose estimations of current
devices. The proposed CA is a dynamic local-model-based clustering algorithm
designed according to the system requirements.

Compensation of sensor sensitivity variations is included in the calibra-
tion algorithm through an adaptive scheme. The algorithms developed are
validated with data from several clinical trials and in silico studies.





Resum

Diabetes Mellitus (DM) abarca un grup de malalties metabòliques, sent la
seua caracteŕıstica principal la presència d’alts nivells de glucosa en sang. És
una de les malaties amb major impacte social i econòmic, tant per la seua
prevalència com per les conseqüències de les complicaciones a què pot portar.

Una de les ĺınies d’investigació per a millorar la qualitat de vida dels pa-
cients amb diabetes és d’enfocament tècnic. Esta inclou diverses subĺınies
com és el desenvolupament de dispositius per estimar “en ĺınia” la glucosa
plasmàtica (GP): sistemes de monitorització continua de glucosa (SMCG), in-
vasius i no-invasius. Estos dispositius estimen la GP des de mesures del sensor
en compartiments alternatius a la sang. Els actuals SMCG comercials són
mı́nimament invasius: sensor implantat en el ĺıquid intersticial.

Els SMCG són un component fonamental en la construcció del pancrees
artificial, amb l’objectiu de tancar el llaç en combinació amb una bomba
d’insulina. No obstant, la presició dels monitors actuals és encara pobra i
això pot deure’s en part a la baixa actuació dels Algorismes de Calibració
(AC) implementats. A més, la sensibilitat entre el sensor i el pacient varia
entre pacients i també amb el temps.

Està clar, aleshores, que el desenvolupament de nous AC efficients per a
SMCG és un problema interessant i un repte.

Les mesures indirectes de la GP a través de la glucosa intersticial és un dels
majors factors de confusió per a la presició dels SMCG. Són molts els com-
ponents presents en la dinàmica del transport de glucosa. De fet, la fisiologia
pot suggerir l’existència de diferents comportaments locals en esta dinàmica.

Per esta raó, les tècniques de modelat local poden ser la millor opció per
a l’estructura de l’AC desitjat. Aix́ı, entrades similars són representades pel
mateix model local. La integració de tots ells considerant la regió d’entrada
on cadascun és vàlid dòna el model final de tot el conjunt. Les tècniques
d’agrupament són les elegides en esta aplicació per a modelat local, ja que són
capaces de trobar automàticament coneixement inherent a les dades.

L’objectiu global d’este treball és el disseny d’un nou AC capaç de millorar
la presició de les estimacions actuals de la GP. El AC proposat es basa en un
algorisme d’agrupament amb models locals dinàmics, dissenyat d’acord amb
els requeriments del sistema.

S’ha inclòs la compensació a les variacions de sensibilitat del sensor en l’AC
amb un esquema adaptatiu. Els algorismes desenvolupats han sigut validats
amb dades de diversos experiments cĺınics i també de simulació.





Resumen

Diabetes Mellitus (DM) abarca un conjunto de enfermedades metabólicas
cuya caracteŕıstica principal es la presencia de altos niveles de glucosa en
sangre. Es una de las enfermedades con mayor impacto social y económico,
por su prevalencia y por las consecuencias de las complicaciones crónicas.

Una de las ĺıneas de investigación para mejorar la calidad de vida de los
pacientes con diabetes es de carácter técnico. Ésta contiene varias subĺıneas,
incluyendo el desarrollo y mejora de dispositivos para estimar “en ĺınea”
la glucosa plasmática (GP): sistemas de monitorización continua de glucosa
(SMCG), invasivos y no-invasivos. Estos dispositivos estiman GP desde me-
didas en compartimentos alternativos a la sangre. Los SMCG comerciales
actuales son mı́nimamente invasivos: situan el sensor en el fluido intersticial.

Los SMCG son un componente fundamental para la construcción del páncreas
artificial, con el objetivo de cerrar el bucle en combinación con una bomba de
insulina. Sin embargo, la precisión de los actuales SMCG es todav́ıa pobre
y eso puede deberse parcialmente a la baja actuación de los Algoritmos de
Calibración (AC) implementados. Además, la sensibilidad entre el sensor y el
paciente varia entre pacientes y también con el tiempo.

Por tanto, el desarrollo de nuevos y eficientes AC para SMCG es un prob-
lema interesante y un reto.

Las medidas indirectas de la GP desde la glucosa intersticial es un gran fac-
tor de confusión para precisión de los SMCG. Muchos son los componentes que
contribuyen en la dinámica del transporte de glucosa. De hechom, la fisioloǵıa
puede sugerir la existencia de comportamientos locales en este proceso.

Con esto, las tecnicas de modelado local pueden ser la mejor opción para
la estructura del deseado AC. Aśı, entradas similares están representadas por
el mismo modelo local. La integración de todos ellos considerando la región
de entrada donde son válidos da el modelo final del conjunto. Las técnicas
de agrupamiento son las elegidas en esta aplicación de modelado local, al ser
capaces de encontrar automáticamente conocimiento inherente a los datos.

El objetivo global de este trabajo es el diseño del nuevo AC capaz de
mejorar la precisión de las estimaciones de GP de los dispositivos actuales.
El AC propuesto está basado en un algoritmo de agrupamiento con modelos
locales dinámicos, de acuerdo con los requerimentos del sistema.

Se ha incluido la compensación a las variaciones de la sensibilidad en el
AC con un esquema adaptativo. Los algoritmos propuestos han sido validados
con datos de diversos experimentos cĺınicos y de simulación.
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Chapter 1

Introduction

1.1 Scope of this thesis and global objective

Diabetes Mellitus (DM) embraces a group of metabolic diseases which main
characteristic is the presence of high glucose levels in blood (hyperglycemia)
[134]. It is one of the diseases with major social and health impact, both for
its prevalence and also the consequences of the chronic complications that it
implies [43].

At present there is no cure for diabetes, only treatment is possible to
control glucose levels in the healthy range. This means that any advance
in the treatment will be of great and significant impact. Type 1 Diabetes
or DM1 is characterized by total lack of production of the insulin hormone
by the pancreas, requiring its exogenous administration for survival. DM1
represents around the 10% of cases of DM and it is the one where the control
of glucose level is more difficult [43].

One of the research lines to improve the quality of life of people with
diabetes is of technical focus [130]. It involves several lines of research,
one of which is the development and improvement of devices to estimate
“online” plasma glucose: continuous glucose monitoring systems (CGMS),
both invasive and non-invasive [19]. The use of CGMS has been associated
with better metabolic control in adults in several studies, although it depends
on its frequency of use which tends to decline with time [112]. This fact
is exacerbated in children and adolescents with whom no benefit has been
demonstrated. Besides, CGMS is a key component of new technological
approaches to DM1, such as the artificial pancreas aiming at closing the
loop in combination with an insulin pump [19]. Several clinical studies have
demonstrated the efficacy of closed-loop control in nocturnal control, although
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Introduction

performance after a meal (postprandial period) is still an open issue.
CGM devices, in general, offer an estimation of the glucose concentration

every 5 min [16]. Current commercially available CGMS are minimally invasive
(needle-type) and have the sensor inserted subcutaneously in the abdomen
region. Thus, they offer an estimation of plasma glucose from measurements
in the interstitial fluid. The algorithms carrying out such estimations from the
sensor’s measurements are called calibration algorithms (CA). Usually, the
sensor’s output is an intensity of current signal (in nA) which varies somehow
with the level of glucose in the interstitial compartment. The CA must, then,
include: 1) a calibration of known glucose to relate current intensity levels to
plasma glucose levels; and 2) information from self monitoring blood glucose
(SMBG) samples (also known as calibrations) included to correct the output
as frequently as patients take regular measurements with a glucometer for
control of their disease [16].

The design of a CA has some requirements. The online estimation of the
glucose level is, probably, the most important one. Current commercially
available monitors are not approved by the Food and Drugs Administration
(FDA) to be used on their own, due to the excessive error associated to the
estimations. Therefore, the accuracy of CA is to be improved to get these
devices used by their own by patients, as well as its integration into an artificial
pancreas being a limiting factor for its full development. Indeed, accuracy
improvement of CGMS has been a specific requirement of th FP7 programme
in calls related to the artificial pancreas [46]. Indeed, the development of new
CAs or recalibration methods can be found in literature as it is an increasing
area of research [86, 92, 42].

On the other hand, it is known that the sensor-to-patient sensitivity is
different between patients (inter-patient variations) and also for the same
patient in time (intra-patient variations) [49, 85]. This means that for a similar
range of glucose variations the sensor’s signal may span different ranges from
one patient to another and also with time.

Thus, the global objective of this thesis is the development of a new
CA improving accuracy of current devices. In next section an outline
of the main hypothesis leading to the methodologies explored in this work is
presented. Then, specific objectives for this thesis are defined.

1.2 Starting hypothesis and proposed methodology

It is clear that the indirect measurement of plasma glucose though interstitial
glucose is a main confounder of CGMS accuracy. The use of better models

2
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describing this relationship (beyond the linear regression used in current
commercial devices) can be a significant source of accuracy improvement.
However, interstitium-to-plasma glucose transport is a complex process to
model as the physiology underlying it is not yet well known. A wide range
of lag time among plasma and interstitial glucose has been reported, from 0
to 45 minutes [19]. Besides, some studies have reported a fall of interstitial
glucose prior to that in plasma. This may be theoretically explained by high
insulin levels inhibiting hepatic glucose production and increasing significantly
glucose uptake, provoking a glucose gradient in the opposite direction. Thus,
it may be hypothesized that the patient metabolic state may have an influence
on glucose transport dynamics and thus on CGMS performance. Physiology
might thus suggest the existence of different local behaviors in the glucose
transport process.

For this reason, local modeling techniques may be the best option for the
structure of the desired CA. Advantages of these techniques are many, being
one of them the possibility of representing a complex system with a set of
models with structure simpler than a global model of the whole system [77].

Among all the local modeling techniques, clustering is one of the most
popular, as these techniques are able to find automatically knowledge inherent
to a database [33]. The aim of the clustering techniques is to group data into
different sets, called clusters, in which the data belonging to each one will be
more similar to the elements of the same cluster than to elements of other
clusters.

When clustering is applied to systems modeling, the output that
describes each cluster is a local model [62]. Thus, similar objects are
represented by the same local model. The integration of all of them considering
the cluster they represent (the input regions where they are valid) is the final
model of the whole data set.

These techniques are increasingly being applied to complex systems
modeling. The use of several local models, valid for certain characteristics of
the inputs, can contribute to define a flexible model. In addition, fractioning
the total set in subspaces might lead to find simpler structures for each one
of the clusters, which might be useful both for the accuracy of the model and
also to enhance the interpretability of the dynamic changes and estimations.

Data normalization is required for a correct application of the modeling
algorithm with clustering techniques [5]. All inputs considered must be
rescaled to meet same characteristics to avoid the effects of different
magnitudes and the units of measurement.

The structure used for each local model and the way of defining where

3
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these models are representative are defined taking into account the system
characteristics.

1.3 Specific objectives

As stated before, the general goal of this work is to design a new calibration
algorithm capable of meeting the continuous glucose monitoring requirements
and improving the accuracy of plasma glucose estimations of current devices.

For this reason the first particular aim of this work is to study the problem
of CGMS and go through the current state of the art of calibration algorithms,
used and/or developed in literature. In this way, the characteristics and
requirements of the system will be detailed and considered, as well as the
possible lines to improve the estimation of these devices.

Based on the starting hypothesis previously described, the second
particular goal is to review the clustering techniques, including the main
concepts, its applicability to systems modeling and the current state of the
art of local modeling based algorithms. The study of the already existent
clustering algorithms for local modeling is a prior step to any new development.
The applicability of current techniques to the problem posed must be checked.

Given the non existence of a clustering algorithm for local modeling that
meets the desired properties, the next goal is to design a dynamic local
model based clustering algorithm according to the problem requirements to
be later integrated into a calibration algorithm. It is important to analyze
first the performance of this new algorithm on general benchmarks prior to
its application to continuous glucose monitoring. This new algorithm will be
designed for its general application to local modeling.

Once the new local modeling algorithm is designed, it will be used to build
a new calibration algorithm. Several calibration algorithms can be proposed,
according to different structures. Their performance has to be checked in the
CGM problem, analyzing and comparing the obtained results and discussing
the advantages and drawbacks of the proposed CAs. It is expected that the
new proposed CA will improve the current accuracy of commercially available
CGMS.

Finally, the last goal is to include the compensation to the sensor sensitivity
variations in the calibration algorithm. This has to be done adaptively, as
sensitivity changes with time. The previous local model-based calibration
algorithm must be the base used for this adaptation. Performance of proposed
adaptive calibration algorithm must be analyzed for a typical sensor’s lifetime.
In this way, the accuracy of previously designed CA is to be improved as it is
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adapted to any new patient characteristics.
Thus, the expected results of this work are:

1. Review of diabetes mellitus disease and study of the state of art of CGM
devices.

2. Review of local modeling methods and details of clustering techniques
and algorithm for system modeling.

3. A new clustering algorithm for local modeling meeting properties of
glucose transport system.

4. The adaptation of this algorithm to build a Calibration Algorithm,
checking different configurations.

5. A method capable to individualize this CA for a new patient,
compensating the sensitivity variations.

1.4 Layout of this work

The organization of this work is the following: in the next chapter there is a
general description of the problem of Diabetes Mellitus, focused on the problem
treated here: the Continuous Glucose Monitoring. This chapter also includes
the state of the art of these devices. Chapter 3 describes the state of the art of
the clustering techniques used with modeling purposes, including all related
concepts.

Chapter 4 a new clustering algorithm for local models identification based
on the requirements of the problem under study. Following, Chapter 5 shows
its integration into a new CA and its validation with a clinical data set.
Analysis of results and discussion of the performance are included at the end
of this chapter.

Chapter 6 presents the proposed adaptive calibration algorithm, also based
on local model identification. It is defined to compensate the effects of
inter and intra-patient sensor sensitivity variations, using the normalization
parameters of input and output signals to do this compensation. Later, in
this same chapter the performance of this new adaptive calibration algorithm
is checked considering the performance during a day from clinical data. This
validation is complemented with an in silico study for a week, due to the
lack of experimental data for long-term validations. Analysis of results and
comparison between the calibration algorithm proposed in this work and others
found in literature are also included in this chapter.

5



Introduction

To end this document, the conclusions of this work are exposed and future
lines of research are included.
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Chapter 2

Problem statement:
Continuous Glucose

Monitoring

2.1 Introduction to Diabetes Mellitus

Diabetes Mellitus (DM) embraces a group of metabolic diseases which main
characteristic is the presence of high glucose levels in blood (hyperglycemia)
[134].

Most of the food we eat is turned into glucose, a form of sugar. We use
glucose as a source of energy to provide power for our muscles and other
tissues. The glucose is transported to all the body by the blood. In order for
our muscles and other tissues to absorb glucose from blood, we need a hormone
called insulin. Without insulin, our bodies cannot obtain the necessary energy
from our food.

Insulin is made in a large gland behind the stomach called the pancreas.
It is released by cells called beta cells. Diabetic people are so because they
have certain malfunction in this production or efficiency of insulin.

The two principal causes that define the two types of diabetes are: the
total lack of production of insulin hormones by the pancreas, called Type 1
Diabetes or DM1; and a reduction of the sensitivity of the tissues to the
insulin effects, called Type 2 Diabetes or DM2.

As a result, people with diabetes cannot use enough of the glucose in the
food they eat. This leads to an increase of the amount of glucose in the blood,
and high levels of glucose in the blood can lead to serious complications.

Diabetes Mellitus is one of the diseases with major social and health
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impact, both for its prevalence and also by the consequences of the chronic
complications that it implies.

At present there is no cure for diabetes. Thus, any advance in its treatment
will be of great and significant impact.

2.1.1 Numbers and estimations

According to the data of the International Diabetes Federation (IDF, [43]),
diabetes affects, nowadays, to more than 285 million people, around 6.6% of
the world population. The previsions estimate that the people with diabetes
will reach the 438 millions in 20 years. Each year a further 7 million people
develop diabetes. In Figures 2.1 and 2.2 the distribution of the disease all
over the world is represented, both for year 2010 and the estimation for year
2030. An increment of the percentage of patients can be observed in almost
all contries, being only a few the contries where the prevalence is below the
5%. This gives a general idea of the social impact of this disease.

Figure 2.1: Prevalence estimates of diabetes (29-70 years old) in 2010 [43]

In Spain around 3 million of adults suffer this disease, according to the
IDF (2010), which is around 8.7% of the country population.

Besides the social impact, another thing to take into account is its impact
in health cost. The American Diabetes Association (ADA) estimated the
national costs of diabetes in the USA for 2002 to be $US 132 billion, increasing
to $US 192 billion in 2020. This involves not only diabetes treatments, but
treatments to all complications caused directly by this disease.
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Figure 2.2: Prevalence estimates of diabetes (29-70 years old) in 2030 [43]

The mean cost by person with diabetes (in $US) can be seen in Figure 2.3,
distributed by countries for the year 2010. The health cost by person varies
from country to country and over time. The diabetes cost ratio, which is the
ratio of all medical care costs for persons with diabetes is, in average, twice
the cost to all medical care costs for age- and sex-matched persons who do not
have diabetes.

Figure 2.3: Mean health expenditure per person with diabetes (USD), 2010 [43]

It is very important to consider, in addition to the number of people
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affected with the disease and the cost of the treatment, the tragic consequences
of this disease. Figure 2.4 shows the distribution of the number of deaths
caused by this disease in the year 2010. As this figure shows the total
number of deaths, not the percentage, the countries where more people dies
as consequence of this disease are the ones with larger population. There are
countries where the number of deaths caused by this disease is larger than one
hundred thousand, being this a clear indicator of how dangerous this disease
can be.

Figure 2.4: Number of deaths attributable to diabetes (20-79 years), 2010 [43]

All these numbers and estimations give an idea of the high impact of this
disease all over the world and the importance, mainly for health reasons but
also from the economic point of view, of focusing on advances in this field.

2.1.2 Glucose homeostasis

As said before the glucose taken from the food is the one that provides energy
for the muscles and tissues [57]. The process of how the glucose goes from the
ingested food to the organs is very complex, but here the most relevant steps
and stages will be briefly described.

Metabolism is defined as the necessary energy management to keep the
life conditions. In the human body this energy is used for several purposes
and by different organs: muscular activity, nutrients absorption, production
of cells, etc.

Digestion is the procedure to transform the food we eat into substances
assimilable by the organism. These substances, called nutrients, are the ones
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needed by the cells to do vital functions. In our diary diet we can find these
types of nutrients: carbohydrates, fats, proteins, minerals, vitamins and water.

From all the substances, the metabolism of carbohydrates is the most
relevant in this case. The metabolism of fats is also related but not in such
a strong way. Before reaching the rest of the body, all the nutrients have to
go through the liver. A big amount of glucose will be absorbed by the liver
helped by the insulin hormone and stored in the liver cells in form of glycogen.
This glycogen will be converted to glucose only if the body needs it (between
meals, during the night, etc.). The rest of glucose not stored in the liver will
be distributed, through the circulatory system, to the cells of the rest of the
body.

For the glucose to be metabolized in the right way, the contribution of
several hormones is needed, specially insulin and glucagon. The function of
insulin is to power the absorption of the glucose by the cells and the synthesis
of glycogen by the liver, reducing the concentration of glucose in blood. On the
other hand, glucagon increases the concentration of glucose in blood, powering
the conversion of glycogen into glucose.

Both hormones are produced by specials cells of the pancreas, contained
in the islets of Langerhans, to be later released by the liver. Among other
cells, these islets contain β cells, the ones that secrete insulin, and α cells,
the ones that secrete glucagon. All cells, and specially these two are very
interrelated, allowing for the communication between them. For example, the
insulin inhibits the secretion of glucagon, as their effects are opposed.

Considering the metabolism of carbohydrates, three are the main situations
where different actions are produced:

⋄ In resting conditions:

In these conditions the glucose in blood is almost constant, although the
organs keep consuming it. For this, the glucose used is replaced either by
the liver from the stored glycogen (glycogenolysis) or by the generation
of glucose from fats and proteins (gluconeogenesis). Therefore, to keep
the level constant it is needed a combined action between glucagon (to
transform glycogen into glucose) and insulin (to help the distribution of
the glucose to the organs through blood).

Figure 2.5 shows the diagram of insulin and glucagon actions in resting
(or fasting) conditions. Subfigure A shows the condition present for
non-diabetic people. For these individuals in the fasting state, plasma
glucose is derived from glycogenolysis under the direction of glucagon
(1). Basal levels of insulin control glucose disposal (2). Insulin’s role
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in suppressing gluconeogenesis and glycogenolysis is minimal due to low
insulin secretion in the fasting state (3).

⋄ In activity conditions:

In this case the demand of glucose by the muscles increases considerably,
the secretion of insulin is reduced and the glucagon increased, in order
to favor the degradation of glycogen into glucose in the liver. In these
conditions of physical exercise the muscles do not need insulin to absorb
the glucose. Thus, in addition to the absorption of glucose dependent on
the insulin, the glucose can get in the cell by other way not dependent
of the insulin.

If the activity lasts a long period of time, the glucose can reach a very
low level, even though it is regulated. This is due to the fact that when
there are no more reserves of glycogen in the liver, the only source of
glucose is the synthesis from fats and proteins (gluconeogenesis). The
amount of glucose obtained by this method is not enough for covering
the demand of the muscles during high activity conditions.

⋄ After a meal:

After eating a meal rich in carbohydrates, the β cells receive signals to
increase the secretion of insulin. Besides, the secretion of glucagon will
be reduced. The insulin will go through the blood to the different cells,
favoring the glucose transport into the cell.

The major part of glucose will be stored in the liver (glycogen), the
amount exceeding the space of the liver will be transformed into fats.
Once the level of glucose is stable, the β cells will stop the extra secretion
of postprandial insulin.

Figure 2.5 shows the diagram of insulin and glucagon actions after a
meal, or feeding conditions. Subfigure 1C shows the conditions for non-
diabetic people. For these individuals in the fed state, plasma glucose
is derived from ingestion of nutrients (1). In the bi-hormonal model,
glucagon secretion is suppressed through the action of endogenous insulin
secretion (2). This action is facilitated through the paracrine route
(communication within the islet cells) (3). Additionally, in the fed state,
insulin suppresses gluconeogenesis and glycogenolysis in the liver (4) and
promotes glucose disposal in the periphery (5).

Metabolism is a much more complicated process, but the mentioned
conditions are a brief summary of the most important situations where the
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Figure 2.5: Glucose homeostasis: roles of insulin and glucagon, comparision
of non-diabetic and diabetic states, adapted from [6]

insulin hormone works and reflect how the lack of this one would affect the
normal behavior of the organs.

2.1.3 Alterations by diabetes

After the brief description of the complex system that distributes the glucose
in the precise situations, it is clear that an alteration in any of the components
can affect directly to glucose regulation. Therefore, in both types of diabetes
(DM1 and DM2) [126], where the normal function of the insulin hormone is
altered or insulin is lacking, this process is perturbed.

In the case of Type 1 Diabetes Mellitus, there is a destruction of the β cells,
producing a total deficit of insulin hormone. Then, there is a total dependency
on exogenous insulin for survival. The most common cause of Type 1 Diabetes
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(over 90% of cases) is the T-cell mediated autoimmune destruction of the islet
β cells [134]. This type of diabetes can be present at any age, starting more
frequently in people under 15 years. The rate of destruction of the β cells
is variable, but after certain period of time it will be complete. DM1 is also
known as insulin dependent diabetes.

The alterations by DM1 in the glucose homeostasis process are also shown
in Figure 2.5:

⋄ Subfigure B shows the diagram of insulin and glucagon actions in resting
(or fasting) conditions, for DM1. For individuals with diabetes in
the fasting state, plasma glucose is derived from glycogenolysis and
gluconeogenesis (1) under the direction of glucagon (2). Exogenous
insulin (3) influences the rate of peripheral glucose disappearance (4)
and, because of its deficiency in the portal circulation, does not properly
regulate the degree to which hepatic gluconeogenesis and glycogenolysis
occur (5).

⋄ Subfigure D hows the diagram of insulin and glucagon actions after a
meal, or feeding conditions, for DM1. For individuals with diabetes in
the fed state, exogenous insulin (1) is ineffective in suppressing glucagon
secretion through the physiological paracrine route (2), resulting in
elevated hepatic glucose production (3). As a result, the appearance
of glucose in the circulation exceeds the rate of glucose disappearance
(4). The net effect is postprandial hyperglycemia (5).

Type 2 Diabetes Mellitus is the most extended case of diabetes and this
classification also involves other types of diabetes. This type is present when
there is a resistance to insulin effects joined to a relative deficiency in its
pancreatic production. There are many factors which can potentially give rise
to type 2 diabetes. These include obesity, hypertension, elevated cholesterol,
etc. In general, for patients with DM2 the treatment is a healthy diet, exercise
and some drugs. This is why sometimes this type is also know as non-insulin
dependent diabetes.

These two types are the most commonly types of diabetes. Yet, the current
classification of diabetes is based on the aetiology of the disease and two more
categories can be found [134].

⋄ Other specific types of diabetes: caused by such conditions such as
endocrinopathies, diseases of the exocrine pancreas, genetic syndromes,
etc.
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⋄ Gestational diabetes: defined as diabetes that occurs for the first time
in pregnancy.

2.1.4 Complications of the disease

High levels of glucose in blood for a long time can cause several complications
in the organism [79, 59, 134]. For this reason, in both types of diabetes, a
poor control of the glucose levels can lead to several and severe problems in
different organs.

For patients with DM1 the two most frequent complications are:
ketoacidosis (DKA) and hypoglycemia. The diabetic ketoacidosis is a
state of severe and uncontrolled diabetes, caused by an insulin deficiency
and it requires an emergency treatment with insulin and fluids. This is a
serious problem, with an estimated mortality between 5 and 10% in western
countries. UsuallyDKA can be found in young patients where DM1 is still not
diagnosed. Nevertheless, it can also be present in patients with DM2 during
severe infections or other illnesses.

Hypoglycemia is a secondary effect very common due to the treatment
with insulin. Hypoglycemia in people with DM1 arises when there is a
inappropriate increment of insulin concentrations or an increment in the
insulin effects. The brain depends on a continuous feeding of glucose and
its interruption during a few minutes can cause damage in the central nervous
system, loss of consciousness or even coma.

There are other complications caused by the long-time high levels of glucose
in blood, known as hyperglycemia, both present in DM1 and DM2 patients.
The most frequent ones are:

⋄ Cardiovascular problems: Diabetic people have the same risk of
mortality by a heart attack as the non-diabetic people that have already
suffered one. This risk is three times higher when a diabetic patient has
already had a heart attack. High levels of glucose joined to cholesterol
problems favor the appearance of arteriosclerosis, which are the base to
develop many heart problems.

⋄ Ocular complications: These complications in diabetics affect mostly to
the retina blood vessels, although diabetes also speeds up the apparition
of cataracts and glaucomas. Around 5% of patiens reach a total
blindness, being diabetes the first cause of blindness in several countries.

⋄ Kidney complications: DM is the third cause of terminal renal
insufficiency. The clinic nephropathy happens in 30-40% of the cases
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with DM1. This failure provokes the presence of protein in urine. With
time, this affects to the kidney functions and can reach a kidney disease
in terminal state.

⋄ Neuropathy: This is a very common complication in diabetic patients.
Nerves damage are caused by a drop in the blood flow and by high levels
of glucose in blood. There is a higher risk of developing it if the levels
of glucose in blood are not well controlled. Usually the extremities are
the first affected regions.

A common consequence is the so called diabetic feet. With damage to
the nervous system, a person with diabetes may not be able to feel his
or her feet properly. Bacterial infection of the skin, connective tissues,
muscles, and bones can then occur. These infections can develop into
gangrene. Because of the poor blood flow, antibiotics cannot get to
the site of the infection easily. Often, the only treatment for this is
amputation of the foot or leg. If the infection spreads to the bloodstream,
this process can be life-threatening.

⋄ Gastrointestinal disfunction: The most common of these diseases is the
gastroparesis. This is a disorder in the stomach where this lasts a long
time in getting empty. This causes problems like excessive bacteria
growing. Besides, the food can harden, causing nauseas, vomits, etc.

Although these complications are the most common, they are not the only
ones caused by hyperglycemia or a poor control of the glucose levels in blood.
This shows the importance of having a good glucose control, not only for the
daily life of patients but also for their long-time quality of life.

Therefore, any contribution in improving the quality of life of these patients
will be of great importance for people with diabetes.

2.2 Research on Diabetes and its Treatment

2.2.1 The discovery of insulin

The major part of the advances leading to the discovery of the disease and
development of its treatments [31] have been done in 20th century.

It was in the Greek medicine where the term Diabetes starts being used,
in 2nd century b.C. This term refers to an urine excess, which is one of the
most characteristic symptom of this disease. Other symptoms of the disease
like constant thirst were also detected at that time.
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It was later, in 2nd century a.C., when diabetes starts being considered
like a disease from the kidney, and this idea was accepted until a few centuries
ago.

In 10th and 11th centuries it was the Moorish medicine which had higher
importance in this field. Moorish physicians advanced in the discovery of the
symptoms and consequences of this disease [8].

Important advances in this field started in 16th century. It was detected
that when urine evaporated, an strange substance was remaining. Later, it
was discovered that in diabetic people, the urine has some sweet smell or taste.
Finally, the rests of glucose in urine were proved at the end of 18th century.
A bit later, at the beginning of 19th century, Claude Bernard determined the
presence of glucose in blood.

It was in 19th and 20th centuries when the major part of advances took
place. In 1889 Oskar Minkowski and Josef von Mering demonstrated that the
absence of certain substance in the pancreas caused an increment of the levels
of glucose in blood.

In 1869 Paul Langerhans had already discovered some group of pancreatic
cells which could be separated from the rest [134]. In 1893 Edouard Laguesse
suggested that these cells were the endocrine part of the pancreas, and called
them Langerhans islets.

Later, in 1921 Frederic Grant Banting and Charles Best managed to isolate
an extract of the pancreas to be used as treatment of diabetes mellitus: the
insulin. This discovery made them win the Nobel prize [117].

With the isolation of insulin, the treatment of this chronic disease was
a revolution. From that moment until these days the treatment for type 1
diabetes mellitus (DM1) is based on the exogenous replacement of the insulin
hormone. There have been many advances in its dosage and composition, but
the real big advance was to isolate this hormone.

2.2.2 Developing a treatment for DM1

Developing the required technology

With the discovery and purification of insulin, diabetes becomes a chronic
disease with treatment instead of a deathly pathology [19]. From that moment,
patients can survive, but the disease consequences start appearing. The only
available technique for these patients was the test of glucose in urine. Yet,
this test is only effective when the level of glucose in blood is large. At the
same time, insulin was extracted from cows and pigs, which is not identical to
human insulin and has impurities. At that time, patients injected the insulin
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with glass needles, sterilized at home.
These are the three technology areas that take place in the treatment

of diabetes: the insulin itself, the way of injecting it and the technology to
measure the level of glucose. These three technologies have changed completely
with time.

⋄ Firstly, the synthesis of the human insulin was achieved. Later, this
insulin was modified and insulin analogues were obtained with different
pharmacokinetic profiles, with insulins of fast and slow absorption. With
these, patients have more flexibility in their daily activities.

⋄ The measurement of glucose has also changed completely. Firstly,
a technique that used colorimetry appeared to measure glucose
concentration in blood. It was only available for physicians first and later
at home for patients. Years later, the first biosensor appeared, which is
the technique used currently by patients at home. The first continuous
glucose measurement system was developed later (end of 1990s [19]): a
system that uses an inserted sensor in the subcutaneous tissue to give
glucose estimations every 5min.

⋄ The way of injecting insulin has advanced a lot since the reusable needles.
The most common devices to do the injection are disposable needles and
the pens of insulin, where the dosage can be set. Nowadays, another
option is the insulin pumps that supply the insulin subcutaneously.

Current treatment for DM1

With these devices, the treatment of diabetes has changed very much since
its first days. The therapy for diabetic patients is still based on the control of
the level of glucose in blood. This means that the patients must try to have
their levels of glucose all time in the appropriate range for their health. This
range has been set between 70 mg/dl and 180 mg/dl. If the level is below
70 mg/dl the patient has hypoglycemia and if the level is over 180 mg/dl the
patient is in hyperglycemia. Consequences of both conditions have already
been described in Section 2.1.4.

In addition to the basal injection of insulin to replace the resting level of
the organism, there is a treatment to control the blood glucose level for T1DM
at meals. It is based in three points [41]:

1. Measurement of the current level of glucose.

2. Estimation of the ingested glucose in the meal.
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3. Estimation and injection of the appropriate dosage of exogenous insulin.

Advances in the research of the treatment make it possible to find many
options for each of the steps [134]. Each patient performs them in the best
way for them, given their age, conditions, etc. In this section, there will not be
a detailed description of all the current devices to measure the level of glucose,
neither the types and composition of insulins. Here, the focus will be in the
generalities of the treatment to have a global idea.

To measure the level of glucose the most popular technique is to measure
the capillary glucose. This is done with a drop of blood taken from the finger
tip. The device used is called glucometer. The capillary glucose reflects
the glucose concentration at a certain moment. These measurements are very
usual in the patient’s therapy. They can do it by themselves, at home, which
is a great advantage, as it permits the self-control. Usually, in a controlled
diabetes, the patients perform around four measurements in a day (one before
each meal and one before going to bed).

The most important part of these measurements is that after doing them,
the patient will have to do a compensatory action, depending on the value, to
get in this way a proper control. This action will be done either eating some
food to increase the glucose level or injecting the proper dose of insulin.

If the level of glucose measured is below the adequate range, it must be
increased by eating some food. It is very important not to increase it too
much, to go over the upper limit of the healthy range. If the level of glucose
is over the upper recommended limit, insulin will have to be administrated to
reduce it. The amount of insulin injected depends on many factors. The most
important of them, in addition to the current level of glucose, is the amount
of glucose that the patient is to take. This will modify the current glucose in
blood and for this reason the two things are to be considered.

The patients, by their experience, are the ones that estimate how the
current level of glucose will be modified, based on the food that they will eat.
They estimate the amount of carbohydrates their food has and based on their
empirical knowledge they estimate how this will affect.

Once they have completed the two previous steps (measurement of glucose
level and carbohydrate content estimation from the food), the patients will
have to carry out the compensation action, to keep the levels of glucose in the
adequate range. There are many types of insulins and also many devices to
inject them. The classifications of insulin types is done attending, mainly, to
its time of action and its composition. The patients will use the type or types
recommended by their physician.

The most popular devices to inject the insulin are the ones called pens.
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The insulin is measured in units (IU)1. These pens have a needle which permits
the subcutaneous administration of the insulin. They also have the possibility
of adjusting the dose. This dose is also calculated based on the empirical
knowledge of the patient of how the insulin affects them.

The patients, when the disease is first detected, have more help from their
physicians. However, with the experience, it is better for them to perform this
autocontrol, which allows them to have more freedom in their daily activities.

2.2.3 Current Research

Nowadays, the research lines to improve the quality of life of type 1 diabetic
patients are mainly two [130, 46]: the first of them is focused on the research
of stem cells to replace the damaged β-cells of the pancreas (the cells that
produce the insulin). The second line has a more technical character. This
second approach involves several lines of research:

⋄ The production of new types of insulins, more efficient and that can
emulate better pancreatic secretion.

⋄ The development and improvement of devices to measure the blood
glucose: continuous glucose monitors either invasive, minimally-invasive
or non-invasive [108].

⋄ The development and improvement of devices to administrate the
insulin: insulin pumps and pens.

⋄ The development of decision support systems and telemedicine
platforms.

⋄ The development of algorithms to enable the automatic control of glucose
to close the loop or artificial pancreas. A few more details about it
will be given.

