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Abstract

In several engineering fields, mathematical models are used to describe the
behaviour of systems, processes or phenomena. Nowadays, there are several
techniques or methods for obtaining mathematical models. Because of their
versatility and simplicity, system identification methods are often preferred.
Generally, systems identification methods require defining a structure and
estimating computationally the parameters that make it up, using a set of
procedures y measurements of the system’s input and output signals. In
the context of nonlinear system identification, a significant challenge is the
structure selection. In the case that the system to be identified presents a
static type of nonlinearity, block-oriented models consisting of the interaction of
linear time-invariant (LTI) dynamic subsystems and static nonlinear elements
(NL), can be useful to define a suitable structure. However, the designer may
face a certain degree of uncertainty when selecting the block-oriented model
in accordance with the real system. In addition to this inconvenience, the
estimation of some block-oriented models is not an easy task, as is the case
with the Wiener-Hammerstein models consisting of a NL block in the middle
of two LTI subsystems.

The presence of two LTI subsystems in the Wiener-Hammerstein models is
what mainly makes their estimation difficult. Generally, the identification
procedure begins with the estimation of the linear dynamics, and the main
challenge is to split this dynamic between the two LTI block. Usually, this
implies a high user interaction to develop several procedures, and the final
model estimated mostly depends on these previous stages.
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The aim of this thesis is to contribute to the identification of the
Wiener-Hammerstein models. This contribution is based on the presentation
of two new algorithms to address specific aspects that have not been addressed
in the identification of this type of model. The first algorithm, called WH-EA
(An Evolutionary Algorithm for Wiener-Hammerstein System Identification),
allows estimating all the parameters of a Wiener-Hammerstein model with
a single procedure from a linear dynamic model. With WH-EA, a good
estimate does not depend on intermediate procedures since the evolutionary
algorithm looks for the best dynamic division, while the locations of the poles
and zeros are fine-tuned, and nonlinearity is captured simultaneously. Another
significant advantage of this algorithm is that under specific considerations and
using a suitable excitation signal; it is possible to create a unified approach
that also allows the identification of Wiener and Hammerstein models which
are particular cases of the Wiener-Hammerstein model when one of its LTI
blocks lacks dynamics. What is interesting about this unified approach is that
with the same algorithm, it is possible to identify Wiener, Hammerstein, and
Wiener-Hammerstein models without the user specifying in advance the type
of structure to be identified.

The second algorithm called WH-MOEA (Multi-objective Evolutionary
Algorithm for Wiener-Hammerstein identification), allows to address the
identification problem as a Multi-Objective Optimisation Problem (MOOP).
Based on this algorithm, a new approach for the identification of
Wiener-Hammerstein models is presented considering a compromise between
the accuracy achieved and the model complexity. With this approach, it is
possible to compare several models with different performances, including as
an identification target the number of parameters that the estimated model
may have. The contribution of this approach is based on the fact that in many
engineering problems the design requirements and user’s preferences do not
always point to the accuracy of the model as a single objective, but many
times the complexity is also a predominant factor in decision-making.
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Resumen

En muchos campos de la ingeniería los modelos matemáticos son utilizados
para describir el comportamiento de los sistemas, procesos o fenómenos. Hoy
en día, existen varias técnicas o métodos que pueden ser usadas para obtener
estos modelos. Debido a su versatilidad y simplicidad, a menudo se prefieren los
métodos de identificación de sistemas. Por lo general, estos métodos requieren
la definición de una estructura y la estimación computacional de los parámetros
que la componen utilizando un conjunto de procedimientos y mediciones de las
señales de entrada y salida del sistema. En el contexto de la identificación de
sistemas no lineales, un desafío importante es la selección de la estructura. En
el caso de que el sistema a identificar presente una no linealidad de tipo estático,
los modelos orientados a bloques que consisten en la interacción de subsistemas
dinámicos lineales invariantes en el tiempo (LTI) y elementos estáticos no
lineales (NL), pueden ser útiles para definir adecuadamente una estructura.
Sin embargo, el diseñador puede enfrentarse a cierto grado de incertidumbre
al seleccionar el modelo orientado a bloques adecuado en concordancia con el
sistema real. Además de este inconveniente, se debe tener en cuenta que la
estimación de algunos modelos orientados a bloques no es sencilla, como es el
caso de los modelos de Wiener-Hammerstein que consisten en un bloque NL
en medio de dos subsistemas LTI.

La presencia de dos subsistemas LTI en los modelos de Wiener-Hammerstein es
lo que principalmente dificulta su estimación. Generalmente, el procedimiento
de identificación comienza con la estimación de la dinámica lineal, y el principal
desafío es dividir esta dinámica entre los dos bloques LTI. Por lo general, esto
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implica una alta interacción del usuario para desarrollar varios procedimientos,
y el modelo final estimado depende principalmente de estas etapas previas.

El objetivo de esta tesis es contribuir a la identificación de los modelos
de Wiener-Hammerstein. Esta contribución se basa en la presentación
de dos nuevos algoritmos para atender aspectos específicos que no han
sido abordados en la identificación de este tipo de modelos. El primer
algoritmo, denominado WH-EA (Algoritmo Evolutivo para la identificación
de sistemas de Wiener-Hammerstein), permite estimar todos los parámetros
de un modelo de Wiener-Hammerstein con un solo procedimiento a partir de
un modelo dinámico lineal. Con WH-EA, una buena estimación no depende
de procedimientos intermedios ya que el algoritmo evolutivo simultáneamente
busca la mejor distribución de la dinámica, ajusta con precisión la ubicación
de los polos y los ceros y captura la no linealidad estática. Otra ventaja
importante de este algoritmo es que bajo consideraciones específicas y
utilizando una señal de excitación adecuada, es posible crear un enfoque
unificado que permite también la identificación de los modelos de Wiener y
Hammerstein, que son casos particulares del modelo de Wiener-Hammerstein
cuando uno de sus bloques LTI carece de dinámica. Lo interesante de este
enfoque unificado es que con un mismo algoritmo es posible identificar los
modelos de Wiener, Hammerstein y Wiener-Hammerstein sin que el usuario
especifique de antemano el tipo de estructura a identificar.

El segundo algoritmo llamado WH-MOEA (Algoritmo evolutivo multi-objetivo
para la identificación de modelos de Wiener-Hammerstein), permite abordar el
problema de identificación como un Problema de Optimización Multiobjetivo
(MOOP). Sobre la base de este algoritmo se presenta un nuevo enfoque
para la identificación de los modelos de Wiener-Hammerstein considerando
un compromiso entre la precisión alcanzada y la complejidad del modelo. Con
este enfoque es posible comparar varios modelos con diferentes prestaciones
incluyendo como un objetivo de identificación el número de parámetros que
puede tener el modelo estimado. El aporte de este enfoque se sustenta en el
hecho de que en muchos problemas de ingeniería los requisitos de diseño y las
preferencias del usuario no siempre apuntan a la precisión del modelo como
un único objetivo, sino que muchas veces la complejidad es también un factor
predominante en la toma de decisiones.
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Resum

En molts camps de l’enginyeria els models matemàtics són utilitzats per a
descriure el comportament dels sistemes, processos o fenòmens. Hui dia,
existeixen diverses tècniques o mètodes que poden ser usades per a obtindre
aquests models. A causa de la seua versatilitat i simplicitat, sovint es
prefereixen els mètodes d’identificació de sistemes. En general, aquests
mètodes requereixen la definició d’una estructura i l’estimació computacional
dels paràmetres que la componen utilitzant un conjunt de procediments i
mesuraments dels senyals d’entrada i eixida del sistema. En el context de
la identificació de sistemes no lineals, un desafiament important és la selecció
de l’estructura. En el cas que el sistema a identificar presente una no linealitat
de tipus estàtic, els models orientats a blocs que consisteixen en la interacció
de subsistemes dinàmics lineals invariants en el temps (LTI) i elements estàtics
no lineals (NL), poden ser útils per a definir adequadament una estructura.
No obstant això, el dissenyador pot enfrontar-se a cert grau d’incertesa en
seleccionar el model orientat a blocs adequat en concordança amb el sistema
real. A més d’aquest inconvenient, s’ha de tindre en compte que l’estimació
d’alguns models orientats a blocs no és senzilla, com és el cas dels models de
Wiener-Hammerstein que consisteixen en un bloc NL enmig de dos subsistemes
LTI.

La presència de dos subsistemes LTI en els models de Wiener-Hammerstein és
el que principalment dificulta la seua estimació. Generalment, el procediment
d’identificació comença amb l’estimació de la dinàmica lineal, i el principal
desafiament és dividir aquesta dinàmica entre els dos blocs LTI. En general,
això implica una alta interacció de l’usuari per a desenvolupar diversos
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procediments, i el model final estimat depén principalment d’aquestes etapes
prèvies.

L’objectiu d’aquesta tesi és contribuir a la identificació dels models de
Wiener-Hammerstein. Aquesta contribució es basa en la presentació de
dos nous algorismes per a atendre aspectes específics que no han sigut
adreçats en la identificació d’aquesta mena de models. El primer algorisme,
denominat WH-EA (Algorisme Evolutiu per a la identificació de sistemes
de Wiener-Hammerstein), permet estimar tots els paràmetres d’un model de
Wiener-Hammerstein amb un sol procediment a partir d’un model dinàmic
lineal. Amb WH-EA, una bona estimació no depén de procediments intermedis
ja que l’algorisme evolutiu simultàniament busca la millor distribució de la
dinàmica, afina la ubicació dels pols i els zeros i captura la no linealitat estàtica.
Un altre avantatge important d’aquest algorisme és que sota consideracions
específiques i utilitzant un senyal d’excitació adequada, és possible crear un
enfocament unificat que permet també la identificació dels models de Wiener i
Hammerstein, que són casos particulars del model de Wiener-Hammerstein
quan un dels seus blocs LTI manca de dinàmica. L’interessant d’aquest
enfocament unificat és que amb un mateix algorisme és possible identificar
els models de Wiener, Hammerstein i Wiener-Hammerstein sense que l’usuari
especifique per endavant el tipus d’estructura a identificar.

El segon algorisme anomenat WH-MOEA (Algorisme evolutiu multi-objectiu
per a la identificació de models de Wiener-Hammerstein), permet abordar
el problema d’identificació com un Problema d’Optimització Multiobjectiu
(MOOP). Sobre la base d’aquest algorisme es presenta un nou enfocament per a
la identificació dels models de Wiener-Hammerstein considerant un compromís
entre la precisió aconseguida i la complexitat del model. Amb aquest
enfocament és possible comparar diversos models amb diferents prestacions
incloent com un objectiu d’identificació el nombre de paràmetres que pot tindre
el model estimat. L’aportació d’aquest enfocament se sustenta en el fet que
en molts problemes d’enginyeria els requisits de disseny i les preferències de
l’usuari no sempre apunten a la precisió del model com un únic objectiu, sinó
que moltes vegades la complexitat és també un factor predominant en la presa
de decisions.
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Chapter 1

Introduction

The opening section of this chapter provides a brief
introduction to block-oriented models and a literature review on
Wiener-Hammerstein models, pointing out the main characteristics
of the existing identification methods. Next, thesis motivation and
objectives are presented. Finally, a brief description of the structure
of the thesis can be found in the fourth section.
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Chapter 1. Introduction

1.1 Block-oriented models

Non-linearities are present to a greater or lesser extent in all real processes.
For weak non linearities, linear models can be successfully used to forecast
the evolution of variables or to design control schemes. Currently, a lot of
methods to build linear models can be found in the literature [91, 70, 62,
109, 65]. However, against hard non linearities, linear models just can be
used in a specific operation range. If process is controlled in a wide operating
range, cause-effect relationships should be represented by nonlinear models.
One alternative is the use of rigorous first-principles formulation [24, 50] as
nonlinear models. Nevertheless in most cases this formulation can be a very
challenging task. Another option is process identification using soft computing
methods. Nonlinear system identification has attracted considerable interest
of researchers over the past few years. Nowadays, nonlinear identification is an
open research topic where some benchmark problems have been proposed [95,
117, 96, 76] and real measurement data are available for testing and validate
different nonlinear identification methods (e.g. DaISy database [16]).

One of the most challenging problems regarding nonlinear system identification
is the selection of a suitable model structure. Currently there are several
structures based on Neural Networks [61], block-oriented models [35, 47],
Volterra series [21], NARMAX models [10], fuzzy models [79], among others. A
review of black box methods to nonlinear identification can be found in [105].

Block-oriented models are a class of nonlinear models used to represent
dynamic systems affected by static non-linearities. These models consist of
the interaction of Linear Time-Invariant (LTI) subsystems and nonlinear (NL)
static elements. Today, a wide range of such structures can be found in the
literature. An overview of the most common block-oriented model structures
can be found in [101]. Study of block-oriented models not only addresses
parameter estimation. These nonlinear structures have found an important
place within advanced control strategies such as Model Predictive Control
(MPC), however, the direct use of these models within this strategy leads to
a non-convex optimisation problem. In this sense, several contributions have
been made to solve this inconvenience. [36, 60, 58, 123, 59].

In the context of block-oriented models, LTI subsystems are typically
represented by rational transfer functions, impulse response models,
auto-regressive models, Box–Jenkins (BJ) models, Output Error (OE) models
and state-space models; while non-linearity blocks are usually parameterized
with polynomials, piece-wise functions, splines, and neural networks. When
LTI subsystems and NL blocks are represented with one of these forms, the
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1.1 Block-oriented models

model is parametric. However, block-oriented models can also be represented
in a non-parametric form [37] or in a combined way [71]. On the other hand,
block-oriented models are not only useful to single-input, single-output (SISO)
systems. There are currently several approaches to modelling multivariable
systems using these structures [38, 124, 107, 1, 115, 51, 8].

The interaction between LTI subsystems and NL elements is not restricted
to serial connections since blocks can be used more than once. Therefore,
block-oriented models comprise a large diversity of structures that can be useful
when modelling dynamic systems affected by memory-less non-linearities. The
simplest structures within this class of models are the Wiener (LTI-NL) and
Hammerstein (NL-LTI) models. Generalisations of these basic models lead to
more complex structures known as Wiener-Hammerstein (LTI-NL-LTI) and
Hammerstein-Wiener (NL-LTI-NL) models. These four structures are based
on serial connections and their great usefulness for modelling real systems
is reflected in the large number of studies developed in comparison with
block-oriented models based on feedback connections [85, 83] and parallel
branches [97, 98, 100].

In series or parallel block-oriented models, the connection of two blocks gives
rise to an internal variable. Generally these variables do not have a real physical
representation or they are not accessible for measurement. In Wiener models
the internal variable can be estimated from the excitation signal, once the
linear dynamics of the system are known. On the other hand, in Hammerstein
models, it is also possible to estimate the internal variable from the system’s
output signal, however, this implies assuming that the LTI block is invertible,
which is not recommended, as it reduces the model’s flexibility and it is
impractical.

Rigorously, in a practical context, all the parameters of a block oriented
model might be estimated from input and output measurements. Without
an a priori knowledge of the system under test, the designer may face several
inconveniences. The main dilemma will surely be the selection of the structure.
On the other hand, the way in which each of the blocks of the model should
be parameterised is also often questioned. This last issue can be solved by
selecting the identification method to be used. Generally, each identification
method implicitly brings with it a certain way of parameterizing the blocks.
However, to select the estimation method the designer must be clear about
the structure of the system. In this regard, some authors have concentrated
efforts on proposing techniques to detect the appropriate structure from
linear approximations of the nonlinear system [94, 57]. Although these
techniques do not accurately state whether the system under test corresponds
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Chapter 1. Introduction

to a specific structure, through their use it is possible to rule out a set of
structures based on certain patterns. It should also be noted that the structure
detection through these techniques is an additional procedure prior to using
any identification method. This obviously demands more user interaction to
estimate a block-oriented model.

This dissertation focuses on parametric block-oriented models based on serial
connections containing a single nonlinear block, i.e., Wiener, Hammerstein,
and Wiener-Hammerstein models. A Wiener model consists of a dynamic LTI
subsystem connected in series with a nonlinear static element. This structure
was introduced in 1958 by Norbert Wiener [116]. Various applications of
Wiener’s models on real processes can be found in the literature including
biological systems [46, 54], chemical processes such as pH [49, 36, 112] or
distillation columns [125, 11].

On the other hand, a Hammerstein model consists of a nonlinear static
element connected in series with a dynamic LTI subsystem. This structure was
introduced in 1930 by the mathematician A. Hammerstein [40], however, the
first identification algorithm was presented in 1966 by Narendra and Gallman
[75]. Like Wiener’s models, Hammerstein’s models have also been widely used
to model real processes including distillation columns [25], heat ex-changers
[86, 20], biological systems [14, 18] and solid oxide fuel cells [48].

The Wiener and Hammerstein models are specific cases of the
Wiener-Hammerstein model when one of the LTI blocks lacks dynamics.
Identification of Wiener-Hammerstein is more complex than models with just
a single LTI block and several stages may be required. This complexity has
attracted the interest of researchers and for this reason, a large number of
methods for identifying these models can be found in the literature. A review
of some identification methods for Wiener-Hammerstein models is presented
in the following section.

1.2 Wiener-Hammerstein models

A Wiener-Hammerstein (WH) model (Figure 1.1) consists of the cascading
of an LTI input subsystem (LTI1), a nonlinear element, and an LTI output
subsystem (LTI2). Wiener-Hammerstein models have proved to be able to
describe non-linear dynamics of several systems such as: a paralyzed skeletal
muscle [6, 5, 13], a limb reflex control system [19], a DC-DC converter [78]
a heat exchanger system with a superheater-desuperheater in a boiler system
[41] and a thermal process [7], among others [53].
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1.2 Wiener-Hammerstein models

Figure 1.1: Wiener-Hammerstein model.

Early studies related to the estimation of WH structures were mainly based
on correlation analysis and date back to the 1970s [31, 22, 9]. From that time
to date, the interest of researchers has been latent and several identification
methods for this structure have been presented. This interest has been based
on the degree of complexity involved in estimating it. The main problem lies
in the presence of two LTI blocks, which implies that the general dynamics of
the system must be distributed. On the other hand, the internal variables, i.e,
the input and output of the nonlinear block, generally are not accessible for
measurement.

Knowledge of linear dynamics can be a good starting point to identify
a Wiener-Hammerstein model [101]. In this regard, the Best Linear
Approximation or BLA of a nonlinear system [64, 23, 92, 101] can be used.
For the specific case of Wiener-Hammerstein models, the BLA does not provide
information about the dynamics of each LTI block. Therefore, all BLA-based
Wiener-Hammerstein identification methods have concentrated their efforts on
the BLA division to generate initial estimates and avoid sub-optimal local
minima in an optimisation procedure. In [102] both LTI subsystems are
initialised with all possible BLA partitions and least squares optimisation is
applied to fit the non-linearity. Although identification results are very good,
the number of possible partitions (combinations) grows with the number of
poles and zeros of the BLA and therefore the computational cost required for
this method can be very high.

To avoid multiple BLA divisions, in [56, 102] an “advanced” method is
proposed where both LTI subsystems are over-parameterised with all poles
and zeros of the BLA. This method is formulated as a linear-in-the-parameters
total-least-squares problem for which the back LTI subsystem is inverted and
basis functions are used to represent both linear subsystems. To minimise
the effect of over-parameterisation, an order reduction technique is applied.
However, since the formulation is based on neglecting the effect of disturbances,
the solution is in general not consistent if there is noise on the output. In
addition the BLA is required to be invertible.

5



Chapter 1. Introduction

Another approach to initialise Wiener-Hammerstein models is presented
by [113], where the poles and/or zeros of the BLA are classified by
using a nonlinear transformation of the input and the output residuals
(Quadratic/Cubic BLA). On the same context of QBLA/CBLA and in line
with “brute-force” method, [114] propose a scanning technique for a rapid
evaluation of all possible BLA partitions between both LTI blocks of the
Wiener-Hammerstein system. With this evaluation the vast majority of
possible partitions are discarded. Both proposals based on QBLA/CBLA
show excellent results and overcome some disadvantages of “brute-force” and
“advanced” methods, however the QBLA/CBLA estimation can be difficult
(high variance) since it is estimated from the BLA residuals.

A more robust method based on QBLA/CBLA is proposed by [99]. Unlike the
two previous proposals the BLA is splitted in a non-parametric framework.
This avoids mainly the parameterization of the QBLA that can be tedious
given that the number of poles and zeros tends to be high. Once the front and
the back dynamics of the Wiener-Hammerstein model have been identified, a
parameterization of both LTI blocks is required in an additional step. This
step can be complicated because a linear phase shift can be present in the
non-parametric estimate.

To avoid QBLA/CBLA estimation, in [110] a fractional model
parameterization based in multiplicities (powers) of poles and zeros is
presented. The problem is formulated in the frequency domain and fractional
exponents indicate the partitioning of the poles and zeros between the two
linear parts after a optimisation problem is solved. Once the poles and zeros
of the BLA have been classified, both LTI blocks must be parameterized in an
additional step.

The fractional approach is discussed in detail in [34]. Here it is pointed
out that the formulation becomes ill-conditioned for some configurations of
the poles and zeros of the linear dynamic parts. To solve this drawback a
expanded fractional approach which is exact for integer values of the exponents
is introduced. In addition, a novel formulation for a faster and more reliable
convergence to the solution when using Newton-type methods is proposed.

In [42] and [72], another alternative for estimating Wiener-Hammerstein
models is proposed. This alternative is based on a multi-stage identification
strategy, in which the static nonlinear characteristic and the linear dynamic
blocks are estimated separately. The identification procedure starts with the
non-parametric estimation of the static non-linearity. In a next step, both LTI
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blocks represented by their impulse responses are estimated assuming that the
order of each subsystem is known.

A different identification alternative is proposed by [74]. This approach is based
on genetic recombination and particle swarm optimisation. During the search
process, the algorithm requires minimal user interaction, but even though a
large number of poles and zeros are allowed for both LTI subsystems, good
accuracy cannot be achieved since the optimisation problem does not use a
linear approximation as a starting point. Furthermore, a polynomial is used
for the static non-linearity, which is not recommended, since the sensitivity of
the coefficients increases with the degree of the polynomial. An important
feature of this approach is that the identification problem is addressed as
a multi-objective optimization problem (MOOP), where the accuracy and
complexity of the models are penalised.

Almost all the identification methods mentioned in this section, including
the evolutionary algorithm proposed as part of this research work, have
been evaluated on a well-known Wiener-Hammerstein benchmark [95]. A
comparison of the results can be seen in Subsection 2.8.2.

1.3 Motivation and objectives of the thesis

As mentioned above, in the case of Wiener-Hammerstein models, identification
is not so easy since the linear dynamics must be divided in two. Table 1.1
summarises the most important features of the methods addressed in the
previous section. As can be seen, most methods use BLA as a starting point for
nonlinear estimation and are conditioned to use Gaussian excitation signals,
and most methods have a high User Interaction Level (UIL). In these cases,
user intervention is required to carry out intermediate procedures, analyse
results and make decisions. This aspect is even more critical in methods with
a non-parametric approach or where the QBLA/CBLA is required.

Although state of art methods for BLA splitting offer their own advantages and
disadvantages, they make the identification of Wiener-Hammerstein models
a subjective task with an acceptable degree of maturity. However, from a
practical point of view, obtaining the BLA can be a complex and sometimes
unfeasible task. On one side, multiple realisations – each with a large amount
of data – may be required to obtain the BLA. In real processes with slow
dynamics, experiments for obtaining the BLA would require too much time, so
it would be impractical. On the other hand, excitation signals used to obtain
the BLA must belong to the Riemann equivalence class of asymptotically
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Table 1.1: Features of the most relevant Wiener-Hammerstein model identification methods
presented in the last decade.

Identification method Excitation
signal

Initial linear
model

UIL Additional
requirements

Brute-force [102] Gaussian BLA Very high

Advanced method [102] Gaussian BLA High Inverse of the BLA

Scanning technique [114] Gaussian BLA High QBL/CBLA

Biosocial culture [74] Non-restricted Not required Low

Fractional approach [110] Gaussian BLA Medium

Modified fractional
approach [34]

Gaussian BLA Medium

Nonparametric QBLA [99] Gaussian BLA High QBLA

Multistage identification
[42, 72]

Random
sequence

No required High

Classification of poles and
zeros [113]

Gaussian BLA Very high QBL/CBLA and
manual tuning

normally distributed excitation signals [84]. The most common signals of this
type are the Gaussian noise sequences and random-phased multisines [93, 108]
and not all real processes can be excited with this kind of inputs.

Beyond problems derived from BLA attainment, several methods for Wiener,
Hammerstein, and Wiener-Hammerstein model identification can be found in
the literature [101]. Almost all have in common that they use the BLA as
a starting point – although this has not been used much for Wiener and
Hammerstein models. Although the three model structures are differentiated
by how the dynamics are distributed around static non-linearity, to date
there is no method to identify any of the three models without distinction.
Existing methods have been developed independently and exclusively for a
single structure. That is, one for identifying Wiener cannot be used to
identify Hammerstein models and vice versa. If there is uncertainty about
the location of the dynamics and the static non-linearity, the user would be
obliged to make independent and separate estimates of Wiener, Hammerstein
and Wiener-Hammerstein using three different identification methods. After
this tedious task, the performance of the models obtained should be compared
to select the appropriate one.

At first glance, it would seem that existing Wiener-Hammerstein identification
methods could easily overcome this drawback, since the Wiener and
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1.3 Motivation and objectives of the thesis

Hammerstein models are specific cases of the Wiener-Hammerstein structure
where the dynamics have been distributed to only one side of the static
non-linearity. However, this situation must be handled carefully. Existing
methods to identify Wiener-Hammerstein models address the problem of
identification as an optimisation problem. In that cases, to achieve a good
convergence it is necessary to define appropriately the range where the static
non-linearity will be captured. Since static non-linearity is located in different
positions respect to the dynamics, the non-linearity bounds are different for
the three types of structures. Note that it is not the same to capture the
static non-linearity before or after a dynamic block given that the domain and
co-domain of the nonlinear function will change notably. Defining a very small
search space will result in the non-linearity not being properly captured. On
the other hand, a search space too broad will cause a slow convergence, or
worse, the algorithm could get stuck at a local minimum. Therefore without
beforehand information on the process structure, the search space of static
non-linearity could be defined incorrectly.

This thesis aims to contribute in the field of nonlinear identification,
specifically, all efforts have been concentrated on estimation of
Wiener-Hammerstein models and their specific cases which are called
Wiener models and Hammerstein models. The objectives are based on
the development of new ways to identifying these structures, for which the
following issues are considered:

• The current methods for identifying Wiener-Hammerstein models
generally require a considerable user interaction. In addition, the quality
of the final results depends on intermediate procedures which may be
subject to errors. The initial objective of this research work is to
develop an evolutionary algorithm to estimate all the parameters of a
Wiener-Hammerstein model in a single procedure. This implies that the
algorithm must have the ability to split the BLA, refine the position of
the poles and zeros and capture static non-linearity at the same time.
With this algorithm the user interaction will be minimal and the final
results will not depend much on intermediate procedures.