The automatic control of the glucose levels will enhance the quality of
life of diabetic patients. This would allow them to avoid almost all the steps
mentioned above, necessary for their daily control.

As the regulation process done by the human body to keep the levels
of glucose is very complex, the development of a system which does it
automatically will be very hard.

1One unit (U) of insulin is equal to the amount required to reduce the concentration of
blood glucose in a fasting rabbit to 0.045 per cent (45 mg/dl) within 4 hours [11].
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The key elements for the development of an artificial pancreas are (see
Figure 2.8):

⋄ Continuous Glucose Monitoring Systems: abbreviated CGMS. In order
to have a good glucose control it is important to have frequent
measurements of the levels of glucose. These devices, in general, offer an
estimation of the glucose every 5 min. They are inserted subcutaneously
in the abdomen region. Thus, they offer an estimation of plasma glucose
from measurements of interstitial glucose. Frequently measured and
accurate samples would enable the user to have a better knowledge of
how the glucose is varying with time and actions.

⋄ Insulin Pumps: they are external devices that allow the administration
of insulin in a continuous way. Recently, internal pumps have also been
developed. The pump has a compartment to place the insulin, filled in
the same way as the normal needle. This compartment is connected to a
needle placed in the subcutaneous tissue, to perform the administration.
These pumps are programmed to administrate a basal profile during
24h, emulating the insulin between meals or during the night. Besides,
the patient can indicate the extra amount of insulin needed before each
meal (bolus of insulin). Nowadays, these devices are not automatic, it
is still the patient who has to program them.

Figure 2.6 shows a graphic example of the placement of the continuous
glucose monitor and the insulin pump in the human body, in the case of
an integrated device from Medtronic.

⋄ Control Algorithm: it defines the basis for the automatic control.
This is the part that takes the “decision” of how much insulin will
be administrated at each instant [48]. As said before, nowadays, the
patients do it based on the information they have and their experience.
With the correct design of a control algorithm it would be possible to
“close the loop” and make it automatically.

The way of closing the loop more feasible nowadays is the use of
subcutaneous (s.c) sensor for monitoring the glucose and the use of a
subcutaneous insulin pump, although other routes have been explored
such as intraperitoneal insulin delivery and intravenous measurement.
Yet, many challenges exist for the development of the artificial pancreas
(AP) [19]:

– The use of s.c pumps arises the problem that the infusion is not
physiological, introducing an additional delay. In addition this
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Figure 2.6: Insertion in the human body of an insulin pump and a subcutaneous
glucose monitor [131]. Elements: A) Insulin pump and CGM central unit; B)
pump catheter; C) CGMS needle; D) CGMS transmission unit

delay is variable, from 20 to 180 minutes after infusion. An injection
of fast-acting insulin can make the maximum reduction of plasma
glucose 80 min later [68]. This is an important challenge for the
control of plasma glucose levels, since it can involve a over-action
with the risk of a later hypoglycemia.

– The problem of over-acting is much more relevant in the meal
compensation, where errors are larger. A meal acts as a
perturbation for the control system and can be estimated but
is not measurable. Clinical studies have proved the efficiency of
concomitant bolus of insulin to compensate meals versus schemes
based just on feedback [132].

– Another problem is the variability among patients (inter-patient)
and with time for a patient (intra-patient). Variations are due to
physiological aspects like stress or other physical influences. The
control must be robust to act in all situations.

– The last challenge for the artificial pancreas is the large error
that current monitors have in the estimations of plasma glucose.
Although mean error could be acceptable, the dispersion is large
and relative error can not be acceptable to close the loop efficiently.

Note that the control algorithm should have the same information as the
patient does, before estimating the amount of insulin to administrate.
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For this reason, not only information about the actual level of glucose
will be needed, but also of how the glucose will be modified by a meal
or some exercise and how the insulin affects the patient, things that
patients know by their experience

Current debate is divided into two lines. On the one side, there are
control algorithms directly tuned from patient usual parameters such
as total insulin dose, not requiring an explicit model, i.e. non model-
based approach, like PID controllers [67, 19]. Another approach is the
design of control algorithms incorporating a patient’s model for glucose
predictions, i.e. model-based approach, like MPC controllers [94, 110].
This line can be divided in two new lines, depending on the modeling
approach: the data-driven models and the physiologycal models.

In this last line, the information of the patient can be included using
mathematical models of behavior determining how certain inputs (food,
insulin) will act for that particular patient. Figure 2.7 represents an
scheme of the models that take part in the physiology of glucose.
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insulin delivery
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Plasma insulin

Glucose 

absorption

Plasma 

glucose

Insulin 
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model

Glucose 
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model

Glucorregulatory 
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Figure 2.7: Models and inputs of the physiology of glucose.

The insulin absorption model defines how the insulin will spread
in plasma once it is administrated. The glucose absorption model
defines how the glucose intake spreads in the body. And finally,
the glucorregulatory model will define how both signals interact and
determine the level of glucose in blood at the defined conditions.

This is the translation of the information the patient “knows” by their
experience in terms the control algorithm can interpret. Thus, it will
have all the information needed to estimate the right amount of insulin
that should be administrated preceding to disturbances.

Control algorithms have already been tested in patients [67, 110, 94].
The control of the plasma glucose levels during the night in a hospital
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environment has already been achieved [68]. Other studies are currently
focused on performing the control at home [110].

Thus, current research in the artificial pancreas is focused in all
these areas [46]: finding right models that represent the glucose physiology,
designing proper control algorithms and improving the actual monitors and
insulin pumps.
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Figure 2.8: Typical glucose closed-loop system. Adapted from [19].

2.3 Continuous Glucose Monitoring

2.3.1 Generalities

Self monitoring of blood glucose (SMBG) is recognized as one of the
fundamental steps of diabetes care since the 1980s, allowing for improvement
of metabolic control especially in insulin treated patients [51, 112]. This
has motivated the research of new devices, different from glucometers, for
continuous glucose monitoring (CGM). This is due to the fact that there is a
growing body of evidence that continuous glucose monitoring might translate
into better glycemic control as compared to SMBG [124].

However, none of the devices currently available for CGM have analytical
accuracy comparable to that of glucometers, especially in the hypoglycemic
range where the false positive and false negative rates are unacceptably
high [88, 29, 133, 112]. This is a critical issue, since accurate prediction
of hypoglycemia by CGM devices is strongly needed in diabetic subjects.
Nowadays, these systems are used by patients just to complement the
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measurements done with the glucometers, but not to replace them. Therefore,
CGM devices must be improved before these systems can be used by they own
either for glucose monitoring only or with the aim of “closing the loop” for
the design of the abovementioned artificial pancreas.

Current commercially available CGM systems (CGMS) for home
monitoring are subcutaneous electrochemical sensors. All of them use the
glucose-oxidase enzyme-based technology [112], which give a measurement of
glucose concentration into the interstitial fluid (ISF). This measurement is
expressed in terms of intensity of the current generated from the enzymatic
reaction (expressed in nA) [138]. This means that the output of the CGMS
is a current signal (in nA) representative of the levels of glucose in the ISF.
For this reason, CGMS devices need to be calibrated with concurrent blood
glucose values (from capillary measurements), thus providing an estimation of
blood glucose concentration, from the generated current signal. This type of
sensors are also known as minimally-invasive.

Non-invasive techniques for glucose monitoring are also a hot research
topic. Nevertheless, these devices are still in a development state and they are
not currently used for home monitoring. These devices measure the glucose
in an indirect way from certain signals. As their development is in an early
stage, their estimations are very poor, having worse accuracy than minimally
invasive devices. For this reason, the regulatory agencies have not approved
their commercialization yet.

In both cases, the indirect measurement of glucose levels in other
compartments than plasma implies the necessity of methods to estimate the
glucose levels in plasma, which is the variable of interest. These methods
are also known as calibration algorithms, contributing to the accuracy of
the estimation. To measure the accuracy of the estimations, for any device,
they will have to be compared with reference measurements, also called gold
standard, which will be samples of glucose in blood (venous, capillary or even
arterial samples depending on the context).

As minimally invasive devices are in a further stage of development, there
is a big interest in making improvements in this area of research. Besides, as
these devices are currently commercialized, any improvement will reach faster
the diabetic patient.

It is important to remark that, nowadays, the poor accuracy of the
continuous glucose monitoring devices is a major constraint for its stand-
alone use for therapeutical decisions, and for the development of the artificial
pancreas.

25



Chapter 2

2.3.2 Minimally invasive CGMS

The current intensity from subcutaneous glucose sensors is the result not only
of the interstitial glucose concentration, but also of the complex interaction
between the sensor and the subject. Mechanical and biological issues take
part in the interaction between the sensor and the subject. Examples of these
issues are: the thickness of the adipose layer where the sensor is inserted
[22], the reaction of the cells where the sensor (a foreigner) is inserted [49,
85], modification of sensor response when pressure is applied due to external
reasons [64], and many others that influence the sensor reaction and its output.

The accuracy of the estimation of blood glucose from the measurement
in the ISF will depend, among other factors, on the calibration algorithm.
Indeed, this calibration algorithm is a function that includes the relationship
between plasma glucose and the sensor signal from ISF glucose, trying to
minimize the error introduced by the physiological differences between the
two compartments.

Unfortunately, few studies have systematically investigated this
relationship [81, 7, 74, 127, 99, 20, 118], with heterogeneous results. This
highlights the complexity of the plasma-to-interstitial glucose dynamics
and also of the subject-to-sensor interaction, which contrasts with the
rather simplistic approach of calibration algorithms currently implemented
in commercial CGMS [109, 112, 16] (basically linear regression methods).

Indeed, linear regression models implemented in CGMS usually require
calibration under conditions of relative glycemic stability (at “stationary”
metabolic states) where equilibrium between plasma and interstitial glucose is
expected. In this way the relationship between the measured current intensity
and plasma glucose is considered static, neglecting any plasma-to-interstitium
transport dynamics besides a pure delay. This has been recognized as a
limitation of current calibration algorithms [112] but only a few studies have
proposed alternative calibrations strategies [93, 92, 42].

In any case, accurate estimation of plasma glucose requires mathematical
models describing the relationship between plasma glucose and the electrical
signal generated by ISF glucose concentrations, both during steady state and
dynamic conditions.

An alternative approach is to consider that the relationship between
plasma glucose and the sensor signal from interstitial glucose is non-linear
and likely depends on the metabolic state. A non-linear approach seems to be
more appropriate for this system, given that the flows between compartments
is a complex relationship. Thus, two relations that affect the sensor output
will be included in the calibration algorithm: the one between the different
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CGMS MARD Reference Bibliography
mean/median Glucose

Abbott Freestyle 12.8%/9.3% Venous (YSI) Weinstein et al.
Navigator (2007)

Medtronic Guardian 19.9%/16.7% Venous (YSI) Mazze et al.
REAL-Time (2009)

Medtronic 15.9%/11.6% Capillary Keenan et al.
Paradigm VEO (Glucometer) (2010)

DexCom SEVEN 16.7%/13.2% Venous (YSI) Zisser et al. (2009)

DexCom SEVEN 15.9%/13% Venous (YSI) Bailey et al.
Plus (2009)

Table 2.1: Performance of the monitors commercially available nowadays.
MARD is the mean or median ARD(%) = 100 ∗ ‖gm− g‖/g, where gm is the
monitor measurement and g is the reference glucose [19].

compartments (ISF-plasma) and the relation between the electrical signal and
the glucose concentration. Therefore, as both relations are included, the
estimation of the output is to be more accurate than when one of them is
ignored.

2.3.3 Calibration algorithms: State of Art

In general, the monitors available in the market do not offer detailed
information about the technique used to compute the estimation of glucose.
In the bibliography their performance can be found in some studies. In Table
2.3.3 the monitors commercially available nowadays are shown, as well as their
performance [112, 19]. All them are minimally invasive. YSI refers to Yellow
Springs Instrument, Yellow Springs, OH, a laboratory glucose analyzer. ARD
is the absolute relative deviation, a measurement to quantify the accuracy of
glucose estimations.

As said before, the basic linear regression models do not seem to be enough
for this system. This fact and the increasing importance of having a good and
frequent measurement of blood glucose has prompted to the research in this
field. Here there is a collection of most of the strategies found in literature,
shown from older to more recent techniques. In all them the general variables
will be y referring to the output (glucose) and x referring to the input (output
of the sensor or current intensity).

⋄ Basic linear techniques [16]: The general equation used to compute
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the output is:

y = m · x+ b (2.1)

There are several ways of finding parameters m and b, slope of the linear
equation and offset, respectively:

– One-point calibration. If the offset b is considered known,
usually b = 0, then using only one sensor signal (x) - blood glucose
(y) pair, taken in a certain time instant, the slope m can be
computed:

m =
(y − b)

x
(2.2)

For future instants (k) with m and b the glucose level ŷk can be
estimated from current intensity sample xk.

This technique is used by the GlucoDayR© CGMS (Meranini,
Firenze, Italy) [12].

– Two-point calibration. This technique is based on two
sensor/glucose pairs, and is more appropriate when the offset b
is unknown:

y1 = m · x1 + b
y2 = m · x2 + b

(2.3)

where subindexes 1 and 2 represent first and second calibration.
Then m and b can be found by solving the system of equations:

m = (y2−y1)
(x2−x1)

b =y2 −m · x2
(2.4)

– Multiple-points calibration. When many calibration points are
available, then linear regression (LR) can be used. Standard LR
techniques find m and b that minimize the sum of squared errors e2k
(differences between measurements yk and model predictions ŷk =
m · xk + b, k = 1, 2, ..., N):

min
m,b

N∑

k=1

e2k = min
m,b

N∑

k=1

(yk − (m · xk + b))2 (2.5)
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In the LR case, the correlation coefficient is a measure that defines
the quality of the model fit.

A related study [26], shows that using the one-point calibration method
is superior to the two-point calibration. They also found that two one-
point calibrations yielded nearly as good as three one-point calibrations.
This results might be due to the fact that in those studies the validation
was done using the Clarke Error Grid [28] to compare performances and
SMBG for calibration.

On the other hand, in [84] it is shown that it was necessary that the
two reference blood glucose values differ significantly when using a two
point-calibration (more than 30 mg/dl), since a larger difference reduced
the bias resulting from blood glucose (BG) to interstitial glucose (IG)
dynamics

Finally, to remark that calibration of CGMS by SMBG meter readings
remains the major weakness of CGM technology, as the error of SMBG
is carried to CMGS and it is difficult to compensate the error of these
readings in the calibration.

⋄ Predictive Projections [16]. Another way of estimating the glucose
level is making projections. This is necessary for glucose estimations
since the lag between compartments would require future values of the
intensity of the current to estimate the current value of plasma glucose,
like in the retrospective algorithms, which is not feasible for real time
systems. This technique is based only on previous values of glucose and
time between samples. The idea, basically, is to “find” the rate of change
of glucose with time. So, knowing the time since last value of glucose and
this rate of change the glucose at a certain instant k can be estimated
(Ĝk). Usually, a window of recent glucose measurements is used to give
importance only to those few samples closer to the instant when the
prediction is to be done.

It is evident that for having a model of this type many or at least several
samples of known glucose are needed.

– Linear Regression. This analysis estimates the slope, α, and the
offset, β, of the set of data yk, k = 1, 2, .., N . Both parameters
are found adjusting the set of data to a linear regression. Here the
“independent” axis (x) corresponds to time, having then a first-
order polynomial-in-time model:
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yk = α · tk + β (2.6)

Considering the error of known samples to the linear regression, the
confidence interval can also be obtained, having a measurement of
the accuracy of the prediction.

The basis of this model is the consideration that the slope of the
model (rate of change of glucose) is constant with time. This
could be considered the main drawback of this method. Linear
projections are used for short time predictions (5-10min) [103] and
during steady intervals, where changes are less abrupt.

– Other Linear Projections have been proposed by several
authors. In [25], a method is proposed that uses the extremes of
the window interval to get the rate of change:

rk =
(yk − yk−N )

N∆t
(2.7)

where N is the number of samples considered to compute the
estimated rate, rk, of variation and ∆t is the time between samples.

The standard deviation (σ) of the rate is computed by the difference
between the rate between samples (ri) and the estimated rate rk.
A measure of the goodness of prediction can be made by scaling
deviation, σ, by the total rate rk. With this technique projections
of 20 min into the future can be made [27].

In [24] an approach is developed using a multiple window lengths
of past data for multiple linear regressions. With this technique,
several predictions horizons are tested.

⋄ Dynamic Input-Output Models [93]. Input (x) - output (y) models
are very common for modeling a dynamic system. In a dynamic model
the current output depends on current and past values of the input (xk,
xk−1, xk−2, etc) and also depends on past values of the output (yk−1,
yk−2, etc). The number of delays considered for the input or the output
will determine the order of the model.

The most used structure in these cases is a linear combination of the
variables, X, known as regressors. Equation 2.8 shows a system modeled
with a linear model, first order in the inputs and second in the outputs.

ŷk = a1 · xk + a2 · xk−1 − b1 · ŷk−1 − b2 · ŷk−2 = ~p ·X (2.8)
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Another way of expressing equation 2.8 is as follows:

ŷ(z) =
a1 + a2 · z−1

b1 · z−1 + b2 · z−2
· x(z) = A (z)

B (z)
· x(z) (2.9)

where z−N represents a delay of N time instants in the considered
variable. A,B are the polynomials for the input and output.

Thus, to define this model two things have to be found: 1) the regressors
(X) that best define the dynamics of the system; and 2) the regression
coefficients (vector of coefficients, ~p=[a1 a2 −b1 −b2]) that best estimate
the output ŷ (glucose) at instant k.

A common approach is to set the order of the inputs and outputs first and
later find the regression coefficient vector. If the error of this structure
is acceptable, then the modeling process is finished. If not, another
structure has to be checked and so on.

This type of model can be used as calibration algorithm when the relation
between intensity of current and plasma glucose level is introduced.

According to the nature of the variables used, dynamic input-output
models can be divided into:

– Deterministic model is when a model uses only deterministic
or “predictable” variables. This accounts for inputs and outputs
(in previous instants). In general, as the output is the variable
to estimate, there will not be known samples available of previous
instants (yk−1,yk−2, etc.) because they were also estimated. So,
estimated samples will substitute these variables (ŷk−1,ŷk−2, etc.)
to compute the output of the model.

The linear structure is usally defined around a working point. For
this reason, the offset of the system does not have to be considered
in the previous description, as the origin of the axis is moved to
this point, so the point (0,0) is part of the model.

Nevertheless, an offset could be considered (a0) in the general linear
equation and would also have to be found as another coefficient.

– Stochastic Model. In some cases it is appropriate to consider
the output is affected by some noise (w). For this reason another
approach is to consider, besides the deterministic part of the model,
another stochastic part, to model the noise influence.
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This model can consider that the polynomial for the output is
constant for both variables (noise and inputs) (ARX structure):

ŷ(z) =
A (z)

B (z)
· x(z) + C (z)

B (z)
· w(z) (2.10)

Or that dynamics of the output affecting each of them are different
(Box-Jenkins structure):

ŷ(z) =
A (z)

B (z)
· x(z) + C (z)

D (z)
· w(z) (2.11)

In any case, parameters of all polynomials will have to be found to
best estimate the output. This structure is used in [93], where third
order polynomials are considered for the definition of the calibration
algorithm.

⋄ Optimal estimation techniques [16]. These approaches are based on
the Kalman filter estimations, which are the “optimal” estimations in
real-time (important fact for CGMS) for all variables of interest given
all the information available, subjected to noise. This performance is due
to its capabilities to systematically accommodate to new information as
it develops. Since noise is considered in the information, these techniques
can also be included in stochastic models category.

The underlying model is:

xk+1 = Φxk + Γwwk

yk = Cxk + vk
(2.12)

where x is the vector of states and y is the vector of outputs, wk is the
process noise with covariance Q and vk is the measurement noise with
covariance R.

For CGMS estimations, it is quite common that one state is the output
of the system g or glucose level and other is the rate of variations step to
step, d, of the glucose. Thus, the Kalman filter will give at each step an
estimation of the glucose level and also the change of this level at next
time.

Process and measurement noise are considered stochastic processes, and
the process noise covariance, Q, is known approximately and is often
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used as a tuning parameter. The states are estimated using predictor-
corrector equations of the form of eq. (2.13), (2.14) respectively2.

x̂k|k−1 = Φx̂k−1|k−1 (2.13)

x̂k|k = x̂k|k−1 + Lk

(
yk − Cx̂k|k−1

)
(2.14)

where x̂ represents an estimate of the states and the subscript k|k − 1
means the estimate at step k is based on measurements up (and
including) step k − 1. The measurement at current step time yk is then
used to update the state based on the Kalman gain Lk.

The state estimate covariance (Pk) is determined by an update of that
covariance at time k−1 with the state varying matrix (Φ) and also using
the rest of covariances information. A correction of the propagation due
to measurements update is also included:

Lk = PkC
T
(
CPkC

T +R
)−1

(2.15)

Essentially, the Kalman filter provides a trade-off between the likelihood
that a change in a sensor reading is due to a real effect or to sensor noise.

Future predictions (time k + j) from most recent measurement at time
k are given by:

x̂k+j|k = Φj x̂k|k (2.16)

Considering the proper states, the Kalman filter is capable of recognizing
that the glucose rate of variations may change in the future, improving
the accuracy of estimations.

Some works have further developed this strategy for continuous glucose
monitoring systems:

– Extended Kalman Filter for CGM [86]. To apply the Kalman
filter theory to a nonlinear process, the equations have to be
linearized. Then, it is known as Extended Kalman Filter or
EKF . The EKF provides minimum variance estimates in system

2This technique specifies in its equations the correction terms. Yet, any technique used
as calibration algorithm uses the same correction technique when a calibration is introduced
to correct the estimation given by the algorithm.
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applications where the dynamic process and measurement models
contain nonlinear relationships. In [86] a 5-state Kalman filter is
designed and validated on data from four patients (DirecNet [71]).

The 5 states used in the design of this extended Kalman filter
are: subcutaneous glucose levels, blood glucose levels, time lag
between the sensor measured subcutaneous glucose and the blood
glucose, time-rate-of-change of blood glucose level and subcutaneous
glucose sensor scale factor, which are represented respectively by:
GB, GS , τ, ĠS , kS .

The process model used is:

ĠS = −1

τ
GS +

1

τ
GB (2.17)

This model assumes that at steady state, the subcutaneous glucose
will be equal to the blood glucose.

The sensor measurement (IS) depends on the subcutaneous blood
glucose and on the sensor scale factor mainly, but also on a bias
(bS , taken as bS = 0 in this case) and on error variations εS :

IS = kSGS + bS + εS (2.18)

Occasional glucose measurements (capillary) will be the blood
glucose plus a variation εB: GMB = GB + εB.

Finally some considerations are taken into account: 1) the inverse
of the time lag is considered as a state 1/τ ; 2) the variations of the
sensor scale factor are considered null for a set time T and constant
for time longer than T .

Authors of this work demonstrate that the 5-state Kalman filter
work better than a 4-state Kalman filter, as more relevant
information is included improving the accuracy of the estimations.
In all cases the estimator was “tuned” for 24h or more and its
performance is checked in data of later days.

– Dual-Rate Kalman Filter [92]. The Kalman filter in this work
is applied to give an estimation of the sensor gain as well as the
blood glucose at the sensor’s sampling rate. Sporadic blood glucose
capillary measurements are used to further improve performance.

As the sensor gain changes with time, including noise in this
variable will allow to handle this fact. For this reason, four states
are considered: blood glucose (gk) and its rate of change (∆gk) and
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also sensor gain (ak) and its rate of change ∆ak. Both pairs follows
these equations:

[
gk+1

∆gk+1

]

=

[
1 1
0 1

] [
gk
∆gk

]

+

[
0
1

]

wg,k (2.19)

The model has two measured outputs at different time scale:
sensor output (magnitude in minutes) and capillary measurements
(magnitude in hours). Thus, the model is divided into two
dynamics: fast and slow. The output from the sensor (ys) can
be computed by both dynamics, while the output of capillary
measurements (yc) can only be computed with the slow model, eq.
(2.21).

ys,k =
[
0.5ak 0 0.5gk 0

]

︸ ︷︷ ︸

Cfast







gk
∆gk
ak
∆ak






+ vs,k (2.20)

[
ys,k
yc,k

]

=

[
0.5ak 0 0.5gk 0
1 0 0 0

]

︸ ︷︷ ︸

Cslow







gk
∆gk
ak
∆ak






+

[
vs,k
vc,k

]

(2.21)

It is important to notice that matrices Φ and Γ (same as for EKF )
are static, but the presence of gk and ak in Cslow and Cfast make
them dynamic, including the degradation of sensor gain over time.
Both set of equations (fast and slow) are to be updated using the
predictor/corrector equations (2.13,2.14). As dynamics of both sets

can be different two Kalman gains have to be defined (Lfast
k and

Lslow
k ).

This technique has been compared to one-point calibration strategy
in simulated and experimental data, showing better performance in
all data sets used.

– Enhanced Bayesian Calibration Method, or BCM [42].
This algorithms uses a Bayesian calibration method with EKF
to improve the accuracy of glucose estimations. It was tested
on simulated data for 10 patients during 7 days [89], with
considerations trying to make these data “realistic”. The
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starting point is the work in [86] and their approach performs a
enhanced calibration which works in cascade to the standard device
calibration.

This is one of the first works that gives an equation (triple
integration of zero mean white noise (wα)) to define the variations
of the sensor gain (α) over time:

αk+1 = 3αk − 3αk−1 + αk−2 + wα,k (2.22)

The model chosen to describe the blood glucose (GB) is a second
integrator, based on a preliminary analysis of data:

GB,k+1 = 2GB,k −GB,k−1 + wG,k (2.23)

Besides, this work includes the dynamic relation between plasma
and interstitial fluid (like [86], eq. (2.17)), consideration which is
important but it is not taken into account in many works (like [92]).

Finally, six states are considered: the blood glucose at current
instant, the blood glucose at previous instant, the subcutaneous
glucose, the sensor gain at this instant, the sensor gain at previous
instant and the sensor gain at two instants before (x1,k = GB,k;
x2,k = GB,k−1; x3,k = GS,k; x4,k = αk; x5,k = αk−1 and
x6,k = αk−2).

The outputs of the system are two: the GB signal and the CGMS
(GM ), given that in the simulator the monitor has to be also
computed. GM is defined as the product of sensor gain α and
interstitial glucose GS with addition of a zero mean noise. Thus,
output GB is linear but output GM is non-linear in the state space.
For this reason Extended Kalman Filter has to be developed.

In this work, the authors propose an improvement of the basic EKF.
As their model uses six states but only three variables and only two
variances have to be computed (wG and wα)), the model is simpler
than the one in [86].

To apply the algorithm, the authors propose a new calibration
strategy, based on basal and peak instants for breakfast and dinner,
trying to include the maximum information of the variation of
glucose when calibrating.

This work shows how this algorithm performs better than a two-
point calibration algorithm and the five state KF in [86]. Besides,
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the proposed BCM shows to be more robust (performance was
similar in all cases) when calibration are changed.

The main drawback of these techniques is the complicated initialization
of the estimation algorithms, that involves the formulation of several
extra equations (see Appendix 1 of [86]).

⋄ Other Methods have been proposed in this research line. Non-linear
techniques are gaining importance as the complexity of the problem may
require more powerful techniques than linear regressions, reason why
KF is also very popular. Within the non-linear theory, a very powerful
technique also used by some authors for the estimation of glucose levels
are the artificial neural networks (ANN). This is due to the flexibility of
these models, capable of adapting to any set of data.

[105] is an example of the application of non-linear techniques in glucose
estimations. This work does not presents exactly a calibration algorithm.
Instead it defines a technique that founds patterns in the glucose
concentration variations and designs a NN to predict them.

2.3.4 Difficulties for advancing in the field

It is worthwhile to mention the difficulties arising in conducting academia
research in this field. The main drawbacks are:

⋄ Inter and intra patient variability. As it has been already mentioned
this is a complex system. This is caused by the fact that human body is
a complicated system. Each person metabolism is different from other
person’s one, and what makes things worse (from the modeling point of
view), the metabolism of a person varies too, depending on the time of
the day, the external conditions, the physiologic state and many other
things. This difficulties to obtain a calibration algorithm efficient for
everybody and every time.

⋄ Difficulties to develop a clinical trial to get data: This is due to the fact
that humans have to be involved. Therefore, it has to be designed the
trial and also a clinical protocol which meets the ethic restrictions.

⋄ Expensive trials: this is because to the cost of sensors needed in a clinical
trial. When research is done by universities, it is not easy to get funding
and this makes difficult to afford this type of trials. This involves that
many times the developed algorithms are validated with in-silico data,
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where results might not be the same as in a real application. This is a
major limitation for obtaining conclusions of the studies performed.

⋄ Not much data available: because getting data is so difficult, obtaining
it is a precious information. Therefore, the different research groups do
the most of it and avoid sharing it with other groups. This means that
each group only possesses data from few trials, making it more difficult
to get conclusive advances.

There exist public data (like DirecNet), but it is difficult that data
meets the required characteristics for the development of a calibration
algorithm, such as frequent reference glucose measurements.

These are the main difficulties found in this research area. Given the
variability present in the system, to obtain a representative calibration
algorithm, for the population data from many patients would be required.
Yet, obtaining data is difficult due to the presented reasons. These difficulties
are quite important and have to be taken into account for the actual state of
the development of this field, and also in this work.

This means that with data from few patients, the results presented can
only be considered as a proof of concept, raising a hypothesis that should be
validated with a representative population.

2.4 Discussion and conclusions

This chapter goes very briefly through the basic concepts of the diabetes
disease, specially Type 1 diabetes mellitus. The relevance of this disease in
the current world and the future evolution of the number of patients are also
mentioned. There is a brief description of how the disease was discovered and
diagnosed through history and also the development of its treatment based on
the insulin isolation.

In addition to this, the basic characteristics of glucose homeostasis are
introduced, and the deleterious complications related to the disease to see the
social and economical impact of this disease and the importance of working
on this area.

The second part of the chapter is dedicated to the current treatment of
the disease and the technologies that take place in it. Some notes are pointed
out on each area that research on this field includes. Special emphasis is given
to the Continuous Monitoring of Glucose in the last section, which is the base
of this work. Its importance comes from the fact that it is a bottleneck in the
development of the artificial pancreas.
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Problem statement: Continuous Glucose Monitoring

Accurate estimations of plasma glucose are required to be able to close the
loop. It can be considered the first step to solve before the artificial pancreas
can be developed.

Current state of art of calibration algorithms is reviewed in this chapter and
also the problems found. Simple approaches do not reach the required accuracy
while complex approaches might not be feasible in the CGM devices. Thus,
it is extremely important to improve the accuracy of calibration algorithms
with the design of a method that can be applied in commercially available
monitors.

The idea that different dynamics can exist arises studying the
characteristics of the system. The existent inter and intra-patient variability
may imply that different local dynamics are present in the relation between
the sensor output (intensity of current) and the level of plasma glucose. This
hypothesis is the base of the approach presented in this work.

Indeed, another idea that arises from the review of the state of current
calibration algorithm is that other inputs additional to the intensity of current
might help in the estimation of plasma glucose levels, since in the glucose
homeostasis many things are related. For example, the insulin level affects
to the glucose distribution and therefore, might also contribute to modify the
direction of the glucose gradient among plasma and interstitial compartments
especially with high levels of insulin affecting measurement lag. Thus, the
consideration of additional inputs is a line to be studied.

In next two chapters it will be introduced the methodology proposed for
the design of a new calibration algorithm that takes into account the possible
existence of local dynamics. The aim of this calibration algorithm is to improve
the current state of the CGM devices. Firstly the general description of
the methodology will be described in next chapter, and following that, the
proposed approach to improve CGMS accuracy.
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Chapter 3

Clustering techniques for
modeling local behavior

3.1 Introduction

3.1.1 Advantages of local modeling

Advantages of local modeling are many. The main one is the possibility of
finding several models with simpler structure instead of a unique complex
model of the system. This enhances, many times, the interpretability of the
model and the system.

Besides, this approach makes easier the procedure of finding a model for
any complex system, as the problem can be divided into regions similar to
simpler models instead of finding the right complex mathematical function for
the whole set.

Other advantage is that the local models can have different structures,
adjusting better different regions, although this technique is not as
straightforward to use as the same structure for all local models and is
advisable only when information of the system is well known [38].

The existence of several local models enables the possibility of finding
similar regions and characterize them: similar dynamics, similar characteristics
etc. Thus, the system response could be better understood with this approach.

Given the starting hypothesis raised in the previous chapter that glucose
transport dynamics may depend on the metabolic state of the patient, for
instance for high insulinemia, or on other characteristics of the population,
this approach seems sensible to address accuracy improvement of calibration
algorithms for CGMS.

41



Chapter 3

3.1.2 General concepts

The general goal of local modeling techniques [77] is to find a set of c Local
Models, LMs, that after integration in a Global Model, GM, represent
the output of the system. In this way, each local model is simpler than the
global model and can be analyzed individually. The key, therefore, consist on
defining the correct parameters that allow for this partition. On the other
hand, a supervising element is required capable of the integration of all local
models in the final global model.

Each local model will be representative of some inputs or a region of the
input space. This representativeness will define the validity region of each
local model. It can be introduced as a weighting factor in the range [0,1] that
indicates the grade of validity of each local model. This validity function are
also called membership functions (MFs) and are represented by µ.

A Global Model is formed by the addition of the c weighted local models
(WLM), as shown in next equation,

GM =
c∑

i=1

WLMi (3.1)

where each weighted local model is obtained by the result of the local
model scaled by the membership of objects to that cluster:

WLMi = µi · LMi. (3.2)

The structure of each local model and each membership function are to be
set for each application, in addition to the proper number of local models.

3.1.3 Local Modeling technique selection

There are different approaches for the identification of the local models
of the system. One of the first developed was the gain scheduling. In
general, gain-scheduling encompasses the attenuation of nonlinear dynamics
over a range of operations, the attenuation of environmental time-variations
or the attenuation of parameter variations and uncertainties [100]. Classical
gain scheduling involves offline linearization of nonlinear system dynamics at
multiple operating conditions [33].

Gain scheduling technique was born with the aim of designing several
controllers for different working points. For the design of the controllers, the
necessity of having a model for each one of the operating points arose, i.e. a
local model network (LMN) [77].
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Another technique commonly used for local modeling is the application
of the fuzzy-set theory and fuzzy logic [136]. Examples of fuzzy systems are
rule-based fuzzy systems [136] and fuzzy linear regression models [125]. These
fuzzy rules are of the type:

If antecedent proposition then consequent proposition.

The antecedent is a set of fuzzy propositions and, according to [9], there are
three types of models, depending on the consequence proposition: 1) Linguistic
fuzzy model [136, 97], 2) Fuzzy relational model [106] or 3) Takagi-Sugeno (TS)
fuzzy model [123].

In all cases the antecedent propositions are the ones that make the selection
of the rule to apply. As they are fuzzy sets, the change of rule is supposed to
be smooth if the input also changes smoothly.

In both techniques, LMN and fuzzy rule-based models, the most common
way of defining the local models is to identify several local models in different
working points and later integrate them defining the validity regions of each
of those models. Therefore, the identified local models depend in a high way
of the working points defined for the process or by the user [96].

Another technique that can be used to extract local models from data is
clustering [33]. Clustering refers to the division of data into groups of similar
objects, where each group is called cluster. Each cluster consists of objects
that are similar to the objects in the same cluster and dissimilar to objects
in other clusters. In the same way, each cluster can be represented by a local
model and the integration of all them, weighted by their validity, results in
the final global model (see equations (3.1)-(3.2)).

Clustering is among the so-called data mining group, which is a group
of techniques that work with sets of data and try to get some knowledge
embedded within them and hidden from simple looks. Clustering is widely
used in several disciplines. The increasing number of applications where this
technique [58] is applied shows its potential.

The main advantage of clustering techniques versus the other possible
techniques for local modeling is that clustering algorithms find automatically
the groups of similar behavior. This similar behavior is defined depending
on the application or the system, and the automatic detection of these groups
makes the resulting global model be formed by the best local model that adjust
the proposed structure.

Clustering techniques allow for the identification of flexible structures, as
the definition of similarity can be defined according to the system. All these
advantages make the clustering techniques the most interesting option for
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local modeling of a system where each local model is desired to have certain
properties.

3.2 Clustering technique review

In this chapter a general overview of concepts related to this technique is given,
as well as its particularization for systems modeling applications. The main
algorithms developed in this line will be described to see the state of the art
of this technique and the point where this work starts.

3.2.1 Clustering Steps

Given that clustering techniques have to determine which objects are similar
to which others, this suggests that clustering is an iterative process [4]. The
following steps describe the process of applying this technique:

⋄ Data Collection: Refers to the careful extraction of relevant data
objects from the underlaying data sources. Here, data objects
are distinguished by their individual values for a set of parameters
considered, called attributes.

⋄ Initial Screening: Refers to the first treatment of the data after its
extraction from the source, in order to see whether the data collected is
suitable for clustering.

⋄ Data pre-processing: Includes the proper preparation of the data in
order to become suitable for the clustering algorithm. Here it is where
the similarity measure is chosen (or defined) and the characteristics,
including the dimensionality of the data, are examined.

⋄ Clustering Tendency: Checks whether the data in hand has a natural
tendency to cluster or not. Most of the times this step is ignored.

⋄ Clustering Strategy: Involves the careful choice of the clustering
algorithm, initial parameters and its immediate application.

⋄ Validation: This is one of the last steps. It can include visual techniques
if the input dimension is low. However, as the amount of data and its
dimensionality grow, the manual and visual techniques become useless.
A validity measure has to be defined to check the performance of the
algorithm according to the application purpose.
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⋄ Interpretation: The idea is to draw conclusions from the clustering
results. Therefore, it is highly desired to have an algorithm that provides
interpretable results that can be used for conclusions or further analysis.

3.2.2 Notation and Concepts

In order to clarify those terms mentioned before such as object, attribute,
etc. and used all along this document we will offer a brief explanation on
notation. Consider a data set or input matrix X = {x1, x2, ..., xn} consisting
of n data points which will be referred to as objects and may represent people,
things, transactions, etc. Each object can be represented in the following
way xi = (xi1, ..., xiD), where each component from 1 to D will represent
an attribute from the attribute space A, xil ∈ Al, l = 1 . . . D. Attributes
may represent characteristics, variables, dimensions, fields, etc. This object by
attribute data format corresponds to an n×D matrix and is used by most of
the clustering algorithms.

An important feature of clusters are their prototypes or also called centers.
To refer to them ci will be used, where each of the centers will have D
coordinates (as many as the column dimension of the input matrix). In many
cases, the centers of the clusters ci will act as a simplification of the data
set, where all the objects will be represented by only the centers and the
belonging of each object to a cluster. This belonging to a cluster is better
known as membership.

U and µ represent the matrix of membership values (µij), which size is
same number of rows as objects and same number of columns as number of
clusters, n× c. The set of all memberships of all objects to a cluster can also
be referred to as membership function .

3.2.3 Data Types

All the objects within the database are represented by their attributes which
represent the characteristics or features considered relevant to do the clustering
of these objects. These characteristics are an important factor for the
definition or selection of the clustering algorithm.

According to the value by which attributes are represented, two types of
data can be differentiated: numerical and categorical, [72]. Numerical
refers to an attribute that can be fully represented by a number. This leads
to another subdivision: continuous and discrete. An attribute is continuous
if its domain is uncountably infinite, i.e. temperature, length, etc.. On the
other hand, a discrete attribute is so if its domain corresponds to a finite
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set. This means that such attributes can adopt only some of the values of the
interval and between any two values the number of values is finite, i.e. number
of children, age, etc.. Numerical attributes have the inner property of being
ordered by its magnitude.

Categorical attributes are those that can not be fully represented by a
number, but they have to be represented by a category. These categories are
most of the times nominal labels which are assigned to the attribute to define
the particular characteristics it has. One of the main characteristics is that
these categories are independent from one another and there is not an absolute
way of ordering them, i.e. brands, colors, etc..

Gradable attributes are a particular type of categorical attributes. Each
category is a grade: bad, regular, good, etc. Although they are categorical, the
different categories are dependent and have an inner order. This means that,
in this point, they are more similar to numerical attributes than to categorical
and their treatment could be done as if they were discrete numerical values.

Attributes that are numerical but divided into intervals are also an
exception, given that they correspond neither to continuous numbers nor
to discrete number, but to a group of numbers which can be considered as
categories which are dependent and can be ordered. Their treatment can be
done in a similar way to gradable attributes.

One particular case is that of binary attributes, when they can adopt only a
pair of values, either numerical or categorical. There are multiple examples for
this case, like: yes/no, female/male, black/white, etc. This type of attributes
are more similar to categorical than to numerical, meaning presence/no
presence of something, but they can easily be converted to numerical values
0/1.

So, despite the different types of attributes, they can be divided into two
types: ones that can be treated like numbers, i.e. numbers, gradable and binary
attributes, and another one that are independent, i.e. categorical attributes.

The type of attributes is very important when clustering, as it aims at
finding similar objects. This similarity is defined by a measure or metric that
will have to take into account the nature of the attributes to be able to handle
them.

3.2.4 Similarity/Dissimilarity Measures

It is clear, therefore, that similarity/dissimilarity among the objects of the
database has to be quantified somehow. However, there does not exist
an inherent way of measuring this, and that is why similarity/dissimilarity
measures have to be defined [72]. The quantification of similarity is done by
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looking and comparing the attributes that define two involved objects [5].
After choosing or finding the most relevant characteristics for the data set,

a measure to determine their similarity is to be considered. The measure has
to take into account that the more two objects resemble each other the larger
their similarity is and the smaller their dissimilarity. For this reason, in the
numerical input space, the most common way of measuring this similarity is
using a distance measure, also called distance metric. These metrics are based
on geometry properties, inherent to numbers, so they cannot be used with
categorical attributes.

Given three objects (formed each one by D attributes) x, y and z a distance
metric d should satisfy the following properties:

1. d(x, y) ≥ 0: non-negative value;

2. d(x, y) = 0 if and only if x = y: distance of any object to itself is 0;

3. d(x, y) = d(y, x): symmetry;

4. d(x, z) ≥ d(x, y) + d(y, z): triangle inequality.

A description of some measures will be done for each of the attributes
types.

Numerical metrics

Many distance metrics can be found for general geometric purpose and used
for clustering. Here there are some of the most used ones, most of them based
on the q-norm of the difference vector:

d(x, y) = ‖x− y‖q (3.3)

⋄ Minkowski Distance is another expression for (3.3), and is defined as:

d(x, y) =

(
D∑

i=1

|xi − yi|q
)1/q

(3.4)

where q is a positive integer (q ≥ 1).

⋄ Euclidean Distance is defined as:
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d(x, y) =

√
√
√
√

D∑

i=1

(xi − yi)
2 (3.5)

Note that this equation is a particularization of (3.4) with q = 2.

⋄ Manhattan Distance is defined as:

d(x, y) =
D∑

i=1

|xi − yi| (3.6)

Note that this equation is a particularization of (3.4) with q = 1.

⋄ Maximum Distance is defined as:

d(x, y) = max
i=1...D

|xi − yi| (3.7)

Note that this equation is a particularization of (3.4) when q → ∞.

⋄ Mahalanobis Distance is defined as:

d(xj , ci) = (xj − ci)
T Σ−1

i (xj − ci) (3.8)

where Σi is the covariance matrix of the cluster. Note that this equation
is like Euclidean distance, but the covariances of the objects have been
included or, what is the same, the Euclidean distance corresponds to the
Mahalanobis distance but with the identity matrix (I) as covariance.

Figure 3.1 shows a representation of the shape of the resulting cluster using
Mahalanobis and Euclidean distances. In the first case (a), the shape is an
ellipse while in the second the cluster shape is a circle.

It is important to see that all these metrics describe a dissimilarity
measure, as they give a larger value when more different are the two considered
objects. Thus, to measure similarity with these metrics the smallest value
the best.

Although the most common distance measures are these ones, they are
not the only ones for numerical attributes. For example, it can also be found
the sample correlation coefficient in some applications as similarity measure
for quantitative (numerical) data [15]. The sample correlation coefficient is
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Ci

a)

Ci

b)

Figure 3.1: Shape of resulting cluster when using a) Mahalanobis distance and
b) Euclidean distance

a similarity measure used to quantify the lineal dependency between two
characteristics or dimensions.

Sometimes it is desirable or appropriate to use a more complex distance
as it can be the ones proposed by Gowda and Diday [53] and Kullback-
Leibler [91], when the application requires certain properties in the similar
objects. For this reason, it is very common to find many metrics defined for a
particular application with particular characteristics. Nevertheless, the basic
distance metrics are, still, the most used ones for general clustering purposes
with numerical data.

Binary metrics

For this type of attributes thematching coefficients (special numerical metrics)
can be defined, which are based on the number of common elements between
the two objects that are being compared. As they are binary attributes their
characteristics are only defined by two values. Let’s use 1 to describe one of
the options and 0 to describe the other one whichever their actual categories
are, in order to simplify the description of the measures. Now four parameters
are defined to express matching and not matching:

⋄ α is the number of attribute values that are equal to 1 in both objects.

⋄ β is the number of attribute values that are equal to 1 in x but 0 in y.

⋄ γ is the number of attribute values that are equal to 0 in x but 1 in y.

⋄ δ is the number of attribute values that are equal to 0 in both objects.
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⋄ τ is the total number of attributes and then, τ = α+ β + γ + δ

From this definition we can express the two most used distance measures
for binary attributes:

⋄ Simple Matching Coefficient is defined as:

d(x, y) =
α+ δ

τ
(3.9)

This index accounts for the number of attributes that are equal in both
objects. This coefficient is used in most of the situations when there are
binary attributes.

⋄ Jaccard Coefficient is defined as:

d(x, y) =
α

α+ β + γ
(3.10)

This index disregards the number of 0-0 matches. This is used when
the state described as 1 has a higher weight or influence than the other
(described as 0). This one is not commonly used and only applied in
singular cases.

Categorical metrics

Although in the case of numerical and binary attributes the distance measures
are very well-known and widely used, in the case of categorical attributes
there is no a distance measure that has become of widespread use for its great
performance and variety of possible applications. Indeed, the most generalized
situation is that for any new work of clustering with categorical information
the requirements or the properties of the data make necessary a design of
a new similarity measure, to cope with the expectations. Nevertheless, one
measure which is well-known is:

d(x, y) =
D∑

i=1

δixy (3.11)

where for each attribute i in x and y, the parameter δixy is defined as:

δixy =

{
0 if xi = yi
1 if xi 6= yi

(3.12)
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In this way when both attributes are equal they do not affect to the total
distance and when they are different they contribute by one unity. This means
that (3.11) measures dissimilarity between a pair of objects.

3.2.5 Types of Membership

In classical clustering an object belongs just to a cluster. This is also called
exclusive membership or hard membership. In this case, the membership
of an object to each cluster is either 1 if the object belongs to that cluster or
0 if the object does not belong to a particular cluster. The resulting clusters
have the following properties:

Pi ∩ Pj = ∅, 1 ≤ i 6= j ≤ c (3.13)

∅ ⊂ Pi ⊂ Z, 1 ≤ i ≤ c (3.14)

c⋃

i=1

Pi = Z. (3.15)

where Pi and Pj are two subgroups (clusters) of objects of the total group
of objects Z, and c is the total number of clusters.

Equation (3.13) means that there are no elements in common between any
two clusters, equation (3.14) means that no cluster is the empty space and
finally, equation (3.15) indicates that the union of the objects from all clusters
gives the whole database.

A relaxation of this condition was later applied. This was called non-
exclusive membership or fuzzy membership. Non-exclusive membership
indicates that the objects belong to more than one cluster with different
membership degrees to each of them.

The idea of non-exclusive membership algorithms comes up immediately if
it is presented a situation like the following one. Let’s have a database where
a hard clustering is performed, and when the clustering is performed there is
an object which is equally distanced from the centers of two clusters. Then,
which cluster must be this object assigned to? This situation makes that those
points equally distanced to more than one cluster are not represented properly
if they are only assigned to any of those clusters.

Fuzzy clustering relaxes the requirement that data points have to be
assigned to one and only one cluster. In these algorithms data points can
belong to more than one cluster and even with different levels of membership,
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not just half and half. These non-exclusive cluster assignments can represent
the database structure in a more natural way, specially when clusters do not
have a perfect boundary, or what is the same, when clusters overlap. At these
overlapping boundaries the fuzzy membership can indicate the ambiguity of
the cluster assignment. In this type of clustering the total membership of an
object (to all the clusters) is always the unity. The membership is usually
represented by µ. µik represents the membership of object k to cluster i.
Equation (3.16) represents the restriction that the total membership of a
cluster has to be positive, which means that no cluster can be empty. Equation
(3.17) shows the restriction of the fuzzy membership to add in total the unity.

n∑

j=1
µij > 0 ∀i ∈ {1, ..., c} (3.16)

c∑

j=1
µij = 1 ∀j ∈ {1, ..., n} (3.17)

A particular case of non-exclusive membership is the possibilistic
membership. This is particularly interesting when the clusters are defined
attending to independent characteristics. In the possibilistic approach the
restriction of the total membership of each object to be the unity is avoided.

Two examples will clarify fuzzy and possibilistic approaches. Let’s consider
a data set where the height of children is stored. If three clusters are
considered: small, medium and tall. Each object (children) will belong to
one of the cluster or will be between two, sharing the membership. On the
other hand, a data set where the ability to play sports is stored. If three
clusters are considered: soccer, basketball and handball, then each object can
belong with different levels of membership to each cluster, and this level of
membership is not defined by the rest of the clusters.

The possibilistic approach is very useful to detect objects that do not meet
the characteristics of any model, i.e. outliers. With this approach an object
can have a very low membership value for all clusters, indicating that this
object is not well represented by any of the prototypes and therefore, not by
that global structure. This is not possible in fuzzy clustering, where all objects
have a total membership equal to unity, even when they are very dissimilar to
all prototypes.

Therefore, hard membership is useful when the boundaries of the
clusters can be well defined. Fuzzy membership is useful when the clusters
are dependent, while possibilistic membership is useful when clusters are
independent and the rescaling of the membership for each element can mislead
the fitting of the object by each cluster.
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3.2.6 Normalization

The attributes considered in the database can be of very different nature,
not only for the type of data they belong to, but also for the units they are
expressed in, their magnitudes and other characteristics. Therefore, to make
all attributes have the same importance it is advisable to normalize all them
before the clustering algorithm is applied [5, 73]. TAs result, the units with
which the attributes are measured will not affect, nor the magnitude of them.

The most important property of normalization is that after it, all variables
have to be equally important for the clustering algorithm. The normalization
step is essential for a proper clustering process, much more if the clustering
algorithm is a numerical algorithm. Different ways of normalizing the
variables can be considered. Two commons ones are:

⋄ Within an interval. In this type of normalization, the attributes will
be normalized so that all of them, after normalization, are defined in the
same interval. The normalized interval is, usually, defined by the user.
This normalization is based on a linear transformation of the data in the
defined range [ymin, ymax]. Two common intervals are: [-1,1] and [0,1].
The equation for the new normalized values is:

ynorm =
∆y

∆x
(x− xmin) + ymin (3.18)

where y refers to the normalized variable while x to the non-normalized
one. ∆y is the length of the interval for the normalized attribute and
∆x the length of the interval of the attribute before normalization.

⋄ Statistical properties. In this other type of normalization, the
variables will be normalized in order to meet some properties equal for
all of them. The most common type is the normalization to have certain
statistical properties in the variables, like null mean and unitary variance
(following a normal distribution).

The equation to normalize the variable in this way is:

ynorm2 =
(x− x̄)

σx
(3.19)

where x̄ is the mean of the non-normalized variable and σx its standard
deviation. With this type of normalization all attributes will be, in the
statistical sense, balanced and will have the same effects in the clustering
process.
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Apart from the normalization used, it is necessary to account the origin
of the inputs and therefore, how to consider them for the normalization.
Each input can correspond to just one or to several experiments, which
could be batches or different subjects. If this is the case, the variables can
be, if convenient, treated in an special way. Thus, the different types of
normalization can be:

⋄ By the set. Whatever the type of normalization taken, each variable
is normalized taken the parameters of the full set. That is, the
interval or statistical properties are obtained for the total vector. This
normalization is to be applied when the input is obtained just from
one experiment or several experiments have been performed but some
homogeneity condition holds. In Figure 3.2 a diagram of this type
of normalization using statistical properties is represented, where Psn
represents the full matrix of normalized variables using set parameters.

    P1          P2                           Pr

Ps Psn
mn σn

Figure 3.2: Schematic of set normalization

⋄ By subject. This type of normalization is only available when each
input is composed by data of different heterogeneous experiments or
subjects. Then, inputs of each experiment can be normalized with its
own parameters. So, the final normalized input vector will be formed
by several vectors normalized by they own. This can be very useful
when ranges of each experiment are different but the input-output
dynamics is the same for all of them. In Figure 3.3 a diagram of this
type of normalization using statistical properties is represented, where
Pin represent the final matrix of inputs where each subject has been
normalized by its own parameters and the total matrix is formed by
latter joining all normalized vectors. This type of normalization is also
known as individual normalization.

It is important, and somehow obvious, that the resulting output of
the clustering will be in normalized dimensions and, therefore, to have it
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Figure 3.3: Schematic of individual normalization

in natural dimension it will have to be denormalized accordingly to the
normalization applied.

3.2.7 Classification of clustering

There exists a large amount of applications for clustering, and therefore many
algorithms have been developed to solve the requirements of each case. There
are different techniques underlying the clustering algorithm. Considering the
application, the technique used, the type of output, and many other factors,
the different algorithms can be classified. Each class is done according to one
criteria and as these criteria do not consider the same factors, this yields to
an overlap between the several classes, being it possible that one algorithm
belongs to two groups if the classification criteria is different in both.

The main divisions of the algorithms are:

⋄ By the clusters division: Partitional/Hierarchical. Hierarchical
techniques are further divided into agglomerative and divisive. While
hierarchical algorithms assemble (if they are agglomerative) or
disassemble (if they are divisive) points into clusters, partitional
algorithms learn clusters directly. Usually, this last type of algorithms
tries to discover clusters by iteratively relocating points between clusters,
but sometimes the technique used is different, like finding highly
populated regions, dividing the space into segments or many others.

⋄ By its membership: Exclusive/Non-exclusive. Exclusive membership
means that the objects belong or not to a particular cluster. This
is the most traditional way of clustering attributes and many times
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it is denoted as hard clustering. However, if the membership is non-
exclusive then the objects belong to more than one cluster with different
membership degrees to each one. This is denoted as fuzzy clustering and
it is quite interesting in the cases where the database is not very uniform.
Another case is the possibilistic clustering, which is a particularization
of the fuzzy clustering, where another degree of freedom is included.

⋄ By the type of inputs: Numerical/Categorical/Mixed. The
description of the types of attributes has been done in Section 3.2.3.
According to the type of data which with the algorithm is able to work
with, it will be placed in one of these three classes.

Other divisions, not as largely used as the previous ones but also to be
considered, are:

⋄ By criteria of clustering: Proximity/Density based clustering.
Density-based algorithms group objects according to a specific density
objective function, instead than by proximity. Density is usually defined
as the number of objects in a particular neighborhood of a data object. In
these approaches a given cluster continues growing as long as the number
of objects in the neighborhood exceeds some parameter (threshold).

⋄ By its representatives: Single point/Model. Model-based clustering
algorithms find, instead of a single point to represent a particular cluster,
the parameters of a function (given its structure a priori) that best
represent each cluster. Thus, each cluster will be represented by a model.
This division is not largely used as it is the application which defines the
type of representative and there are no many options of selecting another
type. Nevertheless, it is very important to have clear this type of classes
as both of them are largely required in clustering applications.

⋄ By the division of the space: No-Division/Grid. Most of the
algorithms do not perform any division of the space and allow the clusters
to be placed anywhere. On the other hand, the aim of Grid-Based
algorithms is to quantize the data set into a number of cells (of the input
space) and then work with objects belonging to these cells. They do not
relocate points, but rather build several hierarchical levels of groups of
objects.

These are some of the criteria used to classify clustering algorithms. It can
be seen how some classifications overlap between them, as they use different
criteria. Some algorithms in each class are:
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⋄ Hierarchical algorithms: BIRCH [137], CURE [55], CHAMELEON
[78], COBWEB [44], etc.

⋄ Partitional algorithms: k-means [61], PAM, CLARA [80], etc.

⋄ Exclusive membership: k-means, BIRCH, etc.

⋄ Non-exclusive membership: FCM, PCM [2], etc.

⋄ Categorical algorithms: k-modes [70], ROCK [54], STIRR [50],
CACTUS [47], etc.

⋄ Mixed algorithms: k-prototypes [70], dSQUEEZER and
usmSQUEEZER [63], etc.

⋄ Density-based algorithms: DBSCAN [75], GDBSCAN [40],
DENCLUE [66], etc.

⋄ Model-based algorithms: FCRM [62], AFCR [114], TSP [35],
Expectation-Maximization [21], etc.

⋄ Grid-Based algorithms: STING [129], WAVECLUST [116],
CLIQUE [3], etc.

3.2.8 Definition of the cost index

In order to find the clusters embedded in a data set, it is necessary to define
the methodology used by the clustering algorithm. There are many clustering
algorithms and many clustering tendencies already developed. Nevertheless,
most of them have a characteristic in common: the clustering is performed by
the optimization of a cost index.

In this cost index the essential properties desired for the clusters are
included in a mathematical way and later the clusters are obtained by finding
the best solution that performs the best in the defined index, resulting in the
output of the clusters. For that reason, the first thing to be set is what is
wanted as the output of the data set after the clustering is done. This could
be the center of each cluster, the number of clusters, the size of them and so
on, depending on the purpose of the clustering and the desired structure for
the resulting groups of objects.

Once the output is set the cost index can be defined by translating the
properties of the resulting clusters in a mathematical way. Some of these
properties are: the distance from each objects to the center of each cluster,
type of membership, shape of the clusters, number of clusters and so on.
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When the cost index is defined, two other things have to be fixed. The first
of them is finding what is the best solution for a particular index. In most
of the cases, the function includes distances or errors, thus, the index will
have to be minimized in order to find the output of the clustering algorithm.
In other cases, the index might need to be maximized to find the optimal
solution for the set.

The second thing to fix, once it is clear what we are looking for in
that function, is the procedure to find this solution. The minimization (or
optimization) of the function can be done using many optimizers, which, at
the same time, can be local or global ones. Choosing one solver depends on
many things: the application, the data set, etc. Two factors of high importance
are the computational time allowed and the precision required in the solution.

Nevertheless, the key of clustering algorithms is how to translate those
desired properties of the clusters and its outputs into a mathematical
language to be treated by numerical ways.

3.3 Relevant algorithms for clustering

There has been a few clustering algorithms that have meant a revolution or
a significant advance in clustering theory. Most of them use a relatively easy
principle, but their importance comes from this fact. They will be described
here and used as a few examples of how a clustering algorithm performs
the clustering process. The detailed algorithms have been divided into three
groups, according to the type of data that can handle: numerical, categorical
or both (mixed data algorithms).

3.3.1 Numerical algorithms

k-means

This is a partitional numerical algorithm, with exclusive membership.
This algorithm [61] is by far the most popular clustering tool used widely

in the past and nowadays. The goal in k-means is to produce k clusters from a
set of n objects, so that the objects of all clusters minimize the squared error
objective function, i.e., the addition of all Euclidean distances, eq. (3.5), from
all the objects to the center of the cluster where they have been assigned to:

Jindex =
k∑

i=1





n∑

j=1

d (xj , ci)



 (3.20)
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where n is the number of objects, k the number of clusters, ci the center
of cluster i, d(x, ci) is the distance of the element x to the center of the cluster
it has been assigned i.

This equation can be expanded as:

Jindex =
k∑

i=1





n∑

j=1

√
√
√
√

D∑

v=1

(xj,v − ci,v)
2



 (3.21)

where now D is the number of attributes. So, the total distance will be the
root square of the addition of the squares of the difference of each attribute.

The k-means algorithm has as input parameter k, the number of clusters,
and as an output the algorithm returns the centers or means of all clusters ci.
The algorithm procedure is as follows:

1. Select k objects as initial centers,

2. Assign each data object to the closest center,

3. Recalculate the centers of each clusters,

4. Repeat steps 2 and 3 until centers do not change.

This algorithm works very well if and only if the parameter k chosen is
the proper one. Otherwise, the results will not be interpretable and then this
algorithm will lose its great advantage. The main disadvantage is that because
the similarity measure is a distance metric, it cannot be used for categorical
attributes, only for numerical.

It also happens for the k-means algorithm that it is able to detect well
distributed and spherical-shaped groups of data. When the clusters have
different sizes or their shapes are not spherical-like, then this algorithm does
not provide efficient results.

FCM: Fuzzy C-Means

This is partitional numerical algorithm, with non-exclusive membership
function.

This algorithm allows gradual membership which will be measured in the
interval [0,1]. This makes the data model much more detailed and allows the
total model to express how ambiguous or definite the database is. Given that
now memberships are fuzzy, they cannot be expressed with only one value or
label. Now they have to be a vector for each point xj ∈ X the length of which
is k the number of clusters:
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µj = (µ1j , ..., µkj)
T (3.22)

where µij represents the membership to each cluster for object j.
Matrix U will be n × k and it is called the fuzzy partition matrix.

Because this algorithm is probabilistic, it will be called the probabilistic cluster
partition of X. It has to meet two properties, reflected in equations (3.16) and
(3.17). These equations mean that all data are equally included and receives
the same weight as all other data, although the distribution of this weight
among the clusters differs from one object to another. As consequence, no
cluster can contain all data and the membership values have to be normalized
for each object.

Obviously, the closer a data point lies to the center of a cluster, the higher
its degree of membership should be to this cluster. Now the problem of finding
the best partition of the data set not only relies upon the optimization of a
cost index computing the sum of all distances from the point to their cluster
center, but it is also desired to maximize the degrees of a membership. Now
the general cost index will be:

J (X,U,C) =

k∑

i=1

n∑

j=1

µm
ij · dij (3.23)

where µm
ij is the element of the fuzzy partition matrix that is related to

the element xj and all the clusters i from 1 to k and dij is the distance of the
point xj to the center of the i-th cluster ci. In k-means algorithm the Euclidean
distance is used. The parameter m (m > 1) is called fuzzyfier or weighting
exponent. With higher values for m, the boundaries between clusters become
softer. Usually m = 2 is chosen.

Because the cost function now depends on two parameters it is iteratively
optimized. This means that first the membership degrees are optimized
for fixed cluster centers, then the cluster prototypes are optimized for fixed
membership degrees, which are the optimum values obtained in the previous
iteration. Equations (3.24) and (3.25) show respectively the membership and
the center updates, where t refers the actual clusters, i covers all the clusters
and, finally, j is the number of objects n.

µtl =
1

c∑

i=1

(
d2tj
d2ij

) 2
m−1

(3.24)
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ct =

n∑

j=1
(µtj)

m · xj
n∑

j=1
(µij)

m
(3.25)

The choice of the optimal cluster center for fixed membership of the data
is the same case as the k-means cost index, and that is why this algorithm
is called fuzzy c-means. Fuzzy c-means is a stable and robust classification
method, it is quite insensitive to the initialization and is not likely to get
stuck in an undesired local minima.

PCM: Possibilistic C-Means

Often it is desirable to have the property of the probabilistic membership
degrees, although some times it can be misleading. High values for the
membership of a datum in more than one cluster mean that the point is at
the same distance to those clusters. If now there is another point with similar
characteristics this can suggest that both points are close, but this might not
be true, as it can be seen in Figure 3.4. Both points are equally distanced to
the two clusters, but they are not close.

C1

C2

x1
x2

Figure 3.4: Case when the same normalized membership value correspond to
two different points

The normalization of membership values can lead further to undesired
effects in the presence of noise and outliers. The membership values affect the
clustering results, since data point weights influence on cluster prototypes. A
more intuitive assignment of degrees of membership can be achieve by dropping
the normalization constraint, avoiding undesirable normalization effects. This
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last point can be highly desirable if the clusters are considered completely
independent from one another.

Now the U matrix is a possibilistic cluster partition of X and still meets
the equation (3.16). Now the membership degrees of each object resemble
the possibility of being a member of the corresponding cluster instead of
pointing how is the proportion of their belonging to each cluster. Dropping
the normalization constraint, (3.17), leads to the problem that the cost index
could be minimized with all µij → 0. In order to avoid this trivial solution a
penalty term is introduced, which forces the membership degrees away from
0, eq. (3.26). In this way the desire for strong assignments is expressed and
included in the cost index.

J (X,U,C) =

c∑

i=1

n∑

j=1

µm
ij · dij +

c∑

i=1

ηi

n∑

j=1

(1− µij)
m (3.26)

In the possibilistic approaches, the clustering methods have to learn
the weights of the data points, while in probabilistic all weights are 1,
understanding by this weight the total membership value of one point. The
formula for updating the membership degrees is:

µij =
1

1 +

(
d2ij
ηi

) 1
m−1

(3.27)

where we can see that the new value will only depend on the distance dij ,
and the rest of the distances do not modify this membership.

Depending on the cluster’s shape the parameters ηi have different
interpretations. If some knowledge of the data set is known a priori, then
ηi can be set a priori. However, this does not usually happen and these
parameters have to be estimated. Good estimations can be found using a
probabilistic clustering model of the given data set. Then ηi can be estimated
using the probabilistic fuzzy partition matrix, as shown in (3.28).

ηi =

n∑

j=1
µm
ij · dij

n∑

j=1
µm
ij

(3.28)

The best property of this algorithm is that it is able to leave some points
which are far from cluster (outliers) outside and do not assign them to any
cluster.
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3.3.2 Categorical algorithms

k-modes

This is a partitional categorical algorithm, with hard membership function.
This algorithm [70] was the first one oriented to categorical data. It is based

on the k-means algorithm and uses the same structure but with a different
similarity/dissimilarity measure where the main differences are that the means
are replaced by modes and that the way of updating them is a frequency based
method. The dissimilarity measure used is like equations (3.11) and (3.12).
This expression counts the number of mismatches the two objects have on
their attributes. All attributes are considered to have the same weight. If
the frequencies of the values in a set are to be included to give the attributes
different importance, the equation would be:

d (x, y) =

D∑

l=1

nxl
+ nyl

nxl
· nyl

·δlxy (3.29)

where nxl
and nyl are the numbers of objects in the database with

attributes values xl and yl for attribute l respectively. The mode of a set
is the value that appears in the majority of elements of the set. Every cluster
i, 1 ≤ i ≤ k will have a mode, defined by a vector Qi = (xi1, ..., x

i
D), where

D is the dimension of the attribute vector. The vector Qc that minimizes the
cost index, eq. (3.30), is the desired output of the algorithm.

E =
k∑

i=1

∑

x∈i
d
(
x,Qi

)
(3.30)

Given that the k-modes algorithm is based on the k-means structure, it
has the same advantages and disadvantages as this one.

3.3.3 Mixed data algorithms

k-prototypes

This is a partitional algorithm for mixed data, with hard membership function.
This algorithm [70] is an integration of k−means and k−modes, adding

both dissimilarity measures:

sn + γsc (3.31)

where sn is the dissimilarity on numeric attributes, sc the dissimilarity on
categorical attributes, and γ is a weight to balance the two parts and avoid
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favoring either type of attribute. This last one is a user-defined parameter,
and depends on the particular application.

Data codification

This is not an algorithm by itself, but it is an option to cluster data sets with
mixed (categorical and numerical) attributes [69, 15, 14, 13, 63]. It consist on
transforming (codifying) one type of data into the other type and then using
a clustering algorithm capable of working with that data. The conversion of
numerical data into categorical data makes the converted attributes lose some
known information: categories are independent while numbers are intricately
related [63]. This reason, joined to the fact that numerical algorithm are, in
general term, better developed and are more efficient, make the codification
of categorical into numerical data a more common option [69, 14, 13].

3.4 Clustering algorithms for systems modeling

The idea of system modeling using clustering techniques is like a combination
of the classical clustering techniques with the local modeling theory. The
basis are the same, but now instead of “manually” generating the antecedent
and consequent propositions as in many applications of fuzzy modeling, the
clustering algorithm will find similar regions to be modeled with a consequent
proposition.

The use of clustering techniques for systems modeling is increasing. The
reason for this is that a complex system can be modeled by the integration
of several simpler systems, gaining flexibility and interpretability of the global
model.

For any new case, the characteristics desired in the model have to be
defined. According to these characteristics the way of modeling the system
will be different. Thus, it is common that the modeling clustering algorithms
can be only applied for systems with certain properties.

A description of the most relevant algorithms for this purpose is detailed
here:

⋄ FCRM: Fuzzy C-Regression Models, [62].

FCRM is a model-based clustering algorithm based on the minimization
of a cost function. It basically tries to find a set of fuzzy models to
represent the output with a linear combination of the inputs.

Given a data set where each independent input observation xk has a
correspondent output observation yk, it is assumed that several linear
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models, c, describe the relation between the input and the output: ŷ =
fi(x;βi)+ǫi where 1 ≤ i ≤ c. This is known as a switching regression
model.

If each object is described by a combination of all or some models, then
the problem to solve can be divided into two: finding good estimations
of parameters βi which define ŷ (predicted output) and finding the
membership of each object to each one of those models.

In this algorithm these two problems are solved simultaneously, by an
iterative approach. The membership of each object meets the restriction
to be equal to the unity for the addition to all clusters. The solution
will be one that minimizes a cost index defined by the summation of all
errors between the real output and the output of the model weighed by
the membership of that object:

JFCRM (x, U, c, β) =
n∑

k=1

c∑

i=1

µm
ik · Eik (βi) (3.32)

where Eik is the square error between the output of the object k and the
output given by the local model i.

Basically, the steps to find the solution are:

1. Initialization of the variables: m, U (0), ǫ, etc. Choice of the error
measure Eik. Usually, square error function E2

ik = (yk−fi(xk, βi))
2.

2. Calculate the values for all βi. This will be done with least squares.

3. Update the membership matrix.

4. Compare the new matrix with the last one, if the sum of changes
between the two matrices is smaller than ǫ then iteration will stop.
Otherwise, go back to step 2.

This algorithm is tested to work very well when the correct number
of clusters, c, is chosen and when data is distributed following linear
models.

As the membership of each element is only restricted by the belonging
to each cluster, and not for the other elements, the membership of all
elements can have a very irregular shape in the input space.

⋄ AFCR: Adaptive Fuzzy Clustering and Fuzzy Prediction Models, [114].
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This is also a model-based algorithm. It addresses the problem of the
shapes of the clusters. Here they are changed dynamically and adaptively
in the clustering process.

It is based on a cost index where distances to centers and modeling error
are weighed, see equation (3.33), and the weight of each term changes
dynamically:

JAFCR (x, U, c, β) =

n∑

k=1

c∑

i=1

µm
ik · Zik (3.33)

where: Zik = (1− αi)Dik + αiEik (βi) and αi = 1 −
min
j

{λij}
max

j
{λij} . Dik

refers to the distance between object k and i-th center of cluster. αi

corresponds to eigenvalues of the variance-covariance matrix, which will
determine the shape of the clusters.

In that way, the index at first will have hyper-sphere clusters because the
distance term will be more influential, and therefore αi will be near to 0:
the index will take into account more the distances than the output error.
As the clustering algorithm progresses, the clusters will be more similar
to hyper-ellipsoids and αi will be near to 1: the index will take more
into account the output error and therefore the regression parameters βi
estimation will be more accurate.