• Although the Wiener and Hammerstein models are specific cases of
the Wiener-Hammerstein model, to date there is no common method
that can identify these three types of structures. In addition, not all
processes are enabled to be excited with signals that allow the BLA be
obtained. For this reason, a tool to identify Wiener, Hammerstein and
Wiener-Hammerstein models without the need for the user to specify in
advance the type of structure to be identified will be developed. On the
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Chapter 1. Introduction

other hand, taking advantage of the characteristics of the evolutionary
algorithm developed, it is proposed to start from an initial linear model
obtained from a simple step response. Obviously, this model will be
affected by static nonlinearity which is not the case with BLA, however,
the evolutionary algorithm will refine the position of the poles and zeros
as the dynamics are distributed and non-linearity is captured.

• Currently, most block oriented identification methods are focused on
obtaining a model with high precision. However, in practical applications,
precision should not be the only criteria for model selection. In that
sense, this thesis also addresses the complexity of the model as a criterion
for selecting the best model. To this end, an approach based on a
multi-objective evolutionary algorithm will be presented.

1.4 Overview and Outline

Figure 1.2 shows a graphical abstract illustrating the core structure of this
thesis which is based on three contributions that have been developed in the
field of Wiener-Hammerstein model identification. Around these contributions
the chapters of this dissertation have been organised as follows:

In Chapter 2, an evolutionary algorithm for Wiener-Hammerstein system
identification (WH-EA) is presented. Since the BLA model is used as starting
point, the system to be identified must be excited with Gaussian type signals or
equivalent. Thanks to customised genetic operators, WH-EA estimates all the
parameters of a Wiener-Hammerstein model in a single procedure, i.e, no user
interaction is required to develop intermediate steps. In other words, WH-EA
is able to look for the best BLA split, capturing at the same time the process
static non-linearity with high precision. Furthermore, to correct possible errors
in BLA estimation, the locations of poles and zeros are subtly modified within
an adequate search space to allow a fine-tuning of the model. The performance
of the algorithm is analysed by using a demonstration example and a nonlinear
system identification benchmark [95]. This chapter is a literal transcription
with minor modifications of the following research publication [122]:

• J. Zambrano, J. Sanchis, J. Herrero, and M. Martínez, “WH-EA: an
evolutionary algorithm for Wiener-Hammerstein system identification”,
Complexity, Volume 2018, 2018

As mentioned above, the use of Gaussian signals in real applications may be
impractical. This drawback led research to a new approach based on multi-step
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Figure 1.2: Graphical abstract of the thesis

excitation signals and an initial linear model obtained with standard linear
identification techniques. Multi-step signals are more practical and easier to
design than Gaussian signals, however this is not the only advantage. Thanks
to the use of multi-step signals, WH-EA can be used to estimate Wiener,
Hammerstein and Wiener-Hammerstein models without the user anticipating
the type of structure to be estimated. Details about this approach which has
been called the unified approach, as well as their evaluation on three numerical
simulation examples and a real thermal process, are presented in Chapter 3.
It must be remarked that this chapter is a literal transcription with minor
modifications of the following research publication [121]:

• J. Zambrano, J. Sanchis, J. Herrero, and M. Martínez, “A
unified approach for the identification of Wiener, Hammerstein, and
Wiener–Hammerstein models by using WH-EA and multistep signals”,
Complexity, Volume 2020, 2020.

More contributions on Wiener-Hammerstein models identification is
presented in Chapter 4. In this chapter, the identification problem of
Wiener-Hammerstein models and their specific cases is addressed as a
multi-objective optimization problem (MOOP) managing a trade-off between
accuracy and model complexity. To solve the MOOP, a new multi-objective
evolutionary algorithm (MOEA) is proposed (WH-MOEA). From a linear
structure, WH-MOEA will generate a set of optimal models considering a static
non-linearity described by a variable number of points. Using WH-MOEA,
a procedure is also proposed to analyse various initial linear structures with
different numbers of poles and zeros (known as design concepts). A comparison
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of the Pareto fronts of each design concept allows a more in-depth analysis
to select the most appropriate model according to the user’s needs. As
in the previous chapters, this chapter is a literal transcription with minor
modifications of the following research publication [120]:

• J. Zambrano, J. Sanchis, J. Herrero, and M. Martínez, “WH-MOEA: A
Multi-objective Evolutionary Algorithm for Wiener-Hammerstein system
identification. A novel approach for trade-off analysis between complexity
and accuracy”, in IEEE Access, vol. 8, pp. 228655-228674, 2020, doi:
10.1109/ACCESS.2020.3046352.

Finally, the most important conclusions of this research work are reported
in Chapter 5. In addition, based on the research carried out, this
chapter highlights some future research work on the identification of
Wiener-Hammerstein models.
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Chapter 2

WH-EA: evolutionary algorithm
for Wiener-Hammerstein system

identification

This chapter describes the structure of WH-EA and its way of
working to estimate all the parameters of a Wiener-Hammerstein
model. In the first section, a brief introduction to the algorithm
and some guidelines are given. The second section presents the
discrete-time formulation of the Wiener-Hammerstein model. The
third section presents background information on the BLA. The
fourth section presents the genetic coding of the individuals and
the search space to explore possible solutions to the optimisation
problem. The fifth section below shows how the optimization
problem is stated. In the sixth section, the customised genetic
operations used by the evolutionary algorithm are described in
detail, while a comprehensive description of the evolutionary
algorithm is given in the following section. The last section
presents an evaluation of the algorithm, for which a numerical
example and a well-known benchmark for the identification of
Wiener-Hammerstein models have been considered.
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Chapter 2. WH-EA: evolutionary algorithm for Wiener-Hammerstein system identification

2.1 Introduction

In this chapter an elitist evolutionary algorithm (WH-EA) for the identification
of Wiener-Hammerstein models is presented. This algorithm evolves a
population of NP individuals and each individual contains genetic information
related to the parameters of a Wiener-Hammerstein model. Like any other
evolutionary algorithm, WH-EA is inspired by biological evolution over
generations. Starting from an initial population, new generations are created
using information of the current generation g and performing crossover and/or
mutation operations and selection based on the fitness of the new individuals.

Like almost all Wiener-Hammerstein model identification methods, this
algorithm requires a linear model that represents the general dynamics of the
system. In this case the BLA will be used. The intention of this algorithm is
to estimate in a single procedure all the parameters of a Wiener-Hammerstein
model. This is, WH-EA will be enabled to look for the best BLA split
capturing at the same time the process static nonlinearity with high precision.
Furthermore, to correct possible errors in BLA estimation, the location of
poles and zeros are subtly modified within an adequate search space to allow
a fine-tuning of the model. Unlike other identification methods, WH-EA does
not require a user interaction to perform and make decisions in intermediate
procedures.

The following issues were considered in the creation of this algorithm:

• A Wiener-Hammerstein system must be estimated from an input/output
data set of N samples ({u(t), y(t)}Nt=1). For further generalisation it is
assumed that the internal variables of the system are not known.

• The BLA is estimated in the first instance.

• The poles and zeros of the BLA must be classified to find the dynamics
of the front and back of the Wiener-Hammerstein model.

• The pole-zero locations of the BLA can change moderately to improve
modelling errors.

• Without loss of generality, it is possible to model a Wiener-Hammerstein
system considering that both linear blocks have unit gain.

• The nonlinear static function is modelled as a piece-wise function
represented by a set of n breakpoints.
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2.2 Discrete-time formulation.

Gw(z) f(·) Gh(z)
u(t) v(t) w(t) ŷ(t)

Figure 2.1: Wiener-Hammerstein model.

2.2 Discrete-time formulation.

A Wiener-Hammerstein model consists of two LTI subsystems Gw(z) and
Gh(z) surrounding a static nonlinear function f(v(t)) (Figure 2.1). Both LTI
subsystems can be represented in the discrete time domain as rational transfer
functions in factorized form:

v(t) = Gw(z)u(t) = Kw

∏nb
i=1(z − zwi)/(1− zwi)∏na
i=1(z − pwi)/(1− pwi)

u(t) (2.1)

ŷ(t) = Gh(z)w(t) = Kh

∏nd
i=1(z − zhi)/(1− zhi)∏nc
i=1(z − phi)/(1− phi)

w(t) (2.2)

where z is the discrete-time operator,Kw, pw1
. . . pwna and zw1

. . . zwnb represent
the static gain, poles and zeros of the front LTI block respectively, while Kh,
ph1

. . . phnc and zh1
. . . zhnd represent the static gain, poles and zeros of the back

LTI block respectively.

The nonlinearity can be represented as a linear combination of a finite set (M)
of basis functions:

w(t) = f(v(t)) =
M∑
m=1

βmfm(v(t)) (2.3)

where v(t) and w(t) are the input and output of the static nonlinearity, βm are
weighting parameters to be estimated and fm are basis functions.

From (2.1), (2.2) and (2.3), the output of the Wiener-Hammerstein model is
analytically related to the input through the following expression:

ŷ(t,θ) = Gh(z,θh)f(θNL, Gw(z,θw)u(t)) (2.4)
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where:

θw = [Kw, zw1
, zw2

. . . zwnb , pw1
, pw2

. . . pwna ] (2.5)
θNL = [β1, β2 . . . , βm] (2.6)

θh = [Kh, zh1
, zh2

. . . zhnd , ph1
, ph2

. . . phnc ] (2.7)
θ = [θw, θNL, θh] (2.8)

The challenge is to find the best θ so that the predicted output ŷ(t,θ) is as
close as possible to the measured output y(t).

As a complement to the formulation presented, the following assumptions are
made about the system:

Assumption 1 The nonlinear system to be identified can be described by
(2.4).

Assumption 2 The Wiener-Hammerstein system will be identified from an
input/output data set {u(t), y(t)}Nt=1. The input signal u(t) is Gaussian or
equivalent, while the measured output y(t) may be corrupted by stationary
additive noise n(t). It is further assumed that the noise is independent of the
input excitation signal:

y(t) = y0(t) + n(t) (2.9)

Assumption 3 There is no cancellation of poles and zeros and all poles of
both LTI subsystems must be within the unit circle.

Assumption 4 Non-linearity is static and its current output w(t) only
depends on the current input v(t) (i.e., the nonlinearity has no memory).

2.3 The BLA of a Wiener-Hammerstein system.

The BLA of a nonlinear system for a given class of excitation signals is a linear
model that minimises the expected mean square error between the true output
of the nonlinear system and the output of the linear model [93]:
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GBLA(z) = arg min
G(z)

E[|y(t)−G(z)u(t)|2] (2.10)

where u(t) is the input that excites the nonlinear system, y(t) is the measured
output and E is the expectation operator. An alternative way to obtain the
BLA of a nonlinear system is in a non-parametric framework:

GBLA(jωk) =
Syu(jωk)

Suu(jωk)
(2.11)

where Syu(jωk) is the cross-power spectrum between the output y(t) and the
input u(t), and Suu(jωk) is the auto power spectral density of u(t) [23, 84].

The BLA depends on the excitation power spectrum (bandwidth and
amplitude level) and excitation probability density function. Therefore
obtaining the BLA is restricted to the type of input signal that excites the
process. Most estimation methods to obtaining the BLA use Gaussian noise
signals or equivalent [90].

When a nonlinear system is excited with a Gaussian signal or equivalent,
according to Bussgang’s theorem [12], the non-linearity can be replaced by
a constant (KNL). Therefore, in the specific case of a Wiener-Hammerstein
system the BLA can be defined by the following expression:

GBLA(z) = KNLGwh(z) (2.12)

where Gwh(z) represents the dynamics of the nonlinear system:

Gwh(z) =

∏nb+nd
i=1 (z − zi)/(1− zi)∏na+nc
i=1 (z − pi)/(1− pi)

u(t) (2.13)

It is evident that p1 . . . pna+nc and z1 . . . znb+nd are the poles and zeros
that must be assigned to Gw(z) and Gh(z). Although the BLA does not
provide information to distinguish the dynamics between both LTI subsystems,
knowledge of the overall dynamics of a Wiener-Hammerstein system, is a good
starting point to identify such systems.
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2.4 Genetic coding and search space

Theoretically in a Wiener-Hammerstein model the pole-zero locations of Gw(z)
and Gh(z) subsystems correspond to the pole-zero locations of the BLA,
however it is well known that once the BLA has been divided a re-fit can be
used to improve the modelling error. In this regard, the proposed algorithm
considers that while the BLA is divided and non-linearity is captured the
pole-zero locations can change subtly.

Changing locations of poles and zeros of the BLA to improve modelling error
implies new estimates around the known values. These locations for both linear
subsystems are coded in a single vector as follows:

P =[zc1, . . . , zcnc, zr1, . . . , zrnr, zi1, . . . , zinc, . . .

. . . , pc1, . . . , pcmc, pr1, . . . , prmr, pi1, . . . , pimc]
(2.14)

where zr1, . . . , zrnr and pr1, . . . , prmr contains the locations of the real zeros
and poles, respectively; zc1, . . . , zcnc and zi1, . . . , zinc contains the real and
imaginary parts of complex conjugate zeros, respectively; while pc1, . . . , pcmc
and pi1, . . . , pimc contains the real and imaginary parts of complex conjugate
poles, respectively. The values of nc, nr, mc and mr depend on the number
of zeros and poles (real and/or complex conjugates) of the BLA.

Poles and zeros contained in 2.14 must be classified to obtain the dynamics of
the front and back blocks of a Wiener-Hammerstein model. This classification
is performed using a binary vector:

C = [xz1, . . . , xznc+nr, xp1, . . . , xpmc+mr] (2.15)

The first part of the vector, C (xz1, . . . , xznc+nr), is associated with
zc1, . . . , zcnc, zr1, . . . , zrnr and indicates the zeros classification,
while its second part, C (xp1, . . . , xpmc+mr), is associated with
pc1, . . . , pcmc, pr1, . . . , prmr indicating the poles classification. Note that
imaginary parts are not considered for classification since they are already
associated with their corresponding real parts. It is assumed that if xzi−th = 1,
the corresponding i − th element of P with i = 1, . . . , nc + nr (i.e., a real
zero or a pair of complex conjugated zeros) will belong to the subsystem
Gw(z), otherwise it will belong to the subsystem Gh(z). In the same way this
correspondence can be applied to classify the poles using xp1, . . . xpmc+mr.
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For example, if a nonlinear system is approximated by a BLA with four poles:
p1,2 = −0.32±0.77i, p3 = −0.11, p4 = 0.17 and three zeros: z1,2 = 1.41±0.56i,
z3 = 1.1, then nc = 1, nr = 1, mc = 1 and mr = 2, P would be structured as:
[1.41, 1.1, 0.56, −0.32, −0.11, 0.17, 0.77] and vector C should contain five
elements whose values switch between zero and one as the algorithm evolves.
By way of illustration if C = [1, 0, 0, 1, 1], then Gw(z) would have two zeros
and two poles: z1,2 = 1.41 ± 0.56i, p3 = −0.11, p4 = 0.17, while Gh(z) would
have a zero and two poles: z3 = 1.1, p1,2 = −0.32± 0.77i.

The location of the breakpoints used to capture static non-linearity is coded
as follows:

B = [v1, . . . , vn, w1, . . . , wn] (2.16)

where the pair (vi, wi) defines the location of a breakpoint and n is the number
of user-defined breakpoints to represent the static nonlinearity.

WH-EA is based on stochastic population of candidate solutions (individuals).
Each individual contains genetic information related to:

• The pole/zero locations in the Z-plane of the linear subsystems (P )

• The breakpoint coordinates representing the nonlinear static function (B)

• The pole/zero classification for blocks Gw(z) and Gh(z) (C)

such that any Wiener-Hammerstein model can be easily described from this
coded information. Recall that gains from linear blocks are assumed to be 1
and that parameters na, nb, nc, nd will be implicitly optimised and they will
depend on the structure of vector C.

As generations go by, the genetic information of each individual can change
depending on the crossover and mutation operations, as well as the selection
process. Each gene in an individual has a search space defined for a minimum
and a maximum value. The new locations for poles and zeros are explored
within a search space bounded by the user-defined vectors Pmin and Pmax.
Each element of vector P corresponds to one element of vector Pmin and
one element of vector Pmax. Therefore vectors P , Pmin, and Pmax have
the same size. Elements of vectors Pmin and Pmax are defined around the
location of each pole or each zero of the BLA. For example, if the BLA had
two real poles, one at 0.70 and the other at 0.87, the search space for exploring
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new locations for these poles could be defined with Pmin = [0.6, 0.82] and
Pmax = [0.8, 0.92]. These bounds imply that the algorithm will try to tune
the pole at 0.7 by exploring new locations between 0.6 and 0.8. On the other
hand, the pole at 0.87 could be refined by exploring new locations between 0.82
and 0.92. There is no recipe to define the vectors Pmin, and Pmax, however it
should be noted that a very large search space would allow a good exploration
but the algorithm would converge more slowly. On the other hand, a very small
search space could lead to ineffective exploration for the refinement of the poles
and zeros. It should also be taken into account that in discrete time the poles
cannot be outside the unitary circle and that small changes in the positions
of the poles and zeros in discrete time imply large changes in continuous time
due to the exponential relationship between these two representations.

The genetic information contained inC determines the distribution of the poles
and zeros between the two LTI subsystems. This information is generated
randomly and can change from generation to generation, but taking into
account the following considerations:

• The number of poles assigned to a subsystem must always be greater or
equal than the number of zeros assigned to the same subsystem, i.e., the
resulting system cannot be improper.

• The sum of the poles distributed between both subsystems must be equal
to the number of poles of the BLA.

• The sum of the zeros distributed between both subsystems must be equal
to the number of zeros of the BLA.

As the dynamics is distributed between the two LTI subsystems and the
locations of the poles and zeros are refined, static nonlinearity must be
captured. For this, the genetic information of individuals contained in B
must be changed allowing the exploration of new locations for breakpoints. To
facilitate the convergence of the algorithm this exploration must be done within
a suitable search space. In a Wiener-Hammerstein system, the minimum and
maximum values of the input and output signals of the nonlinear block give a
clear idea of the domain and codomain of the static nonlinearity, and therefore,
from this information it is possible to define its search space.

The search space for static nonlinearity can be defined horizontally by the
minimum (vmin) and maximum (vmax) amplitude of v(t) (the output of Gw(z))
and vertically by the minimum (wmin) and maximum (wmax) amplitude of w(t)
(the input to Gh(z)). Both v(t) and w(t) are unknown signals, however their
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minimum and maximum values can be obtained from the input (u(t)) and
output (y(t)) signals and the BLA.

Equations 2.17 and 2.18 show the relationship between minimum and
maximum values of signals u(t) and v(t). In these equations Ω is a scaling
factor depending on the input LTI block Gw(s). Without loss of generality,
the static gain of Gw(s) can be normalised to one, since the real gain can
be absorbed by static nonlinearity. Under this normalisation and considering
that Gw(s) is an LTI subsystem, it can be assumed that there will be no offset
between input and output signals, therefore the mean values of u(t) and v(t)
will be equal (vmean = umean). The same can be applied to the output block
Gh(s), therefore wmean = ymean, where wmean and ymean are the mean values
of w(t) and y(t), respectively.

vmin = Ω ∗ umin (2.17)
vmax = Ω ∗ umax (2.18)

Search space for nonlinearity is vertically delimited by wmin and wmax. The
BLA complements the information required to find this values. The static
gain of this model corresponds to the slope of the straight line (KNL) passing
through the point (vmean, wmean) and the extreme points (vmin, wmin) and
(vmax, wmax). Therefore, wmin and wmax can be found using (2.19) and (2.20).1
The search space for the static nonlinearity of a Wiener-Hammerstein model
is illustrated in Figure 2.2.

wmin = ymean +KNL(Ωumin − umean) (2.19)
wmax = ymean +KNL(Ωumax − umean) (2.20)

As can be seen from 2.17 to 2.18, the search space for static nonlinearity
depends on the minimum and maximum values of the input and output signals,
the static gain of the BLA and Ω which is a user-defined parameter. Since
both linear subsystems will be estimated with unit gain, neither of these will
amplify their input signals, therefore vmin > umin and vmax < umax. For these
two conditions to be met Ω must be less than one. In the same way it must
be observed that wmin < ymin and wmax > ymax. If Ω is less than one, the
first pair of conditions will always be met, however there is no guarantee that
the second pair of conditions will be met. Since it is possible to perform this

1It should be noted that if the linear dynamic model has negative static gain, the search space
for static non-linearity would be delimited by the coordinate pair (vmin, wmax) and (vmax, wmin).
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Figure 2.2: Search space for nonlinear static function in a Wiener-Hammerstein model.

check prior to the execution of the algorithm, if the second pair of conditions
are not met Ω must be increased but considering that it must be less than one.
It should also be taken into account that if the Ω is too large the search space
will be larger than necessary, so the algorithm will cost more to estimate static
non-linearity.

2.5 Optimisation problem statement

WH-EA makes it possible to find the best parameter set of a
Wiener-Hammerstein model, for which an optimisation problem is stated based
on a prediction-error method and the typical mean-squared error criterion: 2:

2Although any other criteria can be used in the proposed method, such as the mean absolute or
maximum error criteria.
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ε(t,θ) = y(t)− ŷ(t,θ) (2.21)

J(θ) =
1

N

N∑
t=1

ε2(t,θ). (2.22)

Where y(t) is the actual measured output and ŷ(t,θ) is the estimated model
output. According to the genetic coding presented in Subsection 2.4, θ =
[P ,B,C]. Under this coding the solution of the optimisation problem is stated
as:

θ̂ = arg min
θ
J(θ) (2.23)

where θ̂ contains the genetic information from the best individual at the end
of generations.

2.6 Genetic operations

Customised mutation an crossover operators will be developed taking in mind
the problem at hand: to identify all parameters of the Wiener-Hammerstein
model in a single optimisation trial. Figure 2.3 shows the structure of an
individual as well as the genetic operators developed on each piece of genetic
information. Note that i and g have been introduced into the formulation.
Subscript i represents an individual in the population, while the superscript g
indicates the current population.

The specific mutation and crossover operators designed are randomly selected
to maintain a balance between exploration and exploitation of the search space.
Mutation operations are used to maintain genetic diversity, while crossover
operations allow genetic information from the best individuals to be combined
and disseminated throughout the generations. Further details on how the
algorithm works will be given in Section 2.7.
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Figure 2.3: Structure of an individual and genetic operations performed on each piece of
genetic information.

2.6.1 Location in the Z-plane of poles and zeros.

Both operations used on this portion of genetic information produce a offspring
vector P̃ g, which directly inherits from its parent P g

i all the genetic information
except in a gene. This gene will be selected using a random integer number
rzp ∈ [1, . . . , nr+ nc+mr+mc] and modified according to the corresponding
genetic operator Mutation M.1 or Crossover C.1.

Mutation M.1. The selected gene is mutated to explore in an individualised
way new pole-zero locations of the BLA. A new location P̃ g

j is determined by
a random number Nzp with Gaussian distribution:

P̃ g
j =


P g
i,j +Nzp(0, σ

2(g)) if (j = rzp)

P g
i,j otherwise

(2.24)
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1 MaxGen

2

ini

g

2
(g)

2

end

Figure 2.4: Variation of standard deviation over generations to control the aggressiveness
of mutation M.1

where j = 1 . . . nr + nc+mr +mc. P g
i,j and P̃

g
j represent the j − th elements

of vectors P g
i and P̃ g, respectively.

The new locations for poles and zeros are explored within a search space defined
by Pmin and Pmax, therefore Pmin

j ≤ P̃ g
j ≤ Pmax

j , where Pmin
j and Pmax

j are
the j − th elements of vectors Pmin and Pmax, respectively.

Aggressiveness of mutations can be controlled through the standard deviation:

σ2(g) =
∆s

100

(
σ2
ini√

1 + g ∗ σ2
ratio

)
(2.25)

σ2
ratio =

(σ2
ini/σ

2
end)

2 − 1

MaxGen− 1
(2.26)

where MaxGen is the predefined number of algorithm generations; σ2
ratio is

the rate at which the standard deviation will decrease from σ2
ini to σ2

end as the
generations pass (see Figure 2.4); ∆s is a parameter to control the interval over
the selected gene will be able to move. For this mutation ∆s = Pmax

rzp
− Pmin

rzp
.

Variation of σ2(g) will allow mutations to be more subtle in the last generations
to achieve a fine-tuning of the corresponding parameters.

Crossover C.1. The selected gene is formed using genetic information from
the parent, P g

i,j, combined with the corresponding genetic information from
the best individual, P g

best,j, in the current population:
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P̃ g
j =


P g
i,j + P g

best,j

2
if (j = rzp)

P g
i,j otherwise

(2.27)

where j = 1 . . . nr + nc+mr +mc.

2.6.2 Nonlinear static function

As the algorithm evolves, points for nonlinear static function must be located
adequately in the v − w plane. Here any type of interpolation can be used to
capture the static non linearity. To achieve a good fit, mutations M.1 and M.2
plus a crossover operation are used. Both mutations used on this portion of
genetic information produce a offspring vector B̃g, which directly inherits from
its parentBg

i all the genetic information except in two genes. This pair of genes
represents the coordinates of the point that will be modified. Unlike mutation
operations, the crossover operation generates a offspring with a single modified
gene which corresponds to the ordinate of a point. Given the correspondence
between the abscissa and the ordinate of a point, for the three operations a
single integer random number rbp ∈ [1, n] will allow to select the gene(s) to be
modified.

Mutation M.2. This genetic operation allows to explore in the v − w plane
new positions for the points. The mutation in both genes is handled by random
numbers (Nv, Nw) with Gaussian distribution:

B̃g
j =


Bg
i,j +Nv(0, σ

2(g)) if (j = rbp)

Bg
i,j +Nw(0, σ2(g)) if (j = n+ rbp)

Bg
i,j otherwise

(2.28)

with j = 1 . . . 2n. Bg
i,j and B̃

g
j represent the j− th elements of vectors Bg

i and
B̃g, respectively. To avoid overlapping points, bounds for mutations on the
abscissa axis are set depending on the selected point to mutate (B̃g

rbp
) and the

location of its neighbours, according to:

• vmin < B̃g
rbp

< Bg
i,rbp+1 − α; if rbp = 1

• Bg
i,rbp−1 + α < B̃g

rbp
< Bg

i,rbp+1 − α; if rbp = 2 . . . n− 1
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Figure 2.5: Bounds for mutation M.2. Grey area indicates the feasible space for breakpoint
defined by (B̃g

rbp ,B̃
g
n+rbp

).