The steps to find the solution are very similar to the case of the FCRM:

1. Initialization of the variables: m, U (0), ǫ, etc. Choice of the error
measure Eik and distance measure Dik.

2. Calculate the values for all βi. This will be done applying least
squares using the membership matrix.

3. Update the membership matrix. Compute αi.

4. Compare the new matrix with the last one, if the sum of changes
between the two matrices is smaller than ǫ then iteration will stop.
Otherwise, go back to 2.

In this way, the shape of the cluster will be more compact in the input
space.

⋄ AFCRC: AFCR with Convexity enhancement, [34].
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As the name indicates, AFCRC is a modification of AFCR algorithm
to include some criteria for improving µ convexity, leading to a better
interpretability. Consequently, the modeling error maybe larger if the
number of clusters is preserved.

Two new terms are added: first term to penalise high membership of
points far from the prototype (Jfar), and a second term to penalize low
membership of points close to prototype (Jnear).

Jfar (U,C) = ϕf

c∑

i=1

n∑

k=1

µm
ik · e

(

1−L2
ik

2σ2
f

)

(3.34)

Jnear (U,C) = ϕn

c∑

i=1

n∑

k=1

(1− µik)
m · e

(

L2
ik

2σ2
n

)

(3.35)

L2
ik (Z) = (zk − ci)

TB (zk − ci) (3.36)

where ci are the coordinates of the cluster centroid, B is fixed matrix, ϕf

and ϕn are weights of those terms, and σf and σn are related to cluster
size, to maximum and minimum respectively. Finally the total index
cost for AFCRC (JC) is the addition of JAFCR with Jfar and Jnear,
with the consideration that the term αi will split into the three terms
(αi/3): Eik (βi), Jfar and Jnear.

Minimization of JC leads to smoother clusters. The procedure is similar
to AFCR: derive updating expressions for prototypes ci, memberships
µik at each iteration. Consequent parameters βi adjusted by least
squares. For each iteration the rest of parameters are considered
constants and only the one updated is considered variable. Steps are:

1. Initialize used defined parameters (σf , σn, ϕf and ϕn).

2. Initialize randomly U.

3. Calculate αi and C prototypes.

4. Determine βi coefficients by least squares.

5. Update U matrix.

6. Compare the new U with the previous one and repeat from step 3
if changes significantly.
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Parameters ϕf and ϕn are to be computed iteratively and should make
that contributions are around 10% and 1% respectively. Selection of
parameters can be complicated to make the resulting clusters to have
the desired properties, but in the work some guidelines are given to
facilitate this procedure. Yet, the selection of those parameters is rather
complicated and depends, in some cases of a correct visualization of
clusters shape, thing that is not easy for cases with high input dimension.

⋄ TSP: Target-Shaped Possibilistic clustering algorithm, [35].

This is a possibilistic algorithm and consists in a modification of FCRM
[62]. The main idea is to modify the cluster shape taking into account
the distance from cluster centers in input space, in addition to modeling
error. Two terms are added to equation 3.32: a first term that favors
membership of points that should belong to a cluster (Jf ) and a second
term that penalizes membership of points that should not belong to a
cluster (Jp), similarly to eqs. (3.34) and (3.35). The points desired in
one cluster are those that fit an expected membership shape. The cost
index is thus:

Jf (U,C) =
c∑

i=1

ϕfi

n∑

k=1

µm
ikδf (Lik) (3.37)

Jp (U,C) =

c∑

i=1

ϕpi

n∑

k=1

(1− µm
ik) δp (Lik) (3.38)

where Lik, pi and B are like in [34], δf and δp are user defined functions
of the distances to prototypes (Lik) in input space (Z), and ϕf and
ϕp are weighting terms for Jf and Jp respectively in the total index
JTSP = JFCRM + Jf + Jp.

Note that the centroid parameters, pi, only appear in the new terms.
Basically δf should increase with distance, like (3.34), while δp is like
(3.35).

The minimization of JTSP for m = 2 can be done in a similar way to
[114]. The steps are the same as in AFCRC, but applied to this case:

1. Initialize used defined weights (ϕfi and ϕpi) and functions (δf and
δp).

2. Initialize U and C.
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3. Calculate C prototypes, with the the derivative of JTSP with
respect to centroid projections pi (it is an iterative minimization).

4. Determine βij coefficients. The problem is like a weighted least
squares for each cluster i with matrix of membership U [9].

5. Update U matrix, similar to FCRM but using the unconstrained
formula.

6. Compare the new U with the previous one and repeat from step 3
if it changes significantly.

As in AFCRC ϕfi and ϕpi have to be computed iteratively and should
make that contributions are around 10% in total index. The higher those
parameters are, the more modeling error the local models will have, in
exchange for a smoother and more readable shape of the membership
functions.

The selection of δf and δp is done in [35] in the following way:

δf (d) = (q × d)p

δd (d) =
1

δf (d)
(3.39)

where d is the distance from the point to the centroid, p is related to the
softness of the cluster (softer as p decreases) and q to the size (bigger as
q decreases). The tuning of those parameters is, in general, the larger
drawback of this algorithm.

⋄ NN + Fuzzy Clustering: Identification systems based on neural
networks and fuzzy clustering algorithms, [38].

This is one of the most recent algorithms for multimodel identification
using clustering techniques.

As most of the current clustering algorithms depend on the setting
of the right number of clusters, this work offer an approach which
first step is to determine c with a two-layer neural network and Rival
Penalized Competitive Learning (RPCL). RPCL is an unsupervised
learning strategy that automatically determines the optimal number
of nodes. Referring to the learning results, the number of clusters is
determined manually: the number of clusters could be equal to the
number of units retained.

The second step is to apply a clustering algorithm to determine the
operating clusters. This approach offers the possibility to choose between

69



Chapter 3

FCM and k−means algorithms, depending on the nature of the clusters,
if there exist some overlap or not, respectively. After applying the
algorithm, the c clusters are formed, using input-output information.

The next step is to find the model order. Usually this step is done
with information of the system, but the method here can be useful if no
information is available. It is based on determinants’ ratio test. For every
m matrices Qm and Qm+1 have to built and RDI has to be computed:

Qm =
1

NH

NH∑

k=1









uk
uk+1

...
uk+m−1

uk+m









[
yk+1 uk+1 ... yk+m uk+m

]
(3.40)

RDI (m) =

∣
∣
∣
∣

det (Qm)

det (Qm+1)

∣
∣
∣
∣

(3.41)

The best structure is the one for which RDI quickly increases for the
first time. After the structure is found, the parameters of the model are
computed using Recursive Least Squares (RLS).

The final step is to find the validity functions (membership). In this case
membership values are estimated with the residues’s approach, based on
the inverse of the distance between real and estimated outputs. To have
a total membership of one, this membership are normalized by the total
membership.

Although other algorithms can be found in literature [101, 128, 76], the
above described ones are the most relevant in the field for the aim of this work.

3.4.1 Advantages and drawbacks of these algorithms

In the review of the state of art of clustering algorithms for systems modeling,
the advantages and drawbacks have been briefly mentioned. Here these points
are highlighted to have them clear.

Advantages:

1. All these algorithm use linear structure for the local models. Linear
models are easy to interpret, even in high dimension (hyperplanes).
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Besides, only one parameter by each input plus the independent term
have to be found.

2. They use an iterative scheme to find the optima of the problem. This
makes the algorithms to be fast computing the parameters of the
problem.

3. The flexibility of the membership values helps to reduce the error of the
model.

Drawbacks:

1. Most of the algorithms are fuzzy. Possibilistic strategy is not well
explored yet.

2. Membership functions are so flexible in some cases that can model the
process by themselves, instead of with conjunction to the local model
structure. This is not the desired case.

3. This irregularity of MFs makes them not very interpretable, as many
changes of value can be present.

4. All these methods assure convergence to a solution, but can get stuck in
local minimum.

5. The iterative optimization method, even though fast, is not the
optimal method.

The advantages of local modeling mentioned in 3.1.1 and the advantages
of these algorithms indicate that the use of linear structures are powerful and
would enhance flexibility and interpretability of the resulting model.

On the other hand, the iterative optimization is not the best option when
a very accurate solution is desired, as the result can be a local minimum.
Also, the flexibility of the value of MFs in each point does not help the
interpretability of the total model, as MFs can have a very irregular shape.
When certain properties are set for the MFs (like in [34, 35]), there might exist
a small lose of accuracy, but gaining interpretability of the system.

3.5 Conclusions

Given the hypothesis that the glucose transport between interstitial and
plasma fluid can be defined by several local dynamics, the local modeling
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theory is to be reviewed, see previous Chapter, Section 2.4. Thus, this chapter
goes through the advantages of local modeling and the possible techniques for
performing it.

Clustering is chosen due to its capabilities of finding automatically groups
with similar characteristics. This chapter then reviews the basic and general
concepts of clustering techniques, some necessary steps for data processing
have been defined and a few relevant algorithms have been described. In
addition to this, some relevant algorithms for clustering are described.

Later, this chapter is focused on the application of clustering techniques
to the concerned case: the local modeling of systems. Basic concepts in this
applications are included along with the state of art of clustering algorithms
for systems modeling. Advantages and disadvantages of existing algorithms
are analyzed.

Some of the drawbacks of the existing algorithms are the lack of
interpretability of the resulting MFs and that solution found might not be
the best one as they can get stuck in a local minimum in the optimization of
the cost index.

In Chapter 4 a new algorithm is developed accounting for the desired
characteristics for the glucose transport modeling, which is the focus of this
work.

To conclude this chapter the power of clustering technique for modeling
complex system has to be remarked. Also, that it is very common, that for
a new problem where new specifications are required the existing algorithms
do not perform exactly as required, and therefore, a new algorithm has to be
designed, implemented and validated.
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A new approach for local
modeling: PNCRM

4.1 Introduction

The aim of this thesis is, as expressed in the introduction, to design
a methodology to improve the current accuracy of Continuous Glucose
Monitoring devices. Nowadays, the CGMS devices available in the market
do not have enough accuracy to be used by they own, losing much of the
potential they could have in the diabetes treatment.

As reviewed in the previous section, clustering techniques are a powerful
tool capable of extracting the most important features of a data set. Regarding
to modeling applications, clustering is also a powerful and flexible tool which
allows to represent the relationship between inputs-output of the system with
several simpler structures avoiding a more complex unique model.

For this reason, clustering has been considered as an appropriate approach
for the CGMS case, which is considered complex system, with unknown
relationship between inputs and output (glucose estimation levels), where local
behaviors due to different metabolic states or population characteristics may
be suspected.

In the concerned case, the aim is to model the interstitium-to-plasma
glucose transport and the later application of this model as calibration
algorithm and its inclusion on a CGM device.

A desired characteristic in this model is the interpretability of the global
model and also of the local behaviors identified, to be able to interpret the
underlaying physiological process that is taking place. This interpretability
can be translated into local models that are defined in a certain region of the
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input space and that are independent (each one defined by some characteristics
of the inputs). On the other hand, independent models can be translated in a
possibilistic clustering algorithm where membership values are not restricted.

In Section 3.4 the most relevant of the existing clustering algorithms for
system modeling has been reviewed. Those algorithms were designed with a
general purpose and each of them has particular characteristics, see Table 4.1.

Table 4.1: Characteristics of already designed clustering algorithms for local
modeling

Algorithm FCM PCM FCRM AFCR AFCRC TSP
NN+
Fuzzy

Prototype Point Point
Linear

LR LR LR LR
Regression

Type of
Fuzzy Possib. Fuzzy Fuzzy Fuzzy Possib. Fuzzy

membership

Interpre-
Medium Medium Low Low Medium Large Low

tability

Consideration
No No No No No No Noof Local error

in cost index

If the characteristics shown in Table 4.1 are studied, it is clear that
there is a gap in algorithms with linear regression models (capable to detect
dynamics of inputs) as representatives of the clusters with low local error,
high interpretability of local models and that use independent membership
functions, which are the desired characteristics in the model of glucose
transport. In addition, any of the reviewed algorithms does not directly
consider the local error for the identification of the set of local models. This
means that each of the local model found might not be, by itself, representative
of the region where it is valid, not contributing to the interpretability of the
local model. For these reasons, in this work the design of a new clustering
algorithm for modeling is proposed. The motivation for this design is to
develop an algorithm specific for glucose transport, taking into account the
main properties known about this system.

This chapter goes over all the design steps. Firstly, the characteristics
of the glucose transport are considered, defining in more detail the desired
properties of the clustering algorithm. Later, there is a description of the
mathematical building of the cost index of the clustering algorithm, which
includes the desired characteristics. Finally, the general performance of the
index is tested and analyzed with a set of benchmarks. Integration of the
technique into a calibration algorithm will be the topic of next Chapter.
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4.2 Characteristics desired to be included in the

glucose transport model

Interstitium-plasma glucose transport is a physiological process not yet well
known. For this reason its modeling is so difficult. Local modeling by means
of clustering is the chosen approach to model it, thus, the global model will
be formed by several local models. These local models can correspond, it is
not known yet, to different levels of glucose, different rates of change, or other
things.

To include more flexibility in the system, a non-exclusive membership
of the objects seems to be more adequate, see Section 3.2.5. Indeed, as
the criteria to separate the clusters is also unknown, a general approach is
desired, where the membership value of each object to a particular cluster is
not dependent on the membership values (MVs) to the other clusters. Thus,
the most general case will be included, which is to consider that the criteria
to classify each local model (LM) is independent and an object can meet more
than one criteria with different or the same level of importance. This is what
is called possibilistic clustering.

The computed output will be a combination of the outputs of the local
models, in a similar way to fuzzy clustering. However, now the addition of
weights for each cluster (membership) will not necessarily be restricted to
adding the unity. Thus, an extra degree of freedom exists for the MVs of each
object, being able to detect independent clusters and outliers.

The construction of the output by the integration of several local models
does not mean that each local model is valid by itself, because it may
happen that the total integration accurately describes the output yet does
not necessarily include good local models. In glucose transport modeling it is
desired that besides the good estimation of the global model, each one of the
LMs is able to estimate with enough accuracy the output of the system in the
region where it is representative for interpretability of the underlying process.

Imposing a particular shape for the membership bounds the region where
the model is valid to just one particular vicinity of the input space, acquiring
this desired local validity and interpretability of the model. Thus, in this case
the interpretability means that local models are valid in compact regions,
given that in that way the characteristics of the region will be easier to
understand than if points are dispersed. This characteristic is described in
more detail in the next section.

Another drawback of some of the existing algorithms for CGMS is the
difficult set up they have (see Appendix 1 of [86]). This is, in most cases, due
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to the large amount of parameters to be initialized. If an algorithm is to be
implemented in a CGM device, it has to be easy to tune and implement. The
proposed algorithm will have just few parameters to be defined, and its fixed
value (for all cases) will be set in this work, avoiding the complexity of the set
up.

4.2.1 Pre-fixed shaped membership function

Many clustering algorithms have MFs computed according to the
characteristics of the index. These can be: distance to center, output error, a
combination of both, and so on. This means that an object can have a certain
value of its membership for each cluster and the object next to it can have a
quite different membership value. This means that the membership functions
may have very non-convex irregular shapes.

Although this high flexibility makes the error of the clustering process
small, the interpretability of the models and the validity region of clusters are
quite complex to understand [34]. As a result, finding a real interpretation of
the functions when they are so irregular is very difficult, because the models
(or the spaces) the user can understand are simpler (geometrical models or
bounded regions).

Another problem associated with highly flexible MFs is that they can
model the process by themselves, instead of only reflecting the validity of each
local model. Much more in the possibilistic approach in which more flexibility
is included.

In order to add interpretability to the division carried out by the algorithm
and the shapes of the MFs, a predefined shape for the MFs will be adopted.
This also avoids the problem of modeling the process through the MFs
themselves.

Gaussian-like functions

The shape of the functions could be any, but a good approach might be [107]
to consider them as “normal distributions”1, i.e:

1Normal distributions are so called in statistics. In this case the function used is the
same, but it is not used as population distribution. Calling it distribution is an abuse of
language for this case. For this reason it will be renamed as gaussian-like functions. As it is
not a statistical distribution the use of the terms mean and variance is not rigorous in this
case. Yet, abusing of language, these terms will be adopted to define the parameters of the
function.
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f (x) = 1
σ
√
2π
e

(

− (x−m)2

2σ2

)

, x ∈ R
(4.1)

which is one of the most general and well known distributions. This
equation represents the unidimensional case, shown in Figure 4.1 (example
of gaussian-like functions with null mean and unity variance), where x is the
new datum, and m and σ2 are the mean and the variance of the distribution,
respectively.
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Figure 4.1: Example of Gaussian-like function with null mean and variance
unitary

There are many reasons to choose this type of functions:

⋄ The Gaussian-like function offers good mathematical properties: namely,
continuity in the input space which involves differentiability.

⋄ The function has different regions, mainly two, one with a high value
and another with a low value. This could represent the object’s levels
of membership. Transition between two regions can represent elements
that have a middle status.

⋄ Only two parameters need to be defined σ and m.

⋄ The shape is fixed but flexible: various regions can be covered by
changing σ and m.

77



Chapter 4

⋄ The transition zone is smooth, which suggests that elements close to
the high membership will belong to that cluster in a similar way to the
neighboring objects. This makes sense in real applications where a close
input has a close output, which is the fundamental idea of clustering
techniques.

⋄ The Gaussian-like function is very easy to extend to the
multidimensional case:

f (~x) = 1

(2π)D/2|~Σ|1/2e
(− 1

2
(~x−~m)T ~Σ−1(~x−~m)), ~x ∈ R

D
(4.2)

where D is the number of dimensions, ~Σ is the matrix of variances,
where each element of the diagonal (Σii) corresponds to σ2

i and the rest

are zeros, (~x− ~m) is a vector of length D, and
∣
∣
∣~Σ
∣
∣
∣

1/2
is the square root

of the determinant of the matrix of variances (i.e. product of variances).

⋄ The Gaussian-like function is continuous but can be defined only for
certain points, so it can take a certain value for each object of the
database. In this way, it is not necessary to interpolate the signal for
points not defined within the interval, because its value can be computed
directly.

Gaussian-like function, both in its unidimensional and multidimensional
versions, has a multiplying factor for the exponential term. This factor
depends on the variance and makes that the total area covered by the function
is equal to the unity. This is because in statistical analysis it is important that
the total probability is equal to one. Thus, the wider the function (larger σ),
the shorter the peak will be. Figure 4.2 shows a normal distribution with
m = 0 and σ = 3. It can be seen how the peak changes when the adopted σ
of Figure 4.1 is modified.

In the considered case, however, this type of function is used to represent
the membership of a cluster. It is necessary that their values span from
zero (object does not belong to that cluster) to one (objects perfectly meets
the characteristics described by that group). In this way, the Gaussian-like
function will be normalized, meaning that the multiplying factor is removed
from the original equations. The final equations for the unidimensional and
the multidimensional cases are then:
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Figure 4.2: Gaussian-like function with null mean and σ = 3

f (x) = e

(

− (x−m)2

2σ2

)

, x ∈ R
(4.3)

f (~x) = e(−
1
2
(~x−~m)T ~Σ−1(~x−~m)) =

D∏

i=1
e

(

− 1
2

(xi−mi)
2

σ2
i

)

, ~x ∈ R
D (4.4)

Figure 4.3 shows the normalized version of the MF in Figure 4.1, with
m = 0 and σ = 1.

Once the membership functions are similar to this Gaussian-like function
they will lose some detail and accuracy, but they will describe compact
regions where a model is valid, regions where the model does not describe
the objects, and in between, a smooth transition in level of description.

Transition zone

Figures 4.1 and 4.2 show that, depending on the variance, the transition zone is
sharper or softer. This can greatly affect the membership function. A sharper
transition means that the cluster covers only a small region and its capability
of description immediately disappears. A softer change means that the objects
next to the high values of the function are also to some degree described by
that particular cluster prototype, covering wider regions.
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Figure 4.3: Normalized Gaussian-like function with m = 0 and σ = 1

It has already been pointed out that the transition depends on how large
σ is for that Gaussian function and this will force some characteristics in the
resulting clusters. Therefore, it would be a good idea to introduce a term in
the function to obtain the desired characteristic of compact clusters.

The concept of kurtosis [32] is related to sharpness of the transition zone.
There are positive and negative kurtosis. Positive kurtosis means that the
transition of the function is more abrupt compared to a Gaussian function,
while negative kurtosis means a smoother transition.

To modify the transition zone of the MF, only a parameter (H) in
the exponent of the exponential function must be introduced, i.e. in the
unidimensional case:

f (x) = µ = e
− 1

2
·
(

(x−m)2

σ2

)H

, x ∈ R
(4.5)

For the multidimensional case the term H is applied to the resulting term
of all additions of unidimensional cases:

f (~x) = µ = e

(

− 1
2((~x−~m)T ~Σ−1(~x−~m))

H
)

, ~x ∈ R
D (4.6)

If H > 1 kurtosis will be positive. Sometimes, the resulting function is
called hyper-Gaussian. While when 1 > H > 0 kurtosis will be negative
or sub-Gaussian. Figure 4.4 shows how the transition of the function with
m = 0 and σ = 1 varies for different values of H ∈{0.1,0.5,1,2,8} for the
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unidimensional case. Note that given that all terms of the multidimensional
function are quadratic terms, the introduction of H to each of them and the
addition or the application of H to the added results will result in both cases
in a positive kurtosis.
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Figure 4.4: Normalized hyper-Gaussian function with m = 0 and σ = 1 for
different values of H

The introduction of parameter H in the normalized Gaussian-like function
means the transition of the membership of the clusters can be modified. If
the clusters are then more independent a positive kurtosis will make their
membership functions valid in a more compact region.

Besides, the larger the kurtosis is, the wider the peak will also be. Thus,
a large H value will introduce a wider covered region, for a fixed σ value.

4.3 New cost index definition

As said before, the cost index has to reflect, in a mathematical way, the
characteristics desired for the clusters or local models in this case. For
this reason the new cost index has been built taking into account all the
considerations about the shape of the MFs, the type of local models and
their integration exposed as the desired properties of the resulting models.
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The output of the global model (GM) will be a weighed combination of
the linear local models. Many model structures could be adopted for each LM,
but linear models have been chosen due to their interpretability, even when
the dimension of the input space is high. To define each linear LM a vector
of regression parameters (~βi := (β0, β1, ..., βD)i, where D is the dimension of
the input vector) that best defines the output from the inputs will have to be
found. The form of these models is:

fi

(

~xk; ~βi

)

= LMi =
(

~β1D

)

i
· ~xk + (β0)i , i = 1, ..., c (4.7)

where ~β1D := (β1, ..., βD), while β0 means the independent term or
coefficient 0 of the regression vector. Eq. 4.7 shows the estimated output
of the object k for cluster i. The parameter vector length is D + 1, where D
is the length of the input vector.

For each cluster i, parameters ~βi will have to be found to describe the
output of that cluster properly. So, for the whole data set, a set of c linear
models will be defined, where c is the number of clusters. In addition, for
every object xk, the degree of membership for each model will be computed.
Thus, the global output for each object ~xk, ŷk, will be the addition of all the
estimations of local models, weighted by the value of the membership function
for that object to each cluster:

ŷk =
c∑

i=1

µik ·
((

~β1D

)

i
· ~xk + (β0)i

)

(4.8)

where µik denotes the membership value of object k to cluster i.
The goal of most indexes in regression applications is to minimize the global

error of the model [62]. In this case, however, the goal is slightly different.
Obviously, the desire is to make the global error of the total model very small,
but a small error for every local model is also desired. This is because the index
is desired to identify interpretable models (valid regionally by themselves) to
explain the physiological process.

Thus, in the index, a term will be included to consider the difference
between the actual output and each local model, i.e. local error, and another
term to include the difference between the real output and the global prediction
of each object, i.e. global error. As the index will be possibilistic, there is
no extra term regarding any restriction on the total value of the membership
functions. This is contrary to the fuzzy approach [2]. Given that the cost
function is composed of errors, it will have to be minimized.
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In clustering applications, it is very important to consider the closeness
of objects. In many indexes [56, 90] a term in the index is included to
penalize long distances and so boost the formation of compact clusters. In the
considered case, although close objects are desired in the input space, there
is no need to add any extra term. The shape of the membership functions
considers the distance by itself: objects close to the center will have high
membership (e0 = 1) while objects that are far from the center of the cluster
will have almost null membership.

Finally, a factor for modifying the importance of each term in the index is
considerer, γ. This factor will have to be tuned depending on the application
to give higher importance to the local error (γ > 1), to the global error (0 <
γ < 1) or to both (γ = 1).

In equation 4.9 the index including the two errors and the tuning factor
can be seen (coined as Possibilistic Normalized C-Regression Models or
PNCRM). Function fi represents the function of the linear model for cluster
i, always for an object k, (equation 4.7); while ~X is the matrix of inputs where
each row is an object and each column is one dimension. n denotes the number
of objects, so ~X is a matrix n×D.

JPNCRM

(

~X;~σ, ~p, ~β
)

=
n∑

k=1

(

yk −
c∑

i=1
µik

(
pi, σ

2
i

)
· fi
(

~xk; ~βi

))2

+

+γ ·
n∑

k=1

c∑

i=1
µik

(
pi, σ

2
i

)
·
(

yk − fi

(

~xk; ~βi

))2

(4.9)
where: ~xk, k = 1, 2, ..., n, are the objects (row k in ~X) and pi, σ

2
i and ~βi

are the center, the variance and the vector of regression coefficients for cluster
i.

When the normal multidimensional distributions are introduced in the
previous equation, the final index is obtained:

JPNCRM

(

~X; ~Σ, ~p, ~β
)

=

n∑

k=1

(

yk −
c∑

i=1
e− 1

2
·((~xk−~pi)

T ~Σ−1
i (~xk−~pi))

Hi · fi
(

~xk; ~βi

))2

+

+γ ·
n∑

k=1

c∑

i=1
e− 1

2
·((~xk−~pi)

T ~Σ−1
i (~xk−~pi))

Hi ·
(

yk − fi

(

~xk; ~βi

))2

(4.10)

These equations can be summarized as:
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JPNCRM

(

~X;~σ, ~p, ~β
)

=
n∑

k=1

(

yk −
c∑

i=1
µik · LMik

)2

+

+γ ·
n∑

k=1

c∑

i=1
µik · (yk − LMik)

2
(4.11)

This defines the final cost index to be minimized for the new approach
PNCRM.

Both xk and yk are known for the process, while pi, σ
2
i and ~βi are the

parameters to be found to characterize the model of a particular system.
Depending on the dimension of the input vector, RD, each center, variance,

and regression vector will have a different length. The length of the first
two factors is D while the length of the third is D + 1 (always including an
extra coefficient for the independent term). Therefore, given an application
with c clusters and D inputs, the total number of variables to be found is
nv = c ·D + c ·D + c · (D + 1) = c · (3D + 1).

4.3.1 Parameters tuning

Before the application of the proposed algorithm to any systems, the defined
general parameters will have to be set. In this case, only two parameters have
been defined: the MF transition H and the balancing factor between errors
γ. These parameters have been set to meet the desired characteristics of the
problem under consideration:

⋄ MF transition (H): This parameter defines the sharpness of the
membership functions. It can be set individually for each µ (Hi) or
globally. In this case it will be considered as a global parameter,
constant for all µ, and it has been set to H = 6. In this way, the
local models will be valid in a well-defined compact region of the input
space, i.e. interpretable, which is one of the desired characteristics for
the resulting models.

⋄ Weighting factor (γ): in this study, the output of the index should
have a set of local models that are valid in a region by themselves. For
this reason, this parameter will be set to γ = 5, to give the term of
local errors higher importance given the desire of having independent
clusters (meaning that one LM can describe by itself a region of the
system, without being combined with other local models). This will also
help the interpretability of the resulting global model.
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For other applications, different values could be used. Nevertheless, in this
work, these values will be constant.

A summary of the main characteristics of PNCRM algorithm is pointed
out in Table 4.2.

Table 4.2: Main properties of PNCRM

⋄ Application of possibilistic approach.

⋄ Use of pre-fixed shape for membership functions.

⋄ Use of linear structure for local models.

⋄ Consideration of both, global and local errors for model fitting.

⋄ Parameters set to found independent models for compact regions.

4.4 Iterative index optimization

Once the index has been defined, the method by which it will be minimized
must be considered. In many applications [114], [61] the procedure to find the
minimum of the cost index is to randomly select an initial point and iteratively
find the optimum value for the different unknown variables. The search is
often divided into the different variables that have to be found and each is
independently computed, keeping the others in the optimum value taken from
the previous iteration. In [17] it is shown how this procedure converges to a
minimum of the function.

To perform this iterative search the index has to be differentiated with
regard to each of the unknown variables. In some cases [114], the clusters
are placed and then the parameters of the models are found by least squares
taking into account the objects belonging to each cluster. In this way, some
parameters (β vectors) are not optimized, but computed.

In PNCRM, it is desired to found all optimal parameters, for this reason
the optimization of the index will be done with regard all parameters that
define the model: centers, pi, and variances, σ2

i for membership functions

and regression coefficients, ~βi, for local models.
Thus, if the iterative procedure applied in [114] is followed for this case,

then equation (4.10) must be differentiated with regard to each of these
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independent variables. Derivatives with respect to the centers pi and variances
σ2
i for the unidimensional case result in:

∂J

∂pi
= 0 = ·

n∑

k=1






µik ·H · (xk−pi)
2H−1

σ2H
i

·

·
{

2 · fik
(

c∑

i=1
(µik · fik)− yk

)

+ γ · (yk − fik)
2

}






(4.12)

∂J

∂σi
= 0 =

1

σ2H+1
i

··
n∑

k=1





µik ·H · (xk − pi)
2H ·

·
{

2 · fik ·
(

c∑

i=1
(µik · fik)− yk

)

+ γ · (yk − fjk)
2

}





(4.13)
where µik is the membership function, Equation (4.5), and fik is the local

model of cluster i for object k, Equation (4.7).
A third step would be to differentiate equation (4.10) with regard to the

vector of regression coefficients (~βi). Yet, from (4.13) it can be seen how
there is no a direct solution for obtaining the parameters σi, even in the
unidimensional case. Therefore, it is not possible to obtain the optimum of
the system in this iterative way.

Thus, for this index a different way of finding the optimum value should
be defined. For this purpose, a review of the optimization methods defined in
literature is done in this section.

4.5 Optimization methods

In general terms, optimizationmight be defined as the science of determining
the best solutions to certain mathematically defined problems, which are often
models of physical reality [45, 115]. These problems can include constraints
or not. Constraints are defined as some requirements, usually boundaries, the
inputs or the outputs of the system have to meet. Optimization can refer to
the search of a maximum or minimum of the function.

It involves the study of optimality criteria for problems, the determination
of algorithmic methods of solution, the study of the structure of such methods,
and computer experimentation with methods both under trial conditions
and on real life problems. There is an extremely diverse range of practical
applications.

Before 1940 relatively little was known about methods for numerical
optimization of functions of many variables. Some of the first developed
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methods were the least squares calculation of optimum variables, the steepest
descent and the Newton method. Nonetheless anything of any complexity
demanded armies of assistants operating desk calculating machines. The 1940s
and 1950s saw the introduction and development of the very important branch
of the subject known as linear programming. All these methods however had
a fairly restricted range of application and rely on a special structure in the
problem.

After the 1960s research on this area started focusing on solving complex
problems, as the reality showed that the real cases where, most of the times,
complex cases to optimize, with several variables and not always objective
function has a determined structure.

The applicability of optimization methods is widespread, reaching into
almost every activity in which numerical information is processed: science,
engineering, mathematics, economics, commerce, etc.

It is very important that the user discovers the structure of the problem
and then the appropriate optimization method to implement on a computer.

One of the first thing to consider is if the problem has several objective
functions or only one. In the case of multi-objective problems the optimization
is much more complex and different strategies have to be used, called
evolutionary algorithms: generic algorithms, swarm theory, evolution strategy
and so on [10].

Another thing to consider is whether the problem is constrained or not. A
function with no constrains can happen not to have a global optimum as it can
constantly increase or decrease. However, if only a region of the input space is
considered then, the function for sure will have an optimum value. Constraints
can be present in the value of the inputs (interval of possible values), or in the
output or even can reflect relations between variables. The common case in
optimization is to have a problem with restrictions.

In mathematical term, optimum is defined as point where the first and
second derivative of the function is equal to zero, which means that the slope
of the function at that point is zero and it is not a saddle point. However, this
description correspond to local minimum (or maximum) of the function and
this may not be a global minimum (or maximum).

This fact is very present in optimization problems. Many algorithms are
useful to converge to the minimum value of the function, starting from a
random point. However, the valley found might not be the one containing the
global optimum. The only simple advice in practice (not guaranteed to work)
is to solve the problem from a number of different starting points and take the
best local solution that is obtained [45, 83].
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Local optimizers use much simpler methodologies than global optimizers,
where not only the direction that minimizes the function is followed (as in
the local optimizers) but also some method of searching the rest of the space.
Here, the attention will be focused on the local optimizers. The reason for
this is that these algorithms are less complicated to implement than the global
optimizers, that perform better but need more powerful systems to work and
longer time to compute the optima of the objective function.

Local search algorithms are faster to find the solution and need less
requirement in software for running. The price is the issue of getting stuck
in a local minimum. This can be solved, or at least in many cases, with the
initialization of the function in several points and the selection of the one that
performs better.

4.5.1 Computational optimization techniques

The first algorithms in this field used the strategy of generating points
(randomly or with some sort of pattern) and compare the value of the function
at each of them, choosing the one with minimum value, [122]. The problem
of this type of methods is that the amount of effort required to implement
these methods goes up rapidly (typically as 2n, with n number of variables).
The most successful of the methods which merely compare function values is
that known as the simplex method. Another simple method which readily
suggests itself is the alternating variables method, although in practice
is very inefficient. The conjugated direction methods have result more
efficient than the ones mentioned before.

However, in this line of research soon started the development of iterative
optimization methods, [45]. Most of the them (if not all) are based on
following the direction where the derivative of the function is negative and,
therefore, the objective function tends to a minimum, which is what is desired.
The typical behavior of an algorithm which is regarded as acceptable is that
the iterates xk move steadily towards the neighborhood of a local minimizer
x∗ and converges, finally, to it.

The steps for each iteration are three:

1. Determine direction of search sk

2. Find the proper update step αk.

3. Set xk+1 = xk + αk · sk
Different approaches have been proposed for step 1. Some of the most

important are:
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⋄ The Newton’s method use information of the first and second
derivative.

⋄ The Quasi Newton’s methods use information of first derivative and
approximation of the second.

⋄ The Gradient based methods use information of first derivative only.

The main advantage of Newton’s methods is that they are not sensitive of
poor data scaling, and the main drawback is that they need more computations
to be implemented.

For step 2 also some propositions have been made. The value is usually
set as a trade-off between getting a substantial reduction of the objective
function f and not spending too much time making the choice. Some metrics
have been defined to set αk, like Wolve’s condition, Goldstain’s condition, etc
[102]. However, in many cases, the value of the adaptation step, α, has to be
set according to the system properties where it will be used.

4.5.2 Global optimization

The variable-iterative method mentioned before and the local optimization
techniques are quite fast, yet the solution they offer may be a local minimum.
This is be due to the random initialization of the values and the non-convexity
of the index to be optimized.

In a real problem to find the global solution of the problem is highly
recommendable, specially in the interstitium-to-plasma glucose transport case.
For this reason and because in this case the iterative method to solve the
problem is not possible, as shown in the previous section, a global solver has
been selected to find the optima of the index.

The fact that non-linear functions are included (gaussian-like membership
functions) and that multiplication of square terms are included (MFs are
weighting LMs) make the index non-convex. For this reason local optimization
is not possible if the global minimum is the target of the optimization.

The most relevant state-of-the-art algorithms for global optimization can
be considered five: ED [120], CMAES [60], SSMopt [36], DeMat [119], PSO
[82]. In the corresponding references, a description of the theory underlying
this algorithms can be found. Global optimization is quite time consuming
and so it will be applied off-line.

To chose the best algorithm for global optimization for the concerned
case, a comparative study has been done with the already mentioned global
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optimization algorithms. Thus, a total of five algorithms have been studied in
two case-studies. Comparison is done in next section.

4.6 Selection of global solver for PNCRM

The global optimizers chosen for this comparative study are: ED, CMAES,
SSMopt, DeMat and PSO. The parameters to do the comparison are:

⋄ Difficulty to run the optimizer algorithm.

⋄ Numerical value of the obtained optimum of the cost function.

⋄ Time to reach that value.

Case 1 corresponds to a system with two inputs vectors. The size of the
input matrix is 2422 × 2 and the number of clusters is c = 3, which means
a total of nv = 21 parameters. On the other hand, Case 2 corresponds to
a recursive system with three inputs vectors, where one of the inputs is the
estimated output in previous instant. The size of the input matrix is 195× 3,
and the number of clusters is c = 2 which means a total of nv = 20 parameters.
In Tables 4.3 and 4.4 comparative results among these optimizers are shown
for both studied cases.

Table 4.3: Comparative study for optimizers. Case 1
Param ED CMAES DeMat SSMopt PSO

Difficulty Medium Medium Large Medium Large

Minimum 177.4 176.9 178.32 165.7 Not reached

Time (s) 167.1 139 1544 3232.7 –

Table 4.4: Comparative study for optimizers. Case 2
Param ED CMAES DeMat SSMopt PSO

Difficulty Medium Medium Large Medium Large

Minimum 192.4 30.07 190.51 29.87 Not reached

Time (s) 5131 94.14 4526 3760 –

The PSO algorithm is very complex to run. After many trials, it was not
possible to get this algorithm performing properly any minimization of even
simpler indexes. This complexity is the reason to discard this algorithm as
the global optimizer for this problem.
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DeMat algorithm is a version of original DE algorithms, based on
differential evolution search method. This algorithm is also complex to run,
as it has some parameters (weight of seed, cross-over importance, etc.) that
are difficult to tune. In the studied cases, it can be seen how this algorithm
performs quite well in Case 1, reaching a value quite close to the minimum
value obtained for all algorithms. The problem is that the algorithm gets stuck
in many of the attempts to get the minimum and this value was obtained after
running the experiment many times. Besides, the computation time is quite
long. In Case 2, despite the long computation time, the algorithm do not
reach a value close to the global minimum obtained. In this case, all runs
done reached a value close to the obtained one.

ED algorithm is also a version of DE strategy. It performs better than
the previous ones in Case 1, with low computation time and a value close to
the minimum one. Nevertheless, in Case 2, this algorithm does not reach a
good value for the objective function, in spite of the long computation time.
This might be due to the fact that Case 2 is much more non-linear than Case
1.

Finally, in both cases CMAES and SSMopt algorithms performed much
better, specially in Case 2. From these results it can be deduced thatCMAES
algorithm reaches a value near the optimum value in a short time, thing that
is an advantage as, in general, global optimizers do need a large time to reach
the global optimum. On the contrary, SSMopt needs a larger time to reach
the optimum, but the reached value of the cost function is smaller than with
the other algorithms, an important point as the total global minimum is the
target of this optimization.

For these reasons, and based on these results. The final optimizer method
chosen is a combination of these two algorithms. Firstly, CMAES will be run
and its results will be taken as an starting point for SSMopt, run secondly.
As results of the first algorithm are close to the real global optimum, much
computing time will be saved. This is the best optimization structure to get
the best the running time and the best value of the optimization. A description
of both methods is included here.

With this combined structure, the optimal solution can be found in spite
of the extended computing time. This index will be applied to off-line
applications, and so the high computational cost of this type of optimization
is not a limitation. Therefore, using the index defined in the previous section
together with this global optimization method, the best parameters for the
centers, variances and regression coefficients can be found to model a
particular data set.

91



Chapter 4

Once the optimal parameters are found, the model can be applied on-line
as the output in a particular time instant is fast to compute when inputs and
parameters of the model are known.

In the following the basic features of CMAES and SSMopt algorithms are
included.

CMAES algorithm

Its name comes from Covariance Matrix Adaptation Evolution Strategy [60,
98].

Search steps are taken by recombination of already evaluated search points
and mutation. The mutation is usually carried out by adding a realization of a
normally distributed random vector. A dynamic control of certain parameters
of the normal distribution is of major importance in the evolution strategy
(ES), this is called self-adaptation. The main objective of this self-adaptation
of the mutation parameters is to achieve some invariance against certain
transformations of the search space. In [60], it is shown that invariance
is a fundamental condition for a successful and reliable adaptation. The
parameters most generally used for the control of the mutation are the
complete covariance matrix.

The steps of this algorithm are:

1. Sample a maximum entropy distribution: multivariate normal
distribution.

2. Rank solutions according to their fitness: invariance to order-
preserving transformations.

3. Update mean and covariance matrix by natural gradient ascendant,
improving the “expected fitness” and the likelihood for good steps.

4. Update step-size based on non-local information: exploit correlations
in the history of steps. This is to avoid premature convergence and to
allow fast convergence to a minimum.

5. Repeat steps 3 and 4 until a tolerance of the minimum is achieved or the
maximum number of iterations is reached.

CMAES is a very popular optimizer, and more details about it strategy
can be found in [60].
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SSMopt algorithm

This algorithm is based on Scatter Search Method [37, 36]. The scatter search
method is a hybrid method that combines a global search and an intensification
search (local). It is based on five steps:

1. Generate a collection of diverse trial solutions.

2. Transform a trial solution into one or more enhanced trial solutions.

3. Keep a certain number of the “best” solutions.

4. Work on the solutions to combine them and create new subsets.

5. Transform the subset into one or more combined solution vectors.

A more detailed description of the method, a schematic representation,
and the advantages of this global solver are described in [36].

4.7 General performance of PNCRM

Before applying the new algorithm (PNCRM) to the modeling of the
interstitium-to-plasma glucose transport process, its general performance will
be checked on several systems and compared with other algorithms with similar
target and applicability: AFCRC [34] and TSP [35].

The reasons to compare the new algorithm with these two algorithms is
that, firstly, both are designed to find a set of weighted linear local models to
represent the global output (i.e. the same target as the proposed algorithm).
AFCRC has been chosen for the comparative study because, as shown in [34],
this algorithm performs better than others such as FCM, FCRM, and AFCR.
TSP is selected because it is possibilistic as the proposed algorithm. Given
than TSP is a possibilistic algorithm and AFCRC is a fuzzy algorithm, the
comparison with both will offer better conclusions about the performance of
the new algorithm.

One consideration is that both AFCRC and TSP find solutions using the
iterative method. This means that the solution obtained could be a local
minimum. For this reason, the experiments including these algorithms will be
run many times and the best solution will be taken. It is not possible to apply
the global optimizer to these algorithms due to the large number of parameters
that would have to be obtained: matrix of membership values, centroids and
regression coefficients. Therefore, the algorithms will be compared in the way
they are defined, each one with its own considerations.
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A total of three experiments have been performed. Firstly, a couple of
data sets with one-input - one-output structure are considered. Later, an
experiment with several inputs and just one output is presented.

4.7.1 Considerations before application

Before the application of the proposed algorithm to a particular system, some
considerations have to be taken in order to set the proper framework.

The first consideration is the parameters tuning. For the designed
algorithm (PNCRM), they have already been fixed, see Section 4.3.1, and
this step do not have to be carried out.

The second consideration is data normalization, as described in Section
3.2.6. Here, normalized inputs will have all the same statistical properties
(null mean and unit variance).

Given that the inputs of the algorithms are in normalized dimensions,
its resulting output will also be in these dimensions. Therefore, to get the
denormalized output of the model, the inverse equation of normalization must
be applied to the output signal.

Note: The denormalization of the contribution of each local model is
not direct, as each of them can contribute in different proportions and the
possibilistic approach does not limit the total contribution. Equations for
correct denormalization of each local estimation can be found in Annex A.3,
at the end of this work. The denormalization of local estimations can not be
done using the inverse of normalization equation directly on each local model
output. This is due to the type of normalization selected and the possibilistic
approach used in this methodology.

The last consideration includes two points: 1) the number of clusters, c, to
form the global model and 2) the inputs to be considered for the description
of the output of the system.

These two things are considered together because the aim of modeling
a system using local models is always to find the minimum number of local
models that describe the system and for this, the inputs with more information
about the output have to be found. In this way, the global model will be easier
to interpret, as it will be simpler.

For a general system these two aspects have to be defined simultaneously to
find the best model structure, as both number of clusters and relevant inputs
are, generally, unknown.

Yet, in the examples described below, the inputs and output of the system
are known, allowing this for the search of only the proper number of clusters
c and better analyze the performance. It could be a good approach to run
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the experiments with different values of c. Usually, the larger the number of
clusters, the lower the error. However, the c which best balances the error
and the number of clusters should be taken. A very large number of clusters
must be avoided as the larger c the less interpretable the global model will
be. There are some measures to indicate if the correct number of clusters has
been chosen: see [18] for classical clustering; or [121, 39] for fuzzy sets. In
these examples, the option of trying different values for c will be adopted, as
their computations are fast and this option is available.

4.7.2 Unidimensional systems

Two unidimensional experiments have been performed. Results achieved with
this algorithm will be compared with those from AFCRC and TSP in both
cases. The first data set is artificial while the second is real.

PARABOLA

This test signal has been obtained applying the parabola equation to the input
and adding some noise to the output in order to slightly distort the perfect
response. The signal is represented in Figure 4.5, where u is the input in the
range u = [−1, 1] and the output y, corresponding to equation y = u2 + ǫ.
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Figure 4.5: Parabola with noise

In this case, the number of clusters taken is c = 3, because it seems a good
number of local models: one for the base and one for each of the branches.
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Table 4.5: MSE for parabola

Algorithm PNCRM AFCRC TSP

MSE 0.0013 0.0018 0.0026

This is a user decision based on knowledge of the system. Figures 4.6 to 4.8
show the results obtained by the designed algorithm. Fig. 4.6 shows both the
global output of the model and the real output. Differences between both are
very small, which indicates that the real output is well estimated with c = 3.
In Fig. 4.7 each local model is separately represented in a plot. It can be
seen how each LM fits the signal in a different region. Finally, in Fig. 4.8 the
membership functions have been plotted: hypergaussian functions defined in
different regions of the input space.
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Figure 4.6: Yreal and Yglobal with PNCRM for the parabola

The results are very similar when using AFCRC or TSP algorithms. Mean
squared error (MSE) for all cases is indicated in Table 4.5. It can be observed
that the error is quite small in all cases. This is because the linear models
adjust the output in the three cases quite well, and the membership functions
are well distributed.

MSE can be a good indicator of the error of the global model. Nevertheless,
the aim of this work is to obtain a set of local models that represent the output
locally. One indicator should also be included of how well these models adjust
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Figure 4.7: Yreal and local models with PNCRM for the parabola
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Figure 4.8: Membership functions with PNCRM for the parabola

the output in the region where they are valid. This region can be defined
as the region where the MF has a value close to unity, which means total
representativeness of the LM. In this case, the threshold λ ≥ 0.8 will be taken.

The MSE can now be computed for each cluster, always considering the
objects whose membership value goes beyond this threshold. Table 4.6 shows
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Table 4.6: Local MSE for parabola

Algorithm Charact. Cluster1 Cluster2 Cluster3 Not Modelled
PNCRM LMSE 0.0011 0.0012 0.0011 –

% 30.7 32.7 31.7 4.9
AFCRC LMSE 0.0004 0.0014 0.0013 –

% 21.8 33.7 32.7 11.9
TSP LMSE 0.0015 0.0014 0.0015 –

% 34.7 34.7 33.7 0

MSE for local models and also the percentage of objects represented by each
model (λ ≥ 0.8), for PNCRM, AFCRC, and TSP.

MSE of a local model indicates how well local models represent the region
where they are valid. Small local error is desired, besides small global error, for
local models interpretability. Meanwhile, the percentage of objects represented
by the LM indicates how large is the region covered by only that local model.
As the characteristics desired in the resulting model are interpretability and
independence, the region covered by each LM should be as large as possible,
leaving the least percentage of objects represented by a combination of several
LMs.

Obviously, if only a few elements are represented by a local model, then it
will be easier that the model adjusts to them and the error is smaller. However,
interpretability would be poor. So, it is desirable to get small errors and at
the same time, large regions where the model is representative.

Local error is again very small for all algorithms, see Table 4.6. Comparing
PNCRM with AFCRC, the local error is smaller for AFCRC in one of the
clusters (#1) while the proposed algorithm works better in the other two (#2
and #3). Nevertheless, the percentage of objects represented with only one
model is also smaller and this seems to be a reason for the error to be smaller.
This means that PNCRM, although having a slightly larger error in one of
the local models, represents a larger quantity of objects with only one model.
Indeed, with PNCRM, only 4.9% of the objects are not fully represented by
one of the local models, compared to 11.9% for AFCRC.

Comparing PNCRM with TSP, it can be observed that the local error for
TSP is larger for all clusters. The percentage of objects well represented by
only one cluster is also slightly larger and covers the entire set. Indeed, the
total is larger than 100% because the MFs share zones with high value in
several of them, as this is a possibilistic algorithm.

To better see this, in Figure 4.9 the MFs of AFCRC (right) and TSP (left)
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have also been represented. It can be seen how the shape of the MF for AFCRC
and TSP are quite clear and interpretable and also divided in different validity
regions. Nevertheless, for the PNCRM, Fig. 4.8, the MFs are smoother and
softer, and this contributes to the interpretability of the resulting model.
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Figure 4.9: Membership functions with AFCRC (left) and TSP (right) for the
parabola

It is important to indicate that to run AFCRC and TSP some tuning
parameters must be set. For AFCRC, this is not difficult as the information
is available [33]. However, for TSP the tuning parameters for this experiment
are not indicated anywhere, as happens in every new experiment, and fixing
them is quite difficult. Indeed, it is a trial and error process and it takes a long
time to find a value which yields good performance. For this experiment the
parameters [35] have been set to: q = 3, p = 10, γf = 0.1, and γq = 1 · 10−3.

GROWTH KINETICS

This signal represents the growth kinetics ratio of a bioreactor (units:
hours−1) which is a function of the substrate concentration (units: g/l).
Figure 4.10 shows this relationship: the input u varies from 1 to 70 (g/l)
and the output y is not linear in that range. When visualizing the signal, it
seems proper to set c = 3, given the different zones that can be distinguished
in the graph.

The results when applying PNCRM can be seen in Figures 4.11 to 4.13,
where global output, local model responses and the MFs have been plotted,
respectively. Fig. 4.11 shows how the output of the models follows quite well
the trend of the signal for c = 3, including the most non-linear parts. Fig. 4.12
shows the regions where the three LMs are representative (low flat, medium
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Figure 4.10: Growth kinetics of a bioreactor

increasing, high flat) together with Fig. 4.13 that shows the smooth MFs and
their validity regions.

0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y
model

 (y
G

) and y
real

 (y
r
)

u (g/l)

y 
(h

−
1 )

 

 

y
G

y
r

Figure 4.11: Yreal and Yglobal with PNCRM for the growth kinetics of a
bioreactor

When using the AFCRC algorithm, the results are again very similar,
while TSP differs a little more than in the previous experiment. MSE for all
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Figure 4.12: Yreal and local models with PNCRM for the growth kinetics of a
bioreactor
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Figure 4.13: Membership functions with PNCRM for the growth kinetics of a
bioreactor

algorithms is shown in Table 4.7. Again, the error is quite small in all cases.
The error using AFCRC is half the error using PNCRM, while the error using
TSP is three times higher than when using PNCRM.

Table 4.8 shows the local MSE for each cluster for all algorithms when
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Table 4.7: MSE for growth kinetics in a bioreactor

Algorithm PNCRM AFCRC TSP

MSE 0.0018 9·10−4 0.0057

Table 4.8: Local MSE for growth kinetics in a bioreactor

Algorithm Charact. Cluster1 Cluster2 Cluster3 Not Modeled
PNCRM LMSE 0.0011 0.0015 0.0007 –

% 34.3 32.9 27.1 5.7
AFCRC LMSE 0.0010 0.0012 0.0008 –

% 28.6 32.9 27.1 11.4
TSP LMSE 0.0011 0.0026 0.0064 –

% 32.9 35.7 31.4 2.9

λ ≥ 0.8. As in the previous case, the local error is slightly larger for PNCRM
than for AFCRC. The percentage of points represented by only one model for
PNCRM is again larger than for AFCRC, leaving only 5.7% of the objects
with mixed representation. Given that the local error is in both cases very
small, the larger percentage of objects represented is an advantage of PNCRM
over AFCRC in this case, given that the desired characteristic of the resulting
model is that local models are valid in the largest region possible.

Regarding TSP, the error in two local models is larger than for the
other two algorithms. As in the previous experiment, the number of objects
represented is larger than when using AFCRC or PNCRM. Comparing the
three algorithms it can be said that PNCRM offers the lowest error with the
highest percentage of locally modeled points.

In Fig. 4.14 the MFs for AFCRC (left) and TSP (right) are represented:
MFs for AFCRC are more irregular now and MFs of TSP present an overlap in
some zones. This means that some objects fit well in two clusters (objects 22-
24) while others are not highly described by any local model (objects 43-46).
Again, MFs for PNCRM are smoother and locally independent; and therefore,
more interpretable than with the other algorithms.

Accordingly, in this case, the resulting model for PNCRM will be more
interpretable than the model obtained with AFCRC and TSP, and with only
slightly more error than AFCRC. Moreover, the local models will be a valid
by themselves, which is the goal followed by the proposed method.

As in the previous case, it is important to point out the great difficulty
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Figure 4.14: Membership functions with AFCRC (right) and TSP (left) for
the growth kinetics in a bioreactor

in tuning the parameters of the TSP algorithm while parameters for AFCRC
were again available.

4.7.3 Multidimensional System

The proposed algorithm has been used to model a laboratory setup
experiment. Measurements were taken at the Department of Systems
Engineering and Control (DISA) at the Universitat Politècnica de València.

BIOMASS SENSOR

To estimate the biomass concentration in fermenters a sensor has been
developed in DISA based on measurements of the absorbency of a sample
of the media. This device enables a variation of the gain of the system with
the regulation of the intensity of the LED diode of reference. The voltage at
the output is a function of the concentration of the biomass in the system.

The relationship between the output voltage of the sensor (Hr: Volts (V))
and the biomass concentration (cH : grams/liter (g/l)) is not linear, as can be
observed in Figure 4.15, for different values of the voltage of the LED, (vl: Volts
(V)), vl = {0, 0.02, 0.03, 0.05, 0.1, 0.2, 0.25}. Therefore, an approximation by
several local models can be a good approach to model this relationship which
is now dependent on two input variables.

Given the highly-nonlinear behavior of the output, the number of clusters
c is difficult to set. For a first approximation c = 4 will be set. Table 4.9
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Figure 4.15: Relation between cH(g/l) and Hr(V ) for different values of vl(V )

Table 4.9: MSE for biomass sensor, c=4

Algorithm PNCRM AFCRC TSP
MSE 67.58 11.97 311

compares the mean squared error using PNCRM, AFCRC and TSP for c = 4.
It can be observed that the system is now more complex and the model

is not as accurate as before. In this experiment, the error using PNCRM is
5.6 times larger than the error applying AFCRC. However the membership
functions follow a hypergaussian function and are locally interpretable.

The error when using TSP is much larger, but this is mainly due to a
poor setting of the tuning parameters, which were not set properly for this
case due to the difficulty involved. For this reason, the results of applying the
TSP algorithm will not be analyzed further. It must be pointed out that the
performance of TSP can not be extensively tested due to the great difficulty
in tuning the parameters, which is the main drawback of this algorithm. Only
AFCRC will be used for these comparative studies.

Local errors and percentage of objects represented, Table 4.10, indicate
that although the error is larger, more objects (89.7% versus 61.1%) are fully
represented with just one local model for PNCRM. Moreover, it can be seen
how two of the local models found with PNCRM are mainly responsible for
the large MSE, because two of the models have a much lower error than the
global output error.

When the MFs for the AFCRC algorithm with c = 4 are observed, Figure
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Table 4.10: Local MSE for biomass sensor

Algorithm Charact. Clust1 Clust2 Clust3 Clust4 Not Modeled
PNCRM LMSE 10.8 1.7 53.7 64.1 –

% 30.8 6.8 29.9 22.2 10.25
AFCRC LMSE 9.1 2.6 1.7 14.5 –

% 12 18.8 20 10.3 39.3

4.16, it can be clearly seen how for this case the validity of each local model
is not clear at all. Besides, each LM is only independent for a few objects
and most of the objects have a mixed representation with one or several LMs.
Therefore, even though the error is smaller than when using the PNCRM
algorithm, the resulting model does not follow the desired characteristics. This
is why the proposed algorithm is more appropriate when the system is modeled
in an interpretable way.
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Figure 4.16: MFs for AFCRC when c=4

With regard to PNCRM, if a lower error is desired, then the number of
clusters should be increased. Different experiments have been made setting c
to different values. Table 4.11 shows the MSE for each case. It can be seen
how with c = 10 the error for PNCRM is comparable to that of the original
AFCRC experiment with c = 4, but it has to be remarked that they are now
valid locally and highly interpretable.

Table 4.11 also shows how the error from c = 7 is reduced slightly with
every cluster added. This might suggest that c = 7 is the best trade off
between c and the error. Figure 4.17 shows the real output and the estimated

105



Chapter 4

Table 4.11: MSE for biomass sensor, PNCRM with increased c

c 4 7 8 10
MSE 67.6 20.2 17.1 12.6

output for this value of c. It can be seen how the modeled output is quite
close to the real output, although some points have a larger deviation. Due
to the high nonlinearity of the system, the linear local models are only an
approximation of the real system.
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Figure 4.17: Real and model outputs when c=7 for the biomass sensor

This system is highly nonlinear. Therefore, to model it with linear and
independent models and small errors the number of clusters must be increased
until the total region is divided into subregions where a linear local model is
valid and still has with smooth MFs.

The input space is now 2D, so the plotting of the MFs will be more difficult
to visualize. In Figure 4.18 the shape of all the MFs can be seen. Many points
are concentrated in the region near the origin. Therefore, many clusters are
set by the algorithm around the most populated regions. Thus, the nonlinear
regions with a high number of objects will be divided into several clusters in
order to find the locally valid models and reduce the error.

The validity of each local model in this case is more interpretable compared
to AFCRC, see Figure 4.16, even for a larger c (c = 7 vs c = 4).
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Figure 4.18: MFs for PNCRM when c=7

4.7.4 Analysis of the performance

With these examples, it has been studied how the proposed algorithm for
modeling performs in different situations. The most important feature is the
introduction of a certain shape for the membership functions, which assures a
smooth and regular shape for these functions but also implies a restriction.

This restriction is the factor that causes the proposed algorithm to have
a usually larger error for the same number of clusters than other similar
algorithms such as AFCRC. This happens because the systems are modeled
with several independent clusters that are only valid in a compact region,
enhancing interpretability. In these cases, if the aim is to reduce the error
then the number of clusters must be increased to find smaller compact regions
where one local model is valid by itself.

Indeed, the main target of this algorithm is to get independent models
with low error. For this reason if interpretable models are obtained, with small
errors (global and local) then it does not matter much that other algorithm
gets lower error at the expenses of losing interpretability.

The comparison with TSP can only give conclusions for cases of one-
input and one-output. This is because tuning the parameters of TSP is so
difficult that doing it for cases when more inputs are present has not been
possible in this work. The conclusions obtained for unidimensional cases are
that PNCRM works similarly to TSP, offering smaller errors and smoother
membership functions.
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In the three studied cases this algorithm performs very well, producing
small global and local errors and with a small c. In the biomass sensor case, it
was seen how a larger c was needed to obtain a small error with this method
due to non-linearities, but that the model found was interpretable in all cases.

As the systems used were well-known, it has not been necessary the study
of the best inputs to describe the output of each of them. Only the number of
clusters had to be considered for the best fitting of the model. In a real case,
where less information of the structure of the system is available, the number
of clusters and the inputs to include will have to be considered simultaneously.

Then, with these studied cases it can be seen how the proposed algorithm
is able to model a data base with the desired properties: independent clusters
and well defined regions of validity. If the set follows this distribution a low
number of clusters is expected (parabola and growth kinetics). However, if
this structure is desired for clarity of the model and it is a complex system,
a slightly larger number of local models is expected to obtain a small error
(biomass sensor).

4.8 Conclusions

In this chapter a description of the design of a new algorithm for local modeling
using clustering techniques has been detailed: PNRCM. This algorithm has
been built taking into account the characteristics of the glucose transport
system, with the aim of reducing the error of current commercially available
monitors. The flexible structure of PNCRM can handle complex systems and
as the model resulting is composed by several linear structures the information
will easily be extracted.

This proposed method considers the restriction of a certain shape for the
MF and gives more importance to the local error of the models in order to find
independent clusters that are valid in a well-defined region and represented by
a linear local model with little error. As such they are accurate and easy to
interpret.

Another important advantage of PNCRM is that only two parameters, H
and γ, have to be tuned and their values are general for all cases and given in
this work. Thus, the complex set up process of some algorithms is avoided.

A review of optimization techniques is done in this chapter, as the iterative
method used in other clustering algorithms cannot be used here. Finally, the
characteristics of the cost index imply the use of a global optimization method.

Thus, the optimal parameters are found all together and, therefore, the
best regions of validity and regression coefficients for those regions will be
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found simultaneously, resulting in the best set of local models to define the
system. This improves the iterative optimization method used by some of the
literature clustering algorithms for modeling. The time needed for the global
optimizer to find the solution is not a drawback, as this computation will be
done off-line to later apply the found model on-line.

Once the parameters of the model are found, the computation of the output
in a new instant will take a small amount of time, even in a commercially
available microprocessor, so the on-line application of this algorithm will not
be a problem.

In conclusion, a new algorithm for modeling interstitium-to-plasma glucose
transport process has been developed. The characteristics of the system have
been highly taken into account for its design.

Application to some test cases shows the expected performance of the
algorithm. In next Chapter, the calibration algorithm based on this modeling
algorithm will be defined and validated.

109



Chapter 4

110



Chapter 5

A PNCRM-based calibration
algorithm for CGMS

5.1 Introduction

In this chapter the application of the proposed modeling methodology,
described in the previous chapter will be applied to the case under
consideration: the estimation of plasma glucose levels for continuous glucose
monitoring. Of note is that any plasma glucose estimations methods from
interstitial measurements is known as calibration algorithm (CA).

5.1.1 Context definition

When plasma glucose is estimated from direct or indirect measurements in any
compartment alternative to blood, the following information should be ideally
included into the calibration algorithm in order to improve the accuracy of
glucose estimations:

1. the intrinsic dynamic of the sensor;

2. glucose dynamic between plasma and the remote compartment; and

3. factors influencing the previous two dynamics.

Indeed, sensors of different nature, or even sensors belonging to the same
class, may have each one a specific intrinsic dynamic. In this regard, recently
it has been shown how much of the lag time of continuous glucose sensors is
in fact due to the intrinsic delay in the sensor response to changes in glucose
concentrations [30].
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However, to date the issue of enhanced calibration algorithm has received
poor attention with only a few scientific contributions. Knobbe et al. [86] were
the first who considered inter-compartmental glucose dynamics and developed
a five-state extended Kalman filter for the estimation of subcutaneous glucose
levels. Facchinetti et al. further developed the strategy proposed by Knobbe
et al. and proposed the ‘enhanced Bayesian calibration method (BCM)’ [42]
based on an extended Kalman filter estimating interstitial glucose, plasma
glucose and sensor’s sensitivity along time. The method is intended to be used
in cascade to any calibration algorithm built in commercial CGM devices and
was validated on simulated data representative of diabetic subjects, showing
improved CGM accuracy as compared to the method of [86]. However,
a drawback of this validation is the use of the same model of interstitial
glucose and sensor’s sensitivity for data generation and state estimation;
although in the first case a robustness analysis considering discrepancies in
lag time estimation is conducted. Furthermore, as the authors acknowledge,
application of the BCM to real data has two main limitations: first, it requires
the knowledge of the variances of both state and measurement processes, which
in real-life conditions are unknown; second, the existence of a burn-in period,
considered as one day by the authors.

Leal et al. [93] considered sensor and glucose dynamics using a different
approach. In particular, autoregressive techniques were applied to CGMS Gold
(Medtronic), monitor data from a clinical study in patients with diabetes.
A third order model of the relationship between current intensity given
by the monitor and reference plasma glucose measurements were obtained.
Predictions given by the model were corrected at every calibration point
introduced by the patient, and a cross-validation analysis yielded a substantial
improvement of the accuracy of glucose estimations [104]. However, a
drawback of autoregressive models is that frequent recalibration may be
needed to ensure a good performance.

At variance with the previously approaches the proposed calibration
algorithm, thanks to its local models structure, is better suited to find and
correct for all the above mentioned dynamics.

5.2 Proposed structure for CA

Figure 5.1 shows the block diagram of the local model based technique for the
definition of the new CA.

The sensor is placed in a remote compartment, in this case the interstitial
space. This sensor offers measurements of the intensity of current (I), which
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Figure 5.1: Block diagram for the proposed new CA

varies directly with the level of the interstitial glucose. The basic input of the
model is the intensity of current from the sensor in different time instants.
These inputs define which local models (LM) and to what extent they are
valid (µ). The LMi are weighted by its validity functions (µi) and results in a
weighted local models (WLMi) that offer a local estimation of the output (Ĝi).
The addition of all local estimations is the final global estimation of plasma
glucose. Estimations of plasma glucose in previous instants (Ĝk−1) are used
to compute the final glucose estimation at instant k. In addition, a block
to consider the calibration point(s) from capillary measurements is included
to correct the estimation of the algorithm when this information is available.
This proposed configuration of the calibration algorithm will be named as
basic configuration and forms the first calibration algorithm defined and
proposed in this work.

If available, additional signals can also be included as part of the
information used to estimate the output. These additional inputs can be
any signal related to the glucose transport process and that contributes to a
better estimation of the plasma glucose level, i.e.: presence/absence of insulin
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or glucose infusion, meal, exercise and so on.
In the case that additional signals are included the calibration algorithm

changes. New calibration algorithms will be named as: basic configuration
plus additional inputs or by the number of additional signals included.

Thus, this chapter will define several CAs and test their validity. In Section
5.4, the available data for the identification of the model embedded into the
CA is described.

5.3 Adaptation of PNCRM to glucose transport
modeling

PNCRM has been designed to include the important features of the CGMS
system in the resulting model. Yet, there are a few characteristics that have
to be taken into account for the application of the algorithm to the glucose
transport process modeling. Thus, for the development of the calibration
algorithm, the modeling method PNCRM has firstly to be adapted.

The first asepct is the consideration of the relative error in the cost
function, both for local and global errors, instead of the absolute error. This
is to give the same importance to the error no matter the magnitude of the
sample.

The total glucose range of values can be divided into three significant
regions: hypoglycemia (G≤70 mg/dl), normoglycemia (70 mg/dl<G≤180
mg/dl) and hyperglycemia (G>180 mg/dl). If absolute error is considered,
then an error of, e.g., 4mg/dl would be considered as important in
hypoglycemic and hyperglycemic regions when, obviously, it is not. Thus, the
consideration of the relative magnitude for errors will be more appropriate in
the context of CGMS.

Then, the new index can be rewritten as:

JPNCRM

(

~X;~σ, ~p, ~β
)

=
n∑

k=1





yk−
c
∑

i=1
WLMi

yk





2

+

+γ ·
n∑

k=1

c∑

i=1
µik (pi, σi) ·

(
yk−LMi

yk

)2

(5.1)

Consequently, equations (4.9) and (4.10) are equally modified.
The second aspect to consider is the fact that glucose transport is a

dynamic process. Thus, the estimation of glucose at the current instant
depends on previous values of the glucose level. Actual value of these
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past samples is only known at few particular instants of the day (capillary
measurements), and then they can be considered by the model. The rest
of time they are unknown and for this reason they are estimated. At these
instants, the value for that input to the PNCRM algorithm will be taken from
the past estimations of the model.

This means that a recursive strategy has to be used to compute the model.
Also, this implies that the first value included has to be known to “set up”
the recursive computation.

When an estimated output ŷk is included as input to PNCRM, the
parameters of the model are also included in the computation of the output
at the next instants ŷk+n, since they were used to compute the output at k.
Examples can be seen next.

Let’s consider a system that has one measurable/independent input (x1)
and one input that consists on the previous value of the output (x2 = yk−1).
Each time instant k = 1, 2, ..., n will be represented as a second subindex, x1n
for x1 at instant k = n. Then, equation (4.7) at instant k=1, will correspond
to:

ŷ1 = β1 · x11 + β2 · x21 + β0 (5.2)

As said before, x2 is a recursive variable:

x2k =

{
yk−1 if known
ŷk−1 if unknown

(5.3)

Then, x21 is supposedly known, while the next samples will be supposed
unknown x2n = ŷn−1 for n > 1. For this reason, for k = 2 the output of the
model will be

ŷ2 = β1 · x12 + β2 · (β1 · x11 + β2 · x21 + β0) + β0
ŷ2 = β1 · x12 + β2 · β1 · x11 + β2

2 · x21 + β2 · β0 + β0
(5.4)

and generalized for k = n:

ŷn =
n−1∑

d=0

(

βd
2 · β1 · x1(n−d) + βd

2 · β0
)

+ βn
2 · x21 (5.5)

As the number of past estimated outputs included as inputs increases, the
more complex the computation of the current sample will be. In equation (5.5)
it can be seen how the order of the polynomial to compute the LM increases
in each sample. When a known value is included as input, then the model
computation is reset to eq. (5.2).
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This will affect the non-convexity of the index, making it highly non-
convex, and makes more difficult its optimization. The optimization method is
a global optimization algorithm and still the “global” solution could be found.
Nevertheless, a much larger computation time has to be considered to reach
this global solution.

A remark is that this type of systems makes the recursive optimization,
as seen in Section 4.4 impossible since the optimum vector of regression
coefficients is also to be computed recursively.

5.3.1 Measures of performance

The accuracy of the plasma glucose estimations obtained with the new
algorithm (in all configurations) is defined using the ISO criteria (ISOok) [1],
the Mean Absolute Relative Difference (MARD) and the Median Absolute
Relative Difference (M2ARD).

ISO criteria is defined as the percentage of estimated samples, Ĝ, that
fulfill:

Ĝk ok if







∣
∣
∣
∣

Ĝk−(Gref)k
(Gref)k

∣
∣
∣
∣
≤ 20% for (Gref )k > 75mg/dl

∣
∣
∣Ĝk − (Gref )k

∣
∣
∣ ≤ 15mg/dl for (Gref )k ≤ 75mg/dl

(5.6)
On the other hand, the MARD is defined as the mean of the absolute

relative error taking into account all the estimated samples n:

MARD =

n∑

i=1

∣
∣
∣
∣

Ĝk−(Gref)k
(Gref)k

∣
∣
∣
∣

n
(5.7)

M2ARD follows a similar equation as MARD, but computing the median
value of the n samples instead of the mean, to see if the error is balanced with
regard to that mean value.

Reference values are taken with a laboratory method to know the plasma
glucose level at each instant. Results obtained with the proposed methods
are usually compared with the commercially available monitor used in each
experiment to evaluate the improvement (or not) over its performance.