• Bg
i,rbp−1 + α < B̃g

rbp
< vmax; if rbp = n

where α is a user-defined parameter that indicates how close the points can be
located. To achieve a good fit of the non linearity α must be small, relative
to the search space on the abscissa axis defined by vmin and vmax. Note that
the horizontal boundaries for the endpoints are delimited by vmin and vmax.
These two values define the horizontal size of the search space where static
nonlinearity will be captured. Bounds for mutations on ordinate axis are fixed
and equal for all points. This allows each point to move freely throughout
the search space on the ordinate axis defined by wmin and wmax. The vertical
and horizontal bounds for a selected point are illustrated in Figure 2.5. When
mutation M.2 is required, the selected point can be changed to a new position
within the grey rectangle.

To achieve a fine-tuning of all breakpoints, mutations’ aggressiveness can be
controlled through the variable standard deviation σ2(g) (2.25) as in mutation
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M.1. Note that ∆s = wmax − wmin is constant for all mutations over ordinate
axis while for abscissa axis mutations, ∆s can be calculated as:

∆s =


Bg
i,rbp+1 − α− vmin; if (rbp = 1)

Bg
i,rbp+1 −B

g
i,rbp−1 − 2α; if (rbp = 2 . . . n− 1)

vmax −Bg
i,rbp−1 − α; if (rbp = n)

(2.29)

Mutation M.2 has great potential to explore the searching space. This genetic
operation will locate points where there are slope changes. During the first
generations, it is useful to shape non-linearity, while in the last ones, it allows
a refinement. However, when a point is located where there is a slope change,
it could be kept in this location until the end of generations, especially when
there are abrupt changes in the slope. Because jumps between points are not
allowed with mutation M.2, when a point is kept in a place where there is a
significant change of slope, one or more points would remain trapped to the
left or right of it. This would lead to having redundant points in a segment
that would not require so many, or worse, to having a segment (curvature) that
would not contain enough points. To avoid this drawback, the exploration in
the search space is complemented with mutation M.3.

Mutation M.3. This genetic operation is used to concentrate as many points
as possible on the curvatures that non linearity can have. Therefore it will be
required that each point can be displaced on the abscissa axis by jumping one
or more positions of the other points. Let’s define a segment as the horizontal
space between two consecutive points (so for n points there will be n − 1
segments), then a random integer number rs ∈ [1, n− 1] will indicate to which
segment the selected point will move. The first half of the offspring vector is
found using the following expression:

B̃g
j =


Bg
i,rs

+Bg
i,rs+1

2
if (j = rbp)

Bg
i,j otherwise

(2.30)

with j = 1 . . . n. Note that if rbp = rs or rbp = rs − 1 the corresponding
point will not make a jump but it will be located at the midpoint between its
current position and the position of the point on the right or left respectively.
As in the mutation M.2 to prevent points from getting too close together the α
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parameter is also used in this mutation therefore a jump is conditioned to the
space available in the selected segment to accommodate a new point. Minimum
space should be 2α. If this condition is not met rs must be re-generated to
randomly search for another segment.

To provide a smooth transition between adjacent segments, gene mutation
corresponding to the position on the ordinates axis is performed using a
quadratic interpolation. To do that, three neighbouring points are required.
The second half of the offspring vector is found using the following expression:

B̃g
j =


[
(B̃g

j−n)2, B̃g
j−n, 1

]
∗

 k2
k1
k0

 if (j = n+ rbp)

Bg
i,j otherwise

(2.31)

with j = n + 1 . . . 2n. B̃g
j−n is the v-coordinate of the selected point to

mute which can be found with 2.30, k0, k1 and k2 are the coefficients of the
quadratic polynomial Ψ defined by three adjacent points selected once the new
v-coordinate of the point that is mutating is known. The three adjacent points
can be selected directly when a point has mutated to the first or last segment,

Ψ =


if (rs = 1) :
f((Bg

i,1, B
g
i,n+1); (Bg

i,2, B
g
i,n+2); (Bg

i,3, B
g
i,n+3))

if (rs = n− 1) :
f((Bg

i,n, B
g
i,2n); (Bg

i,n−1, B
g
i,2n−1); (Bg

i,n−2, B
g
i,2n−2))

(2.32)

whilst if the point has mutated to a non-extreme segment, the three adjacent
points can be selected using the two points that define that segment plus one
on its right or left. For more effective exploration a random number r3p ∈ (0, 1]
is used for selection:

Ψ =


if (r3p ≤ 0.5) :
f((Bg

i,rs−1, B
g
i,n+rs−1); (Bg

i,rs
, Bg

i,n+rs
); (Bg

i,rs+1, B
g
i,n+rs+1))

otherwise :
f((Bg

i,rs
, Bg

i,n+rs
); (Bg

i,rs+1, B
g
i,n+rs+1); (Bg

i,rs+2, B
g
i,n+rs+2))

(2.33)
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Figure 2.6: Mutation M.3 with rbp = 2, rs = 4 and r3p > 0.5. Jump to the selected
segment (dashed line). Quadratic polynomial (solid line).

Figure 2.6 illustrates how a jump occurs with mutation M.3. Noticed that
the new ordinate is calculated according to the polynomial formed by the two
points of the segment plus a point to the right, e.i. r3p > 0.5. After a jump has
occurred, an ascending reordering of the points with respect to the abscissa
values is necessary.

Crossover C.2. This genetic operation works just like crossover C.1 and is
applied only to vary the position of a point on the ordinate axis:

B̃g
j =


Bg
i,j +Bg

best,j

2
if (j = rbp)

Bg
i,j otherwise

(2.34)

with j = n . . . 2n. Bg
best,j is the j − th element of vector Bg

best, which
corresponds to the individual in the current population g with the best fitness
value.
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Pole-zero classification

Due to the stochastic nature of evolutionary algorithms, the binary values of
2.15 will change as the algorithm evolves and generating different structures of
Gw(z) and Gh(z). The evolution of this piece of genetic information is handled
by a simple mutation operator.

Mutation M.4. Unlike the previous ones, this operator generates a new
vector C̃g that depends entirely on the effects of mutation, meaning that for
this piece of genetic information there is no information exchange between
generations. This allows free testing of different structures for Gw(z) and
Gh(z) to avoid premature convergence. When this operation is required a
random process will generate the mutation vector:

C̃g
j =

 1 if Nc ≤ 0.5

0 otherwise
(2.35)

with j = 1 . . . nr+mr. C̃g
j is the j − th element of vector C̃g. Nc is a random

number whit standard uniform distribution on the open interval (0,1). Note
that the structure of C̃g is built under two considerations: the LTI subsystems
can not be improper and the sum of zeros and the sum the poles between
both subsystems must be equal to the number of zeros and poles of the BLA
respectively.

2.7 WH-EA description

Algorithm 1 shows a pseudocode of main steps performed in WH-EA. Details
of each of these steps are given below:

Initialise the population. The initial population [P 0 B0 C0] contains
NP individuals generated from a reference individual. This individual takes
the first place in the population and its genetic information is structured as
follows:

• The P portion is directly coded with the location of the poles and zeros
of the BLA.

• The B portion contains the abscissa and ordinate of the n breakpoints
assigned to represent the static nonlinearity. The n points are uniformly

31



Chapter 2. WH-EA: evolutionary algorithm for Wiener-Hammerstein system identification

Algorithm 1 Pseudocode of WH-EA.
1: Initialise the population;
2: Evaluate fitness of all population;
3: for g = 1 to MaxGen do
4: Find θgbest
5: Random selection of a individual (r1);
6: Compute γ(g);
7: if rpznl ≤ γ(g) then
8: Compute B̃g using Algorithm 2;
9: else
10: Compute P̃ g using Algorithm 3;
11: end if
12: if rc ≤ ξ then
13: Compute C̃g using Mutation M.4;
14: end if
15: Update population;
16: end for
17: Print θMaxGen

best

distributed between vmin and vmax and located on the diagonal line joining
the ends of the search space (see Figure 2.2).

• The C portion is completed with randomly generated binary information
but taking into account the considerations indicated in Section 2.4).

The rest of the population is completed by individuals who are a mutated
version of the reference individual. For this, the M.1, M.2 and M.4 mutations
are applied at the same time to the corresponding portions of the genetic
information of the reference individual. For every time these three mutations
are applied a new individual will be generated, i.e. this process must be carried
outNP−1 times to complete the population. Since the genes to be mutated are
selected at random and since the mutations are based on genetic modifications
that are also random, this process guarantees an initial population that is rich
in diversity.

Evaluate fitness. Performance of each individual in the population is defined
by a fitness criterion which can be calculated using (2.22), where θ is obtained
from the encoded information in [P g

i , B
g
i , C

g
i ].

The offspring. Once population has been initialised, for each generation a
random integer number r1 ∈ [1, NP ] will be used to select the parent from
which an offspring P̃ g will be generated. As can be seen in Algorithm 1, not
all genetic operators are applied at the same time to generate a offspring -this
can help to expand diversity and avoid premature convergence.
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One or two pieces of the offspring genetic information will be randomly selected
for modification according to their respective genetic operators. A random
number rpznl ∈ (0, 1] choose between modifying the portion related to static
nonlinearity using Algorithm 2 or the portion of genetic information related
to pole/zero locations using Algorithm 3. The probability for this selection is
handled by the control parameter γ(g) defined as:

γ(g) =
γini√

1 + g ∗ γrat
(2.36)

γrat =
(γini/γend)

2 − 1

MaxGen− 1
(2.37)

where γrat is the rate at which the probability γ(g) will decrease from initial
probability γini to final probability γend as generations pass, therefore, 0 <
γfin < γini ≤ 1. If γini = 1 the probability of modifying the genetic information
of nonlinearity in the first generations will be high, while the probability of
modifying the location of poles and zeros will be low. On the other hand
if and γend = 0.5, in the final generations the algorithm will modify with
equal probability both portions of genetic information. The selection of these
values is justified by the fact that pole/zero locations are known and they will
only be fine-tuned within a suitable search space to amend possible errors in
the BLA estimation, whereas that nonlinearity is completely unknown, so the
algorithm should focus more on this portion of genetic information during first
generations.

Variation of genetic information corresponding to the classification of poles
and zeros for both LTI subsystems is handled by a comparison between a
random number rc ∈ (0, 1] and the probability ξ ∈ (0, 1]. The value
of probability ξ is defined by the user and will be constant throughout the
evolution of the algorithm. Figure 2.7 shows the behaviour of the control
parameters (probabilities) used to select the portions of genetic information
that will be modified in each generation.

Algorithm 2 is used to modify the genetic information related to nonlinear
static function. The control parameter δnl ∈ (0, 1] indicates the probability
with which the mutation (either M.2 or M.3) or crossover C.2 will be
used. Probability of selecting M.2 or M.3 is variable with respect to the
generations. During first generations, mutation M.3 is not necessary, since the
nonlinearity can be captured thanks to the two-dimensional points movements
due to mutation M.2 and crossover C.2 operations. Since it is very likely
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Figure 2.7: Control parameters of WH-EA for selection of the genetic information to be
modified in generation g.

that non-linearity includes one or more curvatures, as the algorithm evolves
mutation M.3 will be required to concentrate as many points as possible
on these curvatures. The variable probability for selection between both
mutations is defined by:

η(g) = (1− ηmin)− (1− ηmin)
g

MaxGen
(2.38)

where ηmin ∈ (0, 0.5] is a user-defined parameter indicating the minimum
probability with which the mutation M.2 can be selected. Note that according
to (2.38) and Algorithm 2, the maximum probability is one and occurs in the
first generation. As the algorithm evolves this probability will decrease linearly
until it reaches ηmin in the last generation. When Algorithm 2 is required a
random number rnmc ∈ (0, 1] will allow to select either a mutation or crossover
C.2. If a mutation is selected, a new random number rmm ∈ (0, 1] will allow
to select between mutation M.2 or mutation M.3.

On the other hand Algorithm 3 is used to modify the genetic information
related to pole/zero locations using mutation M.1 or crossover C.1. The
control parameter δzp ∈ (0, 1] indicates the probability with which each
genetic operation will be used. Since crossover C.1 causes offsprings inherit
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Algorithm 2 Modify two-dimensional points for nonlinear function.
1: if rnmc ≤ δnl then
2: Compute η(g)
3: if rmm ≤ ηmin + η(g) then
4: Mutation M.2;
5: else
6: Mutation M.3;
7: end if
8: else
9: Crossover C.2;
10: end if

Algorithm 3 Modify polo/zero locations.
1: if rlmc ≤ δzp then
2: Mutation M.1;
3: else
4: Crossover C.1;
5: end if

genetic information from the best individual, a small value of δzp may lead to
premature convergence, whereas a value closer to one will cause the algorithm
to converge very slowly. When Algorithm 3 is required a random number
rlmc ∈ (0, 1] will determine the genetic operation to be used.

Update. It is based on a competition between the generated offspring and
the individuals of the population. The contestant with the best fitness will be
the one who wins the competition. From a randomly selected individual, the
offspring starts to compete until defeating an individual, when this happens the
descendant will take his place in the population and the algorithm continues
with the next generation. If the offspring comes to compete with all individuals
and could not win, this will be discarded and the algorithm will pass to the
next generation.

2.8 Application of WH-EA and results.

WH-EA was tested on a numerical example and on the benchmark for nonlinear
system identification in (SYSID’09) [95], where a Wiener-Hammerstein system
is selected as test object. The benchmark is not intended as a competition,
but as a tool to compare the possibilities of different methods to deal with this
specific nonlinear structure.
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For both cases the BLA was estimated with the Matlab System Identification
Toolbox [63] using a Box-Jenkins (BJ) structure. Besides, trends and means
were only removed for the BLA identification. The following parameters of
the algorithm were set in common for both estimates: ξ = 0.25; δzp = 0.75;
δnl = 0.75; ηmin = 0.35, in addition, initial and final standard deviations for
mutations were set to 20 and 1 respectively.

2.8.1 Numerical example

A Wiener-Hammerstein system with the following structure was designed3:

G′w(z) =
0.1190

(z − 0.9048)
(2.39)

w′(t) = 0.45tansig(2.80v′(t)) (2.40)

G′h(z) = −0.01426
(z − 1.0510)(z + 1)

(z − 0.9746 + 0.03656i)(z − 0.9746− 0.03656i)
(2.41)

A Gaussian excitation signal of 6 dB was filtered with a cut-off frequency
of 6 Hz and used as input signal. The system was simulated and 120000
input/output samples were recorded and separated in two parts: the estimation
data set tn ∈ [1001, 70000] for identification purposes and the test data set tn ∈
[71001, 120000] for validation purposes (in both data sets first 1000 samples
were ignored to avoid transient effects). Furthermore additive white Gaussian
noise with a Signal-to-Noise Ratio (SNR) of 45.32 dB was added to the output.

The identification of the BLA was carried out and the model obtained was
expressed in factored form:

GBLA = −1e−3
(z − 1.0508)(z + 0.9631)

(z − 0.9749 + 0.0366i)(z − 0.9749− 0.0366i)(z − 0.9045)
(2.42)

The Root Mean Square of the error (eRMS) obtained with this linear model
on test data was of 0.0414.

3where tansig is the hyperbolic tangent sigmoid transfer function.
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According to the BLA structure, vector P 0
1 was coded with nc = 0, nr = 2,

mc = 1 and mr = 1 as follows:

P 0
1 = [1.0508, −0.9631, 0.9749, 0.9045, 0.0366] (2.43)

The search space for nonlinear function was defined with Ω = 0.28, while Pmin

and Pmax were defined as follows:

Pmin = [1.0408, −1.0631, 0.9649, 0.8945, 0.0266] (2.44)

Pmax = [1.0608, −0.8631, 0.9849, 0.9145, 0.0466] (2.45)

According to Pmin and Pmax the zero at −0.9631 can be refined considering
that its location can change ±0.1 from its own value, while the zero at 1.0508
and all the poles can be refined considering bounds of ±0.01 from its own
value. The limits of the zero at −0.9631 were defined larger since it influences
slightly the dynamics and should have freedom of movement during tuning.

WH-EA was executed 3 times with MaxGen = 5.0E6 and different number
of points was chosen for the nonlinearity. For all trials, the algorithm
was initialised with 6.0E4 individuals and the minimum distance between
two points was set to α = (vmax − vmin)/6n. For each estimated
Wiener-Hammerstein model the eRMS on the test data was computed, in
addition, the Normalised Root Mean Square Error (NRMSE) criterion was
used to quantify the goodness of fit between real and captured non linearity.
The results are reported in Table 2.1, for all cases piecewise linear interpolation
was used to connect the n breakpoints.

Table 2.1: Performance of the numerical example estimation using different numbers of
breakpoints (n) to represent static nonlinearity.

n NRMSE (%) eRMS
8 99.179 1.183E − 3
10 99.396 1.109E − 3
12 99.564 1.044E − 3

The poles and zeros of the BLA were correctly classified in the three
tests carried out. As can be seen in Table 2.1, the eRMS of the
Wiener-Hammerstein models decreased as the quality of the captured
nonlinearity increases. A reasonable model was scored with 12 points
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Figure 2.8: Convergence graph (top) and NRMSE of the captured non linearity (bottom)
for Wiener-Hammerstein estimation with n=12.

considering that the RMS noise was 9.98E − 4. A convergence graph for this
model is shown in Figure 2.8, during WH-EA execution, at 6e4th generation
the poles and zeros of the BLA were correctly classified and from there the
best individual of each generation conserved the genetic information for this
classification. Since the noise RMS is known, at g = 1.0E6 the performance
of the model was good enough, so the algorithm could have been stopped.
Anyway, 5.0E6 generations have been allowed in order to demonstrate the
great precision that the algorithm can achieve.

In 2.9 pole/zero locations of BLA model, obtained Wiener-Hammerstein model
and real system are compared. Notice how WH-EA has moved initial locations
trying to get to the true values improving modelling error.

On the other hand, a graphical comparison between real and captured
non linearity is shown in 2.10. Linear subsystems of the estimated
Wiener-Hammerstein model are represented by (2.46) and (2.47), while the
ordered pairs for the nonlinear static function are shown in 2.2.

Gw(z) =
0.0259

z − 0.9048
(2.46)
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Table 2.2: Coordinates of the estimated nonlinearity with n = 12.

i 1 2 3 4 5 6
vi -0.9694 -0.5794 -0.3716 -0.2479 -0.1251 0.1038
wi -0.3303 -0.3250 -0.2894 -0.2354 -0.1415 0.1178

i 7 8 9 10 11 12
vi 0.1996 0.2893 0.3363 0.4739 0.7648 1.0808
wi 0.2031 0.2558 0.2754 0.3126 0.3309 0.3317

Gh(z) = −0.01960
(z − 1.0512)(z + 0.9713)

(z − 0.9746 + 0.0365i)(z − 0.9746− 0.0365i)
(2.47)

2.8.2 Nonlinear system identification benchmark

The system to be modelled is an electronic nonlinear circuit with a
Wiener-Hammerstein structure (see 2.11). This system was built by [111] and
presented as a benchamark problem for system identification by [95].

The first linear dynamic system G1(s) is designed as a third order Chebyshev
filter (pass-band ripple of 0.5 dB and cut off frequency of 4.4 kHz). The
second linear dynamic system G2(s) is a third order inverse Chebyshev
filter (stop-band attenuation of 40 dB starting at 5 kHz). This system
has a transmission zero in the frequency band of interest. This can
complicate the identification significantly, because the inversion of such a
characteristic is difficult. The system was excited with a filtered Gaussian
signal (cut-off frequency 10 kHz). Data used for estimation corresponds to
interval tn ∈ [1, 100000] whereas test data corresponds to the remaining part
tn ∈ [101001, 188000]. In order to analyse the performance of estimation
methods the mean value of the simulation error (µ), the standard deviation of
the error (std), and the root mean square value of the error (eRMS) must be
calculated on test and estimation data [95].

Since first 5000 data samples just contain quantization noise, a set of 95000
input/output data tn = 5001, . . . , 100000 was used to estimate the BLA.
Multiple simulations were performed considering different combinations of
poles and zeros for the input/output model and for the noise model. For each
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(red o) and the estimated Gh model (green o).

BJ model the eRMS on test data set tn = 101001, . . . , 188000 was computed.
The BLA was obtained with 6 poles, 5 zeros and one sample delay for the
input/output model and 3 zeros and 3 poles for the noise model. The BLA
is fully described with KNL = 0.7840 and the pole-zero pattern is shown in
Figure 2.12. The eRMS of this linear model was of 56.159mV on test data and
43.143mV after removing trends and means. According to the BLA structure,
vector P 0

1 was coded with nc = 1, nr = 4, mc = 2 and mr = 2 as follows:

P 0
1 =[0.7605, −0.2733, 0, −3.4122, −30.2553, 0.6501, 0.7314, . . .

. . . , 0.8912, 0.8289, 0.7004, 0.4358, 0.1692].
(2.48)

During BLA estimation stage, different noise models were tested and it was
observed that all poles, real zeros within the unitary circle, and complex zeros
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Figure 2.11: Wiener-Hammerstein benchmark.

as they are located correspond to the dominant dynamics of the system, while
real zeros outside the unitary circle were more likely to vary their location.
This information was used to define the search space for refining the location
of poles and zeros:

Pmin =[0.7355, −0.2983, −0.025, −4.4122, −40.2553, 0.6251, 0.7064, . . .

. . . , 0.8662, 0.8039, 0.6754, 0.4108, 0.1442].
(2.49)
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Pmax =[0.7855, −0.2483, 0.025, −2.4122, −20.2553, 0.6751, 0.7564, . . .

. . . , 0.9162, 0.8539, 0.7254, 0.4608, 0.1942].
(2.50)

Bounds (2.49) and (2.50) limit search space in the system dominant dynamics
between ±0.025, while for z = −30.255 and z = −3.412, limits are between
±10 and ±1 respectively.

Eight points were assigned to represent static nonlinearity (n = 8). The search
space for this static nonlinearity was defined with Ω = 0.51, while the minimum
distance between two points was calculated with α = (vmax − vmin)/10n.
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Table 2.3: Performance indicators of the estimated Wiener-Hammerstein model. All values
are shown in mV.

BLA Wiener-Hammerstein
Estimation Test Estimation Test

µ −35.825 −35.951 5.60E − 4 1.10E − 5
std 42.108 43.143 3.22E − 1 3.06E − 1

eRMS 55.286 56.159 3.22E − 1 3.06E − 1

The algorithm was initialised with 5E3 individuals and 3E7 generations were
executed. The performance of the estimated Wiener-Hammerstein model
is shown in Table 2.3. In Figure 2.13 is depicted how the algorithm has
distributed pole/zero locations for both linear subsystems. Notice how some
of them were displaced to improve the modelling error. The output of
the estimated Wiener-Hammerstein model, the linear model error and the
nonlinear model error on test data are shown in Figure 2.14, while the DFT
spectra of this signals is shown in Figure 2.15.

Final estimated linear blocks Gw(z) and Gh(z) are shown in (2.51) and (2.52)
respectively, while coordinates for nonlinear function are shown in Table 2.4.
The estimated Wiener-Hammerstein model contains 26 parameters of which
14 are used to represent the static non linearity (without end points since they
can be located anywhere on their respective end segments, nevertheless, these
segments slopes are taken into account). Figure 2.16 shows how mutation
M.2 and mutation M.3 located the two-dimensional points to capture the
nonlinearity. As expected, due to the effect of mutation M.3, most of them
were concentrated on the curvature.

Gw(z) = 6.5e−4
(z + 0.0138)(z + 2.9034)(z + 26.76)

(z − 0.7243)(z − 0.7324 + 0.4361i)(z − 0.7324− 0.4361i)
(2.51)

Gh(z) = 0.0120
(z + 0.2635)(z − 0.7575 + 0.6513i)(z − 0.7575− 0.6513i)

(z − 0.8191)(z − 0.8899 + 0.1688i)(z − 0.8899− 0.1688i)
(2.52)

In contrast to other methods which generate good initial estimates by
splitting the poles and zeros of the BLA, WH-EA allows to identify
Wiener-Hammerstein models avoiding high user interaction which is
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Figure 2.13: Top: poles (x) and zeros (o) of the linear subsystem Gw (blue) and BLA
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fall outside the plot. Bottom: poles(x) and zeros (o) of the linear subsystem Gh (green) and
BLA (red).

an advantage compared to methods using QBLA, where at least two
intermediate procedures are required before fine-tuning all parameters of the
Wiener-Hammerstein model.

The eRMS of 0.306mV achieved with WH-EA on test data is quite acceptable
considering that the RMS of the quantization noise is 0.189mV . Respect
to the initial model (BLA), the error was reduced by a factor of 183.52
thanks to the captured non linearity and the updated pole/zero locations.
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Figure 2.15: DFT spectra of the modelled output signal (blue), linear model error (red)
and nonlinear model error(black).

Table 2.5 shows other proposals that have been tested on the benchmark. It
can be appreciate that the eRMS of WH-EA is slightly higher than others,
however not all estimated models have the same complexity. Some of them
use complex models with a greater number of parameters processing raw data
before identification whilst in this work, WH-EA is fed raw input/output data
without pre-processing operations.

Compared WH-EA with the proposals of [113] and [110] whose models have
the same complexity as the model estimated with WH-EA, the results are quite
similar, however to obtain a good final model with these two proposals it is
required that the BLA be estimated with high precision. In [110] at the BLA
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Figure 2.16: Captured non linearity as a piece-wise linear function with n = 8 by WH-EA
from the benchmark data. Notice that the non linear block characterisation only needs 14
parameters since the first and last straight segments can be defined just with their angles.

Table 2.4: Non linearity coordinates (n = 8, 14 parameters) estimated by WH-EA from
benchmark data.

i 1 2 3 4
vi -0.2168 0.1596 0.3819 0.4943
wi -0.1979 0.1440 0.3443 0.4276

i 5 6 7 8
vi 0.6047 0.7596 1.0811 1.3953
wi 0.4822 0.5248 0.5698 0.5901

division phase a false position of a pole or zero could cause the values of the
fractional powers to be close to 1/2 which would cause the user to make a bad
decision and the BLA is badly divided. This problem is much more critical in
[113] since the method is based on a graphical comparison between the poles
and zeros of the BLA and the poles and zeros of the QBLA. With WH-EA
this problem does not occur, since the evolutionary algorithm contemplates
possible errors that can be made in the estimation of the BLA. During the
algorithm evolution the binary code used for the classification of the poles and
zeros of the BLA can be changed without user interaction as the false positions
of the poles and zeros are corrected. This is an important advantage of WH-EA
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Table 2.5: Performance measurements on benchmark data (SYSID’09). All the values are
shown in mV. θ indicates the number of parameters used for the model.

Method/Technique eRMS (mV) θ
Nonparametric BLA, QBLA. ([99]) 0.278 44
Classification of poles and zeros using QBLA.
([113])

0.286 26

Fractional model parameterization. ([110]) 0.295 26
Advanced method. ([56, 102]) 0.30 64
WH-EA. 0.306 26
Brute force method. ([102]) 0.31 30
Scanning technique ([114]) 0.370 -
Polynomial nonlinear state space. ([81]) 0.42 797
Generalised Hammerstein-Wiener. ([118]) 0.481 47
Incremental nonlinear optimisation. ([106]) 0.679 25
LS-SVMs. ([26]) 4.070 -
Biosocial culture. ([74]) 8.546 34

since it is very likely that the BLA estimate is subject to errors due to noise
and non-linearity effects. This has been experimentally demonstrated, for this
reason many proposals carry out a final readjustment of the parameters of the
Wiener-Hammerstein model.
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Chapter 3

This chapter presents a unified approach for the identification
of Wiener, Hammerstein, and Wiener–Hammerstein models. This
approach is based on the use of multi-step excitation signals and
WH-EA. The chapter begins with a brief introduction to the
approach. The second section then presents the formulation of
the problem of identification in continuous time. Since the BLA
will not be used, the following section explains in detail the initial
linear model used in this approach. Then, in the fourth section
the optimisation problem is stated. The fifth section explains the
genetic coding used by the algorithm. Sections six and seven then
explain how to set up the search space for the dynamic and static
parts, respectively. Section seven also explains how to achieve a
common search space to identify models of Wiener, Hammerstein
and Wiener-Hammerstein. This common search area is the key to
the unified approach. Next, in section eight, several aspects related
to multistep inputs, such as excitation signals, are presented. To
end, in section nine, the presented methodology is applied to three
numerical examples and a real application (a thermal process).
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3.1 Introduction

In Chapter 2 an algorithm for identifying Wiener-Hammerstein models was
introduced. As presented, this algorithm requires the user to define a
search space where the static nonlinearity will be captured. This search
space was defined considering that the nonlinear block is in the middle of
two LTI subsystems, i.e., the search space restricted the formulation to a
Wiener-Hammerstein model.

When dealing with processes that have a static nonlinearity, it is highly likely
that the location of this nonlinearity around the dynamics will not be known,
that is, there will be an uncertainty about whether the process to be estimated
has the structure of Wiener, Hammerstein, or Wiener-Hammerstein. Given
this uncertainty, the user could use three different estimation methods, one
for each structure, and at the end compare the performance of the models
obtained to select the best process representation.

This chapter describes how WH-EA can be used to create a unified approach to
estimate Wiener, Hammerstein, and Wiener-Hammerstein models without the
need for the user to know a priori the structure of the process under test. This
unified approach is based on the use of WH-EA without any modification.
However, for WH-EA can identify any of the three structures without
distinction, an effective and common search space for static nonlinearity is
stated. This search space will be useful for any possible structure without the
need for their dimensions to change as WH-EA distributes the dynamics. It
must be taken into account that it is not an oversized search space, rather it is a
search space with optimal dimensions to capture static nonlinearity regardless
of the distribution of the dynamics.

Both for Wiener, Hammerstein and Wiener-Hammerstein models, a search
space for static nonlinearity can be defined using information from the input
and output data set used during the identification procedure. However, when
an arbitrary excitation signal (e.g., a Gaussian signal) is applied, the process
structure must be known to define an effective search space. Since this work
assumes that the process structure is unknown, from the input and output
data-set, a common search space useful for the three structures will be defined.
As it will be seen in Subsection 3.7 , this common search space will be possible
as long as the applied excitation signal leads the output of the process to
steady state and for this reason, multi-step signals will be used. In addition,
multi-step excitation will enable an effective exploration of different process
operation zones highlighting existing non-linearities (not possible if Gaussian
signals are used to excite the process). Note that Gaussian signals are more
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useful for estimating process dynamics and not necessarily allow to emerge
process non-linearities, especially when they are present at the extremes of its
range of operation, as in the case of saturation for example.

Since this approach will not use Gaussian-type signals, an initial linear model
obtained using standard linear identification methods can be used instead of
the BLA. In noisy environments and under the effect of nonlinearity, the initial
linear model will be a biased version of the real process dynamics. As it will
be shown, the potentiality of WH-EA is exploited to refine the location of the
poles and zeros of this initial model while they are distributed around of static
nonlinearity (which is also captured simultaneously).

The proposal presented in this chapter is useful to identify Wiener,
Hammerstein and Wiener-Hammerstein models without any beforehand
information about the type of structure. This is highly attractive to identify
dynamic processes where is known they are affected by an static nonlinearity
but there is uncertainty about its location around the dynamics. From the core
idea of this unified approach, other derived novelties are highlighted below:

• In this proposal the BLA is not used. This is a significant advantage since
the estimation of the BLA can be impractical in many real applications
due to the execution time required to excite the process under test.

• This approach uses multi-step excitation signals. This type of signals
allow non-linearities to emerge better. This is very useful since nonlinear
estimation starts from dynamics already known.

• Thanks to the normalisation of the dynamics and the use of multi-step
signals a common search space for the three types of models can be stated.
This search space is not dependent on any parameter provided by the user,
such as it was the case of the Ω parameter that it is necessary to define
it when using Gaussian type signals.

• The estimation is done in continuous-time, which gives the user a
clearer view of the process behaviour under test. On the other hand,
in continuous-time it is easier to differentiate between dominant and
non-dominant dynamics. This can be of great help to define the search
space for exploring new locations for poles and zeros.
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3.2 Continuous-time formulation for the unified approach

All the three block-oriented models addressed with this approach have a single
nonlinear element. In the case of the Wiener-Hammerstein models, two LTI
blocks Gw(s,ρw) and Gh(s,ρh) surround the non-linear element f(v(t),ρnl).
Wiener and Hammerstein models are specific cases of Wiener-Hammerstein
models when one of the linear blocks lacks dynamics. If dynamics are present
only at the input linear block, the resulting model is known as a Wiener model.
When dynamics are present only at the output block the resulting model is
known as a Hammerstein model.

In this approach it is assumed that the process to be identified is affected by a
static nonlinearity, however the block-model structure is not precisely known,
so the most general form is considered as a starting point for the problem
formulation. Let’s represent Wiener, Hammerstein, and Wiener-Hammerstein
models by:

y(t,ρ) = Gh(s,ρh)f(Gw(s,ρw)u(t),ρnl) (3.1)

ρ = [ρw, ρnl, ρh] (3.2)

where u(t) and y(t) are the model input and output respectively; vectors ρw
and ρh contain the parameters of the dynamic blocks, while ρnl contains the
parameters of static non-linearity.

Notice that equations (3.1) and (3.2) correspond to the formulation of
Wiener-Hammerstein models or generic case. In the case of Wiener models,
vector ρh does not exist and Gh = 1, whereas in the case of Hammerstein
models, vector ρw does not exist and Gw = 1.

This approach establishes a common framework for the identification of
Wiener, Hammerstein, and Wiener-Hammerstein models that is only possible
under certain constraints that are detailed in Section 3.7 . For all three cases,
the identification problem starts from (3.1) and is addressed as a classification
problem. The evolutionary algorithm will determine if there are dynamics
distributed between the two blocks, or if the dynamics are present just in one
of them.
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For the two LTI blocks to be parameterised, both LTI subsystems are
represented in the continuous-time domain as rational transfer functions in
factorised form (zero-pole-gain):

Gw(s) = Kw

∏nb
i=1(s+ zwi)/(zwi)∏na
i=1(s+ pwi)/(pwi)

(3.3)

Gh(s) = Kh

∏nd
i=1(s+ zhi)/(zhi)∏nc
i=1(s+ phi)/(phi)

(3.4)

where −pwi with i = 1 . . . na and −zwi with i = 1 . . . nb represent front LTI
poles and zeros, respectively. In a similar way −phi with i = 1 . . . nc and −zhi
with i = 1 . . . nd represent poles and zeros of the back LTI one. Static gains
of each linear block are represented by Kw and Kh, while s is the complex
Laplace variable. Considering this, let’s define vectors ρw and ρh as:

ρw = [Kw, zw1
, zw2

, . . . , zwnb , pw1
, pw2

, . . . , pwna ] (3.5)
ρh = [Kh, zh1

, zh2
, . . . , zhnd , ph1

, ph2
, . . . , phnc ] (3.6)

Notice that poles and zeros in (3.3) and (3.4) are not restricted to be real,
since −pwi , −phi , −zwi and −zhi can also represent complex poles or zeros
respectively.

Static non-linearity can also be represented in different ways. In this case,
piece-wise functions are used as WH-EA uses them:

w(t) = f(v(t),ρnl) (3.7)

where v(t) is the input signal to the nonlinear block, while ρnl contains the
abscissas and ordinates which define the breakpoint locations of the piece-wise
function. Notice that for a Wiener system y(t) = w(t), while for a Hammerstein
system v(t) = u(t).

The problem formulation is completed by the following assumptions:

A1. The model to be identified corresponds to a Wiener, Hammerstein, or
Wiener-Hammerstein system, where the structure is unknown but the
general dynamics must be known.
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A2. There is no cancellation of poles and zeros and the location of the poles
is consistent with a stable system.

A3. The system under test will be identified from an input/output data
set, where the input excitation signal u(t) is a multi-step signal (see
Subsection 3.7), while the measured output y(t) may be corrupted by
stationary additive noise n(t):

y(t) = y0(t) + n(t) (3.8)

3.3 Initial linear model

In the context of Wiener-Hammerstein models, obtaining a perfect linear
dynamic model in the presence of noise and non-linearities is not an easy
task, however gathering an overview of system dynamics can be a good
starting point. The BLA is an option that has been used generally in the
estimation of Wiener-Hammerstein models. From a theoretical point of view,
the fastest and most robust method to find the BLA hides the effect of noise
and non-linearities, and so the dynamics can be captured with great precision
[93]. However, from a practical point of view, obtaining the BLA is not always
possible, or may require the use of multiple realisations, especially when the
robust method is used.

In practical applications, the BLA can present a lack of accuracy, once
its poles/zeros have been distributed and the non-linearity captured, and
refinement of the dynamics is always possible to improve model preciseness.
In this approach, it is assumed that the initial linear model is not perfect but
it can be fine-tuned during estimation.

The initial model can be obtained as usual from the response to a step signal.
The process under test can be excited with a small amplitude step avoiding
excitation of the non-linearity. Due to its static nature, any process operating
point can be selected to inject the step signal. Estimated models in different
operation zones will give similar dynamics but with different static gains.1

The purpose of this section is not to discuss methods for linear system
identification. For a direct estimation in continuous-time and to obtain
models with better precision, simple refined instrumental variable method

1It is advisable to avoid zones near operation limits since the non-linearity can be stronger due
to saturation phenomena.
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for continuous-time models (SRIVC) can be used [119, 33], available in the
CONtinuous-Time System IDentification (CONTSID) toolbox for Matlab [30,
80, 32].

Since that initial linear model estimation is based on a step response, it is
assumed that a small amount of data will be used. In this regard, the Modified
minimum Description Length (MDL) criteria is a good option to select the
best linear structure [17]:

MDL =
V (ρl,Z)

NL

epc(nρl,NL) (3.9)

where ρl are the estimated model parameters, Z is a two-dimensional vector
containing the input/output data, nρl is the number of parameters in the
estimated model, NL represents the amount of data used for estimation,
V (ρl,Z) is the quadratic-like cost function depending on the difference
between measurements and model (ε), computed using (3.10), and pc(nρl, NL)
is the term known as the corrected penalty and is computed using (3.11).

V (ρl,Z) =
1

2
εTε (3.10)

pc(nρl, NL) =
ln(NL)(nρl + 1)

NL − nρl − 2
(3.11)

3.4 Optimisation problem statement

From the initial linear model and an input/output data set {u(t), yr(t)}Nt=1,
WH-EA is used to find the best set of parameters that represent the nonlinear
model. The procedure includes the refinement of the initial linear model, the
characterisation of static non-linearity, and the pole/zero distribution of the
initial linear model around the static non-linearity. The best set of parameters
is assigned to a model of Wiener, Hammerstein, or Wiener-Hammerstein. For
this purpose the identification problem is stated as an optimisation problem
based on a prediction-error method and the mean absolute error criterion:2

2Notice that any other criterion could be used in the proposed method, such quadratic or
maximum error criteria.
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εNL(t,ρ) = yr(t)− y(t,ρ) (3.12)

J(ρ) =
1

N

N∑
t=1

abs(εNL(t,ρ)) (3.13)

The solution of the optimisation problem is written as:

ρ̂ = arg min
ρ
J(ρ) (3.14)

where ρ̂ contains the best set of parameters to represent the nonlinear model.

3.5 Genetic coding

WH-EA uses a coding in which a Wiener-Hammerstein model is represented by
three portions of genetic information. The first one, P, contains information
about pole and zero locations. A second segment C contains binary
information classifying poles and zeros, i.e. which ones belong to Gw and
which to Gh. Segment B contains breakpoint coordinates representing the
static non-linearity. This coding was defined in detail in Chapter 2, however,
it should be noted that the formulation of the identification problem was done
in discrete time.

The identification problem for this unified approach is formulated in continuous
time, however, this does not have any implication that the genetic coding must
be changed. One of the advantages of WH-EA is that it can be easily used
without any alteration to identify models in continuous and discrete time.

In this sense, all the parameters of vector ρ are encoded in vectors P , B
and C. Figure 3.1 shows an example of how an individual has been coded to
represent a nonlinear model in continuous time, where the initial linear model
has six poles (four reals and two complexes) and three zeros (one real and two
complexes). According to this structure, mr = 4, nr = 1, mc = 1 and nc = 1.
On the other hand, it is assumed that static non-linearity is represented with
five points (n = 5). Notice the correspondence between vectors C and P : if
an element of vector C has the value 1, the corresponding zero (or pole) of P
is located in the input LTI subsystem Gw(s), while a 0 value in C indicates
that it is located in the output block Gh(s). In Figure 3.1, the first element
of C is zero, so the first one of P belongs to Gh(s). Since the first element
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Figure 3.1: Example of an encoded individual and the resulting nonlinear model.

of P contains the real part of a complex zero, the output LTI subsystem
must include this zero −1.4 + 0.6i and its conjugate −1.4 − 0.6i. Since the
second element of C is 1 then the second one of P is located in the input LTI
subsystem. Under this same logic, the poles are distributed between both LTI
subsystems.

As generations go by, the genetic information of individuals is modified by
genetic operations to find the best solutions to the identification problem. A
modification in the genetic information of P implies an exploration of new
locations for the poles and zeros, while a change in the genetic information of
C means that a new distribution of poles and zeros is tested. On the other
hand, a modification in B implies a change of coordinates of a breakpoint. In
any case, individual modifications must respect a search space, which must be
adequately defined to facilitate the convergence of the algorithm.
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3.6 Search space for poles and zeros

New pole and zero locations are bounded by Pmin and Pmax (components of
vector P are element-wise bounded by vector Pmin and Pmax). Bounds in
Pmin and Pmax are defined around the location of each pole or each zero of
the initial linear model. They can be set according to the sensitivity of poles
and zeros. That is, closest to the imaginary axis, smaller the search space, and
conversely farthest to the imaginary axis, larger bounds. By way of illustration,
assuming that the poles and zeros in the example of Figure 3.1 belong to the
initial linear model, vectors Pmin and Pmax could be set as follows:

Pmin = [−1.7, −1.1, 0.3, −1.0, −1.4, −2.6, −0.8, −4.2, 1.0] (3.15)
Pmax = [−1.1, −0.5, 0.9, −0.4, −0.8, −1.6 − 0.2, −2.2, 1.6] (3.16)

In this case, bounds have been set so that the pole in −3.2 can move ±1 around
its value, the pole in −2.1 can move ±0.5 around its value and all other poles
and zeros have a freedom of movement of ±0.3. Since there is no recipe to
define the bounds precisely, other ones could be set for this example. However,
it should be noted that too large bounds could cause the algorithm to converge
more slowly, while too small bounds could cause an ineffective exploration.

3.7 Search space for static nonlinearity

In the present approach, the problem of identifying Wiener, Hammerstein, and
Wiener-Hammerstein models is addressed as an optimisation problem that is
solved with WH-EA. For the algorithm to converge successfully and the best
model to be estimated, it is necessary to define a suitable search space for static
non-linearity. The minimum and maximum values of the input and output
signals of the nonlinear block give a clear idea of the domain and codomain of
the static non-linearity, and therefore, from this information it is possible to
define its search space. However, it is necessary to point out that the minimum
and maximum values of the input signal to the nonlinear block depend on the
excitation signal used and the location of the non-linearity around the dynamics
of the process, while the minimum and maximum values of the output signal
depend on the input signal to the block and the non-linearity itself. This can be
clearly seen in Figure 3.2, where a Gaussian signal has been used to excite three
models containing the same dynamics and the same static non-linearity. These
models differ only in the distribution of the dynamic that has intentionally been
handled to give rise to the three structures that are addressed in this chapter.
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Figure 3.2: Example of search space limits for static non linearity in Wiener, Hammerstein,
and Wiener-Hammerstein models when they are excited with a Gaussian signal.

In the case of Wiener and Wiener-Hammerstein models, the limits that define
the horizontal search space of the non-linear static function are affected by
the static gain and the dynamics of the linear input block. Since the linear
blocks of these two models are different, the limits are also different. For
example, for the Wiener-Hammerstein model defined in Figure 3.2 the limits
that horizontally define the search space for static non-linearity are −1.68 and
1.85, while for the Wiener model the limits are −1.10 and 1.12. In the case
of the Hammerstein model, these limits could be obtained directly from the
minimum and maximum values of the excitation signal (−2.38 and 2.43). It is
evident that the limits that horizontally define the search space are different
for the three types of models. This difference is also reflected in the vertical
limits – even though the three models have the same static non-linearity. The
fact that there are different search spaces makes it necessary to know a priori
the process structure under test in order to define an adequate search space.
If it is not possible to know the process structure, an oversized search space
could be defined; however, this will surely complicate the convergence of any
search algorithm.

This section shows how to create a unified search space for the three types of
models. This search space is independent of the distribution of the dynamics,
so the search algorithm will not be restricted to estimating a certain structure.
In other words, thanks to the creation of this unified search space, WH-EA will
be able to estimate Wiener, Hammerstein, and Wiener-Hammerstein models
without the need for the user to specify a priori the process structure.
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For a better understanding, prior to explaining how to create a unified
search space, in the first instance, it is shown how to determine the search
space of Wiener and Hammerstein models assuming an arbitrary excitation
signal (e.g., a Gaussian signal). The search space for static non-linearity of
the Wiener-Hammerstein models was addressed in Section 2.4. This search
space was defined as a function of the minimum and maximum values of
the intermediate signals v(t) and w(t). These variables are not measurable,
however, through (2.17), (2.18), (2.19), and (2.20) it is possible to find the
corresponding minimum and maximum values.

For Wiener and Hammerstein models, it will also be assumed that the
intermediate signals are not measurable and the dynamic blocks are
non-reversible. Therefore the only way to determine the search space is by
using information from the input and output data and from the initial linear
model. As in Wiener-Hammerstein models, for both cases addressed in this
section it will be assumed that the input signal u(t) is bounded by a maximum
value umax and a minimum value umin with a mean value of umean. In the
same way, the output y(t) is bounded by a maximum value ymax, a minimum
value ymin and it has a mean ymean.

3.7.1 Search space in Wiener models

In this case, the input signal u(t) produces an output v(t) and non-linearity
search space is horizontally bounded by (vmin, vmax) whereas that vertical
bounds will be given by ymin and ymax.

It is well known that the identification of Wiener models is not as complex as
the identification of Wiener-Hammerstein models. In a Wiener identification,
once the linear block is known, the signal v(t) can be obtained directly,
therefore to define the search space for static non-linearity it would not be
necessary to use (2.17) and (2.18). However, estimation of the intermediate
variable v(t) can be useful when dealing with Wiener models. This approach
assumes that the distribution of the dynamics around non-linearity is unknown,
therefore it is not possible to estimate v(t), rather it is necessary to establish
a search space for non-linearity that is common for all three structures.

To define the horizontal bounds of the search space of a Wiener model, without
loss of generality, we could follow the same guidelines that were followed
for Wiener-Hammerstein models, that is, values of vmin and vmax can be
determined with (2.17) and (2.18), considering the scaling factor Ω. The static
non-linearity search space for a Wiener model is shown in Figure 3.3. The

60



3.7 Search space for static nonlinearity

Figure 3.3: Search space for nonlinear static function in a Wiener model.

extremes of the search space give rise to the straight line whose slope KNL

must match the static gain of the initial linear dynamic model.

3.7.2 Search space in Hammerstein models

In a Hammerstein model, the input signal u(t) enters the nonlinear block,
therefore umin and umax horizontally define the search space for static
non-linearity, while vertical bounds are defined by wmin and wmax. To estimate
the intermediate variable w(t), the dynamic block needs to be invertible, which
is impossible from a practical point of view. Further, our approach assumes
that pole/zero distribution around non-linearity is unknown, therefore for the
sake of establishing a common search space for the three structures, wmin
and wmax can be determined following the same procedure that was used for
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Figure 3.4: Search space for nonlinear static function in a Hammerstein model.

Wiener-Hammerstein models. The search space for the static non-linearity of
a Hammerstein model is illustrated in Figure 3.4.

3.7.3 A common search space definition for Wiener,
Hammerstein, and Wiener-Hammerstein models

According to previous sections, when an arbitrary signal u(t) excites the system
(for example, a Gaussian signal) horizontal and vertical limits that define the
search space for static non-linearity are different for the three types of models.
This fact implies that the identification algorithm should change the search
space over which the non-linearity is captured at the same time that distributes
the dynamics. To solve this drawback, a common and fixed search space for the
three types of structures will be defined. To achieve a common search space,
it is necessary that, both horizontal and vertical limits of the search space
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for each model are the same. Therefore, it is necessary that in the Wiener
and Wiener-Hammerstein models, when an excitation signal u(t) is applied,
the dynamics and static gain of the Gw(s) block causes an output signal v(t)
whose minimum and maximum values are equal to the minimum and maximum
values of u(t) respectively. That is, vmin = umin and vmax = umax.

With the static gain of Gw(s) normalized to one, the amplitude of the signal
v(t) will only be affected by the dynamics present in this linear block. The
effect of the dynamics present Gw(s) on v(t) is represented by the Ω factor.
According to (2.17) and (2.18), so that vmin = umin and vmax = umax, Ω must
be one. However, Ω cannot take any value without taking into account the
input signal. For example, if a Gaussian signal is used to excite the system, the
output of Gw(s) will be modified in amplitude and the corresponding minimum
and maximum values of u(t) and v(t) will be different. However, if an input
causes the output of Gw(s) in a Wiener or Wiener-Hammerstein model to reach
steady-state, both amplitudes will be coincident since Gw(s) has unity gain.

Similarly, vertical bounds must be coincident to achieve a common search space
for the three types of models. For this to occur, amplitudes of w(t) and y(t)
must be equal. If u(t) brings to y(t) at steady-state, normalising the static gain
of Gh(s) to 1 would mean that vertical bounds coincide for the three cases. A
good option to obtain the output of a dynamic system at steady-state is to
apply step inputs with sufficient duration. Figure 3.5 shows how the horizontal
and vertical limits that give rise to the search space of static non-linearity are
the same for the three types of models. The models used are the same as
in Figure 3.2, the difference is that the static gains of the dynamic blocks in
Figure 3.5 have been normalised to 1. A multi-step signal has been used to
excite the three models. The steps duration ensure that the response of the
three models reaches steady-state at each step change. As can be seen, the
limits that define horizontally the search space of the three models are 0 and
4.68. One great advantage of having a unified search space is that these limits
can be obtained directly from the minimum and maximum values of the input
signal. Similarly, the limits that vertically define the search space are the same
for the three models (0 and 26.5). These limits can be obtained directly from
the minimum and maximum values of the output signal.

A good option to obtain the output of a dynamic system at steady state is to
apply step inputs of sufficient duration. In Subsection 3.8 more details on how
to design this signal will be given.

With the above discussion, the common search space for the three types
of models can be constructed directly from input u(t) and output y(t)
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Figure 3.5: Example of search space limits for static non linearity in Wiener, Hammerstein,
and Wiener-Hammerstein models when they are excited with a multi-step signal.

measurements. If the gain of the initial linear model is positive, the search
space will be defined by coordinates (umin, ymin) and (umax, ymax), while if it
is negative, the search space will be defined by (umin, ymax) and (umax, ymin).

3.8 The multi-step signal

Previous sections state that the process under test must be excited with an
input based on steps. Step duration must be long enough for the process
to reach steady-state. Since it is intended to capture a non-linearity that is
present throughout the entire process operating range, it will be necessary to
design a multi-step signal with different amplitudes.

For this aim, three important aspects must be considered: number and
amplitude of steps; minimum step amplitude and step duration. All the steps of
the excitation signal can have a fixed duration, based on the process dynamics
under test. This duration can be easily established based on the initial tests
in which the initial linear model was obtained.

A very small amount of data could mean that non-linearity is not captured
correctly and the dynamics will not be distributed properly. A large amount
of data would lead to a satisfactory estimate, but could demand an important
computational cost. How much data needs to be used for identification of a
nonlinear model deserves debate, and the vast majority of nonlinear model
identification methods require a large volume of input and output data.
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Calculating the static non-linearity with precision will lead to a good dynamic
classification. Therefore an effective exploration of the entire process operating
range will be required and step amplitudes must change within input limits
by varying randomly – and the number of changes will depend on the desired
precision. Further, minimum step amplitude should also be considered when
designing the multi-step signal. Amplitude changes of the steps will give rise
to transitory stages, which contain information to classify the dynamics. If
they are very small, these transitory intervals will not contain substantial
information for the classification. A suitable scenario to classify the dynamics
is achieved when the non-linearity is visible. Therefore, amplitude changes of
the steps must be large to highlight non-linearity.

Figure 3.6 reflects this fact through a numerical simulation example. Four
operating points of the system are explored for two scenarios (large/small step
input changes) where the same static non-linearity and the same dynamic
have been considered. The non-linearity consists of a cubic function (1/64x3),
while the dynamic is formed with three poles (−2.4; −1.5 + 0.856i; −1.5 −
0.856i) and a real zero (−1.56). For each case, three simulations were
executed corresponding to Wiener, Hammerstein, and Wiener-Hammerstein
models and dynamic blocks were normalised with unit static gain (for the
Wiener-Hammerstein model, the zero and the complex poles were placed before
the non-linearity, while the remaining pole was placed afterwards).

In the lower graph of Figure 3.6, no difference between the responses can
be seen when the excitation signal has small amplitude changes. Conversely,
the upper graph shows a marked difference between responses when the
excitation signal has larger amplitude changes. Table 3.1 shows the differences
between responses as mean absolute error (MAE), and reveals the advantage
of using excitation signals with large amplitude changes. This means that the
identification algorithm has more information to distinguish if the dynamics
are in front, behind, or distributed on both sides of the non-linearity. Notice
how lowMAEss values imply no significant difference between the structures
formed as the algorithm cannot split the dynamics properly.