All data were subjected to repeated-measures ANOVA with Huynh-Feldt
adjustment for nonsphericity [135]. The ANOVA model included the test
condition (manufacturer’s or different configurations of the new algorithm) as
the within-subjects factor. Post-hoc comparisons (Newman-Keuls test) were
carried out to pinpoint specific differences on significant terms.
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5.3.2 Model’s saturation

The structure used for computing the global model includes several local
models and their membership functions. Membership functions are indicators
of the validity of each LM and they can also be called validity functions. In
the proposed algorithm, PNCRM, these functions change smoothly covering
a well defined region in the input space.

The identification of the model is done using training data, and the
resulting model is valid for the region covered by the original information.
This implies that the model is only known to work well for inputs that are
covered by the validity regions. For inputs values not well represented by the
original information the model estimations can be very poor since it implies
the extrapolation of the identified model properties to an unknown region.

Then, to assure that the estimation of the output is done with certain
validity of the model, a threshold for the validity of the model, th, has to be
set. This threshold is used when the identified model is applied to new data,
when used as calibration algorithm. This means that if none of the LM has a
validity value larger than th the model is not representative of that input. In
that case, the estimated output is replaced by the previous one (i.e., the model
prediction is not updated), to avoid bad estimations of the model. Obviously,
if that happens for a significant number of samples, it is an indication that
new data should be collected to complete the model.

Thus, the designed PNCRM algorithm is capable of detecting inputs
values not represented by the identified model, given the use of possibilistic
membership functions, see section 3.2.5. This is an significant advantage of
this algorithm, as it can also be used to identify not covered regions by the
identified model.

5.4 Data description

The new CA (Figure 5.1) will be built using data from a clinical trial available
to the group.

The data set used is the one taken from [113], where the details of the
experiment, the methods and the subjects studied are described in detail.
Here, only a brief description of the experimental protocol has been included.

Available data comes from a eu-, hypo- and hyperglycemic clamp, where
healthy subjects wore a microdialysis-based glucose sensor (the GlucoDayR©,
Menarini, Italy). Briefly, after an initial period of spontaneous euglycemia, at
time + 30 min an insulin infusion was started, at the rate of 1mU/kg/min and
continued until 120 min. At the same time, glucose (20% dextrose wt/vol) was
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infused when necessary at variable rate allowing for a controlled slow fall of
plasma glucose in about 60 min., until the target of ∼50mg/dl was reached.
From time +90 min. to +120 min. plasma glucose was maintained at a
hypoglycemic plateau of ∼50mg/dl. At time +120 min. insulin infusion was
stopped, and glucose infusion rate was increased to raise plasma glucose after
45 min. to the target of ∼165mg/dl (time +165min), which was maintained
for the next 15 min. until time +180 min. Plasma glucose was measured every
6 min with a reference method synchronously with the output of the sensor,
which gave a glucose estimate every 3 minutes.

According to the clamp experiment the desired and expected profile of the
plasma glucose signal for the full period of time is the one shown in Figure
5.2.
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Figure 5.2: Ideal curve of glucose profile for each patient

A total of 8 patients were studied using this protocol. As plasma glucose
was measured every 6 min during the 180 min of the study each patient has
31 valid samples. Two patients had some issues with the measurements and
have less valid samples, around 14 each of them. Finally, the total set is
composed by 214 paired values: sensor’s electrical signal, I, and plasma glucose
measurements, G.
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5.5 Modeling the relationship between plasma

glucose and the sensor’s electrical signal

In this section the application of the proposed modeling algorithm (PNCRM)
to the available clinical data will be described. Steps include the process of
finding the proper number of LMs, c, that compose the global model and the
best inputs that define the output (i.e. plasma glucose). These two parameters
are dependent. Indeed, to avoid complexity, the aim is to find the minimum
number of LMs that best define the output and the input signals that contain
more information about the output.

The search process is an iterative process, using several combinations of
inputs with different number of local models to see the one that performs best.

As described in Chapter 3 for general clustering purposes and detailed in
Chapter 4 for the proposed approach, PNCRM requires of a normalization
of data for its correct application. This is a crucial step, and the
type of normalization to apply has to be chosen according to the system
characteristics.

In this case (see Section 3.2.6), the characteristics of system allow for two
types of normalization: by the set or Set Normalization and normalization
by Subjects or Individualized Normalization. The first type is the one
applied here, considering together data from all patients, as if it were a
unique input vector, and then applying normalization. The normalization
with statistical properties has been applied, to get null mean and unitary
variance, as in the general performance of PNCRM it worked well.

It is important to remark that with PNCRM each patient will be
represented by one or more LMs to a different extent, depending on the
patient’s inputs (signals) at each instant. The shift from one model to another
will also be defined by the inputs.

5.5.1 Selection of the system inputs

After the data preprocessing using this type of normalization, PNCRM is
applied. A first attempt was to estimate the glucose only with current samples
at the same instant (Ik), but even when the number of local models is large (i.e.
c = 8), not good results were obtained, as expected. If previous time instants
are included (Ik−1, Ik−2, etc.), which involves including information about
the derivative of the signal, results improve slightly but glucose estimations
are still far from the reference signal. The underlying physiology (mass
transport between compartments) suggests the inclusion of information about
the glucose level in addition to the sensor’s intensity of current signal. In
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this case information of the previous glucose level, Gk−1, has been included in
the algorithm to include the most recent dynamics of the glucose variations.
However, having information about the real glucose at every instant would be
very unrealistic. It makes much more sense to include real information in Gk−1

when this is available, through a SMBG samples (calibration points) and the
rest of samples include the estimation of glucose given by the algorithm Ĝk−1.
At time k = 1, then, it is necessary to include information for the start up of
the algorithm (initial conditions). Thus, the main inputs that can be used
to compute an estimation of the current plasma glucose level are: samples of
the intensity of the current, I, plasma or capillary glucose, G, and glucose
estimations Ĝ.

5.5.2 Outliers detection

Then, the performance of several combinations of these inputs, considered at
different time instants (k − 1, k − 2,..., k − n) was checked for the available
database. In all experiments performed, a set of a few samples was found
characterized by a local model. These samples had a very different dynamics
than the rest (a large majority).

The number of samples modeled by that particular local model were only
a few (around 10 samples), and the local error of that model was very large in
comparison to the rest of local models. These samples were found in patients
1, 2 and 4, at the end of the period, where both exogenous signals were stopped
and response of glucose levels is free (not imposed by exogenous signals). For
these samples the studied dynamics was much faster. The fact that these
samples are just a few and are modeled with other dynamics than the rest of
the data set and with larger error suggests that they are outliers with regard
to the total set.

In this case, these samples might correspond to a metabolic state where
there are few samples to allow for its modeling, yet, the term outliers like in
general clustering applications will be used for its definition.

The fact that only a few samples correspond to a different metabolic state
than the rest of samples makes it not possible to properly identify the dynamics
of these samples. For these reason they were removed from the set to be able
to identify the most significant and representative samples.

For this reason, before performing the definite experiments checking
different configurations, these samples were removed as they might not
represent well the general behavior of the sensor.
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5.5.3 Model structure identification

Thus, after the outliers removal, the process of checking different combinations
of the main inputs at different time instants was repeated with the final
data set. The combination of inputs that best predicted the output was [Ik,
Ik−1,Gk−1] (abbreviated by IIG). This means that the estimation of the actual
glucose concentration at time k, Ĝk, depends on the current intensity in the
same time instant and involves a derivative indicating the trend of the signal.
Using this input structure only two linear local models, c = 2, were needed to
achieve a good estimation of plasma glucose. Thus, the global model obtained
in this case has the structure reported in Eq. 4.8, with ~x =

[

Ik Ik−1 Ĝk−1

]

and c = 2.
Of note, information about actual plasma glucose concentrations against

current intensity was included only once at time k = 1 (Gk−1, calibration
point). However, if more calibration points were used or needed, they would
replace the glucose estimation in the previous instant (Ĝk−1) to estimate
plasma glucose at instant k.

This structure defines the first calibration algorithm that is designed and
identified in this work. From now on this structure will be referred to as basic
configuration or IIG.

5.5.4 Consideration of exogenous signals

In all calibration algorithms, the main signals are always the ones used above:
I, G and Ĝ. Nevertheless, the use of extra available information might help to
improve the performance of the model of the system, as long as the information
is related to the output.

In the clamp study described in Section 5.4 (henceforth Glucoday(R)

study), an exogenous insulin (Iex) and glucose infusion (Gex) were present
at some time during the 0-180 min period. Therefore, the possibility to
include this information into the calibration algorithm as a binary signal
(influence YES or NO) in addition to the other inputs already considered (Ik,
Ik−1,Ĝk−1) was explored. The inclusion of this information is of particular
interest since in the real-life conditions changes in the conditions of the
subject (fed/fasting, insulin bolus/only basal, etc) may well influence the
sensor-to-subject relationship, and feeding the calibration algorithm with this
information was expected to improve its performance.

An infusion of exogenous insulin may be associated to high insulinemia
after administration of an insulin bolus, and exogenous glucose to a
postprandial period. Thus, clamp data offers us a valuable chance to analyze

121



Chapter 5

the influence of different metabolic states.
In the case of subjects with type 1 diabetes, these signals are not directly

measurable. Yet, information coming from the insulin pump can be used
to characterize qualitatively the current metabolic state of the patients and
estimate the information required by the algorithm.

In the GlucodayR© study, the constant insulin infusion was in the 30-
120 min interval, while the variable glucose infusion was between 30-
180 min. Nevertheless, the binary signals were defined so as to identify
periods of different metabolic state, in particular high insulinemia leading
to hypoglycemia and the postprandial period after a recovery intake. For this
reason, the interval where the glucose follows a slow decrement (30-90 min),
the variable glucose infusion given by the physician to get the target decreasing
glucose ramp was not considered, as it was only used to emulate the presence
of effects that would have a meal in type 1 diabetic subjects.

On the other hand, the exogenous signal Iex emulated the presence of
effects that would have a bolus of insulin in a type 1 diabetic subjects.

The binary exogenous signals considered are shown in Figure 5.3.
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Figure 5.3: Binary exogenous signals considered from the Glucoday(R) study

With the inclusion of these signals, two new calibration algorithms
are defined. Firstly, the exogenous insulin signal is added to the
basic configuration yielding a second calibration algorithm called basic
configuration plus one exogenous signal or abbreviated by IIG+Iex.

Secondly, the exogenous glucose signal is included to this last configuration
defining a third calibration algorithm called basic configuration plus two
exogenous signals or abbreviated by IIG+Iex+Gex.
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5.5.5 Results

Results are shown for each one of the calibration algorithms proposed:

CA1: Basic configuration (IIG)

Figure 5.5 shows plasma glucose estimates obtained with the new algorithm,
in the basic configuration, compared with reference plasma glucose
measurements. On the other hand, the output of each one of the two LMs
composing the GM (already weighted by its validity function) can be seen in
Figure 5.6. Figure 5.5 shows that the estimated signal is quite close to the
reference glucose for all patients, indicating good performance of the algorithm
even in this case with no exogenous information and only two local models.
Figure 5.6 shows that each one of the two local models represents only a subset
of the study subjects (LM1 subjects 5 and 6; LM2 the remaining subjects)
while only the weighted integration of both LMs to form the GM allows for
glucose estimations very close to the actual concentrations (Fig 5.5) in the
whole population. It is important to remark that the validity of each local
model is optimally found in the model identification process by the global
optimizer1.

The reason for the existence of two different local models can be easily
explained by the analysis of the electric signal from the sensors. Although
plasma glucose and insulin concentrations are very similar in all subjects,
there are two clusters of current intensity, the one from sensors inserted in
subjects 5 and 6 being much smaller as compared with the other. This could
be probably due to differences in sensors sensitivity, which were captured
automatically by the algorithm. This is an important fact. It is unknown
whether the presence of clusters of sensor’s sensitivity was due to “faulty”
sensors or due to differences in the inflammatory response leading to such
differences. Further studies should be conducted on this.

Figure 5.4 shows the histogram of sensor’s sensitivities by its order of
magnitude. Clearly, the sensitivities are distributed in a bimodal way for the
Glucoday(R) study.

1The global optimizers do not assure the convergence to the global minimum. Yet, the
results offered here are obtained running the optimizer for long enough period of time and
getting the same final value for many iterations, assuming the value reached is the global
minimum of the function.
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Figure 5.4: Histogram of sensor’s sensitivities by its order of magnitude from
Glucoday(R) study

CA2 and CA3: IIG+Iex and IIG+Iex+Gex

Table 5.1 shows the performance of the proposed algorithm both in its
basic configuration and considering information from binary signals, i.e. the
presence (Iex,Gex=1) or absence (Iex,Gex=0) of insulin and/or glucose infusion
effects. The comparison with the results from the one-point calibration
implemented by the Glucoday, demonstrate that the new calibration algorithm
allows for a significant improvement of the accuracy of the glucose estimations.
In particular, the inclusion of additional information about the metabolic
status further improves the accuracy of glucose estimations, reducing the
MARD and M2ARD below 10%. It is worth noting that the magnitude of
improvement was similar both for the whole and the hypoglycemic range.
However, likely due to the small sample size, under conditions of hypoglycemia
the difference did not reach statistical significance.

5.6 Inter-patient variability of sensor’s sensitivity
compensation

In the case of CGM systems, the sensor which provides the electrical signal
related to the plasma glucose levels is placed subcutaneously in patients.
Sensor’s sensitivity can vary, as it is foreign body, [87, 104]. This means
that the range of values of the electrical signal might differ from one patient
to another for the same range of glucose levels. Analyzing the results of the
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application of the proposed calibration algorithm it has been found that the
main reason to find differences in the local models are the differences in the
sensor’s sensitivity .

Indeed, there are not only inter-patient variations in sensor’s sensitivity.
Intra-patient variations in the sensor’s response are also present, [64].
Response of the sensor is known to change, for the same patient, with time.
However, these variations are not yet well characterized.

In Section 3.2.6 it was introduced that when the input and output of a
clustering application are composed by several independent subjects, the type
of normalization applied can be done either by the set (seen in the previous
section) or by subjects.

Then, the individualized normalization can be applied for the CGMS
case, as signals from each patient can be considered independent from the
rest of patients. With this type of transformation, data from each patient is
normalized first, according to its own characteristics, and later all vectors are
joined in an unique input vector, see Figure 3.3 in Section 3.2.6.

With this transformation, each patient inputs and output are rescaled
according to its own ranges, taking into account (or compensating) the effects
of the inter-patient sensor’s sensitivity.

In the following, performance of the algorithm with individualized
normalization is analyzed.

5.6.1 Data preprocessing and model structure identification

CA1: (IIG)

Once the data are normalized using this procedure, the modeling algorithm,
PNCRM , is applied for the identification of the model. Here, the information
resulting from the previous application with set normalization is used as
knowledge of the system to avoid repeating the steps. Thus, the “outliers”
detected in the previous case are not considered here either.

Indeed, the different combination of inputs checked with this normalization
starts with the configuration that performed well in the set normalization case:
the IIG structure (~x =

[

Ik Ik−1 Ĝk−1

]
) with two LMs (c = 2).

A reduction of the number of local models to c = 1 has also been checked
to see how it performs.

CA2 and CA3: IIG+Iex and IIG+Iex+Gex

The inclusion of exogenous signals as binary information is also checked in
this case, same as considered for the case of set normalization, for both, c = 2
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and c = 1.

5.6.2 Results

Table 5.2 shows the performance of the proposed algorithm both in its basic
configuration and considering information from binary signals, in the case
of two local models. The comparison with the results from the monitor
used (Glucoday), demonstrate that the new calibration algorithm allows for a
significant improvement of the accuracy of the glucose estimations, specially
when the binary information is used. Percentage of well estimated samples
according to the ISO criteria improves around 20%, and MARD and M2ARD
improve in more than 7% in all configurations and also attending to overall or
hypoglycemic range.

Achieved MARD and M2ARD is equal or below 7.1% in all configurations
of the algorithm. Again, the magnitude of improvement is different in the
overall and the hypoglycemic range, where MARD and M2ARD are below
10% in all configurations. In this case, the difference between the original
algorithm of the monitor and proposed algorithm is statistically significant in
most of the cases and even in the hypoglycemic range the p-values are close
to significance. Remark that the number of patients available is very small
which may be the reason of such result.

Figures 5.7 and 5.8 show, respectively, the global and local models
estimations of plasma glucose with the new algorithm, using the individualized
normalization in the configuration where Iex is included, compared with
reference plasma glucose measurements. In Figure 5.8 the final output of
WLMs is represented, considering the output of the linear model weighted by
their validity function. Figure 5.7 shows a closer estimation of plasma glucose
by the proposed algorithm, compared to the original monitor estimation. If
the LMs of Figure 5.8 are analyzed, it can be seen that LM1 detects dynamics
mainly valid (in totality) when glucose levels are larger than ∼80mg/dl while
LM2 find dynamics mostly valid when glucose levels are around the low
hypoglycemic range ∼50mg/dl. In the region between them, both models
contribute to the estimation of global glucose levels with different proportion
(different weights).

For this type of normalization, all configurations of inputs have been
checked with only one local model, c = 1. This is not the same as one global
model, as the validity function present for the local regression also contributes
to the global model, indicating the region where the model is valid. Table
5.3 shows a summary of all results. In all configuration of inputs considered,
performance of the case of c = 1 is quite similar to the case of c = 2, only
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slightly worse, when the individualized normalization is used.
Now that different values of patient to sensor’s sensitivity are introduced

in the model by means of individualized normalization, the local models found
represent different dynamics of the signal or different ranges. Differences for
the two models are small as the reduction from c = 2 to c = 1 does not make
the performance of the calibration algorithm much worse.
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Figure 5.5: Comparison between global glucose estimation, Ge, (solid line) and paired available reference glucose,
Gr, (dotted line), plotted by each patient and each 6-min sample (dots). This is for the basic input vector, called
IIG, only two local models (c=2) and applying set normalization. These signals have also been compared to the
original manufacturer’s sensor accuracy Gs.
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Figure 5.6: Comparison between the reference glucose, Gr, and the estimation of glucose done only by each local
model (LM1 and LM2). This is for the basic input vector (IIG), for c=2 and applying set normalization. It can
be seen how LM1 provides accurate plasma glucose estimations just for Patients 5 and 6 while this local estimation
does not contribute at all to the accuracy of the estimation in the rest of patients. On the other hand, how LM2

provides accurate plasma glucose estimations in all but patients 5 and 6, where its contribution to the accuracy of
the estimation is nearly 0.

0 20 40 60 80 100 120 140 160
0

50

100

150

200

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient1

0 20 40 60 80 100 120 140 160 180
0

50

100

150

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient2

20 40 60 80 100 120 140 160 180

0

50

100

150

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient3

0 20 40 60 80 100 120 140 160
0

50

100

150

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient4

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient5

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient6

110 120 130 140 150 160 170 180
0

50

100

150

200

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient7

110 120 130 140 150 160 170

0

50

100

150

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient8

 

 

G
r

LM
1

LM
2

1
2
9



C
h
a
p
te
r
5Table 5.1: Measures of accuracy obtained with the proposed new algorithm set normalization are presented

and compared with the Manufacturer’s algorithm (M), both for the whole and the hypoglycemic range. Results
obtained with the different configurations of the algorithm are shown: the “basic” configuration where the input
is the IIG vector (Ik, Ik−1,Ĝk−1) noted as CA1; the case where insulin infusion (Iex) is considered in addition
to IIG (IIG+Iex, noted as CA2); the case where both Iex and the exogenous glucose infusion (Gex) are used in
addition to IIG (IIG+Iex+Gex, noted as CA3). Data are mean±SD (ISOok and MARD) or median and range
(M2ARD). The difference between the new and the old algorithm is presented along with its confidence interval.

Measure Glycemic
Calibration algorithm

P
of accuracy range value

Manufacturer’s
Proposed algorithm: PNCRM

Difference
(M) [Confidence Interval]

GlucodayR© Configurations

CA1 CA2 CA3 CA1-M CA2-M CA3-M

ISOok (%)
Overall

78.38% 88.79% 94.59% 97.52% 10.40 16.20 19.14
0.008±14.52 ±6.91 ±5.2 ±3.67 [2.08; 18.73] [7.88; 24.53] [10.81; 27.46]

Hypo 75.92% 86.24% 95.83% 93.75% 10.32 19.92 17.83
0.029

<75mg/dl ±16.68 ±13.96 ±8.91 ±11.57 [-3.05; 23.70] [6.54; 33.30] [4.46; 31.21]

MARD (%)
Overall

14.7% 10.8% 8.75% 7.8% -3.9 -5.96 -6.91
0.012±5.35 ±1.54 ±1.02 ±2.6 [-7.30; -0.50] [-9.36; -2.56] [10.30; -3.51]

Hypo 17.32% 12.76% 8.35% 12.25% -4.57 -8.97 -5.07
0.11

<70mg/dl ±7.34 ±6.17 ±4.02 ±7.53 [-11.72; 2.59] [-21.00; 2.60] [-12.23; 2.09]

Overall
13.2% 9.05% 7.03% 5.51% -4.08 -6.31 -6.78

0.004
M2ARD (%) [5.96; 20.37] [4.67; 13.58] [4.33; 8.62] [ 3.67; 15.85] [-7.80; 0.35] [-10.03;-2.59] [-10.50; -3.06]

[range] Hypo 17.63% 9.07% 6.3% 9.1% -3.83 -8.89 -5.53
0.14

<70mg/dl [5.31; 29.26] [7.49; 28.55] [0.96; 14.54] [1.35; 23.53] [-11.58; 3.92] [-22.00; 3.70] [-13.28; 2.22]
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Figure 5.7: Comparison between global glucose estimation, Ge, (solid line) and paired available reference glucose,
Gr, (dotted line), plotted by each patient and each 6-min sample (dots). This is for the basic input vector plus
binary signal Iex (IIG+Iex), only two local models (c=2) and applying normalization by subject. These signals
have also been compared to the original manufacturer’s sensor accuracy Gs.

0 20 40 60 80 100 120 140 160
0

50

100

150

200

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient1

0 20 40 60 80 100 120 140 160 180
0

50

100

150

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient2

0 20 40 60 80 100 120 140 160 180
0

50

100

150

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient3

0 20 40 60 80 100 120 140 160
40

60

80

100

120

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient4

0 20 40 60 80 100 120 140 160 180
50

100

150

200

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient5

0 20 40 60 80 100 120 140 160 180
50

100

150

200

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient6

110 120 130 140 150 160 170 180
50

100

150

200

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient7

100 110 120 130 140 150 160 170 180
0

50

100

150

200

Time (min)

G
lu

co
se

 (
m

g/
dL

) Patient8

 

 

G
r

G
e

G
s

1
3
1



C
h
a
p
te
r
5

Figure 5.8: Comparison between the reference glucose, Gr, and the estimation of glucose done only by each local
model (LM1 and LM2). This is for the basic input vector plus binary signal Iex ((IIG+Iex)), for c=2 and applying
individualized normalization. It can be seen how LM1 has a high validity for values of glucose larger than
80mg/dl while LM2 has its high validity for values of glucose around sim50mg/dl. In between these values, both
LM contribute with different weights to the estimation of the glucose, with smooth transition of their validity
functions.
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Table 5.2: Measures of accuracy obtained with the proposed new algorithm with individualized normalization

are presented and compared with the Manufacturer’s algorithm (M), both for the whole and the hypoglycemic range.
Results obtained with the different configurations of the algorithm are shown: the “basic” configuration where the
input is the IIG vector (Ik, Ik−1,Ĝk−1) noted as CA1; the case where insulin infusion (Iex) is considered in
addition to IIG (IIG+Iex, noted as CA2); the case where both Iex and the exogenous glucose infusion (Gex) are
used in addition to IIG (IIG+Iex+Gex, noted as CA3). Data are mean±SD (ISOok and MARD) or median
and range (M2ARD). The difference between the new and the old algorithm is presented along with its confidence
interval.

Measure Glycemic
Calibration algorithm

P
of accuracy range value

Manufacturer’s
Proposed algorithm: PNCRM

Difference
(M) [Confidence Interval]

GlucodayR© Configurations

CA1 CA2 CA3 CA1-M CA2-M CA3-M

ISOok (%)
Overall

78.38% 97.44% 97.95% 98.46% 19.28 18.64 19.05
0.013±14.52 ±4.06 ±5.76 ±5.86 [11.92; 26.64] [9.4; 27.87] [9.63; 28.48]

Hypo 75.92% 97.7% 98.85% 98.85% 21.9 20.96 20.96
0.023

<75mg/dl ±16.68 ±4.04 ±8.84 ±8.84 [14.41; 29.39] [9.47; 32.45] [9.47; 32.45]

MARD (%)
Overall

14.7% 7.1% 6.71% 6.58% -7.59 -7.46 -7.78
0.004±5.35 ±1.75 ±2.58 ±1.87 [-9.73; -5.45] [-10.8; -4.08] [-10.63; -4.94]

Hypo 17.32% 9.33% 7.17% 7.49% -7.33 -8.68 -8.96
0.064

<70mg/dl ±7.34 ±2.65 ±5.52 ±5.09 [-11.33; -3.33] [14.63; -2.72] [-14.66; -3.26]

Overall
13.2% 5.81% 5.27% 5.23% -7.6 -7.31 -7.51

7 · 10−5

M2ARD (%) [5.96; 20.37] [2.99; 9.13] [4.12; 10.76] [2.68; 7.95] [-9.35; -5.86] [-9.92; -4.7] [-9.6; -5.43]
[range] Hypo 17.63% 8.66% 5.07% 6.77% -5.91 -8.19 -8.05

0.089
<70mg/dl [5.31; 29.26] [5.35; 15.78] [2.01; 20.28] [3.04; 18.94] [-10.22; -1.59] [-14.37; -2.02] [-13.75; -2.34]
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Table 5.3: Comparative of all results obtained with the proposed new algorithm for for all configurations defined
(individualized normalization with c = 1 and c = 2, and set normalization with c = 2) and the
Manufacturer’s algorithm (M), computed for the overall and the hypoglycemic range. Results are shown for
the different configurations of the algorithm: the “basic” configuration where the input is the IIG vector (Ik,
Ik−1,Ĝk−1), noted as CA1; the case where insulin infusion (Iex) is considered in addition to IIG (IIG+Iex,
noted as CA2); the case where both Iex and the exogenous glucose infusion (Gex) are used in addition to IIG
(IIG+Iex+Gex, noted as CA3). Data are mean±SD (ISOok and MARD) or median and range (M2ARD).

Measure Glycemic
Calibration algorithm

of accuracy range

Manufacturer’s Set Normalization: Individualized Normalization:
(M) c = 2 c = 1 c = 2

GlucodayR© CA1 CA2 CA3 CA1 CA2 CA3 CA1 CA2 CA3

ISOok (%)
Overall

78.38% 90.26% 94.87% 98.46% 95.38% 97.95% 97.95% 97.44% 97.95% 98.46%
±14.52 ±6.91 ±5.2 ±3.67 ±4.49 ±8.75 ±8.75 ±4.06 ±5.76 ±5.86

Hypo 75.92% 87.36% 97.7% 97.7% 94.38% 96.55% 96.55% 97.7% 98.85% 98.85%
<75mg/dl ±16.68 ±13.96 ±8.91 ±11.57 ±8.29 ±26.52 ±26.52 ±4.04 ±8.84 ±8.84

MARD (%)
Overall

14.7% 10.56% 8.73% 7.28% 8.3% 7.5% 7.9% 7.1% 6.71% 6.58%
±5.35 ±1.54 ±1.02 ±2.6 ±1.83 ±2.69 ±2.32 ±1.75 ±2.58 ±1.87

Hypo 17.32% 13.24% 8.34% 9.77% 11.27% 9.54% 10.08% 9.33% 7.17% 7.49%
<70mg/dl ±7.34 ±6.17 ±4.02 ±7.53 ±3.59 ±5.36 ±5.36 ±2.65 ±5.52 ±5.09

Overall
13.2% 8.77% 7% 5.48% 6.46% 6.2% 6.71% 5.81% 5.27% 5.24%

M2ARD (%) [5.96; 20.37] [4.67; 13.58] [4.33; 8.62] [3.67; 15.85] [3.21; 10.5] [3.53; 12.58] [5.52; 13.98] [2.99; 9.13] [4.12; 10.76] [2.68; 7.95]
[range] Hypo 17.63% 11.09% 6.91% 8.22% 9.52% 9.02% 9.92% 8.66% 5.07% 6.77%

<70mg/dl [5.31; 29.26] [7.49; 28.55] [0.96; 14.54] [1.35; 23.53] [6.62; 25.73] [2.09; 23.73] [5.41; 23.34] [5.35; 15.78] [2.01; 20.28] [3.04; 18.94]

1
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5.7 Discussion

Firstly, this study validates the feasibility of calibration algorithms for
continuous glucose monitoring, based on a dynamic model which includes
the relationship between plasma glucose level and measurements in a remote
compartment (in this case the interstitial space). The strength and novelty of
this method resides in the structure of the global model, which is composed
by several local models weighted and added. Local models are defined by
a validity function and a linear combination of the inputs, so that each one
represents to a variable extent a different (metabolic) condition and/or sensor-
subject interaction. Then, each subject will be represented by one or more
LMs and the shift from one LM to another is defined by the inputs (i.e. the
output of the sensor but also every other signal containing information relevant
to the glucose transport dynamics). It is worth noting that each local model
has a very simple structure (linear regression), favoring interpretability of the
global model. Moreover, the validity function of the local models (µi) makes
them representative of very specific and well defined regions on the input
space, allowing for the identification of the regions they represent. All these
may help to elucidate the relationship between the signal(s) from the remote
compartment and plasma glucose levels, describing different glucose dynamics
and sensors behaviors. It does mean that this calibration algorithm could
be applied to any sensor that offers some indirect measurement related to
plasma glucose levels, the number and parameters of each local model being
determined by the particular sensor’s output.

Results from the present study should be considered as a proof of concept.
Indeed, in the small population studied at least two different dynamics of the
sensor-to-subject interaction were found, each one detected by a different local
model: LM1 for subjects 5-6 and LM2 for the other subjects. The reason for
the existence of two different local models was easily explained by differences in
the sensor’s sensitivity of patients. Consideration of both dynamics by means
of the two independent local models allowed for a significant improvement of
glucose estimations as compared to the original algorithm implemented by the
Glucoday. Additionally, the proposed algorithm admits the introduction of
information about the metabolic condition of the subject as a binary signal.
This further improved the accuracy of the glucose estimation and appears to be
an interesting feature since any information potentially relevant to the sensor-
to-subject interaction (physical activity/inactivity, fed/fasting state, etc.) can
be used to feed the algorithm. This information could be easily obtained from
an insulin pump or external sensors in a body area network.

However, the study has three main limitations.
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1. First, the study population is composed by just eight healthy subjects
and data should be considered preliminary. Thus it is well probable
that the structure of the obtained algorithm is not representative of the
general population of people with diabetes. Indeed, getting a calibration
algorithm applicable to the general population of people with diabetes
would require a specific clinical study in a representative sample, and
validation of the obtained algorithm should be carried out in a different
study involving larger numbers of subjects with both T1 and T2 diabetes.
However, in this case the structure of the proposed algorithm is not
expected to change regarding the inputs to be considered, although more
local models would probably be needed to cover the greater heterogeneity
of local behaviors.

2. Second, data from reference plasma glucose measurement are available
for a limited time for each subject. This could in theory have reduced the
possibility to identify different glucose dynamics and sensor behaviors.
However, during the clamp study, glucose and insulin concentrations
varied through all the clinical significant ranges of eu-, hypo- and
hyperglycemia, giving a good picture of the changes observed in real-
life conditions.

On the contrary, longer studies should be performed to identify changes
in the dynamics of the sensor over time, avoiding underestimation of
the number c of local models needed to describe the plasma/remote
compartment glucose relationship. This is particularly true for
minimally invasive sensors where biofouling, inflammation and foreign
body reaction (which are probably tissue and subject specific) induce
changes in sensor’s response to variations in glucose concentration.

3. Finally, to prove robustness of the algorithm to cope with variability, the
results must be confirmed in a sample representative of the population
of patients with diabetes. In this regard, from a phylogenetic point
of view it is expected that the inter-subject variations in the inter-
compartmental glucose dynamics, as well as the spectrum of the
inflammatory responses to the sensor’s insertion, are limited. However,
due to changes in the microcirculation, the variability of the sensor-
to-subject interaction (i.e. different sensor sensitivities, sensor’s drift
overtime, metabolic conditions, etc.) might be greater in patients
with diabetes, especially those with microvascular complications [111].
Nevertheless, the accuracy of CGM in patients with diabetes seems to
be not different as compared to healthy subjects, indicating that the
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theoretical greater variability associated with the diabetes condition may
have limited practical impact.

Despite its limitations, in this proof of concept study the local models
technique using the set normalization for data is demonstrated to be an
effective approach for CGM calibration algorithms. Indeed, aside the
very good results obtained in terms of accuracy of glucose estimations, the
short computational time associated with this methodology makes it feasible
for real time monitoring and implementation in every glucose sensor.

The application of the designed modeling method (PNCRM) as
calibration algorithm is direct using the set normalization. Results indicate
that the differences in the validity of the local models are defined by differences
in the magnitude of the sensors response, finding two different clusters
(groups of similar sensitivities). Indeed, the interaction between a sensor
and the remote compartment of measurement is likely to be specific of each
sensor. In the case of minimally invasive sensors (which to date are the only
commercially available) this interaction depends on the biocompatibility of the
materials used and on the inflammatory reaction following its insertion. This
relationship is complex, may be time-dependent (as the foreign body reaction
progresses) and certainly is specific to each individual [87, 104].

For this reason, the application of normalization by subject to this case
makes special sense, to see the effects of considering the sensors sensitivity in
the model. Results confirm that if the effects of the sensitivity are removed
from the dynamic response, then performance of the model improves with
regard the original manufacturer’s accuracy and also the proposed calibration
algorithm with set normalization. Indeed, even when only one local model is
used, c = 1 results are better than in both previous cases. It is very important
to note that only one linear model is not the same as the global model
with c = 1, because the global model also includes the validity function to
indicate representativeness. This region is very important for the application
of the model as calibration algorithm, as it will indicate if the global model is
representative of the new patient or not.

However, the application of the PNCRM algorithm with the
individualized normalization can not be directly applied as calibration
algorithm. The parameters found for the model are in normalized dimensions
and, obviously, normalization parameters for a new patient can not be obtained
beforehand to rescale inputs and output and remove sensitivity effects.

Thus, to use the modeling algorithm along with the individualized
normalization the estimation of normalization parameters is needed. In
addition to this, the estimation of parameters has to be done along with
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time, as each patient’s sensitivity also varies during the sensor lifetime. With
this estimation of parameters the proposed modeling algorithm PNCRM
with individualized normalization can be used as calibration algorithm for
the estimation of glucose levels. This will be the topic for next chapter.

5.8 Conclusions

In this chapter the application of the modeling algorithm proposed in Chapter
4 to the case of estimation of glucose levels for continuous glucose monitoring
is described. The application was done in a data set with only 8 healthy
patients with variations of glucose through exogenous infusions of insulin
and/or glucose.

The use of the model as calibration algorithm (CA) results in an
improvement with regard to the monitor used in the experiment to obtain
the data, reaching promising results. Inclusion of exogenous binary signals
indicating effects of glucose and insulin contributes to further improve the
accuracy of estimations. However, the small size of the data set force these
results to be only a proof study and can not be considered as conclusive.

The advantages of the proposed method are many, being the most
important the improvement of glucose estimation accuracy.

Results obtained in the application of the CA indicate that the sensor’s
sensitivity has a large effect in the estimation of glucose, as inter-patient
variations on this parameter are much influent, as the range of electrical signal
can vary much between patients.