Multi-step signals are ideal to highlight the non-linearities of a process,
however, this type of signal has some limitations that must be evaluated by
the user prior to the estimation of a process. A multi-step signal is enabled
to excite the dominant dynamics of a process. In contrast, a well-designed
Gaussian signal or equivalent is enabled to excite all the oscillatory modes of
a process. The persistence of the Gaussian signal enables capturing all the
dynamics; however, from a practical point of view, there are two important
aspects that must be considered. Precision is not the only criterion to consider
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Figure 3.6: Responses of Wiener (blue), Hammerstein (green), and Wiener-Hammerstein
(red) models when they are excited with a multi-step signal (dashed) with large (top) and
small (bottom) amplitude changes.

for the selection of a model, it is also necessary to consider its complexity. For
example, for practical control applications, a model with an excessive number
of poles and zeros is not always necessary, and in many cases, only the dominant
dynamic is required. On the other hand, to excite all the oscillating modes of
a process, the Gaussian signal must be of a long duration. For this reason, its
use is impractical in real processes with relatively slow dynamics. Table 3.2
shows a comparison of the characteristics of a Gaussian signal and a multi-step
signal.

The issues of using Gaussian signals in processes with slow dynamics are further
aggravated when the BLA is required, as its estimation may require multiple
realisations. The proposed unified approach, besides enabling estimation
of Wiener, Hammerstein, and Wiener-Hammerstein models without a priori
information from the user, provides a practical alternative to estimate processes
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Table 3.1: Model comparison calculated as MAE when they are excited with large
amplitude changes (MAEls) or low ones (MAEss).

Model comparison MAEls MAEss
Wiener - Hammerstein 0.2396 0.0342
Wiener - Wiener-Hammerstein 0.0895 0.0126
Hammerstein - Wiener-Hammerstein 0.1653 0.0235

Table 3.2: Comparison of characteristics between a multi-step signal and a Gaussian signal.

Features Multi-step signal Gaussian signal
Frequency
content.

Low. High.

Applicability on
real processes.

Highly applicable. It is not always possible.

Information
on static
non-linearity.

High information
content.

Lower information
content, especially if
the non-linearities are
at the extremes of
the process operation
range.

Information on
the dynamics.

Less information
content. Ideal to
estimate the dominant
dynamics of a process.

High content if the
signal is well designed.
Ideal to estimate all the
dynamics of a process.

Complexity. Easy design. Not so simple to design.
The bandwidth must be
selected carefully.

Duration. Do not need to be so
extensive.

Must be extensive to
excite all the oscillatory
modes of a process.

where the BLA estimation is not possible, either because they are slow
dynamically, or they are not enabled to handle Gaussian signals.

67



Chapter 3. A unified approach for the identification of Wiener, Hammerstein and...

3.9 Application examples

This approach was validated with three numerical examples and a real thermal
process. In each case, the initial linear model was identified with the Matlab
CONTSID Toolbox using the command srivc. Nonlinear identification was
executed in continuous time using WH-EA. For this, simulations of the
dynamic models in the objective function were performed with the lsim
command of Matlab, while points of non-linearity were interpolated to define
a piece-wise linear function. WH-EA parameters were set the same for the
four identification problems: ξ = 0.25; δzp = 0.75; δnl = 0.75; ηmin = 0.35. In
addition, initial and final standard deviations for mutations were set to 20 and
1 respectively.

3.9.1 Numerical Example 1

For the first numerical example, an LTI subsystem of four poles and one zero
is connected in series to a static nonlinearity to give rise to a Wiener structure
(see Figure 3.7). Static nonlinearity consists of a sigmoid hyperbolic tangent
function "tansig" (3.17), which symmetrically saturates large values of the
independent variable.

SNL = 50(1 + tansig(0.05(x− 50))) (3.17)

The LTI subsystem used for this example has unitary static gain. Although
the methodology proposed in this chapter enables the identification of
block-oriented models with a static non-linearity and LTI subsystems with
any gain, unitary gains have been assumed simply for convenience. This will
allow the captured static nonlinearity to be compared with the real nonlinear
function, to evaluate the precision that can be achieved with WH-EA.

To estimate the initial linear model, the simulated system took half their
operation range (50%). From this point, the input was modified twice
consecutively to give rise to two steps. Each step had a temporary duration
of 20s. The first step had a positive amplitude of 2.5%, while the next had
the same amplitude but negative, forming a rectangular pulse. To emulate a
real situation Gaussian noise with a power of -30db was added on the system
output. Input and output data were sampled with a period of 10ms. Figure
3.8 depicts the excitation signal and the response of the simulated system.
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Figure 3.7: Numerical example 1: Wiener structure.
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Figure 3.8: Input (black dashed-line) and output (blue solid-line) data for initial linear
model estimation (numerical example 1).

The data obtained with the first input change t(15 . . . 35) was used to estimate
the initial linear model, while the data belonging to the second input change
t(36 . . . 56) was used for validation purposes. To avoid problems with initial
conditions, offset was removed from data. Fourteen linear models were
estimated from second to fifth order considering only strictly proper systems
(number of zeros smaller than the number of poles). For each estimated model,
the quadratic mean error (MSE) was calculated on the estimation (MSEe)
and validation (MSEv) data sets. In addition, for better support in selecting
the best structure, the modified MDL criterion was calculated using (3.9).

The results of the estimates are shown in Table 3.3. According to lowest value
of MDL criterion, the best estimated model was of four poles and one zero
(3.18), which corresponds to the real structure of the linear dynamics that
was used for the numerical example. This selection is corroborated by MSEe
values.3

3From the model of four poles and a zero in cases where the MSE decreases, this decrease is
practically negligible.
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Table 3.3: Ranking of estimated linear models for numerical example 1 (Wiener system).
Models 4p, 2z/5p, 3z/5p, 4z/5p have been excluded due to their high MCL values.

Structure MSEe MSEv MDL
2p 4.61E-2 4.66E-2 2.34E-2
1z/2p 3.13E-2 3.19E-2 1.59E-2
3p 2.38E-3 2.49E-3 1.21E-3
1z/3p 1.50E-3 1.51E-3 7.71E-4
2z/3p 1.17E-3 1.18E-3 6.05E-4
1z/4p 1.01E-3 9.81E-4 5.20E-4
2z/4p 1.01E-3 9.82E-4 5.22E-4
3z/4p 1.01E-3 9.92E-4 5.24E-4
5p 4.46E-2 4.42E-2 2.29E-2
1z/5p 1.01E-3 9.83E-4 5.22E-4

Gwlne(s) =
23.96(s+ 1.52)

(s+ 2.51)(s+ 0.85)(s+ 0.70 + 2.51i)(s+ 0.70− 2.51i)
(3.18)

For nonlinear identification, two multi-step inputs were generated, one for
estimation and another for validation purposes. Both signals were designed
with 50 steps of random amplitude to explore the entire operating range of
the input process (0-100%). Each step had a time duration of 25s and the
minimum step amplitude was restricted so that it is not less than 18 units.
The simulated system was excited with both signals separately. Input and
output data for both cases were sampled with a period of 10ms. From the
estimation data set, the minimum and maximum values of the input and output
signals were obtained to define the search space for the static non-linearity.
These values were: umin = 0, umax = 100, ymin = 0.559 and ymax = 99.44.
Taking into account that the static gain of the estimated initial linear model is
positive, the search space for static non-linearity was defined with (umin, ymin)
and (umax, ymax).

Once the search space for static non-linearity was defined, WH-EA was
configured according to the data of Table 3.4. In addition, P 0

1 was coded
with nc = 0, nr = 1, mc = 1, mr = 2, and pole/zero locations of (3.18).
Further, all bounds to search new pole-zero locations were set in ±0.1.

At the end of the generations a Wiener model was obtained, that is, WH-EA
distributed the dynamics correctly without the need for the user to specify
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Table 3.4: Summary of WH-EA parameter settings for numerical examples

Parameter Description Value
MaxGen Generations number 5E6
NP Population size 5E3
n Number of points to represent non-linearity 18
α Minimum distance between two points 0.9

Figure 3.9: Validation results for numerical example 1: real output (red solid-line) and
model output (blue dashed-line).

the type of structure to be identified. The value reached for the objective
function (MAEe) was 4.415E − 2, while the absolute error on the validation
data set (MAEv) was 5.567E − 2. Figure 3.9 depicts a comparison on the
validation data set between the Wiener system output and the estimated model
one. A magnification on a portion of data is also shown to demonstrate the
great precision of the estimated model. Figure 3.10 shows how the 18 points
representing the static non-linearity were located within the search space. To
verify that it has been captured with great precision, the nonlinear function
tansig was included in the graph.
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Figure 3.10: Numerical example 1: Comparison between real nonlinear function tansig
(red) and captured non-linearity (blue circles).

3.9.2 Numerical Example 2

For this numerical example, the same linear subsystem and the same static
nonlinearity of the previous numerical example were used, however, the
blocks were permuted to give rise to a Hammerstein model (see Figure 3.11).
Similarly, the same input signals that were used in the previous example were
used to excite this simulated model. With the corresponding data set for linear
estimation, fourteen different linear models were tried. As in the previous case,
only strictly proper models from second to fifth order were considered. The
results of the estimates are shown in Table 3.5. The best linear model (3.19)
according to the MDL criterion was four poles and one zero corresponding to
the order of the real system.

From the nonlinear estimation data set, the search space for static non-linearity
was defined in the same way as it was for the previous numerical example. For
this case, the minimum and maximum values of the input and output signals
were: umin = 0, umax = 100, ymin = 0.236 and ymax = 99.45.

Ghlne(s) =
23.87(s+ 1.53)

(s+ 2.51)(s+ 0.85)(s+ 0.70 + 2.51i)(s+ 0.70− 2.51i)
(3.19)
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9.56(s+1.50)

(s+2.50)(s+0.85)(s+0.70+2.51i)(s+0.70−2.51i)SNL
u(t) w(t) y(t)

Figure 3.11: Numerical example 2: Hammerstein structure.

Table 3.5: Ranking of estimated linear models for numerical example 2 (Hammerstein
system). Models 4p, 3z/5p, 4z/5p have been excluded since their MDL values were very
high:

Structure MSEe MSEv MDL
2p 4.57E-2 4.565E-2 2.32E-2
1z/2p 3.29E-2 3.29E-2 1.68E-2
3p 2.29E-3 2.48E-3 1.17E-3
1z/3p 1.38E-3 1.45E-3 7.08E-4
2z/3p 1.13E-3 1.14E-3 5.82E-4
1z/4p 9.45E-4 9.59E-4 4.85E-4
2z/4p 9.43E-4 9.59E-4 4.86E-4
3z/4p 9.42E-4 9.60E-4 4.87E-4
5p 4.26E-2 4.28E-2 2.19E-2
2z/5p 9.46E-4 9.59E-4 4.89E-4

For non-linear estimation, WH-EA was executed considering the configuration
parameters of Table 3.4. In addition, P 0

1 was coded with nc = 0, nr = 1, mc =
1, mr = 2, and pole/zero locations of (3.19), were used. Further, all bounds to
search new pole-zero locations were set in ±0.1. At the end of the generations,
WH-EA distributed the dynamics correctly, this is, a Hammerstein model was
obtained. The value reached for the objective function (MAEe) was 4.328E−2,
while the absolute error on the validation data set (MAEv) was 6.526E −
2. Figure 3.12 depict a comparison on the validation data set between the
simulated output generated by the numerical example and the output of the
estimated model. On the other hand, Figure 3.13 shows how the 18 points were
distributed within the search space to capture the static non-linearity. As in
the previous case, the real nonlinear function was introduced in this graph to
visualise the precision achieved with WH-EA.
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Figure 3.12: Validation results for numerical example 2: real output (red solid-line) and
model output (blue dashed-line).
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Figure 3.13: Comparison between real nonlinear function tansig (red) and captured
non-linearity (blue circles). Results obtained on the numerical example 2.
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1.41(s+1.50)
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Figure 3.14: Numerical example 3: Wiener-Hammerstein structure.

Table 3.6: Ranking of estimated linear models for numerical example 3
(Wiener-Hammerstein system). Models 4p, 1z/5p, 2z/5p have been excluded due to high
MDL values.

Structure MSEe MSEv MDL
2p 4.53E-2 4.61E-2 2.30E-2
1z/2p 3.09E-2 3.11E-2 1.57E-2
3p 2.50E-3 2.32E-3 1.27E-3
1z/3p 1.50E-3 1.46E-3 7.68E-4
2z/3p 1.18E-3 1.11E-3 6.07E-4
1z/4p 1.02E-3 9.67E-4 5.23E-4
2z/4p 1.02E-3 9.69E-4 5.25E-4
3z/4p 1.02E-3 9.70E-4 5.26E-4
5p 4.96E-2 4.96E-2 2.55E-2
3z/5p 1.01E-3 9.72E-4 5.28E-4
4z/5p 1.01E-3 9.73E-4 5.30E-4

3.9.3 Numerical Example 3

For this numerical example, a Wiener-Hammerstein model was constructed
using the same dynamics and the same static nonlinearity of the previous
examples. In this case, the front LTI subsystem was formed with the two
complex poles and a gain of 6.80, while the back LTI subsystem was formed
with the two real poles, the zero, and a gain of 1.41 (see Figure 3.14). The
excitation signals and the procedures for linear and non-linear estimation were
the same as those used in the previous examples. Ranking of linear estimates
are shown in Table 3.6. As in the previous cases, the best linear model
according to theMDL criterion was of four poles and one zero (3.20), which is
consistent with the dynamics of the real system even though for this case the
dynamics was distributed around the static non-linearity. This demonstrates
the great effectiveness of the linear estimation method used in this approach.
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Figure 3.15: Validation results for numerical example 3: real output (red) and model
output (blue dashed line).

Gwhlne(s) =
24.195(s+ 1.549)

(s+ 2.598)(s+ 0.854)(s+ 0.709 + 2.507i)(s+ 0.709− 2.507i)
(3.20)

As can be seen, the linear models obtained in (3.18), (3.19) and (3.20) differ
very little from each other and are almost equal to the real dynamic model.
This is because the step signal used for the three identification experiments has
a small amplitude which hides the effect of non-linearity. This corroborates
what was indicated in Section 3.8. A step signal with a small amplitude change
is useful for linear estimation, however, for nonlinear estimation, it is necessary
that the non-linearity is notorious, for this the amplitude changes of the step
signal must be large.

As in the previous cases WH-EA was configured with the parameters of Table
3.4. In addition, the first individual of the population (P 0

1 ) was coded with with
nc = 0, nr = 1, mc = 1, mr = 2, and pole/zero locations of (3.20). According
to the minimum and maximum values of the input and output signals, the
search space of the static non-linearity was defined with the coordinates:
(0, 0.5546) and (100, 99.443).
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Figure 3.16: Example 3: Comparison between real nonlinear function tansig (red) and
captured non-linearity (blue circles).

At the end of the generations, a Wiener-Hammerstein model was obtained and
the dynamics of both LTI subsystems was consistent with the real system.
The value reached for the objective function (MAEe) was 3.768E − 2, while
the absolute error on the validation data set (MAEv) was 5.117E − 2. Figure
3.15 depict a comparison on the validation data set between the simulated
output generated by the numerical example and the output of the estimated
model. On the other hand, Figure 3.16 shows a comparison between the real
and estimated non-linearity.

3.9.4 Thermal process identification

The real process used to validate this approach consists of a lab scale thermal
process based on a Peltier cell. Principle of operation of this device is based
on nonlinear Peltier and Seebeck effects. Figure 3.17 shows the architecture of
the system that was assembled to operate the process and acquire its output
variables. As can be seen, a fan-radiator has been coupled to the hot face of
the Peltier cell. To measure the temperature of the cold face (Tcold) a type
k thermocouple was used, while the temperature of the hot face (Thot) was
measured with an LM35 sensor. A power supply regulated with an external
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Figure 3.17: The real process based on a Peltier cell.

voltage signal ua (0 . . . 4.5V dc) was used as an actuator to apply voltage to
the Peltier cell. For all the experiments involved, the input/output process
signals were sampled at 100ms using a general purpose acquisition card with
12 bits A/D and D/A converters. The process was identified based on the
input signal ua and the temperature gradient between the cold and hot surfaces
(∆T = Tcold − Thot).

A two-step signal was designed to identify and validate the initial linear model.
This signal was injected after the process was taken to the middle of its
operating range (2.25V). The first step had a positive amplitude of 0.225V
(5% of the maximum voltage), while the next step had the same amplitude
but negative. To ensure that the process reaches steady state, each step had a
temporary duration of 700s. The applied input signal and the response of the
system are shown in Figure 3.18.

The data obtained with the first step change t(0 . . . 750) was used to estimate
the initial linear model, while the data belonging to the second input change
t(751 . . . 1451) was used for validation. To avoid problems with initial
conditions, offset was removed from data sets. Different linear models were
estimated from second to fifth order. Results of the estimates are shown in
Table 3.7. For each estimated model the MDL criterion, error on estimation,
and error on validation data sets were computed. Models 2z/3p, 3z/4p, 4z/5p
were not considered, since they were of non-minimum phase, which is not
consistent with the reality of the process. The rest of the discarded models
had pole/zero cancellations or there were zeros far removed from the imaginary
axis.

The best structure according to theMDL criterion was four poles and one zero
(3.21). Figure 3.19 shows a comparison between the estimated model output
and the real process output. This comparison has been made considering the
validation data set.
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Figure 3.18: Input and output data for estimation of initial linear model (thermal process).
Top: excitation signal (blue). Bottom: output signal of the thermal process. (red).

Table 3.7: Ranking of estimated linear models for the thermal process. Models 4p and 5p
have been excluded due to their MDL high values.

Structure MSEe (oC) MSEv (oC) MDL
2p 3.994E-3 4.475E-3 13.981
1z/2p 3.991E-3 4.473E-3 13.972
3p 3.982E-3 4.470E-3 13.940
1z/3p 2.577E-3 2.853E-3 9.020
1z/4p 2.575E-3 2.852E-4 9.014
1z/5p 2.576E-3 2.854E-4 9.018

Glm(s) =
−41.186(s+ 0.015)

(s+ 4.473)(s+ 2.519)(s+ 0.3406)(s+ 0.014)
(3.21)

For the nonlinear identification, two multi-step signals were generated, one
for identification and another for validation purposes (see Figure 3.20). The
estimation signal was designed with 38 steps, while the validation one was
designed with 24 steps. The temporary duration of the steps in both signals
was 700s and the amplitude changes were handled randomly within the entire
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Figure 3.19: Comparison between the estimated model output (red) and the real process
output (blue).

range of the actuator ua (0 . . . 4.5v) whereas the minimum step amplitude was
constrained to be greater than 1.5V . Both signals were injected separately to
the process and the input and output data were recorded after the transient
corresponding to the first step was extinguished.

WH-EA was configured with the parameters of Table 3.8 and, according to the
linear model structure, vector P 0

1 was coded with nc = 0, nr = 1, mc = 0, and
mr = 4, as follows:

P 0
1 = [−0.015, −4.473, −2.519, −0.3406, −0.014]. (3.22)

The bounds to explore new locations of poles and zeros were set to ±0.03 for
poles/zeros close to the imaginary axis, while all other bounds were set to ±0.1.
As in the numerical examples, the minimum and maximum values of the input
and output signal were extracted from the estimation data set: umin = 0V ,
umax = 4.5000V , ymin = −53.957◦C, ymax = −0.1810◦C. Since the static gain
of the estimated initial linear model is negative, the search space for static
non-linearity was defined with (0,−0.1810) and (4.5000,−53.957).

With this information, WH-EA was parameterized and executed. At the end
of generations, the algorithm decided to divide the initial linear model into
two linear subsystems, therefore the best structure to represent the thermal
process corresponds to a Wiener-Hammerstein model. Table 3.9 presents the
coordinates of the nine points that were assigned to the static non-linearity,
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Figure 3.20: Input signals for nonlinear identification of the Peltier process. Top: signal
for estimation. Bottom: signal for validation.

Table 3.8: Summary of WH-EA parameter settings for nonlinear identification of the
thermal process

Parameter Description Value
MaxGen Generations number 2E6
NP Population size 5E3
n Number of points to represent nonlinearity 9
α Minimum distance between two points 0.075

while a plot of this non-linearity is presented in Figure 3.21. Equations (3.23)
and (3.24) show the two resulting subsystems, while performance of the WH
identified model on estimation and validation data sets is shown in Figure 3.22.
To quantify the accuracy of the estimated model, the MAE was calculated
on the estimation and validation data sets with values of 0.1435 and 0.2184
respectively. To calculate both errors, the first 3000 samples of the data sets
were not considered to avoid the transient effects.
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Table 3.9: Non-linearity coordinates (n = 9) estimated by WH-EA from thermal process.

i 1 2 3 4 5
vi 0.0027 0.0887 0.7726 1.5100 2.2692
wi -0.5143 -1.0959 -14.5081 -26.8456 -36.9569

i 6 7 8 9
vi 3.2030 3.8501 4.2461 4.3485
wi -46.0773 -50.3862 -52.5096 -52.8295
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Figure 3.21: Captured non linearity as a piece-wise linear function (red) from the estimated
breaking points (blue circles).

Ĝw(s) =
11.393

(s+ 4.394)(s+ 2.593)
(3.23)

Ĝh(s) =
0.293(s+ 0.024)

(s+ 0.3263)(s+ 0.022)
(3.24)
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Figure 3.22: Comparison between thermal process output (red) and estimated model
output (blue dashed line). Top: comparison on estimation data set. Bottom: comparison
on validation data set.

3.9.5 Discussion

The results obtained from the numerical examples show the effectiveness of the
method to distribute the poles and zeros of the initial linear model around the
static non-linearity. For all three cases, a nonlinear model of 41 parameters has
been estimated: 5 parameters for the linear dynamic model and 36 parameters
for static non-linearity. This number of parameters is due to the complexity of
nonlinear function tansig, which was introduced intentionally to demonstrate
the potential of theWH-EA genetic operators when capturing the non-linearity.
A comparison of the errors obtained from the estimation and validation data
sets shows that these are very similar for each case. This shows that estimated
models have a good predictive capacity, which can also be verified in Figures
3.9, 3.12, and 3.15, where the output of the estimated model has been compared
with data not used in the identification procedure. However, it must be taken
into account that the accuracy of the estimated model, as in all identification
methods, depends on the amount of input and output data that feeds the
procedure. In the specific case of the models addressed in this chapter, it also
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Figure 3.23: Variation of the dynamics detected on estimation data set for the thermal
process. Red: Output of the thermal process. Blue dashed line: Output of the estimated
model.

depends on the number of points assigned to capture the static non-linearity
and the quality of the initial linear model.

The real process was estimated with 23 parameters: 5 for the linear dynamic
part and 18 for static non-linearity. The results obtained are very coherent
given the structure of the thermal process. A Wiener-Hammerstein model
has been estimated, where the fast dynamic of the actuator Ĝw(s) has been
separated from the slow dynamics of the Peltier cell Ĝh(s).

A great advantage of using multi-step signals for estimation of this type of
models is that one can have a better panorama to analyse the graphical results.
For example, an extended visual exploration of the results shown in Figure 3.22,
showed that the process presents small changes in the dynamics, probably due
to thermal drifts and other phenomena that may occur in real processes (see
Figure 3.23).4 With a Gaussian excitation signal, in the event of a discrepancy
between real output and model output, it would not be so easy to determine if
this lack of precision is due to unmodeled dynamics, variation of the dynamics,
or static non-linearity that was not well captured.

The precision achieved in both the numerical examples and the real application
depend to a large extent on the number of breakpoints used to capture the

4Variation of the dynamics shown in Figure 3.23 are not the only ones, other similar variations
were detected over other portions of estimation and validation data.
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static nonlinearity. It is evident that a hard non-linearity will require many
points; however, this is not possible to determine until an initial estimate is
made. After an initial estimation, the value reached by the objective function
(index J) can give an idea of whether it is necessary to add more points to the
piece-wise function to reach a greater precision. This index can be compared
with the process noise level, or with the precision of the measuring instrument.
If this information is not available, the precision of the nonlinear estimation can
be evaluated with the index J and the range of the process output. Another way
to establish if more points are required is through a visual comparison between
the real and the modeled output. Since non-linearity is static, the number of
chosen points directly affects the steady-state error that may exist between
the two outputs. This comparison is not possible when using Gaussian-type
signals since these signals do not lead the system output to steady-state.

In the case of the real application, the process output was bounded between
−53.957◦C and −0.181◦C, therefore the operating range was 53.776◦C. For
this operating range, the MAE between the real output and estimated output
was 0.1435◦C. As can be noted, the precision achieved with n = 9 was quite
acceptable. Other estimates with a greater number of points were executed,
however, the decrease in the error was negligible. In the case of the numerical
examples, a noise signal of −30dB was added to the output of each simulated
model. The mean absolute value of this noise signal was 2.52E − 2 and the
MAE achieved by the three models is very close to the noise levels. It should
be noted that in order to conclude that a good precision has been reached,
the signal-to-noise ratio (SNR) must be considered. The three examples
were excited with the same signal and the SNR was approximately 60dB.
Although the results of the three numerical examples were quite acceptable,
other estimates were made with the same algorithm configuration but with
n = 24. The results obtained were slightly above those obtained with n = 18,
however, it is very likely that the algorithm requires an increase in population
size and generations to deal with more complex models. In this sense, it is not
ruled out that in the numerical examples it is possible to improve the accuracy
of the models but surely a higher computational cost will be required for the
algorithm execution and obviously the models will be more complex.

To date there is no recipe for assigning an optimal number of points for static
nonlinearity. Since in the context of systems identification, precision and
complexity are two conflicting objectives, a very interesting way to address
this problem would be through a multi-objective optimization approach.
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Regarding computational cost of WH-EA5, a reference can be obtained. For
example, in section 3.9.3 (Wiener-Hammerstein example), the average time
to run a generation was 0.07s, however, it should be taken into consideration
that the time required by the algorithm to execute all the tasks performed in
a generation (mutations, crossovers and selection) is only 1.42% (0, 99ms) of
the total time spent in a generation. The remaining 98.58% corresponds to the
time it takes to evaluate the objective function. This evaluation involves an
interpolation process and the simulation of one or two continuous LTI systems
with a large amount of input data. It should be taken into account that the
execution time of a generation is highly sensitive to the amount of data used
for the nonlinear estimation. In both the numerical examples and the practical
application, large amounts of data were used to demonstrate the great accuracy
that can be achieved with WH-EA.

5WH-EA was run on a computer with Intel Core I7 processor of 2.8GHz and 8, 0Gb of RAM.
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Chapter 4

This chapter presents a multi-objective approach to the
identification of Wiener-Hammerstein models and their specific
cases. The chapter begins with an introduction and some
preliminary considerations. Next, in the third section the
identification problem under a multi-objective approach is
stated. The fourth section presents in detail the multi-objective
optimisation algorithm developed to address the identification
problem. The fifth section presents a procedure using the
multi-objective algorithm considering various design concepts. In
the sixth section the multi-objective algorithm is evaluated by
identifying a simulated continuous stirred-tank reactor. Finally,
in the seventh section the algorithm is tested again by estimating
a numerical example and a thermal process, but this time
including the complete procedure where several design concepts are
considered.
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4.1 Introduction

As seen in Chapter 1, a large number of methods for identifying
Wiener-Hammerstein models can be found to date. Most of them starting
from a linear dynamic model whose poles and zeros are distributed around the
static non-linearity. To achieve good precision in the estimation, the BLA [64,
23, 101] has usually been used to represent the linear dynamics. However, in
practical applications, especially those that involve automatic control, precision
should not be the only criteria for model selection.

The nature of block-oriented models forces the user to initially define the
complexity of the dynamic part generally represented by some poles and zeros
and also the complexity of the static nonlinear part. This is not an easy
task, especially in the case of Wiener-Hammerstein models, where two LTI
subsystems must be estimated. Some criteria are currently available such as
Minimum Description Length (MDL) [89], Akaike information criterion (AIC)
[2], Modified AIC and MDL criteria [17], and Final Prediction Error (FPE)
[4, 3]. These help to define the complexity of the overall system dynamics.
However, two or more different linear structures can give the same value to
a specific criterion, or several criteria can offer opposite values for the same
linear structure. To date, there is no recipe to precisely define the number
of parameters to represent the static nonlinear part. This leads to several
identification tests with different numbers of parameters until the desired
accuracy is achieved. This task can be tedious and even worse if the linear
structure is not well defined, since no matter how many parameters are added
to the static non-linearity, the unmodelled dynamics will not be able to achieve
good accuracy.

Of all these complications, the model’s applicability is an important issue when
estimating Wiener-Hammerstein models. Although accuracy can be important
when selecting a model, its complexity may also be a factor. For example, in
control applications, such as Model Predictive Control (MPC) [88], it is well
known that controller performance will depend largely on the model quality.
However, the higher the model complexity, the higher the computational cost
required to calculate the control action. In terms of the control algorithm,
there is a significant gap between the MPC based on Wiener models [36, 77] or
Hammerstein models [29] and the MPC based on Wiener-Hammerstein models
[59].

Based on this background, this chapter considers a trade-off analysis
between accuracy and complexity in estimating the Wiener-Hammerstein
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model. Therefore, the identification problem is declared as a multi-objective
optimization problem (MOOP).

Unlike linear models, defining a suitable structure (complexity) in nonlinear
models is not a simple task. For this reason, the use of multi-objective
optimisation (MOO) in nonlinear identification is not new. Thanks to MOO, it
is possible to generate a Pareto set to compare and analyse the complexity and
accuracy of different models in order to represent the same process and avoid
over-fitting problems. Applications of MOO in nonlinear modelling includes
the identification of: the Volterra series [67], radial-basis function (RBF)
networks [43, 27, 87], Nonlinear Auto-Regressive eXogenous (NARX) models
[39, 66], Nonlinear Auto-Regressive Moving Average models with eXogenous
inputs (NARMAX) [28], and Wiener-Hammerstein models [74]. This last
approach is based on genetic recombination and particle swarm optimisation.
During the search process, the algorithm requires minimal user interaction,
but even though a large number of poles and zeros are allowed for both LTI
subsystems, good accuracy cannot be achieved since the optimisation problem
does not use a linear approximation as a starting point. Furthermore, a
polynomial is used for the static non-linearity, which is not recommended, since
the sensitivity of the coefficients increases with the degree of the polynomial.

In this chapter, a new Multi-objective Evolutionary Algorithm for
Wiener-Hammerstein identification (WH-MOEA) is proposed based on
ev-MOGA (epsilon-variable Multi-Objective Genetic Algorithm) [44] but
using some new genetic operators and others inherited from WH-EA [122].
WH-MOEA genetic operators perform a smart distribution and fine-tune the
linear dynamics while capturing the non-linearity. To tackle model complexity,
two new genetic operators are incorporated into WH-MOEA to increase or
decrease the number of points assigned to the static non-linearity.

The entire procedure includes the handling of several design concepts (i.e.
alternative initial model structures with different number of poles and zeros)
in separate optimisation trials. Nonlinear model complexity is thus handled
naturally by the non-linearity with a variable number of points and by the
different structures tested in several WH-MOEA runs. Due to the ad-hoc
genetic operators of WH-MOEA, different initial linear structures can lead
to nonlinear models that do not necessarily have a Wiener-Hammerstein
structure, so that Wiener models and Hammerstein models can also be
obtained. This may be attractive for the user since a Wiener-Hammerstein
model obtained in an optimisation run can be compared to other Wiener or
Hammerstein models from other optimisation tests. This procedure can give
the user a broader spectrum to decide on the best model. According to the
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available literature and estimation tools, this is currently only possible using
a different method for each type of structure.

Compared with [74], this approach has two significant advantages. It uses a
linear approximation as a starting point for nonlinear estimation. Although an
additional step is required, knowledge of linear dynamics leads to better results.
Also, different Pareto fronts (one for each initial linear structure selected) can
be compared in the multi-objective space for an exhaustive trade-off analysis.

By way of summary, the novelty of this chapter lies in two main aspects:

1. The development of a new multi-objective algorithm with specific genetic
operators for the identification of Wiener-Hammerstein models and their
specific cases, i.e., Wiener models and Hammerstein models.

2. Creation of a methodology that can compare different design concepts
(alternatives to the dynamic part of the model) from an MO point of
view (precision vs complexity) allowing the designer to analyse different
model candidates in a more informed way and to choose the most suitable
according to his/her preferences.

Thanks to this, the user will value the effect of adding or removing poles or zeros
from a model. For example, a Wiener-Hammerstein model can be compared
to models of similar structure but with a greater or lesser number of poles
or zeros, or in case of subtracting complexity in the dynamic part, the model
is no longer Wiener-Hammerstein and goes to a Wiener or a Hammerstein
model. Comparing different structures can be interesting because differences
in precision will justify whether or not to select the most complex structure.
Also thanks to WH-MOEA, it will also be possible to compare several models
with different complexity in the static nonlinear part.

4.2 Preliminary considerations

In this approach, the identification problem is presented as a search problem
where the parameters of vectors ρw, ρh, and ρnl, that were defined in Section
3.2, must be found from input and output measurements. It should be taken
into account that parameters na, nb, nc, nd and n define the model complexity
but are unknown beforehand. They will be known after the optimisation
algorithm has distributed the dynamics of the initial linear model, whose
number of poles (npoles = na + nc) and zeros (nzeros = nb + nd) is known in
advance. Since parameter n is variable, the user must indicate the minimum
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and maximum number of points allowed (nmin < n < nmax) for the nonlinear
block.

Thanks to the unified approach presented in Chapter 3, the formulation
presented here is also applicable for Wiener and Hammerstein models, which
are specific cases of Wiener-Hammerstein structure when one of the two LTI
blocks lacks dynamics. In the case of Hammerstein models Gw = 1 and ρw
does not exist, whereas for Wiener models Gh = 1 and ρh neither does. In
any case, the user will not need to specify the model structure to be identified,
but rather the algorithm will decide the best structure (Wiener, Hammerstein
or Wiener-Hammerstein) from the measured data set. However, it should
be noted that the excitation signal used for non-linear estimation must be a
multi-step signal, with the features specified in Section 3.8.

This approach uses a multi-objective optimisation algorithm to solve the
identification problem detailed in Section 3.2. This algorithm is based on
a population of individuals, and each individual represents a solution of the
problem. All individuals contain coded genetic information corresponding to
the structure and parameters of a model. This genetic information is composed
of three segments. The first one, P , contains information about pole and zero
locations. A second segment C contains binary information classifying poles
and zeros, i.e. which ones belong to Gw and which to Gh. Segment B contains
breakpoint coordinates representing the static non-linearity. Its size is variable
between individuals and it can also change from generation to generation.
This variation will be exploited to generate a set of optimal solutions (models
of different complexity).

Regarding parameter bounds of non-linearity, WH-MOEA takes the approach
defined in Chapter 3, where a common search space is defined to face the
uncertainty of the location of the static non-linearity around the dynamics.
The bounds will be vertically defined by the minimum (ymin) and maximum
(ymax) values of the output signal, while the horizontal bounds will be given
by the minimum (umin) and maximum (umax) values of the multi-step input
signal. To prevent disorderly horizontal movement of breakpoints, movement
of each breakpoint will be constrained by the position of the neighbouring
breakpoints. In addition, to avoid an overlap, a minimum distance between
breakpoints will be considered through the user-defined parameter α. The
minimum and maximum bounds that define the vertical and horizontal search
space of each breakpoint are expressed through:

Wmin(i) = ymin for i = 1 . . . n (4.1)
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Wmax(i) = ymax for i = 1 . . . n (4.2)

V min(i) =

 umin if i = 1

vi−1 + α if i = 2 . . . n
(4.3)

V max(i) =

 vi+1 − α if i = 1 . . . n− 1

umax if i = n
(4.4)

where vectorsWmin andWmax define the vertical search space (y-coordinate)
of the breakpoints and vectors V min and V max define horizontal ones
(x-coordinate). Then, the entire search space of vector B is defined as:

Bmin = [V min, Wmin] (4.5)

Bmax = [V max, Wmax] (4.6)

On the other hand, the binary code contained in vector C is generated
randomly but subject to the following considerations:

• The number of poles assigned to a subsystem must always be greater or
equal than the number of zeros assigned to the same subsystem, i.e., the
resulting system cannot be improper. Therefore na ≥ nb and nc ≥ nd.

• The sum of the poles distributed between both subsystems must be equal
to the number of poles of the initial linear model (na + nc = npoles).

• The sum of the zeros distributed between both subsystems must be equal
to the number of zeros of the initial linear model (nb + nd = nzeros).
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4.3 Multi-objective optimization problem statement

A MOOP with m objectives to minimise can be stated as follows:

min
x
f(x) (4.7)

where f(x) = [f1(x), f2(x) . . . fm(x)] is the vector-valued objective function
and x is the decision variable in the search space D.

Since a MOOP usually involves conflicting objectives, there is no single solution
that minimises all the objectives. Instead, there will be a set of optimal
solutions, known as non-dominated solutions or Pareto solutions.

Definition 4.1 (Pareto optimality [69]): An objective vector f(x2) is Pareto
optimal if there is not another objective vector f(x1) such that fi(x1) ≤ fi(x2)
for all i ∈ [1, 2 . . . m] and fj(x1) < fj(x

2) for at least one j, j ∈ [1, 2 . . . m].

Definition 4.2 (Dominance [15]): An objective vector f(x1) is dominated by
another objective vector f(x2) if fi(x2) ≤ fi(x

1) for all i ∈ [1, 2 . . . m] and
fj(x

2) < fj(x
1) for at least one j, j ∈ [1, 2 . . . m]. This is denoted as

f(x2) � f(x1).

The Pareto set (set of optimal solutions) and its corresponding Pareto front
are therefore defined as follows:

Definition 4.3 (Pareto set, Xp): The Pareto set is the set of solutions in D
that are not dominated by another solution in D.

Xp := {x ∈ D| 6 ∃x′ ∈ D : f(x
′
) � f(x)}

Definition 4.4 (Pareto front, f(Xp)): Given a Pareto set, Xp, the Pareto
front is defined as

f(Xp) := {f(x)|x ∈Xp}.

Usually, Xp contains an infinite number of solutions and, for this reason, it is
not possible to get it completely. Therefore, a discrete set X∗p ⊂Xp such that
f(X∗p ) characterises f(Xp) is obtained. Note that the set X∗p is not unique.
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For the identification problem, the decision variable x is a vector formed by the
concatenation of vectors P , B, and C. Therefore, the optimisation problem
would be stated as follows:

min
x
{[f1(x) f2(x)]} (4.8)

subject to:

Pmin ≤ P ≤ Pmax (4.9)
Bmin ≤ B ≤ Bmax (4.10)

na ≥ nb (4.11)
nc ≥ nd (4.12)

na + nc = npoles (4.13)
nb + nd = nzeros (4.14)

x = [P , B, C] (4.15)

where
f1(x) =

∑
|y − yr|
N

(4.16)

f2(x) = na + nc + nb + nd + n (4.17)

Notice how f1 is related to model accuracy quantified by the MAE between the
estimated model output (y) and the real output (yr) for a set of N samples,
whilst f2 represents complexity model, measured by the number of poles, zeros
and points of the static non-linearity.

It should also be taken into account that the metrics defining the objectives f1
and f2 are independent of those that can be used in the estimation and selection
of linear structures, which, as explained in Subsection 4.5.2, is a preliminary
step to multi-objective optimisation.
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4.4 Wiener-Hammerstein Multi-objective Evolutionary
Algorithm (WH-MOEA).

WH-MOEA is an improvement of WH-EA algorithm [122] to address the
identification of Wiener, Hammerstein and Wiener-Hammerstein models under
a multi-objective optimisation approach. WH-MOEA adopts some genetic
operators and coding from the WH-EA algorithm, whilst the structure
and functioning are acquired from ev-MOGA algorithm [44]. Arguably,
WH-MOEA is therefore an elitist multi-objective evolutionary algorithm based
on the concept of ε-dominance [55] for identification of block oriented models
(Wiener, Hammerstein, and Wiener-Hammerstein).

Balancing convergence and diversity is guaranteed in WH-MOEA thanks to
features inherited from ev-MOGA. Basically, ev-MOGA tries to ensure that
X∗p converges toward the Pareto set in a smart distributed manner along the
Pareto front with limited memory resources. To do that, 1) the prevalence
of dominant solutions in the population Pop and the archive A with respect
to the dominated solutions is guaranteed, and 2) the objective space is split
into a fixed number of boxes, and only one solution can be stored in each box.
This avoids the need to use other clustering techniques to obtain adequate
distributions, and so considerably reduces the computational cost [55, 44].

4.4.1 WH-MOEA algorithm description.

The WH-MOEA algorithm is made up of two populations (Pop and G) and
one archive (A):

1. Pop is the main population. It explores the searching space during the
algorithm iterations. Its size is NindP .

2. Archive A is used to store the Pareto front approximation f(X∗p ). Its
size NindA is variable but bounded because, as already mentioned, the
target space is divided into a finite number of boxes where, at most, there
can only be one solution.

3. Auxiliary population G is used to store new solutions created in each
iteration of the optimisation process. Its size is NindG, which must be
an even number.

The pseudocode of the WH-MOEA algorithm is shown in Algorithm 4, whilst
its main steps are detailed as follows:
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Algorithm 4 Pseudocode of WH-MOEA.
1: Initialise population Pop(0);
2: Initialise archive A as empty;
3: Evaluate objectives f for all individuals in Pop(0);
4: A(0) = store(A(0), Pop(0));
5: for g = 1 to MaxGen do
6: G(g) = create(A(g − 1), Pop(g − 1));
7: Evaluate objectives f for all individuals in G(g);
8: A(g) = store(A(g − 1), G(g));
9: Pop(g) = update(Pop(g − 1), G(g));
10: end for
11: Print solution A(MaxGen)

Step 1. Pop(0) is initialised with NindP individuals (candidate solutions).
First individual is coded from the initial linear model, as indicated in [122]
and [121]. Next, this first individual undergoes all mutation operations
NindP − 1 times to give rise to the rest of the population.

Step 4. Function store checks individuals in Pop(g) that might be included
in the archive A(g) taking into account ε-dominance concept.

Step 6. Function create creates new individuals of G(g) by using procedure
and genetic operators described in Subsection 4.4.2.

Step 8. Function store checks individuals in G(g) that might be included
in the archive A(g) taking into account ε-dominance concept. Besides,
individuals from A(g), which are ε-dominated by individuals in G(g), will
be eliminated.

Step 10. Function update updates Pop(g) with individuals from G(g). Every
individual G(g) is compared with an individual that is randomly selected
from the individuals in Pop(g). The individual who is not dominated will
be the one who remains at Pop(g).

4.4.2 Description of create function and genetic operators.

Function create creates G(g) by using Algorithm 5. This procedure is repeated
NindG/2 times until G(g) is filled. A new individual is created by altering the
genetic information of an existing individual in the main population Pop(g),
which is selected at random with r1. The genetic alteration is given by the
mutations M.1, M.2, M.3, M.4, M.5, and the crossover C.3. In this last genetic
operation the individual selected from Pop(g) and an individual from the
archive A(g) randomly selected by r2 exchange information.
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Algorithm 5 Pseudocode of create function.
1: Random selection of a individual (r1) of Pop(g);
2: Random selection of a individual (r2) of A(g);
3: Compute γ(g);
4: if rpznl ≤ γ(g) then
5: Compute η(g);
6: if rmm ≤ ηmin + η(g) then
7: Mutation M.2
8: else
9: Mutation M.3
10: end if
11: else
12: Mutation M.1;
13: end if
14: if rc ≤ ξ then
15: Mutation M.4;
16: end if
17: if rnl ≤ Pnl then
18: Mutation M.5;
19: end if
20: if rcr ≤ Pcr then
21: Crossover C.3;
22: end if

Algorithm 6 Pseudocode of Mutation M.5.
1: Compute Pas
2: if Pas ≤ 0.5 and size(B/2) < nmax then
3: Increase a breakpoint
4: else if Pas > 0.5 and size(B/2) > nmin then
5: Compute the slopes of all segments
6: Find the two consecutive segments with the most similar slopes
7: Compute the difference (Ds) between these two slopes
8: if |Ds| ≤ 1.0E − 3 then
9: Remove the breakpoint that is common to both segments
10: end if
11: end if

Each genetic operation acts on a certain portion of an individual’s information.
As can be seen in Algorithm 5, to expand diversity and avoid premature
convergence, not all genetic operations are applied at the same time. A random
process and control parameters γ(g), ηmin, η(g), ξ, Pcr, and Pnl decide which
genetic operators should be applied. The random number rpznl ∈ (0, 1] is
compared with γ(g) to decide if the location of a pole/zero is mutated with
M.1 or whether the location of a breakpoint is mutated with either M.2 or M.3.
This last selection depends on the random number rmm ∈ (0, 1] and the control
parameter η(g). On the other hand, parameter ξ defines the probability that an
information alteration will occur in C (binary code for the classification of the
dynamics). This alteration is handled by mutation M.4, and also its occurrence
depends randomly on the value of rc ∈ (0.1]. Similarly, mutation M.5 and
crossover C.3 are randomly selected through random numbers rnl ∈ (0, 1] and
rcr ∈ (0, 1] respectively. Parameter Pnl defines the probability that mutation
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Algorithm 7 Pseudocode of Crossover C.3.
1: Compute Cga
2: if Cga = 1 then
3: Individuals r1 and r2 cross all genetic information contained in P
4: else if Cga = 2 then
5: Individuals r1 and r2 cross all genetic information contained in B
6: else if Cga = 3 then
7: Individuals r1 and r2 cross all genetic information contained in C
8: end if

M.5 occurs, while parameter Pcr defines the probability that crossover C.3
occurs.

Control parameters adjust the probabilities of mutation and crossover. The
parameters γ(g) and η(g) change through generations, while fixed parameters
ηmin, ξ, Pcr, and Pnl are considered tuning parameters of the algorithm.
However, through examples where WH-MOEA and its precursors have been
used, it has been possible to establish through trial and error appropriate
values depending on the results obtained. These values have been used in all
identification problems addressed in this chapter.

During the first generations, γ(g) is close to one which gives a high probability
of a mutation occurring on the segment that contains genetic information on
the position of the breakpoints; the probability of a mutation occurring on the
segment containing genetic information on the location of the poles and zeros is
therefore low. Parameter γ(g) decreases as the generations pass so that in the
last generations the algorithm will modify both portions of genetic information
with equal probability. The way the γ(g) parameter works is justified by the
fact that static non-linearity is entirely unknown, so the algorithm should focus
more on this portion of genetic information during the first generations. As
non-linearity takes shape, the algorithm will increase the probability that new
positions for the poles and zeros will also be explored, so that the dynamics
will be refined. Similarly, the control parameter η(g) allows the probability of
selecting between M.2 and M.3 mutations to be variable. During the first
generations, mutation M.3 is not so necessary since this genetic operation
concentrates breakpoints in the curvatures to achieve higher accuracy. As
long as the non-linearity does not take shape, the concentration of points in
the curves will have no significant effect. The mutations M.1, M.2, M.3, and
M.4 are inherited from the WH-EA, therefore further information on how these
genetic operations work as well as the calculation of the parameters γ(g) and
η(g) can be found in Chapter 2. In this section, a brief summary of these genetic
operations is presented. In addition, the new genetic operators (mutation M.5
and crossover C.3) are briefly explained.
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• Mutation M.1. A gene (element) of P is randomly selected to be modified. This
modification involves exploring a new position for the corresponding pole or
zero within the search space. The following mathematical expression describes
this genetic operation:

pnew = pact +Nzp(0, σ
2(g)) (4.18)

where, Nzp(0, σ
2(g)) is a random number with Gaussian distribution and

variable standard deviation σ2(g). pact contains the current value of the
selected gene to be mutated, while pnew contains the result of the mutation.

In each generation g, the standard deviation is calculated with the following
expressions:

σ2(g) =
∆s

100

(
σ2
ini√

1 + g ∗ σ2
ratio

)
(4.19)

σ2
ratio =

(σ2
ini/σ

2
end)

2 − 1

MaxGen− 1
(4.20)

As generations go by, σ2(g) will reduce its value from an initial value (σ2
ini) to a

final value (σ2
end). In the last generations, mutations on P will be more subtle

to achieve a fine-tuning of the parameters. The rate of decrease of the standard
deviation (σ2

ratio) depends on σ2
ini, σ2

end and the predefined number of algorithm
generations (MaxGen). Both σ2

ini and σ2
end are user-defined parameters that

must be configured before the execution of the algorithm. ∆s is a measure of
the scanning space that can be calculated with the upper and lower limit of
the search space of the corresponding pole or zero.

• Mutation M.2. A pair of B genes are randomly selected to be modified. These
genes are matched and represent the coordinates of a breakpoint. The new
values of the selected genes are calculated with the same procedure used in the
mutation M.1. Two random numbers with Gaussian distribution (Nv(0, σ

2(g)
and Nw(0, σ2(g))) are thus required. Nv(0, σ

2(g)) is used to mutate the gene of
the abscissa of the selected breakpoint, while Nw(0, σ2(g) is used to mutate the
gene of the ordinate of the same breakpoint. As in mutation M.1, σ2(g) varies
from σ2

ini to σ2
end to control the aggressiveness of the mutations and fine-tune

the breakpoints.
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• Mutation M.3. This genetic operation is applied to B and allows the
breakpoints to jump to each other so that they can concentrate on the
curvatures. The two genes that define the position of a breakpoint are
randomly selected. The selected breakpoint must jump to a new location
which will be in a segment defined by two other breakpoints. This segment is
also chosen randomly. The new abscissa is computed as the midpoint between
the two breakpoints that form the segment over which the point will jump,
while the new ordinate will be calculated using a quadratic interpolation and
information on the breakpoints near the location where the jump occurred.
Quadratic interpolation will help to make a smooth transition from a point
when it jumps to a specific segment.

• Mutation M.4. This genetic operation is applied to C and generates new
combinations of poles and zeros to give rise to the dynamics of the two LTI
subsystems. Each time this mutation is required, a new binary code subject
to (4.11)-(4.14) is randomly generated in C.

• Mutation M.5. This genetic operation is applied to B. Under certain
conditions it can increase or reduce the number of breakpoints used to represent
static non-linearity. The way this genetic operation works is synthesised in
Algorithm 6. A possible increase or decrease is determined by the random
number Pas ∈ (0, 1]. An increase of one breakpoint will occur as long as the
individual selected to mutate does not contain in B the maximum amount
of breakpoints allowed (nmax). If an increase is required, a new breakpoint
will appear on a randomly selected segment. As with mutation M.3, the
abscissa of the new breakpoint will be calculated as the midpoint between
the two breakpoints that define the selected segment, while the ordinate will
be calculated using a quadratic interpolation and the coordinates of three
neighbouring breakpoints. For a decrease to occur, two conditions must be met
in addition to Pas > 0.5. The first condition is that B must not contain the
minimum number of breakpoints allowed (nmin), while, the second condition
allows a decrease to occur as long as a breakpoint is located on a straight
line, that is, in a redundant position. To verify this condition, the slopes of
all segments joining two breakpoints will be calculated. The slope of each
segment will be compared with the slope of the segment on the right. The
two consecutive segments with the smallest difference in slope will contain the
breakpoint that is likely to be eliminated. These two slopes will be compared
again; if the absolute value of the difference is close to zero, the breakpoint that
is common to the two segments will be removed. Closeness to zero is quantified
by a fixed value of 1E − 3. This procedure aims to eliminate unnecessary
breakpoints.
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• Crossover C.3. This genetic operation allows an individual from the main
population Pop(g) to exchange genetic information with an individual from the
archive A(g) (front of Pareto), for which two random integers are generated.
The first integer (r1 ∈ [1, size(Pop(g))]) is used to randomly select the
individual of Pop(g), while the second integer (r2 ∈ [1, size(A(g))]) is used
to randomly select the individual of A(g). Each individual of both Pop(g)
and A(g) has three portions of genetic information (P, B, and C), however,
the exchange of information between the two individuals will be of only one
portion, for which another random integer is generated (Cag ∈ [1, 3]). This
number will decide which portion of the genetic information will be exchanged
(see Algorithm 7).

4.5 Using WH-MOEA to compare design concepts: a
procedure

4.5.1 Comparing design concepts by the MOP approach

When dealing with a MOP design problem, it is quite common to consider
different alternatives (design concepts), i.e. ideas on how to solve the problem.
It is possible to define an independent optimisation problem for each of these
design concepts [68] and when they share the same objectives they can easily be
compared directly in the objective space by simply comparing their respective
Pareto fronts. For example in [104], this idea is used to compare alternative
slide model control structures, in [45] to compare different loop pairings and
in [82] to analyse the performance of different battery models.

Figure 4.1 shows an example in which the Pareto fronts of three design concepts
are compared in a two-dimensional objective space. Notice that as design
concept DC2 completely dominates design concept DC3, concept DC2 will be
preferred over concept DC3. However, DC2 does not completely dominate
concept DC1 or vice versa. If the designer has a preference for solutions in
Zone 1, solutions from concept DC2 would be selected, as in this zone concept
DC2 dominates concept DC1. Whilst if Zone 2 was preferred, the designer
should choose solutions from concept DC1. This illustrative example shows
how interesting it is to use the MOP optimisation approach when comparing
possible design concepts. In the end, the designer would choose the final
solution taking into account the dominance between concepts and his/her
specific preferences.
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Figure 4.1: Comparison of three design concepts in a bi-objective space.