Using individualized normalization and applying PNCRM much better
results were obtained, for all configurations of inputs. Nonetheless, this
structure can not be directly applied as calibration algorithm unless an
estimation of normalization parameters is done for the application to a new
patient’s data.
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Adaptive calibration
algorithm

6.1 Motivation

In previous chapters, a new calibration algorithm (CA) for Continuous Glucose
Monitoring, based on the identification of a set of local models, was introduced.

For the correct application of this new CA, input and output data must
be normalized. The different performance of the algorithm when data is
normalized using set parameters (set normalization) or subject parameters
(individualized normalization) was shown in the previous chapter.

Performance is better in the case of individual normalization, as variations
of the inter-patient sensor’s sensitivity variability are compensated. However,
the application of the identified model to a new patient is not possible, as their
own normalization parameters can not be known a priori.

This motivates the idea of designing an adaptation scheme that allows
the normalization parameters to adapt to new data. This adaptation of
normalization parameters would allow the application of the computed model
to data not used for the identification of the model and with different
characteristics than the original data.

Starting the normalization parameters with a population value, they are
adapted to make the model improve its performance with the new subject’s
data.

What is more, with the adaptation of normalization parameters the intra-
patient sensor’s sensitivity variations (variations of sensitivity with time for a
subject) can also be compensated.

Thus, in this chapter details the characteristics of this new adaptive
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calibration algorithm (ACA), including: the methodology chosen to perform
this adaptation, the characteristics of the system and all issues related to the
right design and application of this system.

Figure 6.1 shows a block diagram of the adaptive calibration algorithm,
where the main block is still the calibration algorithm of figure 5.1. A new
block for the estimation of normalization parameters is included, as well as
two blocks for normalization and denormalization of signals, in addition to the
CA block.

Corrector+

μ1

μ2

μc

CA

LM1

LM2

LMc

INk ĜNk

Norm.  Add. 
Inputs  (AIN)

GcN

GcN

Normalization
       block

Denormalization
          block

         Estimation block
(Normalization parameters)

Sensor

Calibrations (Gc)

Add. Inputs  (AI)

Interstitial 
  Glucose IDk

ĜDk

pmk

pmk pmk

ĜDkGc

ACA

Figure 6.1: Block diagram for the proposed new ACA.

6.2 Data characteristics

6.2.1 Sensitivity variations

In Chapter 5, it was shown how the use of individual normalization improves
the performance of the calibration algorithm, as sensor’s sensitivity variations
are compensated. This means, clearly, that differences in sensor’s sensitivity
affect very much the estimation of glucose. With a better understanding of
the sensor’s sensitivity variations, it might be easier to compensate them with
the calibration algorithm. For this reason, an estimation of this variations is
done here.

Indeed, variations on sensor’s sensitivity are a fact and recent studies show
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their importance [112, 64], but it is not easy to quantify them or even to define
the shape. It is well known that the sensitivity of the sensor is different for each
patient, but also it is different within the sensor’s life time [95]. This means
that the same patients will not have the same sensitivity to their sensor the
first day than the fourth day after its insertion. The sensitivity variations over
time is not yet well known. In general, there is a decrement of the sensitivity
with time [64, 85]. In addition, there are several studies [64, 49] that have
proved that with the insertion of the sensor the sensitivity also decays, as the
hemorrhage produced decreases the chemical reaction effects.

So, it seems reasonable to consider that the sensitivity is a bit lower the first
day or two days, to increase later to its highest value and to start decreasing
after another couple of days due, e.g., to biofouling, until the end of the sensor
life, which currently is around one week. The amount of this decrement is not
well known, but it seems reasonable to consider it in the interval [20,50]%.

One of the few works that define an equation for these variations is [42]:

δ (k + 1) = 3δ (k)− 3δ (k − 1) + δ (k − 2) + w1 (k) , (6.1)

where δ(k) represents the sensitivity variations at instant k and w1 is a
white noise with null mean. Thus, the sensitivity variations correspond to an
third order integration of a white noise.

Among the diverse set of curves produced by this stochastic model, one
that changes according to the estimated decay with time has been chosen to
represent the sensor’s sensitivity variations with time, Fig. 6.2.
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Figure 6.2: Shape of the sensitivity variation for 7 days, in the range of 20%
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Thus, variations of sensor’s sensitivity must be considered in two ways:

⋄ inter-patient variations: a different constant Sp defined for each
patient i (Spi) defines the relation between current intensity (I) and
interstitial glucose (IG)(I = Spi · IG).

⋄ intra-patient variations: The sensor gain Spi varies with time
accordingly to the curve depicted in Fig. 6.2, randomly rescaled to
represent variations in the range [20,50]%. This interval seems sensible
based on simulation results from [42].

6.2.2 Information available

A very important issue that has to be considered is the availability of
information. When the model is identified for the set of training patients,
information about the output (plasma glucose) is available, samples are
frequent and regular. This is necessary to identify an accurate model of
the system, as with few samples the model would be neither valid nor
representative.

But in a usual case, information about the output is not frequent and that
is the reason for the development of CGMS. However, adaptation can only be
done with reference samples with which performing the comparison between
model estimations and actual values.

In their daily life, patients with diabetes take around four control samples
of glucose per day to see their level of glucose at important/critical instants.
These samples are taken with glucometers in intervals of 6-8 hours. Therefore,
to design the ACA with real life conditions, the adaptation of parameters can
only be carried out using these control measurements as reference samples.

This means that, considering a realistic case for patients with diabetes, the
adaptation will have to be done considering information included in just a few
measurements per day.

However, in CGM devices it is necessary that an estimated output is given
every 5 min. Thus, with each new reference measurement taken by the patient,
the adaptation scheme has to perform the estimation of the normalization
parameters to get the estimation of the CA with the normalized signals as close
as possible to the reference value. In the meantime, when no new references
are measured by the patient, the adaptation can still be performed offering an
estimation (suboptimal) every 5 min, but no new information is considered.
Then, if the adaptation algorithm is fast enough, it is common that between
reference samples, the normalization parameters do not change or not change
much.
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Although only 3-4 samples per day are used for adaptation, it is highly
important to consider also the results of estimation between reference samples
during the validation phase. If the normalization parameters are adapted in
such a way that the output of the model is very close to the reference values
in just a few points it is not clear that the estimation of the model is close to
the real output in all points in between.

Performance of the estimation algorithm has to be evaluated in all the
range, given that being only accurate in just a few points is not desired.
For this reason, although the adaptation is carried out with information of
few points, all range has to be used to check the performance of this scheme.
Indeed, the validation, to measure properly the performance of the adaptation,
will have to be done using laboratory samples, which measure plasma glucose
levels with low error.

The last issue to consider in this section, is that in reality samples of
capillary glucose taken by glucometers have some error with regard to the
plasma glucose, which is the final reference. This error is quantified in the
interval [-10,10]% and there is no way of removing it. Thus, the adaptation
of normalization parameters will inherit this error, and has to offer a good
estimation in spite of it.

This is not the ideal case, but it is what happens in reality, where the
estimations at home of plasma glucose are given by glucometers which still
have this error. The performance of the adaptation will have to be checked
under this conditions, as it is what is expected in the daily life of new patients
where this ACA is to be used.

6.3 Framework

As seen in Section 2.3 and in Chapter 5, the most used inputs in this system
are the mentioned intensity of the current signal from the sensor in several
time instants (Ik, Ik−1, etc.) and also some estimations of glucose in previous
instants (Ĝk−1, Ĝk−2, etc.). As one of the inputs is the same as the output
(but delayed), only four parameters are required for the normalization: mean
and variance of the current signal (mi, σ

2
i ) and mean and variance of the

glucose signal (mg, σ
2
g). For the subject normalization these parameters are

subject dependent, p (mpi, σ
2
pi, mpg, σ

2
pg).

Therefore, the generalization of the model identified for a set of
subjects with individualized normalization is possible with the adaptation
of normalization parameters. The adaptation of each parameter to improve
adjustment of the new signal vector to the computed model can affect in
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a different way and influence of each of them can be in same or opposite
directions to others. For this reason, the first characteristic of this scheme
is that the adaptation will be done simultaneously using the full set of
parameters:

pm =
[
mi σ2

i mg σ2
g

]
(6.2)

If the aim of this adaptive CA is to enable the application of the model
for a new subject, then it is needed that this adaptation can be computed
on-line. CGM systems take a current measurement every 5 min, computing
the output (glucose estimation level) at that time. This means that between
measurements and estimations, there is a lap of 5 min where the adaptation
will have to be done, to be able to offer a value for the output when that time
elapses.

Another issue that has to be taken into account is what is expected of this
adaptation. The adaptation of normalization parameters is done to re-scale
the inputs/outputs in the correct range. If the normalized inputs/outputs are
not in the correct range, when the identified model is applied to them the
estimation of the output will have much error. On the contrary, when the
inputs and outputs are correctly normalized the model will have small error.

This means that the difference between estimated and real glucose will
be small when signals are normalized with correct values of parameters. The
range of the error for correct normalization parameters should be similar to
the error of current glucometers.

Thus, it makes sense to use the difference between the “actual” glucose and
the estimation by the model applied to the normalized signals as the reference
of the quality of normalization. Thus, the adaptation of normalization
parameters (pm) is done to minimize the difference between both signals.
A small error indicates that normalization parameters reached a value close
to real one. As said before, the “reference” glucose will be taken from the
glucometer measurements to perform the adaptation of parameters, given that
it is the information available to patients at home.

Given that one of the common measures used for the quality of the CGM
algorithm is the MARD (Mean Absolute Relative Deviation), it is convenient
to use this measure as the function of the error to minimize with the
adaptation of parameters:

MARD =

n∑

k=1

∣
∣
∣
yk−ŷk
yk

∣
∣
∣

n
, (6.3)
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where yk refers to reference samples taken from the glucometer while ŷk
refers to the estimated plasma glucose done by the model. n is the total
number of samples.

Figure 6.3 shows a block diagram of the estimator of normalization
parameters. It is based, as already said, in the minimization of the MARD
between reference (glucometer) samples and the estimations of the model with
individualized normalization. This comparison is done for the time instants
where there are calibrations, Tc, and in samples within a given time window,
denoted by wi. Details of the time window can be seen in Section 6.5.3 of this
chapter.
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Figure 6.3: Components of the block for estimating the normalization
parameters

6.4 Selection of the optimization technique

The best optimization technique must be chosen for the minimization of the
MARD function. In Section 4.5, a review of optimization methods was done.

In the case under consideration, the problem is uni-objective, and,
therefore, the techniques based on evolutionary algorithms will not be
considered as their potential might exceed the complexity of the problem.

On the other hand, in the minimization of the MARD function, it is
very important to offer a value every 5 min. Besides, the software where
the optimization would be implemented (CGMS) is a commercially available
microprocessor, so no complex requirements might be supported. For this
reason, application of local optimizers makes much more sense in this case, as
they are, probably, the only option for the system requirements.

Thus, according to the application requirements, the use of the gradient
based optimization methods seems appropriate. The gradient method is a good
choice, mainly because it is fast computing and can reach the (local) optimum
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value in not many iterations. Besides, this application has four input variables,
vector pm, which is a good number [102] for this type of methods.

Equations of parameters update is like shown before, but adapted now to
the case:

pmk+1 = pmk − α ·Gf (6.4)

Gf represents the gradient of the objective function, fMARD, with regard
to the input parameters:

Gf =
∂fMARD

∂pm
(6.5)

It is important to mention, that differentiation of the last equation with
respect to the vector of independent parameters means the differentiation
of the equation with regard each parameters independently. To consider all
changes simultaneously, update of all parameters must be done simultaneously
in each iteration.

Particularization of these equations taking into account all normalization
variables, will be shown in next section.

6.5 Application of the gradient method

After the selection of the optimization method to perform the adaptation of
parameters, its correct fitting for the application of the concerned case is to
be done. This involves considering the specifications of the problem, tuning
the parameters of the algorithm, and so on.

6.5.1 Equation to minimize

As said before, this optimization method is based on an update of the
parameters based on the negative direction of the derivative of the function
in each sample, following equation 6.4. In this way parameters tend to the
value that gives the minimum of the function. For this reason, the first thing
to do is to define the function to minimize in this problem and to compute its
derivative.

The function to minimize is the MARD function, Equation (6.3), which
is the absolute relative deviation between the estimated output (ŷ) and the
reference output yr. The estimated and denormalized output of the model
(used for computing MARD) is renamed as ŷD, subindex D has been added
to make clear it is the denormalized value the one considered, see Annex A. In
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this application the reference output (glucose) comes from the samples taken
from glucometer, as mentioned before.

Generic nomenclatures has been used: y for the output (glucose or G) and
x for inputs (current intensity or I and previous glucose estimations or Ĝ).
Normalization variables will be generalized like: mx, σ

2
x, my and σ2

y .
Obviously, the denormalized output depends on the output normalization

variables (see Annex A): ŷD = (ŷN − off) ·
√

σ2
y +my. Substituting in 6.3:

MARD =

n∑

k=1

∣
∣
∣
∣

yk−((ŷN−off)·
√

σ2
y+my)

k
yk

∣
∣
∣
∣

n
(6.6)

The normalized estimation ŷN is the output of the model, where the
normalized inputs are included to the computation of the same. To see how
they affect, the simpler case of two inputs will be considered as illustration.
One of the inputs, x1, will be an independent variable while the other, x2, will
be the same output estimation but considered in other time instants, section
5.3:

x1N =
x1 −mx
√

σ2
x

+ off (6.7)

x2N =
x2 −my
√

σ2
y

+ off (6.8)

To avoid excessive complexity a system of only one local model is
considered. Then the membership function, the linear regression and the total
estimation of the model for each instant k are respectively:

µ = e
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(6.9)

LM = β1x1N + β2x2N + β0 (6.10)
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c1, c2 are the coordinates of the center of the hypergaussian function, while
σ1 and σ2 are the variance in each direction of the distribution.

The final equation for the MARD results by substituting the estimated
normalized output ŷN in equation 6.6.

To derive the final MARD equation with regard to each of the
normalization variables (mx, σ

2
x, my and σ2

y) is quite complex. Indeed, this
is only an illustration case, where just few variables are present. Obviously,
the more inputs the system has and the more LM, the more complex these
equations would be. In general, the derivative of the whole MARD expression
is not easy to get and implement.

Instead, it seems more appropriate to compute the numerical
approximation of the derivative at the required point. These approximations
are accurate enough if the considered interval is also small enough.

Numerical derivative of a function f(x) (f : R → R) is computed as
the quotient between the variations of the function and the variations of the
variable for an increment of the variable d:

∆f (x)

∆x

∣
∣
∣
∣
d

=
f (x+ d)− f (x− d)

(x+ d)− (x− d)
=

f (x+ d)− f (x− d)

2d
(6.12)

Only two numerical values of the function have to be computed, always
considering d small enough to assure the validity of this approximation.

Each of the variables will be considered independently for the computation
of the numerical derivative while all the changes in variable magnitude for
optimization will be considered simultaneously.

6.5.2 Parameter tuning

In the gradient method there exists an important parameter to tune: the
adaptation step, α. It defines the speed of the adaptation and the selection of
a proper value of the same depends of the convexity of the problem.

In this case, the function to minimize is highly non-convex, and this implies
that the adaptation step has to be small to assure the adaptation is smooth.
Numerical values of this parameter will only be assigned with trial and error,
and the maximum value of α that assures convergence is the best value for
the step.

If the adaptation step adopts a too large value, instead of convergence of
parameters it is likely to get oscillations on their value, never approaching an
stable value, whether the optimum or not. For this reason it is always better
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to be slightly conservative with this assignation and assure a convergence even
at the expense of a larger computational time [102].

A modification of the bare gradient method is the steepest descent
optimization. This method is based on an adaptation of the parameter α
depending on the value of the derivative or what is the same, how much the
function varies around the actual point. Assigning larger values for α when
the function changes a lot (large derivative) or smaller values when function
is almost constant makes the method tend to the optimum value faster, and
reach an stable value

The ranges of the derivative to assign larger or smaller values for the
adaptation step is also case-dependent and will have to be found also by trials
and error. Steep-descent method is an improvement over the simple gradient
based method because it still uses the same basic methodology but helped
with information of the function and the case.

Finally, the value of the deviation of adaptation parameters to compute
the numerical derivative has to be considered. This value has to be small to
really reflect the derivative of the function at the point selected, but if it is
too small it could happen that the direction of minimum is not reflected in
the resulting direction. An appropriate value of d depends on the magnitude
of the parameter. Thus, a variation around the 5% is selected in many cases.

6.5.3 Window of samples

The sensor is the most important element of the CGMS devices, as it is the
one that offers the measurement related to glucose levels. Research on sensor’s
technology has allowed to reach, currently, a working life of around a week.
Works on this field are still important and the aim is to obtain long life sensors,
reaching a life longer than a month [65, 52]. This is to avoid frequent re-
insertation of the device on the patients, as each time the sensor is changed
the device has to be inserted again.

On the other hand, the adaptation of parameters is done to adjust the
estimated samples to the real ones. Obviously, the larger number of samples
included for this comparison, the more information included and the better
adjustment of parameters to avoid the representation of only a few samples.

However, the larger number of samples included the longer the period of
time considered, and therefore, the more expected variations of the sensor’s
sensitivity. If the number of reference samples included in the adaptation is
large, representing the sensor’s sensitivity variations of the whole period with
only a value would imply a generalization of the value of parameters and a
loss of accuracy in the estimation of normalization parameters.
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For this reason, a compromise value has to be adopted for the number
of samples included for the adaptation, taking into account that the larger
the number the more the accurate estimation, but also that a large number
means less flexibility to counteract sensitivity variations. Fixing a determined
number of samples included for adaptation means to fix a window of time
for the adaptation. Equation of MARD 6.3 is adapted to include this window
and the final variables that are compared:

MARD =

∑

Tc∈[n−wi,n]

∣
∣
∣
∣

Gc−(ĜD)Tc
Gc

∣
∣
∣
∣

n
, (6.13)

Gc refers to capillary glucose, which is the reference, ĜD refers to the
denormalized estimation of the model and Tc is the time vector where
calibrations are measured. wi is the length of the window and n is the
total number of samples from the beginning until current instants. Thus,
the window takes into account the final wi period of time, see Figure 6.4.

Calibrations (Gc)
Calibrations Time (Tc)

Time (k)

Estimated 
  samples

Memory (wi)

current k

(ĜDk)

Figure 6.4: Representation of the memory block which stores signals in the
time window used for the estimation of normalization parameters

The proper value of this window will be under study in a practical case.
Nevertheless, it seems appropriate to try out values around a day, where 4
calibrations are included, because four calibrations is not a small number of
calibrations and accuracy can be satisfactory. Besides, in a day time the
variations of sensitivity are not expected to be extremely large and simplifying
them by just a value is not a bad generalization.
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6.6 Considerations for validation

In this system, the validation step includes two things. Firstly, it has to be
validated that the adaptive scheme is performing adequately, and resulting
parameters bring the normalized (and therefore, denormalized) estimation of
glucose close to the real value of reference. The second and most important
thing is that the validation has to check that normalization parameters that
reflect the sensitivity for the used samples in the comparison, are also valid for
the whole set of reference samples obtained from a laboratory and not used
for the error minimization.

Then, although just a few samples are used for the computation of
parameters, frequently taken reference samples are required to see the validity
of this scheme.

The use of only a few capillary measurements to perform the adaptation
over the whole signal range, make it necessary to choose the adequate samples
to be able to “discover” the general behavior of the signal between samples.

The few chosen samples should include as much information as possible
about the general signal variations. If measurements are all taken under
similar conditions and states (i.e. glycemic levels, rate of change, etc.)
it is likely that they are not representative of the full signal. The more
differentiated conditions the measurements are taken, if possible under
different glycemic/metabolic states, the more information included in those
few samples about the general signal.

However, it could happen that even if the samples used are taken in
different states (metabolic, glycemic, etc), the full signal is not represented
by them. Then, adapted parameters are not valid for the rest of samples,
producing a large error when compared to reference measurements.

In case the total error is larger than desired, the number of included
samples should be increased until it is under the acceptable threshold. What
could happen is that the number of samples that has to be included is too
large to be a realistic case, and this would invalidate the whole structure.

For this reason it is very important to study the timing of capillary samples
containing more information about the signal in order to include the minimum
number of them, as the aim is to design a structure that can be applied and
used in a realistic case. This is done in a later study, where different strategies
for calibration (introduce the capillary reference samples) are tested and also
different number of validation (plasma glucose) points.

Next Sections will show the application and validation of the proposed
adaptive calibration algorithm (ACA) in two data sets. The first one is a
data set with real information for several hours while the second one is an in
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silico database, with one-week’s information. Previous to the application of
the ACA, the model has to be identified.

6.7 Model identification with real data set

This section describes the first step before the designed adaptive calibration
algorithm is applied: the model identification, using either set or individual
normalization.

It is focused on checking the performance of the proposed modeling
algorithm, PNCRM , in the real data set described before. Both types of
normalization are used, as they were applied in the previous application (see
Chapter 5). First of all, the identification of the model will be done with
data normalized by set parameters. This means the same parameters of
normalization are applied for all patients.

Secondly, this methodology is applied when each patient is normalized by
its own parameters, to compensate effects of sensor’s sensitivity variations
between patients. Again, the set of LMs is identified for the set of normalized
patients.

Obviously, the denormalization of the output of the model (glucose
estimations) in each case is done according with the normalization used for
the data.

Finally, the proposed adaptive scheme is applied to the patients, using the
set of LMs identified for the individual normalization, as if they were new
patients (their parameters are not known), to see its performance

6.7.1 Clinical data study

17 patients with type 1 diabetes were recruited at Dr. Josep Trueta Hospital
(Girona, Spain) and were asked to wear CGMS Gold (MiniMed CGMS MMT-
7102; Medtronic, Northridge, CA). The device, which uses a retrospective
calibration algorithm and provides plasma glucose estimates every 5 minutes,
was calibrated with SMBG at least 3 times per day, following manufacturer’s
instructions.

Each patient underwent a 9 hours in-hospital study, where plasma glucose
was measured by means of a Glucose Analyzer II (Beckman Instruments, Brea,
CA). Samples were taken every 15 min for 2 h after each meal and every 30
min otherwise.

To perform the model identification, plasma glucose measurements were
interpolated using a cubic method every 5 min (sample period of CGMS Gold
readings). Thus, a total of 1719 paired points were obtained. Because plasma
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glucose and CGMS Gold readings were obtained at different times, CGMS
Gold readings were interpolated to the gold standard reference time vector to
match both vectors in time.

Some gold standard samples (14 samples in 5 patients) were incorrectly
measured (drastic change from previous and posterior values). In this case,
they were interpolated with the other signal samples to avoid gold standard
outliers.

6.7.2 Considerations

The variables used in this case as inputs are the same as in the previous
experiment: intensity of current from the sensor signal, I, glucose in plasma
samples (references), G, and glucose estimations given by the global model Ĝ.
Subindex i refers to the i-th local model, k is k-th time sample, and j refers to
the input dimension. Finally the subindex N will refer to normalized signals
IN , GN , ĜN , by any of the normalization methods proposed.

One thing that has to be mentioned is that it is needed the introduction
of a calibration at the beginning of the computing. Thus, at time k = 1
Ĝ0 will be replaced by G0. As the time computed for each patient varies
between 7 and 9 hours, it makes sense to introduce another calibration, as
patients usually take a calibration every 6h (4 calibrations per day). This
calibration is introduced for all patients just before dinner (at 7p.m.) where
all of them have a calibration point from glucometer. This point is chosen
because it is taken at equilibrium conditions, where the differences between
this measurement and blood glucose are minimal.

6.7.3 Model identification with set normalization

The application of this modeling methodology as calibration algorithm was
previously done in Chapter 5 [12] but for healthy people. In the current study
the same procedure was carried out in patients with type 1 diabetes. However,
the model identified in [12] was not directly applicable to these data. This can
probably be due to the small number of patients and the differences on the
nature of people (here patients have type 1 diabetes), as well as the sensor
used (microdyalisis versus needle-type). For this reason the structure and
parameters of a new model had to be identified again.

Starting from the structure [INk INk−1 ĜNk−1] (called IIG) and two local
models, c=2, several experiments were performed. Finally, it was proved that
the structure [INk INk−1 INk−2 ĜNk−1] (called I3G) with c=2 gave the best
results with the minimum number of inputs considered and the lower number
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of local models. Results are shown in Table 6.1, columns N1, N2, respectively.
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Figure 6.5: Projected validity function of LM1

Figs. 6.5 and 6.6 show the validity functions of each local model. There is
a principal local model (LM1), descriptor of the main dynamics of the signal
and a LM that contributes sometimes (LM2). This contribution only takes
part when certain conditions are met. The study of the region covered by the
validity function for LM2, reveals from its projections (Fig. 6.6) that this LM
contributes when the glucose is in hypo or low-normoglycemic region and the
current is recovering from a low level (in Ik−2).

In this case, identified local models do not correspond to different subsets
of patients. If sensor’s sensitivities are analyzed for this set of patients (see
Figure 6.7), it is clear that the distribution of the sensor’s sensitivities is
unimodal. Thus, the different models found correspond to differences in
dynamic behavior.

6.7.4 Model identification with individual normalization

As said before, the use of set normalization can hide the effects of the different
inter-patient sensor sensitivities, making difficult to find the insterstitium-to-
plasma dynamics. For this reason, individual normalization may be more
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Figure 6.6: Projected validity function of LM2

suitable reducing the impact of inter-patient sensitivity during the modeling
phase.

The identification of the model was done using the structure IIG (see
Section 5.6) and c=1, c=2. Results are shown in Table 6.1, columns N3, N4,
respectively.

Table 6.1: Results: % of well estimated samples according to ISO criteria and
MARD, both for the whole range and hypoglycemic range. Case N1 is the set
normalization, with IIG inputs and c=2. Case N2 is the set normalization,
with I3G inputs and c=2. Case N3 is the individual normalization, with IIG
and c=2. Case N4 is the individual normalization, with IIG and c=1.

CASES

Parameter CGMS Gold N1 N2 N3 N4

All range

Ok ISO 77.4% 73.4% 78.4% 90.7% 90.5%

MARD 15.1% 15.1% 14.5% 8.9% 9.7%

Hypoglycemic range

Ok ISO 71.9% 57% 73.3% 89.6% 91.9%

MARD 21.6% 23.9% 18.8% 11.5% 11.3%
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Figure 6.7: Histogram of sensor’s sensitivities by its order of magnitude from
Glucoday(R) and from the CGMS Gold monitors.

It is clear the improvement of the performance with regard to the set
normalization, as it was already demonstrated in the previous application of
PNCRM. This confirms results and conclusions obtained: when the issue of
the sensitivity variations is removed and only the part of finding the dynamics
between compartments is left performance drastically improves.

After the model identification, the performance of the adaptive calibration
algorithm can be tested.

6.8 Validation of the adaptive calibration algorithm

This section is divided into the two cases where this adaptive calibration
algorithm (ACA) is tested: the real data set and the in silico data set.

6.8.1 Application to real data

This refers to the application of the identified model for individual
normalization to a new patient, where the vector of normalization parameters
pm is unknown. pm was initialized using the mean of the individual
parameters of the population used for the identification of the model. After
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initialization, parameters were adapted to minimize the difference of the
estimation of glucose and the reference measurements (calibrations). It is
important to mention that although the optimization is done using only
calibration points, the performance has to be tested on the full set of gold
standard data. This implies that the larger number of calibrations, the more
information available to perform this adaptation. Nevertheless, it is not
realistic to think that any number of calibrations will be provided by the
patients.

The model used is the one with just one LM, column N4 in Table 6.1, as its
performance is very similar to the case of c = 2, column N3. Indeed, when the
effects of the sensor’s sensitivity are compensated through the individualized
normalization, the available data is not enough to identify very different
behaviors. Thus, the performance of the adaptive calibration algorithm can
be properly tested in this case taking the basic structure with c = 1.

The study is done using the patients available. Now, their parameters are
considered unknown, but the model already identified is taken and used. pm
is initialized using the mean of the individual parameters of the set used for
the identification of the model.

Study of calibration strategies

A study is done using different calibration strategies and different number
of calibrations. All calibration strategies employed a realistic number of
calibrations (3-4 per day), as using a larger number of calibrations just for one
day is not realistic considering standard conditions of people with diabetes,
where they take measurements with the glucometer around that number of
times per day.

To see the performance of the different calibration strategies the model
identified with IIG input configuration and c = 1 has been used and the
variable compared has been the MARD for all samples. Calibrations are
included in times that can be considered relevant:

1. Well spaced in time: i.e. a calibration every 4h. This means to include 2
calibration per patients (at T=4h,8h) as data are collected for 9h (named
CS1).

2. The same number of calibrations but at the beginning and spaced less
time: 2 calibrations included every 2h (T=2h,4h) (named CS2).

3. One additional calibration: 3 calibrations included every 2h
(T=2h,4h,6h) (named CS3).
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4. Consideration of calibration at important times for dynamics. At lunch
one at pre-prandial time (just before eating) and another around the
peak time (considered 1:30h after eating) (CS4).

5. Consideration of calibration at other important times for dynamics: at
lunch and dinner pre-prandial times (named CS5).

6. Same as 4 but considering lunch and dinner. A total of four calibrations
are considered (named CS6).

It is important to note that in all these configurations an extra calibration
is included for the start-up of the algorithm. In a general case, it is only
required for the first day. Results of these cases can be seen in Table 6.2.

Table 6.2: Comparative of resulting MARD of all samples estimation given
by the proposed ACA for different calibration strategies: different times and
number of calibrations

CASES

CS1 CS2 CS3 CS4 CS5 CS6

MARD (%) 18.87 17.49 15.72 15.92 18.22 13.7

From these results several conclusions can be extracted:

⋄ Comparing CS1 and CS2 it can be seen that with the same number of
calibrations performance is better when information is introduced earlier
(CS2).

⋄ Comparing CS2 and CS3 it can be seen that with more calibrations
included (more information) the performance improves, as expected.

⋄ Comparing CS4 with CS2 and CS3 it can be seen that performance
when using only two calibrations but at moments where more dynamic
information is included is comparable to using three calibrations (CS3).

⋄ Comparing CS5 with CS4 it can be seen that the use of two calibrations
at pre-prandial times does not perform as well as when using one pre-
prandial and one peak calibrations.

⋄ Comparing CS6 with the rest, it can be seen that doubling the structure
CS4 considerably improves the results as information in a wider range
of the signal is included twice.
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Results of ACA in real data

Finally, the one with best results and feasible for patients is the calibration
strategy CS6, which uses a total of four calibrations per day, plus an initial
calibration for the algorithm (for the start up). The four calibrations were
taken at preprandial (just before they eat) and 1:30h postprandial times for
lunch and dinner. Finally 15 patients were considered, as two patients did not
have information for lunch time. The models considered here were IIG with
just one LM, column N4 in Table 6.1, (its performance was very similar to
the case of c=2, column N3), and I3G with c=1. Results are shown in Table
6.3. The time allowed for the optimization was 10s between samples, which
in a processor running at 2.67GHz it is equivalent to 5 min in a conventional
100MHz microprocessor.

The improvement of the performance of the adaptive calibration algorithm
with regard to the monitor used is clear and goes up to a reduction of MARD
of 2% for the I3G configuration.

Table 6.3: Results: % of well estimated samples according to ISO criteria and
MARD, both for the whole range and hypoglycemic range. Case N1 is the
individual normalization model for IIG and c=1, plus the adaptive scheme (4
calibrations). Case N2 is the individual normalization model for I3G and c=1,
plus the adaptive scheme (4 calibrations).

CASES

Parameter CGMS Gold N1 N2

All range

Ok ISO 77.4% 76.7% 78.4%

MARD 15.1% 13.7% 13%

Hypoglycemic range

Ok ISO 71.9% 81.6% 87.8%

MARD 21.6% 15.8% 11.7%

Graphic examples of the evolution of the estimated signals are shown in
Figure 6.8, for the most representative patients (numbers 3 and 10).

6.8.2 Application to in silico data

The real data available is around 9h per patient, and full performance of the
adaptive scheme cannot be tested. For this reason, this scheme will be fully
tested with one-week in silico data and a larger population of 30 patients.
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Figure 6.8: Comparison between glucose reference signal (Greal), the
estimation of the adaptive calibration algorithm (GACA) with input structure
I3G, and the estimation given by CGMS Gold monitor. It is marked where
calibration points (Gc) have been introduced. Upper graphic corresponds to
Patient 3 while the graphic on the bottom corresponds to Patient 10

The use of longer time data (one week) can contribute to check different
things. Firstly, convergence of the parameters. Secondly, the performance of
this scheme with the variations of sensitivity over time.

The structure applied is the same as in the real data case. The calibration
algorithm used is the one that uses IIG input matrix and c = 1, Table 6.5
column N2. The model identified for the first day was tested the following
days (2 to 7), emulating CGM operation.
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With longer data, new aspects of the CA can be studied. On the one
hand, the performance of new calibration strategies can be tested. On the
other hand, the necessity and application of a windows of samples will be
validated.

In silico data generation

To generate one week’s data, the FDA-accepted UVa simulator was used [89].
The signals available in this simulator are: interstitial glucose (IG) and blood
glucose (BG). CGMS devices do not measure directly BG. The current signal
reflects IG levels, with variations of sensor’s sensitivity as already described.

The sensitivity variations were reproduced following indications explained
in Section 6.2.1 of this Chapter.

Thus, to generate one-week data, IG signal coming from the simulator was
converted to I measurements (I = Sp · IG), following these indications:

1. A different sensor’s sensitivity (Sp) was considered for each patient (p).
This sensitivity was taken randomly in the range [0.09, 0.24], obtained
from the 17 patients of the previously described clinical study.

2. A degradation of this sensitivity was considered following the
perturbations shown in Fig. 6.2 and scaled randomly for each patient
within the range [20,50]% for each patient.

Thirty patients (adults) were considered for this in silico study, generated
from the 10 adults available in the educational version of the simulator and
the procedure described above to assign sensor’s sensitivity (every patient
was studied three times with “different sensors”). A period of one week
was simulated with three meals per day: breakfast (7a.m.), lunch (12p.m.)
and dinner (18p.m.). The meals were similar for all patients and days, with
variations up to 40%. Four calibrations were considered per day (preprandial
and 1:30h posprandial for breakfast and dinner). To emulate glucometer
accuracy, a variation of ±10% was introduced to BG samples generated by
the simulator.

Study of calibration strategies with in silico data

Calibration strategy that best performed in real data was using a calibration
just before eating (pre-prandial) and a calibration 1:30h after eating
(postprandial) both at lunch and dinner. Calibrations performed at those
times include dynamic information of the signal in addition to the static value.
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Other calibrations strategies are tested with this data set. The longer time
data can contribute to a better study of the best moments for calibrating.
Four calibrations per day will be used to do the adaptation of normalization
parameters, as it is a realistic number of calibrations for people with diabetes.
The new strategies tested are:

1. Covering a larger time interval: Pre-prandial and post-prandial for
breakfast, pre-prandial for dinner and one more calibration at night time.

2. More distributed in time: three pre-prandial calibrations (breakfast,
lunch and dinner) and one more calibration at night.

3. More distributed in time with dynamics: three pre-prandial calibrations
(breakfast, lunch and dinner) and post-pandrial (breakfast or lunch or
dinner).

Performance of all these configurations for calibration has been checked
for ten patients. Good results are obtained with some of them, but the one
that best performs is still the one with a pre-prandial and a post-prandial
calibrations for breakfast and dinner. This confirms the results obtained in
the real data study, where other strategies were compared.

Definition of time window for adaptation

In Section 6.5.3 the need of a time window for the definition of the
minimization criteria during adaptation was explained. The sensor’s
sensitivity varies with time. Using individual normalization the effects of this
variations can be compensated. Yet, if the time considered is long the signal
will vary much. Then, simplifying all this variations by just a the value will
not reflect these variations.