In this approach, an initial linear model is used as a starting point for nonlinear
estimation. Most of the time, the model is selected from a ranking based on
a specific criterion. However, under the assumption that there are any other
useful criteria giving more candidates, the idea of design concepts arises so
more than one initial linear model should be tested. Then, each linear structure
will give rise to a design concept. Furthermore, if you sort the list of initial
candidates by a criterion, several models with similar values could be obtained
and therefore one might add other criterion to perform the initial selection. In
these case, it is worth to evaluate more than one linear structure.

4.5.2 Procedure definition

Using WH-MOEA as a tool for nonlinear identification can not only get a
specific model, but also a set of models with different features for effective
decision-making based on particular needs. The suggested procedure is defined
as follows:

Step 1 - Establish a set of candidates using a standard linear
identification method:
Since WH-MOEA can fine-tune the initial linear model, a classical step test
can be used. The ranking can be made according to the structure of the
models (number of poles and zeros) and one or more performance criteria.
For example, the mean squared error (MSE) could be used; however, to avoid

102



4.5 Using WH-MOEA to compare design concepts: a procedure

Table 4.1: WH-MOEA tuning parameters

Parameter Description
MaxGen Maximum number of generations.
NindP Population size.
NindG Size of the auxiliary population G.
n_box1 Number of divisions for the objective f1.
n_box2 Number of divisions for the objective f2.
nmax Maximum number of breakpoints
nmin Minimum number of breakpoints
α Minimum distance between two breakpoints on the abscissa axis

σ2
ini, σ

2
end Initial and final standard deviations for control of the aggressiveness of mutations

M.1 and M.2
ηmin Minimum probability for selection of mutation M.2. The maximum probability

for this selection is 1.
ξ Probability to modify with mutation M.4 the genetic information related to the

classification of poles and zeros.
Pnl Probability to modify with mutation M.5 the number of breakpoints for static

non-linearity
Pcr Probability of crossover between an individual of Pop and an individual of A

over-modelling the MDL criteria or any others, mentioned in Section 4.1, can
be useful.

Step2 - Choose the design concepts:
From this set of candidates, you have to select some initial linear structures to
be tested. Each one will correspond to a design concept. It may be that two
or more structures present similar values to a performance criterion or you
may have two or more conflicting candidates for the best of their respective
criteria. However, other less complex linear structures can also be selected.
A comparison of the Pareto fronts of various design concepts will help in
adequate decision-making.

Step3 - Prepare a multi-step excitation signal and performs an
experiment with the process under identification:
The input signal must ensure that the system output reaches steady state. For
static non-linearity to be appropriately captured, different step amplitudes
must allow a scan of the entire process operating range. A minimum distance
between two consecutive steps must be considered [121] to highlight static
non-linearity. Finally, excite the process under identification with this signal
and record its output for a given sampling period.
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Step 4 - Set the bounds:
From the minimum and maximum values of the input (umin and umax) and
output (ymin and ymax) signals, define the search space bounds for static
non-linearity using equations (4.1) to (4.4).

Step 5 - Run WH-MOEA for each design concept:
Table 4.1 shows the list of WH-MOEA parameters that must be previously
assigned to carry out each run. The bounds Pmin and Pmax must also be
previously defined as a function of the sensitivity of the poles and zeros. At
the end of each WH-MOEA execution a Pareto front is obtained.

Step 6 - Perform a decision making analysis:
Each Pareto front contains a set of models with different performances. For
trade-off analysis, draw all the Pareto fronts on the same graph. Evaluate
selected models on the estimation and validation data sets for a final decision.

4.6 Evaluation of WH-MOEA

In this section WH-MOEA will be evaluated on a non-linear system consisting
of a continuous stirred-tank reactor (CSTR). In this application, a trade-off
analysis will not be performed by testing different design concepts. The
intention of this section is only to test the potential of the algorithm to generate
a set of models with different complexities and accuracies framed within a
Pareto front.

The schematic diagram of the CSTR process is shown in Figure 4.2. In this
process, an irreversible exothermic reaction between two chemical species (A
and B) takes place. The reaction can be written as A→ B. It is assumed that
the liquid volume V in the reactor is kept constant by an overflow line and the
system is cooled by a single coolant stream. The process model is described
by the following two nonlinear differential equations [52, 103, 73]:

ĊA =
q

V
(CAf − CA)− k0CA exp

(
−E
RT

)
(4.21)
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CAf, q, Tf
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Figure 4.2: Schematic diagram of CSTR process

Ṫ =
q

V
(Tf − T ) +

−∆Hk0CA
ρCp

exp

(
−E
RT

)
+ . . .

. . .
ρcCpc
ρCpV

qc

[
1− exp

(
−hA
qcρcCpc

)]
(Tcf − T ) (4.22)

The concentration of the outlet fluid CA and the reactor temperature T vary
depending on the coolant flow rate qc. The rest of parameters are considered
constant and their values are defined in Table 4.2.

The CSTR is a complex nonlinear process presenting multiplicity behaviour
with respect to the coolant flow rate. For the nominal values in Table 4.2,
there are two stable operation regions (Figure 4.3). The CSTR can be brought
to the lower stable region with the initial conditions: qc = 103.41l/min, CA =
8.36E − 2mol/l, T = 440.2K, while the upper region can be reached with:
qc = 103.41l/min, CA = 0.950mol/l, T = 353.20K. The CSTR is unstable if
CA is between 0.14mol/l and 0.92mol/l. In this chapter, the CSTR is modelled
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Table 4.2: CSTR parameter values.

Symbol Description Value Unit
q Process flow rate 100 l min−1
CAf Feed concentration 1 mol/l
Tcf Feed temperature 350 K
Tf Inlet temperature 350 K
V CSTR volume 100 l
hA Heat transfer 7.0E5 cal min−1 K−1

k0 Frequency factor 7.2E10 min−1

E/R Activation energy 9.95E3 K
∆H Heat of reaction −2E5 cal/mol
ρ, ρc Liquid densities 1E3 g/l
Cp, Cpc Specific heats 1 cal g−1 K−1
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Figure 4.3: CSTR operating ranges

on the stable upper region, where there are very soft changes in dynamics and
a non-linearity of static type predominates.
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Figure 4.4: Input and output data for linear estimations (CSTR process). Top: Output
concentration CA. Bottom: coolant flow rate qc.

To get data of the CSTR process, a model was developed in Simulink using
equations 4.21 and 4.22 and parameters of Table 4.2. In addition, Gaussian
noise with a power of −110db was added on the system output. To analyse
the structure of the linear dynamics, the concentration CA was brought to
0.954mol/l with qc = 90l/min. This operating point was arbitrarily selected
within the region of interest. On this operating point, a change in qc to
94.5l/min was simulated with a step signal. Input (qc) and output (CA) data
were recorded with a sampling period of 0.1min. Figure 4.4 shows the input
and output data set used for the linear estimates.

To avoid problems with initial conditions, offset was removed from data.
Different linear structures were estimated from first to third order considering
only strictly proper systems. The results of the estimates are shown in Table
4.3.

To show the potential of WH-MOEA to generate a Pareto front, only one
linear structure will be selected for the nonlinear estimation (in this case, the
best model according to the MDL criteria, which according to Table 4.3 is
G2p (two-poles)). Figure 4.5 shows the performance of this model taking as
a reference the output of the simulated process. The transfer function of this
model is shown below:

G1CSTR =
1.757E − 4

(s+ 1.302)(s+ 1.048)
(4.23)
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Table 4.3: Ranking of estimated linear models for CSTR process

Structure MSE MDL
G1p 3.2028E-10 1.7363E-10
G2p 1.0975E-11 6.1697E-12
G1z/2p 1.0975E-11 6.3430E-12
G3p 1.0922E-11 6.3434E-12
G1z/3p 1.0989E-11 6.5710E-12
G2z/3p 1.0908E-11 6.8674E-12
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Figure 4.5: Performance of best linear model (G2p) for CSTR process.

To start the identification process, two multi-step signals were generated, one
for identification and another for validation purposes. A variation range for
qc between 40l/min and 200l/min was considered. Steps duration in both
signals was 20min and their amplitude were handled randomly within the
entire range of qc. The minimum step amplitude was limited so that it is not
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Figure 4.6: Estimation (top) and validation (bottom) input signals for nonlinear
identification of CSTR process.

less than 10l/min. The estimation and validation signals were designed with
40 and 30 different amplitudes respectively. To avoid transient effects, at the
beginning of the input signals, 1000 samples with the lowest amplitude were
added (first 100min). The input signals for both estimation and validation are
shown in Figure 4.6.

The CSTR process was excited with both signals separately. Input and output
data for both cases were sampled with a period of 0.1min. Next, the minimum
and maximum values of the input and output signals from the estimation data
set were obtained (umin = 40, umax = 200, ymin = 0.9396 and ymax = 0.9614).
The vertical search space for all breakpoints was defined with ymin and ymax
using (4.1) and (4.2) respectively:

Wmin(i) = 0.9396 for i = 1 . . . n (4.24)

Wmax(i) = 0.9614 for i = 1 . . . n (4.25)

whilst umin and umax values were used internally by the algorithm to define
the variable limits V min and V max using (4.3) and (4.4) respectively.

The configuration parameters for WH-MOEA are shown in Table 4.4. In
addition, initial and final standard deviations for mutations were set to 20
and 1, respectively. On the other hand, vector P 0

1 was coded with nc = 0,
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Table 4.4: Summary of WH-MOEA parameter settings for nonlinear estimation of the
CSTR process

Parameter Value Parameter Value
MaxGen 1.0E6 nmin 4
NindP 3.04 α 1.904
NindGA 4 ξ 0.25
n_box1 50 Pnl 0.33
n_box2 10 Pcr 0.33
nmax 14 ηmin 0.30

Table 4.5: Optimisation results for CSTR process.

Model f1 f2
M2p

1 1.026E − 4 16
M2p

2 1.030E − 4 14
M2p

3 1.166E − 4 10
M2p

4 1.242E − 4 9
M2p

5 1.332E − 4 8
M2p

6 1.757E − 4 7
M2p

7 2.683E − 4 6

nr = 0, mc = 0, mr = 2, and pole locations presented in (4.23), while the
bounds to explore new locations for both poles were set in ±0.5.

To compute the objective f1 (MAE), the first 80 minutes were neglected to
avoid transient effects. At the end of generations, 7 Wiener-Hammerstein
models with the same dynamic distribution were obtained. The Pareto front
obtained is shown in Figure 4.7, while the optimisation results are summarised
in Table 4.5. In addition, this table also specifies how each model has been
labeled.

According to the Figure 4.7, the most accurate model is M2p
1 with a MAE (f1)

of 1.026E − 4. However, this model is also the most complex with f2 = 16
(14 points used to represent the static non-linearity). On the other hand, the
simplest model is M2p

7 with a MAE of 2.683E − 4, but only 4 points used to
represent the non-linearity.
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Figure 4.7: Pareto front for CSTR estimation.

The Pareto front obtained reveals the importance of using WH-MOEA. Notice
that, models M2p

1 and M2p
2 have practically the same precision, however, M2p

2

has a lower level of complexity, as it represents the static non-linearity with two
points less. Further, it can be concluded that it does not make sense to used
more than 12 points to represent the static non-linearity because the increase
in accuracy is negligible.

With other identification algorithms (including WH-EA), the chose of the
number of points to represent the non-linearity can be an inconvenience,
since in many identification problems it is not possible to know in advance
its complexity. An exaggerated number of points will result in an
over-parameterized model with a high degree of complexity. On the other hand,
a model with few points will have insufficient accuracy. To solve this problem,
the user must perform several optimization tests until finding the right number
of points. With WH-MOEA, this uncertainty is naturally eliminated, because
in a single optimization test the generated Pareto front will offer a set of models
with different numbers of points to represent the static non-linearity. With a
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Figure 4.8: Numerical example: Wiener-Hammerstein structure.

simple analysis the user will be able to select the appropriate model taking
into consideration the accuracy and model complexity.

4.7 Application of WH-MOEA and trade-off analysis using
design concepts

To show the effectiveness and usefulness of this approach, two application
examples are included in this section. The first consists of a numerical example,
a process with a pure Wiener-Hammerstein structure, while the second is a real
thermal process based on a Peltier cell.

WH-MOEA parameters were set to the same values for both identification
problems: ξ = 0.25; Pnl = 0.33; Pcr = 0.33 and ηmin = 0.30. The initial and
final standard deviations for mutations were set to 20 and 1, respectively.

4.7.1 Application 1: Numerical example.

Figure 4.8 shows the Wiener-Hammerstein process used for this example.
Static non-linearity (SNL) consists of a sigmoid hyperbolic tangent function
"tansig" (4.26), which symmetrically saturates large values of the independent
variable. Also, Gaussian noise with a power of −40db was added on the system
output to emulate a real situation.

SNL = 50[1 + tansig(0.07(v(t)− 50))] (4.26)

Step 1 - Establish a set of candidates using a standard linear
identification method:
First, an experiment for initial linear identification was designed. Since input
range was between 0 and 100 units a constant signal with amplitude 50 units
was injected into the system until it reached steady-state. On this operating
point, the process was excited with a small input change of 2.5 units and a
duration of 15s (Figure 4.9). During the experiment, input and output data
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Figure 4.9: Input and output data for linear estimations of WH process. Top: Simulated
system output. Bottom: Input signal.

were recorded with a period of 50ms. Offset was removed from the data to
avoid problems with initial conditions.

Fifteen initial linear models were estimated from 3rd to 6th order considering
only strictly proper systems and no more than three zeros. For each structure,
a linear model was estimated using the Matlab System Identification Toolbox
[63] with the tfest command. The MSE and the modified MDL were
calculated on the estimation data set. The results of these estimates are
shown in Table 4.6. According to the modified MDL criteria, the best model
is two zeros - five poles (G2z/5p) which is consistent with the actual dynamics
of the WH process under consideration.

Step2 - Choose the design concepts:
According to the results in Table 4.6, the linear structure G2z/5p might be
considered for nonlinear estimation; however, as mentioned in Section 4.5,
others can also be considered. Models with six poles would not be a good option
since there are other less complex models that can achieve similar performance.
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Table 4.6: Set of candidates of initial linear models for WH process. Model G2z/6p was
excluded since its MDL value was very high.

Model MSE MDL
G3p 6.318E − 3 3.412E − 3
G1z/3p 2.283E − 4 1.254E − 4
G2z/3p 2.186E − 4 1.220E − 4
G4p 1.732E − 3 9.539E − 4
G1z/4p 2.201E − 4 1.228E − 4
G2z/4p 1.486E − 4 8.506E − 5
G3z/4p 9.315E − 5 5.479E − 5
G5p 5.504E − 4 3.092E − 4
G1z/5p 2.114E − 4 1.201E − 4
G2z/5p 8.143E − 5 4.781E − 5
G3z/5p 8.139E − 5 4.850E − 5
G6p 4.580E − 4 2.610E − 4
G1z/6p 4.721E − 4 3.028E − 4
G3z/6p 8.126E − 5 4.928E − 5

As model G3z/5p has a zero in −119, far from the system dominant dynamics,
all the models more complex than G2z/5p would be discarded.

The effect of non-minimum phase zero in this example is remarkable. The
MSE of model G1z/3p (4 zero-pole) is better than that of model G4p having
the same number of parameters. It is even better than more complex models
without zeros, such as models G5p and G6p. For this reason, models without
zeros will not be considered for nonlinear estimation.

According to this analysis, linear structures G1z/3p, G2z/3p, G1z/4p, G2z/4p,
G3z/4p, G1z/5p, and G2z/5p would be good options for nonlinear estimation.
Each of these structures will give rise to a design concept for nonlinear
estimation. Table 4.7 shows the poles and zeros of each design concept, while
Figure 4.10 shows a comparison of their performance. For convenience sake,
from now on each design concept will use a nomenclature as indicated in the
first column of Table 4.7. This nomenclature is preceded by the characters
"DC" followed by an indication of the number of poles and zeros of the linear
structure.
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Figure 4.10: Performance of linear models (design concepts) chosen for nonlinear
estimation of WH process. To distinguish between models, a magnification is depicted on a
portion of data.

Step3 - Prepare a multi-step excitation signal and performs an
experiment with the process under identification:
Two multi-step signals were designed, one for estimation and one for validation
purposes (see Figure 4.11). The amplitude of the steps in both signals was
handled randomly, lasting 25s each. The minimum step amplitude was set
to 15 units. The estimation signal was designed with 50 steps, while the
validation signal was designed with 30 steps. The proposed WH process was
simulated twice in Matlab using estimation and validation multi-step inputs.
In both experiments, process input and output were recorded with a sampling
period of 50ms.

Step 4 - Set the bounds:
From the estimation data set, the minimum and maximum values of the input
and output signals were obtained (umin = 0, umax = 100, ymin = −0.024 and
ymax = 99.933). The vertical search space for all breakpoints was defined with
ymin and ymax using (4.1) and (4.2) respectively:
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Table 4.7: Selected initial linear models (design concepts) for nonlinear identification of
WH process.

Design
Concept

Model Poles Zeros

DC−2z5p G2z/5p [−5.873; −1.812; −0.550; −1.609±0.893i] [4.459; −0.719]
DC−1z5p G1z/5p [−0.729; −2.168± 8.699i; −1.238± 1.470i] [4.896]

DC−3z4p G3z/4p [−0.974; −0.451; −1.465± 1.308i] [8.880; 5.081; −0.504]
DC−2z4p G2z/4p [−0.794; −0.249; −1.289± 1.400i] [3.750; −0.256]
DC−1z4p G1z/4p [−33.92; −0.732; −1.250± 1.491i] [4.089]

DC−2z3p G2z/3p [−0.733; −1.254± 1.492i] [27.52; 4.193]

DC−1z3p G1z/3p [−0.726; −1.214± 1.473i] [3.866]
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Figure 4.11: Estimation (top) and validation (bottom) input signals for nonlinear
identification of WH process.

Wmin(i) = −0.024 for i = 1 . . . n (4.27)

Wmax(i) = 99.933 for i = 1 . . . n (4.28)

whilst umin and umax values were used internally by the algorithm to define
the variable limits V min and V max using (4.3) and (4.4) respectively. It
should be noted that the horizontal search space of each breakpoint is variable
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Table 4.8: Summary of WH-MOEA parameter settings for nonlinear estimation of WH
process.

Parameter Value Parameter Value
MaxGen 2.0E6 n_box2 16
NindP 5.0E4 nmax 26
NindG 4 nmin 10
n_box1 50 α 0.641

and depends on the position of the neighbouring breakpoints.

Step 5 - Run WH-MOEA for each design concept:
According to selected design concepts (Table 4.7), seven bi-objective
optimisation problems were stated as in Subsection 2.3. WH-MOEA was thus
executed seven times, each one fed with a different initial linear model (design
concept). The configuration parameters in Table 4.8 were used for all the
executions. Table 4.9 shows how the first individual in the population (P 0

1 )
was coded for each design concept and the lower (Pmin) and upper (Pmax)
exploration bounds to refine the locations of the poles and zeros (defined
individually around each pole or zero). It should be borne in mind that there
is no recipe to set precisely the bounds but, the higher the interval the more
exploration (slower algorithm convergence). A good alternative is to set the
bounds based on the sensitivity of each pole or zero. Those closest to the
imaginary axis are more sensitive to changes so their exploration bounds may
be small, while a greater degree of freedom can be given to the poles and zeros
furthest from the imaginary axis.

After the seven WH-MOEA runs, a total of 82 different models were obtained.
Table 4.10 shows the number of models obtained in each design concept. This
table also specifies how each model has been labelled.

Step 6 - Perform a decision making analysis:
To make an effective analysis of the results obtained, the Pareto fronts of
all design concepts must be compared in a two-dimensional objective space.
According to the number of design concepts stated for this example, seven
Pareto fronts were obtained. Given the high precision achieved by the
models of design concept DC − 2z5p, the corresponding Pareto front will be
analysed separately. Figure 4.12 shows a graph of this Pareto Front which
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Table 4.9: Coding of the first individual in the population and exploration bounds to refine
the poles and zeros (design concepts for identification of the numerical example)

DC − 2z5p
nc = 0, nr = 2, mc = 1, mr = 3

Pmin [3.959, −0.819, −1.709, −6.373, −2.112, −0.650, 0.793]
P 0

1 [4.459, −0.719, −1.609, −5.873, −1.812, −0.550, 0.893]
Pmax [4.959, −0.619, −1.509, −5.372, −1.512, −0.450, 0.993]

DC − 1z5p
nc = 0, nr = 1, mc = 2, mr = 1

Pmin [4.396, −2.468, −1.438, −0.929, 7.699, 1.170]
P 0

1 [4.896, −2.168, −1.238, −0.729, 8.699, 1.470]
Pmax [5.396, −1.868, −1.038, −0.529, 9.699, 1.770]

DC − 3z4p
nc = 0, nr = 3, mc = 1, mr = 2

Pmin [7.880, 4.581, −0.604, −1.765, −1.174, −0.551, 1.008]
P 0

1 [8.880, 5.081, −0.504, −1.465, −0.974, −0.451, 1.308]
Pmax [9.880, 5.580, −0.404, −1.165, −0.774, −0.351, 1.608]

DC − 2z4p
nc = 0, nr = 2, mc = 1, mr = 2

Pmin [3.250, −0.356, −1.589, −0.994, −0.349, 1.100]
P 0

1 [3.750, −0.256, −1.289, −0.794, −0.249, 1.400]
Pmax [4.250, −0.156, −0.989, −0.594, −0.149, 1.700]

DC − 1z4p
nc = 0, nr = 1, mc = 1, mr = 2

Pmin [3.589, −1.550, −40.92, −0.932, 1.192]
P 0

1 [4.089, −1.250, −33.92, −0.732, 1.492]
Pmax [4.589, −0.950, −26.92, −0.532, 1.792]

DC − 2z3p
nc = 0, nr = 2, mc = 1, mr = 1

Pmin [20.52, 3.693, −1.554, −0.933, 1.192]
P 0

1 [27.52, 4.193, −1.254, −0.733, 1.492]
Pmax [34.52, 4.693, −0.954, −0.533, 1.792]

DC − 1z3p
nc = 0, nr = 1, mc = 1, mr = 1

Pmin [3.366, −1.514, −0.926, 1.173]
P 0

1 [3.866, −1.214, −0.726, 1.473]
Pmax [4.366, −0.914, −0.526, 1.773]
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Table 4.10: Number of models obtained for each design concept.

Design Concept Number of models Labels
DC-2z5p 14 [M2z5p

1 , M 2z5p
2 , . . . , M2z5p

14 ]
DC-1z5p 10 [M1z5p

1 , M 1z5p
2 , . . . , M1z5p

10 ]
DC-3z4p 12 [M3z4p

1 , M 3z4p
2 , . . . , M3z4p

12 ]
DC-2z4p 14 [M2z4p

1 , M 2z4p
2 , . . . , M2z4p

14 ]
DC-1z4p 13 [M1z4p

1 , M 1z4p
2 , . . . , M1z4p

13 ]
DC-2z3p 10 [M2z3p

1 , M 2z3p
2 , . . . , M2z3p

10 ]
DC-1z3p 10 [M1z3p

1 , M 1z3p
2 , . . . , M1z3p

10 ]

contains 14 Wiener-Hammerstein models with the same dynamic structure.
The distribution of the poles and zeros of these 14 models is consistent with
the real dynamics of the proposed example. Undoubtedly, the fact of having
the same structure as the real example has meant that the precision of all
these models cannot be achieved by any model of the other fronts, even by
the models of design concept DC − 3z4p, which has the same complexity level
devoted to representing the dynamic part. In this case, the nonlinear estimates
have highlighted the different degrees of accuracy that models of these design
concepts can achieve. This difference is not so apparent on inspecting Table
4.6, which contains the results of the linear estimates, i.e. the MAE achieved
by initial models G2z/5p and G3z/4p is 8.143E − 5 and 9.315E − 5 while their
MDL is 4.781E − 5 and 5.479E − 5, respectively. Apparently, it seems that
both models have similar performances. However, with nonlinear estimations,
the importance of selecting the appropriate structure has been highlighted.

Looking at Figure 4.12, it can be clearly seen that the best model in terms
of accuracy is M2z5p

1 . The precision (objective f1) achieved by this model is
2.065E− 2, while its complexity level (objective f2) is 33 (2 zeros, 5 poles and
26 points for the static non-linearity). This model would undoubtedly be the
best option in terms of precision, but it should be borne in mind that it is also
the most complex model.

A great advantage of this approach is that the Pareto fronts allow the
performance of different models to be compared. In addition, in each Pareto
front it is also possible to analyse the contribution of the number of breakpoints
in terms of precision. Looking at the Pareto front in Figure 4.12 it can be seen
that the accuracy achieved by model M2z5p

3 is very close to that achieved by
model M2z5p

1 . Considering the precision between M2z5p
14 and M2z5p

1 is 100%,
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Figure 4.12: Pareto front corresponding to the design concept DC − 2z5p.

improvement of M2z5p
1 concerning M2z5p

3 is only 3.85%. In this regard, M2z5p
3

would be preferred since it has five points less.

Figure 4.13 compares the other Pareto fronts. Analysing these fronts one can
notice that the best models in terms of precision are on the front of design
concept DC−3z4p, However, it should be noted that the models of this design
concept have the same complexity in the dynamic part as the models of the
design concept DC−2z5p, which achieved better accuracy. It would therefore
not make sense to select models from design concept DC − 3z4p, as there will
always be an equally or less complex model of design concept DC−2z5p which
will always be more accurate.

Something similar occurs with models belonging to design concepts DC−1z5p
and DC − 2z4p, all of which have the same complexity in the dynamic part;
however, the difference in accuracy is evident. This would exclude all models
that have one zero and five poles from the selection since there will always
be a model with the same complexity in the dynamic part that has better
performance in terms of accuracy.

In the same way, the models of design concepts DC−1z4p and DC−2z3p have
equal complexity in the dynamic part, so it would be interesting to compare
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Figure 4.13: Comparison of Pareto fronts corresponding to design concepts DC − 1z5p,
DC − 3z4p, DC − 2z4p, DC − 1z4p DC − 2z3p, and DC − 1z3p

them. At first glance, the most complex model of each design concept (M1z4p
1

and M2z3p
1 ) perform identically. However, as the number of static nonlinearity

points decreases, the models of theDC−2z3p Pareto set become more accurate.
It is thus not practical to select models from DC− 1z4p. Even if the precision
of models of this front with a complexity level less than 21 were analysed, their
performance would be worse than models of design concept DC− 1z3p, whose
dynamic structure has one pole less.

According to the analysis presented, there are some design concepts whose
models do not offer good performance. However, before discarding them, it
would be essential to review their dynamic distribution. For example from
the previous analysis, models from design concept DC − 3z4p are not good
candidates since other models have better precision and the same complexity
in the dynamic part. Conversely, if models with a Wiener or Hammerstein
structure had appeared as a result of WH-MOEA execution, any of them would
have been very attractive especially for control applications1.

1This is not the case in this application example since the 84 estimated models have a
Wiener-Hammerstein structure
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Figure 4.14: Performance of models M2z5p
3 , M2z4p

6 , and M2z3p
5 on the estimation (top)

and validation (bottom) data sets.

In this regard, the fronts from which models could be selected to represent the
system would be those of design concepts DC − 2z5p, DC − 2z4p, DC − 2z3p
and DC − 1z3p. If high accuracy were required, the M2z5p

3 model would be a
very good option, while in case of requiring models with less complex dynamics,
M2z4p

6 and M2z3p
5 would be good candidates. Analysing the Pareto Front of

design concept DC − 2z4p, as the rate of increase in accuracy vs complexity
in the M2z4p

6 to M2z4p
1 models decreases considerably, it does not make much

sense to extend the points in static non-linearity. The same conclusion can
be reached when analysing the Pareto front of design concept DC − 2z3p, in
which the lines that joinM2z3p

5 withM2z3p
1 are almost vertical, showing that the

higher complexity model gives approximately the same precision. Table 4.11
shows the complexity and accuracy achieved by the three models indicated.
The accuracy reached in the validation data set is also calculated (f1v). Figure
4.14 shows their responses compared with the process under identification.
Figure 4.15 shows the breakpoint locations representing static non-linearity.

As can be seen in Figure 4.15, distribution of the points in the three models
is effective and the non-linearity has been satisfactorily captured. This is
reflected in Figure 4.14, where there are no visible inaccuracies in steady state
behaviour. Differences can be seen on the transients due to non-modelled
dynamics in modelsM2z4p

6 andM2z3p
5 . This is shown in greater detail in Figure
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Figure 4.15: Comparison between real non-linearity and captured non-linearities for models
M2z5p

3 , M2z4p
6 , and M2z3p

5 .

4.16, which highlights the differences. Notice that modelM2z5p
3 reproduces the

most accurate process dynamics.

Although model M2z4p
6 can be seen to lack a pole, its performance could be

considered acceptable for certain uses. The effect of the non-modelled dynamics
is more apparent in model M2z3p

5 , which tries to reproduce the real dynamics
with the effect of the non-minimum phase.
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Figure 4.16: Enlargement of the transient stage of M2z5p
3 , M2z4p

6 , and M2z3p
5 models with

validation data.

4.7.2 Application 2: Thermal process.

This subsection describes the nonlinear estimation under a multi-objective
approach to the thermal process that was used in Chapter 3 to evaluate
the unified approach for the estimation of Wiener, Hammerstein and
Wiener-Hammerstein models. Therefore, more details on the process
structure, lab test-bench, and the procedure for estimating the linear models
can be found in Subsection 3.9.4. Below is the procedure to identify the
nonlinear real process according to the multi-objective approach described in
this chapter:

Step1 - Establish a ranking of candidates using a standard linear
identification method:
For this application, the same ranking of models that was established in
Subsection 3.9.4 will be used. The performance of the linear models are
summarised in Table 3.7.
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Table 4.11: Details of the precision and complexity of models M2z5p
3 , M2z4p

6 , and M2z3p
5

(mpz indicates the total number of poles and zeros.)

Model f1 f1v f2 n mpz

M2z5p
3 2.550E − 2 4.510E − 2 28 21 7

M2z4p
6 3.157E − 1 3.916E − 1 25 19 6

M2z3p
5 3.985E − 1 4.827E − 1 23 18 5

Table 4.12: Selected initial linear models (design concepts) for nonlinear identification of
thermal process.

Design Concept Model Poles Zeros
DC − 1z4p G1z/4p [−4.461; −2.523; −0.340; −0.014] [−0.015]
DC − 1z3p G1z/3p [−1.493; −0.349; −0.014] [−0.016]
DC − 1z2p G1z/2p [−0.269; −0.012] [−0.013]

Step2 - Choose the design concepts:
According to the modifiedMDL criterion and theMSE values, the best linear
model is G1z/4p (four poles and one zero). However, theMDL of models G1z/3p

and G1z/5p is very similar. Model G1z/3p has one pole less than the best model,
so it would be interesting to compare the results obtained with the nonlinear
estimation from these two linear structures. On the other hand, model G1z/5p

will be excluded as there are two less complex models with slightly higher
performance.

The remaining models G2p, G1z/2p, and G3p have similar performance and any
of these could be a good option for obtaining less complex nonlinear models.
In this case, the linear structure G1z/2p will be selected. The location of the
poles and zeros of the three selected structures for nonlinear estimation are
shown in Table 4.12. As in the numerical example, each of these structures
gives rise to a different design concept.

Step3 - Prepare a multi-step excitation signal and performs an
experiment with the process under identification:
The input and output data are the same as those used for the estimation under
the unified approach described in Chapter 3. As a reminder, the estimation
signal was designed with 38 steps and the validation with 24 steps. The steps
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Table 4.13: Summary of WH-MOEA parameter settings for nonlinear estimation of the
thermal process

Parameter Value Parameter Value
MaxGen 1.2E6 n_box2 10
NindP 4.0E4 nmax 14
NindG 4 nmin 4
n_box1 50 α 0.05

in both signals lasted 700s, and the amplitude changes were handled randomly
within the entire range of variation of signal ua (0 − 4.5V ). To highlight the
non-linearity of the process, the minimum step amplitude was constrained to
1.5V . The input signals for both estimation and validation tests are shown in
Figure 3.20.

Step 4: Set the bounds.
The minimum and maximum values of the input and output signals were
obtained from the estimation data set. These values were: umin = 0V ,
umax = 4.50V , ymin = −53.957◦C and ymax = −0.181◦C. As the previous
example, ymin and ymax values were used to create Wmin and Wmax,
respectively and umin and umax to define the variable limits V min and V max.

Step 5: Run WH-MOEA for each design concept.
According to the selected design concepts, three bi-objective optimisation
problems were stated, as in Subsection 4.3. The configuration parameters in
Table 4.13 were used for all three executions of WH-MOEA. For each design
concept, the first individual in the population was coded using the poles and
zeros of each initial linear model. The exploration bounds to refine poles and
zeros were defined according to its location concerning the imaginary axis. In
other words, the poles or zeros furthest from the imaginary axis had a greater
exploration margin since they were less sensitive, while those closer to the
imaginary axis had a smaller exploration margin. The codification of the first
individual and the exploration bounds to refine the poles and zeros of each
design concept are shown in Table 4.14.

After optimisation of the design concept DC − 1z4p, six Wiener-Hammerstein
models were obtained. In all these models, the two fast dynamic poles were
located at the front of the structure, whilst the two slow poles were located at
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Table 4.14: Coding of the first individual in the population and exploration bounds to
refine the poles and zeros (design concepts for identification of thermal process)

DC − 1z4p
nc = 0, nr = 1, mc = 0, mr = 4

Pmin [−0.055, −4.561, −2.623, −0.440, −0.054]
P 0

1 [−0.015, −4.461, −2.523, −0.340, −0.014]
Pmax [0.025, −4.361, −2.423, −0.240, −0.010]

DC − 1z3p
nc = 0, nr = 1, mc = 0, mr = 3

Pmin [−0.056, −1.593, −0.449, −0.054]
P 0

1 [−0.016, −1.493, −0.349, −0.014]
Pmax [0.024, −1.393, −0.249, −0.010]

DC − 1z2p
nc = 0, nr = 1, mc = 0, mr = 2

Pmin [−0.053, −0.369, −0.052]
P 0

1 [−0.013, −0.269, −0.012]
Pmax [0.027, −0.169, −0.010]

the rear. This is consistent with the real process structure: fast poles are from
the actuator dynamics while slow ones are from the Peltier cell dynamics.
Design concept DC − 1z3p also resulted in six Wiener-Hammerstein models
in which the fast actuator dynamics were separated from the slow process
dynamics. Since this design concept does not consider the fastest actuator
pole, a single-pole was placed at the front of the Wiener-Hammerstein
structure. In the case of design concept DC − 1z2p, four Hammerstein
models were obtained at the end of the generations. The resulting structure
is consistent, since the design concept does not consider the two fast dynamic
poles corresponding to the actuator.

Step 6: Perform a decision making analysis.
Pareto fronts of the three design concepts are shown in Figure 4.17 and the
model performance is quantified in Table 4.15. The best process representation
was obtained by model M1z4p

1 , which has a complexity level of 15 (1 zero,
4 poles and 10 points to represent static non-linearity). Models M1z4p

2

and M1z4p
3 have similar performances to M1z4p

1 but with less complexity.
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Table 4.15: Optimisation results for thermal process.

DC − 1z4p DC − 1z3p DC − 1z2p
Model f1 f2 Model f1 f2 Model f1 f2
M1z4p

1 0.1650 15 M1z3p
1 0.1654 16 M1z2p

1 0.2086 13
M1z4p

2 0.1714 13 M1z3p
2 0.1674 13 M1z2p

2 0.2162 19
M1z4p

3 0.1753 12 M1z3p
3 0.1812 11 M1z2p

3 0.2327 8
M1z4p

4 0.2018 11 M1z3p
4 0.1883 10 M1z2p

4 0.8585 7
M1z4p

5 0.2328 10 M1z3p
5 0.2185 9

M1z4p
6 0.5999 9 M1z3p

6 0.4371 8

(M1z4p
2 and M1z4p

3 represent static non-linearity with 2 and 3 less points
respectively). Considering the improved precision from M1z4p

6 to M1z4p
1 as

100%, the improvement between M1z4p
2 and M1z4p

3 is only 0.89% at the cost of
adding one more point to static non-linearity.

On the other hand, accuracy increased between M1z4p
1 and M1z4p

3 represents
only 2.37% of the total, costing 3 points more in static non-linearity. It can
therefore be concluded that it is useless to increase the static non-linearity of
this design concept by more than 7 points because the improvement in precision
is negligible.

The most significant increase in accuracy occurs when the complexity level
changes from 9 to 10; in this case, an increase of one point in static non-linearity
represents an 84.4% improvement in model accuracy. This implies that the
performance of the M1z4p

6 model (4 points for static non-linearity) is poor and
it should therefore be discarded from the selection process.

Regarding the design concept DC − 1z3p, the precision achieved by model
M1z3p

2 (complexity level 13) is almost equal to that achieved by model M1z3p
1

(complexity level 16). It should be noted that an increase of more than nine
points in static non-linearity does not mean a significant accuracy increase
(between M1z3p

1 and M1z3p
2 , which represents only 0.73% of the total). In this

design concept, the largest increase in accuracy occurs when the complexity
level changes from 8 to 9 and is 90% of the total. This implies that model
M1z3p

6 , which uses four points to represent static non-linearity, should be
discarded due to its poor performance in terms of accuracy.
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Figure 4.17: Comparison of Pareto fronts for nonlinear identification of thermal process.

On comparing complexity level 10 models M1z3p
4 and M1z4p

5 , it can be seen
that M1z3p

4 has better performance in terms of accuracy despite having a
pole less than M1z4p

5 . This implies that it is more important to increase the
number of points than to add the missing pole in models with insufficient
static non-linearity points. As the number of points increases this effect is less
noticeable. This can be checked by comparing modelsM1z4p

4 andM1z3p
3 , which

have a smaller accuracy difference than the two models discussed above. Once
the static non-linearity has been captured with the necessary number of points
the effect of the missing pole in the second model concept is very slight, so
that the most accurate model is that of the first design concept.

The Pareto front of the design concept DC − 1z2p shows the performances
of four Hammerstein models. The most precise model is M1z2p

1 with a
complexity level of 13 (10 points are used for static non-linearity). Although
the complexity could have increased, the algorithm did not find any more
models, since increasing static non-linearity by more than 10 points does not
represent increased accuracy.

On comparing DC − 1z2p front with DC − 1z3p and DC − 1z4p fronts, one
can see the effect of omitting the two fast actuator poles in the models. This
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Figure 4.18: Performance of the models M1z4p
3 , M1z3p

4 , and M1z2p
2 evaluated on the

estimation (top) and validation (bottom) data sets.

shortcoming cannot even be compensated by increasing the static non-linearity
points.

As final part of the analysis, the designer can evaluate the models of all fronts
on a different data set (validation set) than the one used for estimation. A
practical example of this is shown in Figure 4.17. The displacement of the
three Pareto fronts (models represented by diamonds) shows lower accuracy
than those achieved by the estimation data set. The Pareto front of the first
model concept can be seen to stand out more to the left, indicating that the
difference between the four-pole and three-pole models has become wider in
terms of precision. This particular situation can also give the designer clues to
select a suitable model.

Thanks to this approach it has been possible to compare Wiener-Hammerstein
and Hammerstein model structures. Clearly, more complex models will be
more accurate, however it will always be important to quantify their differences
and select the best, considering not only model accuracy but also complexity.
For example, if you require an adequate compromise between precision and
complexity, modelM1z2p

2 could be selected as well asM1z3p
4 andM1z4p

3 . Figure
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Figure 4.19: Static non-linearity of the thermal process captured by the models M1z4p
3 ,

M1z3p
4 , and M1z2p

2 .

4.18 shows a comparison of the performance of these models on the estimation
and validation data sets, while Figure 4.19 shows how the break points were
located to represent the static non-linearity of each model.

At first glance (Figure 4.18) it seems that the performances of the three
selected models are the same; however an enlargement of the image (Figure
4.20) shows the existing differences mainly in the transient stage. Notice how
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Figure 4.20: Enlargement illustrates the differences in the transient responses of M1z4p
3 ,

M1z3p
4 , and M1z2p

2 for the validation input.

model M1z2p
2 (green) has a small difference with the other two models with a

Wiener-Hammerstein structure. If a simplified model is required, M1z2p
2 would

therefore be a good option.
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5.1 Conclusions

Exploring the state of art on the identification of Wiener-Hammerstein models,
it became evident that, to date, there is a wide range of alternatives for
estimating models with this structure. However, given the complexity of these
models, current identification methods are also complex and, in many cases,
some assumptions are necessary. Most of them, especially those presented
in the last decade, start the identification procedure by obtaining a linear
approximation of the nonlinear system. From then on, efforts are concentrated
on distributing the dynamics between the two LTI blocks, considering that,
there is another block in the middle representing the static non-linearity of
the system. The way to distribute the dynamics has made the difference
between the existing methods. Currently, methods with both parametric and
non-parametric approaches can be found in the literature.

The first contribution of this thesis lies in the introduction of a new
method to identify Wiener-Hammerstein models. This method is based
on an evolutionary algorithm (WH-EA) with customized genetic operators
that distribute the dynamics between the two LTI subsystems, while at the
same time, pole-zero locations are subtly tuned and static non-linearity is
captured with high precision. Development of WH-EA was motivated by the
high user interaction required by most existing methods, due to the great
complexity involved in the estimation procedure. Generally, most methods
require intermediate stages where the user must intervene to execute specific
procedures, analysing results and taking decisions.

Unlike conventional procedures, WH-EA estimates all parameters of a
Wiener-Hammerstein model by solving one single optimization problem. That
is, from an initial linear model, the algorithm solves the identification problem
without intermediate procedures that require user interaction. WH-EA
is able to look for the best BLA split while at the same time, refining
pole-zero locations and capturing static non-linearity with high accuracy.
The performance of this approach has been evaluated through a numerical
example with a complex static non-linearity and through a well-known
benchmark data (SYSID’09). The results show that WH-EA is able to identify
Wiener-Hammerstein systems with good precision in a parametric framework
avoiding high user interaction and drawbacks involved in using the QBLA.

As in all evolutionary optimization algorithms, WH-EA’s performance is highly
dependent on several issues which are detailed below:
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• Balance achieved between the population diversity and
convergence. It is achieved thanks to an appropriate selection of the
WH-EA tuning parameters. Although there is no recipe to precisely
define them, through experience it has been possible to establish
appropriate values to fix mutation and crossover probabilities and to
control mutations’ aggressiveness. For this reason, most of the WH-EA
parameters were the same in all included examples.

• Initial population. WH-EA uses the BLA as a starting point for
nonlinear estimation. Thanks to this linear approximation and to
information obtained from the input and output signal, a coherent initial
population is defined allowing an effective exploration and, at the same
time, facilitating convergence of WH-EA.

• Search space. As with the initial population, thanks to the BLA and the
information obtained from the input and output signals (minimum and
maximum values), an adequate search space is selected for an effective
exploration. The search space for new pole and zero locations is defined
around the BLA. Notice that the BLA captures the process dynamics
with great precision and therefore, the search space for each pole and zero
should not be too wide around these initial locations. Likewise, it must
be taken into account that a small movement of a pole or zero represented
in discrete-time implies a large movement in continuous-time, given the
exponential relationship existing between the s and the z domains. On
the other hand, thanks to the minimum and maximum values of the input
and output signals, it is possible to effectively specify the search space
where the static non-linearity will be captured. Since WH-EA starts from
a known dynamic that needs to be split and refined, the search space of
the static non-linearity is crucial to help the algorithm to converge.

The advantage of starting the estimation of a Wiener-Hammerstein model with
a knowledge of the dynamics is evident. Although the identification problem
is still complex since it is not possible to know in advance the distribution of
the poles and zeros between the two linear subsystems of the model, thanks to
the known dynamics it is possible to better bound the search space to find the
best nonlinear approximation.

There is a prominent preference in the literature for the use of BLA, which
allows to capture with great precision the dynamics of a process affected by
a static non-linearity. However, from a practical point of view there are some
limitations that should be pointed out. The most critical limitation is that
the BLA is only defined for a fixed class of input signals. In this context, the
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Riemann equivalence class of asymptotically normally distributed excitation
signals are preferred. From a theoretical point of view, this kind of signals allow
to represent a Wiener-Hammerstein model with a linear dynamic model plus a
noise source representing the nonlinear distortions. under this assumption,
a linear dynamic model is guaranteed to be obtained with high accuracy;
however, not all processes are able to be excited with this kind of signals.
Further, in many situations, obtaining the BLA may involve the use of multiple
long duration excitation signals, each of them designed carefully.

These disadvantages with the use of BLA, motivated the second contribution
of this doctoral thesis. It consists of a new approach based on WH-EA but
using a standard initial linear model and multi-step signals. The initial linear
model can be obtained from the step response of the system using any standard
identification procedure. From a practical point of view, both the step signal
and the multi-step signal are more conventional, especially in the industrial
context.

It is evident that the initial linear model obtained through the step response
will not be able to achieve the same accuracy as the BLA. The initial linear
model is likely to be a biased version of the real system dynamics; however,
thanks to WH-EA’s customised genetic operators, dynamics can be fine-tuned
as the static non-linearity is captured. This can be clearly seen from the results
obtained in the identification examples presented in Section 3.9.

Thanks to this new approach that avoids the BLA estimation, it has also been
possible to tackle to some extent another drawbacks present in block-oriented
models:

• Structure detection. To date, very few studies have been reported
that help to detect an appropriate structure among the possible options
belonging to the group of block-oriented non-linear models. Existing
Wiener, Hammerstein and Wiener-Hammerstein model identification
methods assume a known structure a priori.

• Rigidity of existing identification methods. Even though the
Wiener, Hammerstein and Wiener-Hammerstein models have several
features in common, existing identification methods are rigid and
exclusive for each single structure. That is, an identification method
for Hammerstein models cannot be used to identify Wiener models or
vice versa.

The Wiener, Hammerstein and Wiener-Hammerstein models are based on
block series connections and a single static non-linearity. The difference

136



5.1 Conclusions

between them is the location of the non-linearity around the dynamics.
A key factor in achieving a good estimate is the bounding of the search
space where explore for possible solutions. Assuming that a known dynamic
system is affected by a static non-linearity, the search space cannot be
set correctly if the non-linearity location around the dynamics is unknown.
For this reason, existing identification methods for Wiener, Hammerstein
and Wiener-Hammerstein models assume an a priori block structure (static
non-linearity location) and do not provide flexibility to estimate a model with
a different structure than the one for which they were developed.

Chapter 3 shows how WH-EA is able to overcome these drawbacks, performing
an adequate type selection of the excitation signal to be used for the
identification experiment. Through the use of multi-step signals it has
been possible to establish an appropriate search space to capture the static
non-linearity regardless of its location around the dynamics. This allows
WH-EA to estimate Wiener, Hammerstein and Wiener-Hammerstein models
without any user specification about the type of structure to be estimated.
The effectiveness of the algorithm, both for choosing the best structure
and estimating its parameters with high accuracy has been proved through
three numerical examples containing complex static non-linearities and a real
process based on a Peltier cell. Each numerical example was designed with a
different structure, i.e. the algorithm was tested against a Wiener model,
a Hammerstein model and a Wiener-Hammerstein model. For each case,
WH-EA classified the dynamics correctly and estimated high precision models.
It should be noted that WH-EA does not require user interaction to execute
intermediate procedures. Simply configuring of a few tuning parameters, with
an initial linear model and information obtained from the input and output
signals, the algorithm has autonomy to achieve the final results. This is highly
attractive especially when there is uncertainty about the distribution of the
dynamics around non-linearity.

Furthermore, WH-EA has complete flexibility to estimate models in
discrete-time or continuous-time, without the choice between these alternatives
implies any modification on the algorithm. The estimates presented in Chapter
3 were developed in continuous-time, while in Chapter 2 the estimates were
made in discrete-time. The difference between them lies in the calculation of
the objective function: in the discrete case the dynamic simulation can be done
using the filter command, whilst for continuous-time the lsim command must
be used instead. Both commands are available within MATLAB.

Though, calculation of the objective function in continuous-time requires
higher computational cost, the pole-zero locations in the S-plane provides a
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much clearer picture of the system behaviour and, depending on the pole-zero
sensitivities (how close or far away they are from the imaginary axis) a coherent
search space can be established to their fine-tune.

The third contribution addresses the problem of identifying Wiener,
Hammerstein and Wiener-Hammerstein models using a multi-objective
optimization approach. It introduces a new way of identifying
Wiener-Hammerstein models, allowing an exhaustive analysis between different
model alternatives helping the control engineer to choose the most appropriate
structure.

As in the previous contribution, neither Gaussian-type signals nor the initial
BLA have been used. The procedure is performed thanks to WH-MOEA,
a new multi-objective evolutionary optimisation algorithm which has been
formulated ad-hoc to manage this type of block-oriented models without
previous knowledge about the process structure. The method highlights the
importance of generating a set of models with common targets and different
performances -the generated Pareto fronts can be compared and an analyse of
the trade-off between precision and complexity can be done. The procedure is
therefore not focused on the selection of a specific model, but rather on showing
the benefits of obtaining a wide range of models with different features, giving
the engineer a chance to choose a final model according to his/her preferences.
The effectiveness and importance of using this approach is demonstrated
through the estimation of a CSTR (simulated process), a numerical example
and the thermal process already used.

The WH-MOEA procedure has two important advantages: on one hand,
by studying the Pareto front of a specific design concept, the influence
of a variation in the non-linearity breakpoints on model precision can
be analysed. From the analyses, the uncertainty about the number of
breakpoints to represent static non-linearity is reduced. On the other hand,
the design concept analysis can be used to compare several candidates. For
example, simpler models than those recommended by the MDL criteria can
be found with acceptable performance. Finally, the procedure described here
contributes to solving the issue stated in many control problems, where design
requirements and user preferences do not always point to model precision as
the only objective, as model simplicity can also be an influential factor in
decision-making.
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5.2 Future research directions

Based on the work presented in this dissertation, this section presents some
ideas that may serve as a basis for future research directions on block-oriented
models:

• Identification of Wiener-Hammerstein models considering hysteresis
non-linearities.

• Identification of multivariable Wiener-Hammerstein models.

• Identification of Hammerstein-Wiener models considering a
multi-objective approach to penalise accuracy and complexity of
the model.

• Development of new strategies for robust estimation of
Wiener-Hammerstein models.

These ideas are discussed in more detail below:

Identification of Wiener-Hammerstein models considering hysteresis
non-linearities.
Hysteresis is a type of static non-linearity that can be present in many real
systems. In the context of block-oriented models, several approaches to
estimating models with hysteresis can be found in the literature; however,
most of these have been developed on Wiener or Hammerstein systems. The
complexity implicit in the Wiener-Hammerstein structure has prevented a
good set of methods to identify these models considering hysteresis from being
available today.

Starting from WH-MOEA, estimation of hysteresis could be solved by
modifying individual codification and adding new genetic operators. Using the
multi-objective approach, the engineer could compare models with different
complexities (both in the dynamic part and in the static non-linearity)
and analyse the effect of hysteresis on model’s accuracy. This would be of
great help in decision-making when selecting a model especially for control
applications.

Identification of multivariable Wiener-Hammerstein models.
The contributions presented in this dissertation are applicable to Single-input
Single-Output systems (SISO); however, both WH-EA and WH-MOEA
can be extended to estimate Multiple-Input Single-Output (MISO) and
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Multiple-Input Multiple-Output (MIMO) systems. Very few contributions on
multivariable block-oriented model identification are currently reported in the
literature. Almost all concentrate on Wiener and Hammerstein multivariable
systems. In the case of Wiener-Hammerstein models, no contributions have
been reported to date.

The coupling between multiple inputs and outputs leads to a complex
identification problem, so it would be interesting to evaluate the potential of
WH-EA and WH-MOEA to deal with multivariable models.

Identification of Hammerstein-Wiener models considering a
multi-objective approach to penalise accuracy and complexity
of the model.
Taking WH-MOEA as a starting point, a new algorithm could be developed to
address the Hammerstein-Wiener model identification problem. To date, no
identification methods with a multi-objective approach have been reported for
this class of models. For the case of Hammerstein-Wiener models it would not
be necessary to partition the dynamics since there is only one dynamic block,
however, an adaptation of the algorithm would be needed to deal with two
static non-linearities and their corresponding search spaces. Since a variable
number of parameters would be considered in each non-linearity, the Pareto
front generated let analyse the most appropriate model. This proposal would
become even more attractive if hysteresis-type non-linearities were considered.

Development of new strategies for robust estimation of
Wiener-Hammerstein models.
As seen throughout Chapter 1, there are currently several methods for
identifying Wiener-Hammerstein models, however, the problem of robust
identification in the presence of uncertainty has not been addressed.

It should be noted that a system is not always subject to only one type of
non-linearity. In addition to the static non-linearity, the parameters of the
dynamic part are likely to change over time or as a function of the operating
point. Under appropriate bounds this parameter variation could be considered
as an uncertainty. To address this identification problem, one could exploit the
features of WH-EA and WH-MOEA and combine them with other techniques
such as fuzzy logic to create new ways of identifying Wiener-Hammerstein
models and their specific cases considering uncertainty.
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