Besides, the minimization of the MARD function is done using a numerical
approximation, for complexity reasons. In addition, the computation of the
model output is recursive, because previous estimations of the output are
included as inputs of the system in later instants. These two things together
mean that the larger number of samples considered for the minimization of
the MARD function, the larger the time needed for computation will be. The
time for computation is fixed to 5 min (time between samples), then with less
samples more iterations of the optimization can be performed.

The best number of calibrations that the window should include is to be
found. It has to be a compromise to avoid too long time windows and too
few calibrations that do not characterize the signal. Experiments with several
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values for the window (wi) were performed (wi = [4, 5, 6, 8]), and results can
be seen in Table 6.4.

Table 6.4: Comparative of MARD of all samples estimation for different
calibration strategies: different times and number of calibrations

Range CASES

wi=4 wi=5 wi=6 wi=8

MARD (%)
Overall 8.63 8.79 9.04 9.64

Hypoglycemic 13.52 14.54 13.79 14.82

Std MARD
Overall 3.17 3.18 3.32 3.51

(by Patients)

Std MARD
Overall 1.27 1.36 1.92 2.81

(by Days)

The minimum window considered is four calibrations, because four are the
calibrations introduced per day and with wi = 4 information of a full day
is included. Results indicate that for a larger window the MARD obtained
increases compared to a smaller window. Similarities of the standard deviation
computed by patients and by days indicate that results of all experiments are
quite homogeneous for all values of the window. Attending to these results,
four will be the number of calibrations included in the final time window
(wi = 4), to have information of a full day dynamics. With these number of
calibrations the signal characteristics are well considered, the sensitivity does
not change much and an acceptable number of iterations can be made.

Results of ACA applied to in silico data

Finally, the adaptive calibration algorithm was based on four calibrations were
made per day, at pre-prandial and 1:30h postprandial times for breakfast and
dinner, plus an extra calibration for the first day for the start up of the
algorithm. The time allowed for the optimization was 1s between samples,
which in a processor running at 2.67GHz it is equivalent to 5 min in a
conventional 10MHz microprocessor. A window of four calibrations (one day)
was considered to do the optimization for the parameters adaptation.

Table 6.5 shows the results for the adaptation algorithm (column N4).
Results are compared with the application of the model with set normalization
(identified for the 1st day) to the rest of the week days, column N3. A graphic
example can be seen in Figure 6.9.

Columns N1 and N2 show the results of the model identified for the first
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Table 6.5: Results: % of well estimated samples and MARD, both for the whole
range and only for hypoglycemic range. All results are for 30 patietns. Case
N1 is model with set normalization, IIG inputs and nc=2 for Day1. Case N2

is model with individual normalization, IIG inputs and nc=1. Case N3 is the
application of N1 to Days 2 to 7. Case N4 is the application of N2 to Days
2 to 7 with the adaptive scheme.

Measure Glycemic
Calibration algorithm

of accuracy range

N1 N2 N3 N4

ISOok (%)
Overall

99.6 100 74.7 87.6
±0.87 ±0 ±8.74 ±11.95

Hypo 99.9 100 48.5 93.3
<75mg/dl ±0.53 ±0 ±24.18 ± 9.33

MARD (%)
Overall

4.9 0.2 16.3 10.9
± 1.69 ±0.04 ±3.9 ±5.79

Hypo 5.3 0.3 33.8 10.2
<70mg/dl ±1.7 ±0.04 ±19.45 ±20.07

Overall
3.6 0.15 10.07 7.4

M2ARD (%) [1.33; 9.51] [0.08; 0.27] [7.69; 17.47] [2.83; 17.1]
[range] Hypo 3.32 0.29 28.28 7.22

<70mg/dl [1.99; 4.31] [0.23; 0.36] [7.29; 61.07] [1.89; 65.78]

day, with set and individual normalization respectively. It is clear that the
model identified has good performance in both cases, yet the performance
is better in the individual normalization case, where sensibility effects are
considered through normalization. In this in silico study, the improvement
of the adaptive calibration algorithm, column N3, versus the calibration
algorithm computed using the set normalization, column N4, can clearly be
seen, when both calibration algorithms are applied to the data of the rest of
the days (days 2-7).

Improvements of performance of the adaptive calibration algorithm can
be better seen in the hypoglycemic region. The adaptive algorithm takes
into account the new information of inputs and calibration to update the
parameters of normalization and, in this way, model is adapted to the
information of the patient. In the calibration algorithm with set normalization
new information is not considered and this is probably the cause that the
results are much worse.

Thus, results obtained with long term data indicate, as well as the
validation case of real data, that the performance of the adaptive calibration
algorithm improves the use of set normalization, as new information is
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Figure 6.9: Comparison between glucose reference signal (Gre), the estimation
of the adaptive calibration algorithm (GACA), and the estimation given with
the model with set normalization applied to days 2 to 7 (GCA) for Patient 23

considered for the adaptation of parameters and then, the model is adjusted
to the new patient with the corresponding inputs.

6.9 Comparison of results from both studies

The MARD of the final adaptive calibration algorithm distributed by days can
be seen in Table 6.6.

Table 6.6: Distribution of MARD of all samples of 30 patients for days 2-7,
when the adaptive calibration algorithm is applied using the model identified
for day 1 with inputs IIG, c = 1 and individual normalization

TOTAL Days

D2 D3 D4 D5 D6 D7

MARD (%) 10.89 12.99 11.2 9.04 9.53 9.87 12.7

The worst day is the first one. This might be due to the fact that the
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algorithm starts with few information and progressively includes more samples
until the time window is reached. From day one, performance of the next days
is better, given that once the time window is reached from that moment on it
is always considered. The ACA achieves to compensate the sensor’s sensitivity
variations and reaches a low MARD.

From day 4 MARD starts increasing again. This might happen because the
sensitivity of last days decays more than the first few days. Indeed, with larger
variations, the adaptation of parameters might not estimate the normalization
variables as fast as they change. For that reason, MARD of last few days
increases a bit. This results indicate that when sensitivity variations are larger
the adaptation is slightly worse, as it could be expected. Yet, even in the day
where sensitivity varies more (day 7) MARD reached is quite good, below
13%.

With these results from the in silico study, the results from the real data
set can be analyzed in a different way. MARD of all samples in real data
set reaches a value similar to the one of in silico data, looking at the first
day of computation. This might suggest that if longer time of real data were
available, results could be comparable to the ones of in silico data. This is
only an indicator of performance, as real data is only available for one day and
this can not be checked.

6.10 Conclusions

This study confirms that: 1) The use of a local-model-based calibration
algorithm improves the glucose estimation for continuous glucose monitoring
with regard to the actual monitors; and 2) The interpatient sensitivity
variations affect substantially this estimation, and using individual parameters
for normalization improves the performance of the proposed algorithm.

However, perfomance of individual normalization is not attainable since
it makes use of information not available during CGM operation. Thus,
an adaptive scheme is presented in this Chapter aiming at the real-time
tuning of normalization parameters starting from average values in the
population. In this way, an individualization is performed improving accuracy
and compensating sensor’s sensitivity variations over time. Two data sets are
used for validation: 1) a real data set with 15 patients with T1 diabetes and
data for around 9 hours; and 2) a in silico data set, with data of 30 patients
and a duration of one week.

The proposed ACA is based on minimization of the MARD function.
Several calibration points are used to do this comparison. A study of different
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calibration strategies is done for first data set. Results indicate that the best
option is including four calibrations: one at pre-prandial and other at post-
pradial time in lunch and dinner. In this way static and dynamic information
of the signal is incorporated. Finally, results in the case of real data indicate
that the adaptive calibration algorithm works, performing better than the
algorithm with no adaptation and set normalization. However, the adaptive
algorithm does not perform as well as the ideal individual normalization. This
could be expected, as the individual normalization uses the best values of each
case.

For the second data set the performance of the adaptive calibration
algorithm when sensor’s sensitivity variations are taken into account is
checked. This study reflects better a realistic case:

⋄ Inter and intra-patient sensor sensibility variations are considered.

⋄ Identification is done with data of just the first day.

⋄ Adaptation is applied for data of rest of the days

Adaptation of parameters using the model identified with individual
normalization improves the accuracy of estimations given by the identified
model with set normalization, when applied to the rest of the days. Study of
MARD by days show that the adaptation is capable of following the change of
sensitivity and compensate its effects. In addition to this, the adaptation of
parameters helps the compensation of the glucometer errors introduced with
calibrations.

In some of the most recent works the effects of the sensitivity variations are
also included. In Knobbe et al. [86] the interpatient differences on sensitivity
are introduced as a constant scale factor for a time shorter than T and later
it decays linearly. In Kuure et al. [92] the inter and intrapatient sensor’s
variations are considered, but these variations depend on the process noise and
are not well characterized. Finally, in Facchinetti et al. [42], the sensitivity
variations are characterized with a third order filter of the noise process and
also included in the model. All these studies use the Kalman filter theory to
perform the estimations of glucose. The main drawbacks of these calibration
algorithms are exposed in the discussion of Chapter 5. Yet, it is worthy
pointing out, that the Kalman filter has a difficult tunning of parameters
for application.

Contrary to these studies, the proposed adaptive calibration algorithm has
been designed to avoid a difficult set up stage. For identification of the model,
the structure of PNCRM is well described in Chapter 4. Only two parameters
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are needed: 1) transition of membership functions, H, and 2) importance of
local error versus global error γ. And the value for both is fixed in this
work. For the design of the adaptive algorithm the practical conditions have
been taken into account. Adaptation of parameters is done with a well-known
technique, easy to implement. In addition to these, time allowed for adaptation
of parameters is the time between samples of the actual monitors available in
the market. Only a normal microprocessor is required. These conditions make
the proposed ACA feasible to be implemented in commercially available CGM
devices.

Indeed, one of the advantages of this study is that it has been validated
using real data of patients with type 1 diabetes.

Recent studies [65, 52, 23] show that a research line with increasing
importance is the design of long-term sensors, using different technologies.
In [65] they designed a sensor based on fluorescent hydrogen fibers which
responded to blood glucose concentration changes for up to 140 days. In [52]
the life of the sensor reaches the year, although it is only checked in animals.

For these types of sensors, the adaptive calibration algorithm would suit
much better its purposes.

6.11 Discussion

This study and validation of the proposed calibration algorithm shows a clear
performance improvement of the individual normalization method with respect
to set normalization, see Table 6.1. It is worthnoting that the consideration
of the I3G model, even with set normalization, outperforms the CGMS Gold,
especially in hypoglycemia. However, much better performance is obtained
with a simpler model (IIG) and individual normalization confirming the
influence of inter-patient sensor variability. In this case, a MARD below
10% is obtained when the whole glycemic range is considered, reaching a
MARD reduction of about 35% with respect to the CGMS Gold. Regarding
the hypoglycemic range, the improvement is even better, with a MARD
reduction of 47% reaching values of about 11.5%. This was expected, as
inter-patient sensitivity variations were compensated by individualizing the
normalization parameters, eliminating thus a confounder of the dynamics
between compartments. But this case is ideal, since individual normalization
parameters are considered to be known. Thus, this performance is not
attainable in practice and it must be considered as an upper limit of what
can be achieved.

When the adaptive calibration algorithm (ACA) is applied to individual

168



Adaptive calibration algorithm

normalization parameters, improvement can still be observed for both models
(IIG and I3G), as shown in Table 6.3. It must be taken into account the
clear limitation of the clinical data used due to its short duration and scarcity
of capillary measurements to carry out the adaptation. Nevertheless, the
adaptive scheme manages to decrement the MARD about 1.5% (9% reduction
with respect to CGMS Gold) during the first day and four calibrations per
patient. Improvement is more evident in the hypoglycemic range, with a
reduction from 25% up to 45% in the MARD, depending on the model
considered. Obviously, with just four calibrations it is difficult to converge
to the optimal parameters. But this result points out that with availability of
longer time data, this adaptation would reach a more significant reduction in
the MARD. This is demonstrated in the in silico study.

For the one-week in silico data the identified model has good performance
during the first day (identification day) for both normalization methods,
as shown in Table 6.5, yet the performance is better in the individual
normalization case. It must be considered that the use of simulated patients
make much easier the identification task, reaching MARD values of 0.5% which
obviously must not be expected with real data. Thus, figures in Table 6.5 must
be interpreted qualitatively instead of quantitatively. The improvement of the
adaptive calibration algorithm, column N4, versus set normalization, column
N3, is evident, when both calibration algorithms are applied for the rest of the
days (days 2-7). A reduction in the MARD of 33% is achieved when adaptation
is considered, as compared to fixed set normalization, for the whole glycemic
range. In case of hypoglycemia, the reduction reaches 70%.

Thus, results obtained with long term in silico data indicate, as well as
the validation case with clinical data, that the adaptive calibration algorithm
outperforms set normalization, as new information is considered for the
adaptation of normalization parameters allowing for the model adjustment
to the new patient characteristics or sensor’s sensitivity variations.

It is important to see the performance gradation for the different
calibration schemes. Obviously the model using the individual normalization is
the one that performs best as the issue of the sensitivity variation is overcome.
On the contrary, the model using the set normalization has worse results, as
a mean sensitivity is used. And in the middle, the model with individual
normalization with mean initialization and the adaptive scheme offers an
intermediate performance, as the issue of sensitivity variations is progressively
overcome.

Finally, this study indicates that the performance of current CGM devices
can be significantly improved with the incorporation of interstitium-to-plasma
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dynamics into the calibration algorithm. A local models approach allows for
the description of local dynamics which can further help in a more accurate
characterization of this dynamics. Together with the incorporation of adaptive
capabilities, a significant reduction in the MARD is achieved. This is so even
in the hypoglycemic range, where the lack of accuracy is an evident problem.
The promising results obtained motivate further clinical studies with larger
populations.

However, the study has several limitations. 1) First, the real study
population counts only for 15 patients with diabetes and the duration of the
signals is only of around 9 hours. This set of patients is small to be a well
representative of the general population of people with diabetes. 2) Second,
the clinical study to obtain the data did not consider the best conditions of
signals for the identification of the model. This means that glucose variations
are not equally distributed in all glucose ranges (hypoglycemia, normoglycemia
and hyperglycemia). For a model fully representative of the dynamics of the
signal, all regions should be equally considered in the identification of the
model. 3) Finally, application on in silico data gives indications of performance
for longer time and with more patients. However, this is a simulated study an
conclusions can be considered only mere indicators of the performance of this
adaptive algorithm.
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Conclusions

7.1 Conclusions

This work describes all steps taken to design new calibration algorithms for
continuous glucose monitoring. The aim of this work is offering a good
estimation of plasma glucose for patients with Type 1 Diabetes Mellitus. This
is to help to control the high glucose levels that people with DM1 are affected
with when poor controlled.

Diabetes Mellitus is a disease largely present in the society and that directly
and indirectly causes several damages. For this reason, any option that helps
patients with diabetes to have a better glycemic control would be welcome by
this community.

In any system where the target is to control some variable, accurate
measurements of that variable are needed first. Therefore, in the aim of
developing an artificial pancreas the first step is to have a good estimation
of the plasma glucose signal. And this is what is pretended in this work.

For this reason, a new calibration algorithm is proposed, based on the
clustering and local model theory. This technique is chosen after the study of
the interstitium to plasma glucose transport process. Local model technique
is chosen as this work is based on the hypothesis that the glucose transport
system can be formed by local behaviors and therefore, the identification of a
set of local models can improve the accuracy of estimation of plasma glucose.

Among all the local modeling techniques, clustering is chosen for this
application given its advantages for finding automatically local behavior.

A new algorithm for identification of local models is designed attending
to the system characteristics. First of all, the performance of the modeling
method is checked in general benchmarks, showing that the modeled output
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meets the requirements imposed.
Later, this modeling method is used to build a new calibration algorithm.

It is, then, applied to its real purpose: glucose estimation for continuous
glucose monitoring. Data used is a set of patients where glucose variations
were obtained through a clamp study (variations of glucose level with external
infusion of insulin and glucose). The main input considered is the signal
coming from the subcutaneous sensor (intensity of current in nA) and the
output to estimate is the plasma glucose level. The glucose has to be estimated
for each time sample (k).

Different configurations for the calibration algorithm are checked. Results
show that the best performance is considering as inputs the current intensity
in different instants (includes information of the signal’s trend) and previous
estimations of glucose (to relate current and glucose levels).

Results showed that the basic configuration of the proposed CA performs
better than the current monitor used in the clinical trial. Different local models
valid regionally are found automatically, indicating that the application of the
local model technique makes sense in this problem.

In that experiment, other configurations for the CA were checked:
including binary information related to the metabolic state (fasting/feeding)
and also about the insulinemia level (high/low). Performance of these CAs
improved with regard to the basic configuration, indicating this that this type
of information is relevant for the glucose estimation.

Analysis of local models demonstrated that the inter and intra-patient
sensor sensitivity variations affect to the accuracy of the plasma glucose
estimation. Inter and intra-patient sensitivity variations have been studied
in some works. Yet, they are not well characterized and quantified.

The experiment done with clamp data also demonstrated that fact:
when particular information of sensor to patient sensitivity is taken into
account (through normalization parameters), the accuracy of plasma glucose
estimations improves.

Thus, this work proposes an adaptive calibration algorithm (ACA) to
compensate the sensor sensitivity variations. The proposed ACA is based on
a first identification of a calibration algorithm based on the addition of several
weighted local models and the later adaptation of normalization parameters
to compensate the sensitivity variations. This compensation is done through
the normalization parameters required to apply the model identified first.

These parameters are adapted to minimize the difference between the
estimation of the model and the reference values. These samples (calibration
points) are introduced several times a day (around 4), emulating the current
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system where patients with DM1 measure the plasma glucose level with low
error devices.

Performance of the ACA is checked with data of people with DM1.
Results indicate that the calibration algorithm with adaptation of parameters
estimates the plasma glucose level better than the calibration algorithm with
set parameters and no adaptation. Thus, the proposed ACA can compensate
the inter and intra-patient sensitivity variations.

The final conclusion of this work is that the new calibration algorithms
proposed do reach the target fixed for this work: getting a feasible algorithm
that improves accuracy of current continuous glucose monitoring devices.

7.2 Contributions

The main contributions of this work are:

⋄ A review of treated problem and the considered appropriate
technique to work on it:

– Diabetes mellitus basic concepts, specially the Type 1 Diabetes. As
well as the CGMS requirements and its actual state of art.

– The advantages of local modeling techniques, opting for the
clustering methods as best option. The characteristics of this
method and the state of art for its application to system modeling
is also reviewed.

⋄ A new algorithm for local models identification using clustering
techniques. This algorithms was designed with certain characteristics
and it is of general application for systems with these properties.

⋄ The design of a new calibration algorithm, testing different
configurations.

– Local models detected can correspond to different sensor to patient
sensitivity groups or to different dynamics.

– Exogenous information coming from the patient or the insulin pump
might help the CGMS accuracy.

– Consideration of sensor to patient sensitivity improves the CGMS
estimation.
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⋄ The building of a estimation method to be able to consider the
unknown sensitivities for new patients, based on the steepest gradient
optimization technique.

– Different sensors result in different configurations of the Calibration
Algorithm

– Using daily calibration points (4/day) this method is capable of
compensating different sensor to patient (inter-patient) sensitivity
variations.

– The designed method is also capable of compensation data
variations of sensitivity with time (intra-patient), showed with in-
silico data.

7.3 Publications

This work has given rise to several publications in journals:

⋄ A codification method that can be used to include categorical
information as inputs (not yet applied to the CGM problem). Two
publications:

– F. Barceló-Rico, J.L. Dı́ez, J. Bondia. A comparative study
of codification techniques for clustering heart disease database.
Biomedical Signal Processing and Control. Vol. 6. Pag. 64-69.
Year 2011.

– F. Barceló-Rico, J.L. Dı́ez. Geometrical codification for
clustering mixed categorical and numerical databases. Journal of
Intelligent Information Systems. DOI: 10.1007/s10844-011-0187-y.
Year 2011.

⋄ A system modeling method using clustering techniques with determined
properties. One publication:

– F. Barceló-Rico, J.L. Dı́ez, J. Bondia. New Possibilistic
Method for Discovering Linear Local Behaviour using Hyper-
Gaussian Distributed Membership Function. Knowledge and
Information Systems. Vol. 30(2). Pag. 377-403. Year 2012.

⋄ A local-model-based calibration algorithm. One publication:
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– F Barceló-Rico, J Bondia, J L Dı́ez, P Rossetti. A multiple
local models approach to accuracy improvement in continuous
glucose monitoring. Diabetes Technology and Therapeutics. Vol.
14(1). Pag. 74-82. Year 2012

⋄ An adaptive calibration algorithm for compensation of sensor sensitivity
variations. One submitted publication:

– F. Barceló-Rico, J.L. Dı́ez, P. Rossetti, J. Veh́ı, J. Bondia.
Adaptive calibration algorithm for glucose estimation on continuous
glucose monitoring based on local models. IEEE Transactions on
Information Technology in Biomedicine. Under Review.

This research has also been exposed in some congresses:

⋄ The codification method:

– F. Barceló-Rico, J.L. Dı́ez. A comparative study of codification
techniques for clustering Heart Disease database. 7th IFAC
Symposium on Modelling and Control in Biomedical Systems
(MCBMS). Place: Aalborg, Denmark. Year: 2009.

⋄ The local-model-based calibration algorithm:

– F Barceló-Rico, J Bondia, J L Dı́ez, P Rossetti. Local-
model-based calibration algorithms improve CGM accuracy. 11th

Diabetes Technology Meeting. Place: San Francisco, USA. Year:
2011.

⋄ The adaptive calibration algorithm:

– F. Barceló-Rico, J.L. Dı́ez, P. Rossetti, J. Veh́ı, J. Bondia.
Adaptive local-model-based approach for plasma glucose estimation
in continuous glucose monitoring. The 5th Conference on Advanced
Technologies and Treatments for Diabetes. Place: Barcelona, Spain.
Year: 2012.

In addition to the publications, this work has lead to a patent:

1. J. Bondia, F. Barceló-Rico, J.L. Dı́ez, P. Rossetti, J. Veh́ı, Y.T.
Leal. System and method of plasma glucose estimation. Spanish Patent
application. Ref. P201130811 (19th-May-2011)
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In total: 1 patent application, 3 publications in congresses, 4 publications
in journals and 1 pending publication in journal.

7.4 Future Work

Most of the conclusions obtained in this work are only indicators of how
the proposed algorithms can perform. This is due to the small sizes of the
validation populations where they are checked. The improvement obtained is
significant even in the case of a small population size, yet results of this work
can not then be considered as an absolute proof.

Thus, a future work is to validate the proposed calibration algorithms in a
data set where a representative population of patients with DM1 is considered.

The study done with healthy patients was the one that showed that
the level of insulinemia and the metabolic state might influence in the
glucose variations and, therefore, in the plasma glucose estimation accuracy.
Performance of the calibration algorithm when these signals are included is
clearly better than with the bare configuration. Yet, this is still to be tested in
patients with DM1. Variations of glucose levels during these states might be
different in patients with DM1 than in healthy people with clamp variations
of glucose, as glucose metabolism is different. Therefore, this concept here
introduced is to be checked in the right framework of the problem considered.

In the same line, the proposed ACA is showed to compensate the inter and
intra-patients sensor sensitivity variations. Its performance is checked with
data of patients with DM1. Thus, the analysis of the results obtained lead to
more indicative conclusions. Yet, two issues are found in this validation: 1) the
population set is, again, small and can not be considered fully representative
of the population with DM1; and 2) Data information is only available for one
day and longer time data used is from an in-silico study.

To proof that the proposed ACA performs as this study indicates, longer
time data must be available from patients with DM1 and also from a
representative population.

The identified calibration algorithm for the ACA only uses a local model
for the whole population set, as no many differences are found between
patients. With a larger population, in addition to check the performance
better, differences between patients can be found leading this to the placement
of several local models, improving the accuracy of the calibration algorithm
defined.

Indeed, other input including additional information about the patient
could be included. This new information can help to define these differences
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between patients and their dynamics, finding differences in the defined local
models. The information included could be both numerical and categorical,
as there has been proposed a codification method to include this last type of
information.

Finally, one improvement that might be of interest is to find a way of
initializing the normalization parameters for the ACA with a value more
related to the real parameters of each patient. This could be done finding
a model that estimates the initial value of these parameters for the population
using relevant information of each patient.

Thus, a summary of the futures lines of research to extend this work
is:

⋄ In a larger population, representative of patients with DM1:

1. Check the local-model-based calibration algorithm.

2. Check the adaptive calibration algorithm.

⋄ Check the improvement of the estimation including information of
insulinemia and metabolic state in patients with DM1

⋄ Find a model for the initialization of normalization parameters.

In addition to these lines, it could be interesting to extend the new
algorithm to other areas and applications, where the identification of a set
of locally valid and interpretable local models might be of interest.
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Equations for normalization
and denormalization

A.1 Variables normalization

In all this work the normalization and denormalization of variables is an
important step. The normalization used in all cases is the one that makes
all inputs/outputs have same statistical properties. In this case, all variables
are re-scaled to have a normal distribution. Either in the case of normalization
for the set or for subjects, is this type that is used.

Normal distributions are characterized by null mean and unity variance.
Thus, to re-scale the original vector, its mean has to be subtracted and results
have to be re-scaled by its original variance:

Gn =

(
GD − Ḡ√

σG

)

(A.1)

where:

⋄ Gn refers to normalized G.

⋄ GD refers to denormalized or original G.

⋄ Ḡ is the mean of original vector GD.

⋄ σG is the variance of original signal GD.

Thus, Gn will have null mean and unity variance. However, this
normalization makes the transformed variable to cover a range where the zero
is included. This could be a problem in this type of applications as the output
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of the model in a particular point could be represented by zero, if it is equal
to the mean of the signal. In that case, as the result of the local model is
the multiplication of the linear regression by the membership of that point,
multiplying linear regression by zero would give the correct output, even if the
linear model estimation is not even close to the real output.

For this reason, it is convenient to avoid include the zero in the interval.
A very simple way of doing this is to shift the signal to other range, adding
an offset big enough to make all normalized points bigger than zero:

Gn =

(
GD − Ḡ√

σG
+ off

)

(A.2)

In this case, using off = 3, this issue is solved.

A.2 Output denormalization

When normalized signals are used as inputs of the model, its output is also in
the normalized space and it has to be denormalized to know the real output.
Denormalization of signal when equation (A.2) is used as normalization is:

GD = (Gn − off) · √σG + Ḡ (A.3)

It is important to remark that parameters of model are all in the normalized
space, same as inputs used. Then, for the application of this model, variables
will always have to be normalized first. If the model is desired to be applied
to original denormalized signals its parameters have to be transformed to be
equivalent to original parameters computed for the normalized space.

This has been done later in this annex, in section A.4.

A.3 Denormalization of local estimations

The global model output is an addition of the outputs of the local models
weighted by their membership functions. Thus, for a case of c local models,
in each time instant k the valid equation of the output is:

(GMk)n =
c∑

i=1

(µik)n · (LMik)n (A.4)

Subindex n refers to normalized space.
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Last equation can be generalized for any time instant:

∀k → GMn =
c∑

i=1

(µi)n · (LMi)n (A.5)

As the global model equation is non-linear, the denormalization of each
local model can not be directly done like equation (A.3). To see the
contribution of each LM in the original range, transformation of equation
A.3 has to be applied to total global model in equation (A.5).

To simplify this process, denormalization will be applied to a particular
case of c = 2:

GMn = (µ1)n · (LM1)n + (µ2)n · (LM2)n (A.6)

The value of the membership of each object or time instant k indicates how
this local model is representative of that object. Thus, in the denormalized
space this function has to keep its value for all objects:

µk ∈ [0, 1] → (µi)n = µi (A.7)

Applied to equation A.6:

GMn = µ1 · (LM1)n + µ2 · (LM2)n (A.8)

To get the total denormalized output, the normalized output of last
equation GMn is to be replaced in equation (A.3) for Gn:

GMD = ([µ1 · (LM1)n + µ2 · (LM2)n]− off) · √σG + Ḡ (A.9)

When this equation is expanded (eq. A.10) it can be seen that not exactly
the same structure as A.3 is obtained for each LM.

GMD = µ1 · (LM1)n · √σG + µ2 · (LM2)n · √σG − off · √σG + Ḡ (A.10)

If it is desired to express the denormalized output as an addition of
denormalized local models like:

GMD = µ1 · (LM1)D + µ2 · (LM2)D (A.11)

then, equation A.10 is to be rewritten to match this structure, where
denormalized local model is weighted by each membership function µi.
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This can be achieved if the constant terms, Ḡ and off ·√σG, are multiplied
and divided by the total membership µ1 + µ2:

GMD = µ1·(LM1)n·
√
σG+µ2·(LM2)n·

√
σG−off ·√σG·

(µ1 + µ2)

(µ1 + µ2)
+Ḡ·(µ1 + µ2)

(µ1 + µ2)
(A.12)

Finally, this equation can adopt the structure like in A.11:

GMD = µ1 ·
[(

(LM1)n − off

(µ1 + µ2)

)

· √σG +
Ḡ

(µ1 + µ2)

]

+

+µ2 ·
[(

(LM2)n − off

(µ1 + µ2)

)

· √σG +
Ḡ

(µ1 + µ2)

] (A.13)

Last equation can easily generalized for a general number of local models
c:

GMD =
c∑

i=1

µi ·












(LMi)n − off

c∑

i=1
µi







· √σG +
Ḡ
c∑

i=1
µi







(A.14)

It can be seen how denormalized local models follow a similar structure as
the global model, where the constant terms Ḡ and off · √σG contribute to
each of them in such way as their importance is over the global model.

A.4 Denormalization of model parameters

Instead of working on the model space (which is the normalized input range)
an alternative is to denormalize the parameters of the model and apply them
directly to the original variables.

A.4.1 Parameters of membership functions

As expressed in equation (A.7) denormalized MF have to keep the same value
for all objects as normalized MF, because they indicate validity in the range
[0,1]. In this section, to simplify nomenclature normalized variables will be
written with capital letters (A,B, ..., D or Aj = (Ij)n) while low case letters
will refer to denormalized inputs (a, b, ..., d or aj = (Ij)D). Subindex j refers to
number of inputs j = 1, 2, ..., d. Input A and a are related following equation
A.2:
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A =

(
a− ā√

σa

)

+ off (A.15)

Following the membership function equation (4.5), the normalized
membership of each cluster (µi)n can be written like:

(µi)n = e
− 1

2

(

d
∑

j=1

(

Aj−cij
σij

)2
)H

(A.16)

where parameters cij and σij are the coordinates of the center and standard
deviation of MF for cluster i and input j. Vector of centers ~ci and standard
deviations ~σi are the parameters that define the MF in the normalized space:

~ci =
[
ci1 ci2 ... cid

]

~σi =
[
σi1 σi2 ... σid

] (A.17)

These are the parameters that have to be transformed to make the
denormalized MF equivalent to the normalized one:

∀k → (µi)n = (µi)D (A.18)

e
− 1

2

(

d
∑

j=1

(

Aj−cij
σij

)2
)H

= e
− 1

2

(

d
∑

j=1

(

aj−c∗ij
σ∗

ij

)2
)H

(A.19)

Parameters c∗ij and σ∗
ij form the vectors of denormalized parameters, (~ci)D

and (~σi)D.
In last equation, as both terms involve an exponential with same constants,

to be equivalent, the exponent has to result in the same value:

d∑

j=1

(
Aj − cij

σij

)2

=
d∑

j=1

(

aj − c∗ij
σ∗
ij

)2

(A.20)

And for it, each input (normalized and denormalized) has to contribute in
the same way:

∀i, ∀j → A− cj
σj

=
a− c∗j
σ∗
j

(A.21)

Substituting the normalized input, eq. (A.15), in last equation and
expanding results in:
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((
a−ā√
σa

)

+ off
)

− cj

σj
=

a− c∗j
σ∗
j

(A.22)

a− ā+ off · √σa − cj ·
√
σa

σj ·
√
σa

=
a− c∗j
σ∗
j

(A.23)

Finally, the denormalized parameters can be found solving the relations
for each generic input a, which corresponds to coordinate j:

c∗j = (cj − off) · √σa + ā

σ∗
j = σj ·

√
σa

(A.24)

With vectors ~c∗ and ~σ∗ the denormalized inputs can be directly used to
compute the membership value of objects.

A.4.2 Regression coefficients

In the denormalized space the structure of the global model is still like equation
A.5:

∀k → GMD =
c∑

i=1

(µi)D · (LMi)D (A.25)

The membership functions are equivalent in normalized and denormalized
spaces, (µi)D = (µi)n = µi. And all local models i still correspond to linear
regressions:

(LMi)D =





d∑

j=1

β∗
ij · aj



+ β∗
i0 (A.26)

where superindex (∗) corresponds to the denormalized parameters of the
models. Last equation will be particularized for two inputs (d = 2) to simplify
the equations:

(LMi)D = β∗
i1 · a+ β∗

i2 · b+ β∗
i0 (A.27)

Equation A.14 shows that the each denormalized LM follows this general
structure:
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(LMi)D =












(LMi)n − off

c∑

i=1
µi







· √σG +
Ḡ
c∑

i=1
µi







(A.28)

The relation between normalized and denormalized regression coefficients
can be found equaling last two equations:

β∗
i1 · a+ β∗

i2 · b+ β∗
i0 =












[βi1 ·A+ βi2 ·B + βi0]−

off
c∑

i=1
µi







· √σG +
Ḡ
c∑

i=1
µi







(A.29)
Normalized inputs (A,B) have to be replaced by its relations with original

denormalizezd inputs (a, b):

β∗
i1 · a+ β∗

i2 · b+ β∗
i0 =

=













[

βi1 ·
(
a− ā√

σa
+ off

)

+ βi2 ·
(
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σb

+ off

)

+ βi0

]

− off
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i=1
µi





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· √σG +
Ḡ
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i=1
µi







(A.30)
The expansion of last equation results in:

β∗
i1 · a+ β∗

i2 · b+ β∗
i0 = βi1 · a ·

√
σG√
σa

+ βi2 · b ·
√
σG√
σb

+

+
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
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βi1 ·

(
(−ā)√
σa

+ off

)

+ βi2 ·
((

−b̄
)

√
σb

+ off

)

+ βi0 −
off
c∑

i=1
µi







· √σG +
Ḡ
c∑

i=1
µi







(A.31)
From that, the denormalized regression coefficients can easily be extracted.

General equations for them are:

∀j, ∀i → β∗
ij = βij ·

√
σG√
σaj

(A.32)
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β∗
i0 =


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






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j=1

βij ·
(

(−āj)√
σaj

+ off

)

+ βi0 −
off
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i=1
µi
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

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· √σG +
Ḡ
c∑

i=1
µi







(A.33)

It can be seen that denormalized regression coefficient for model i and input
j, β∗

ij , only depends on the normalized parameter and standard deviation of
that input and the output. Therefore, these terms are constant for all objects
k.

On the contrary, the denormalized independent term of each LM, β∗
i0,

depends on constants terms like means of all inputs and output, and its
standard deviations, but also on variable terms for each object like the total
membership of each object to all clusters. Thus, in spite of its complex
equation this term is variable for each object k, fact that makes difficult its
computation.

A.4.3 Observations

Equations for the denormalized parameters of the model have been found, in
order to be able to apply directly the model to the original signals. Equations
of the parameters of the membership functions are easy to implement, as they
only depend on variables that are constant. Same happens for the parameters
of the regression coefficients of local models.

However, the equation of independent term of each LM is complex and
includes variables like the total membership value that would have to be
computed for all objects k. This is due to the adopted possibilistic approach,
where the total membership of objects do not have to add necessarily one. In
the fuzzy approach, where this constraint is included, this would not happen,
as the addition of all membership would be one for all objects.

Indeed, this complexity of the denormalized model, makes it easier to work
in the normalized space as it only requires the step of rescale input and output
variables, while working with the original signal implies the computation of
complex formula, which has to be computed for every object k.
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