
Escuela Técnica Superior de Ingenieŕıa Informática

Universitat Politècnica de València

Simulation Biased Random Walk associated with Escherichia Coli

Final Degree Project

Computer Science

Author: Jose Miguel Lloret Pérez

Supervisors: Dr. Ángel Valera Fernandez

Dr. John McCall

August 2, 2012

In collaboration with:

Abstract

The aim of the project is to simulate cellular intelligence in e-puck robots through a novel
method named Artificial Reaction Network (ARN). Biased Random Walk (BRW) is imple-
mented in three robots simultaneously and these are controlled by a computer which runs a
program in Java platform. The characteristics and limitations that e-puck has and protocol
for communicating Java platform with e-puck is discussed. Also approaches like: Odometry,
Kalman Filter (KF), Particle Filter (PF), proximal and distal are presented as well as its ad-
vantages and disadvantages. Thus, the implementation of each approach selected is explained
and future improvements are discussed.

Acknowledgements

The author wishes to express his gratitude to his supervisor, John McCall who has offered
invaluable assistance, support and guidance. Also, the author would like to thank Claire
Gerrard since without her knowledge, this study would not have been successful. Not forgetting
David Davidson for giving him the opportunity of be an exchange student in this University
as well as the students met at Ideas Research Group. The author whishes to express his love
to Cinta Gomez for her understandability in every situation elapsed during the project since
without her would not have been possible to get the strenght enough for achieving the purposes.
Finally, the author is grateful for his family who has been giving him help and backing in his
experience far away from home.

Contents

Introduction 6

Requirements analysis 7

Detailed specification 8
Basic actions . 8
Protocol avoidance . 8
Concurrence . 8
Environment to simulate . 9
E-puck robot, selected to simulate . 9

Overview . 9
Hardware . 9
Software . 11
Interface with the robot . 12
Mechanisms and useful theories . 12

Design discussion 15
Basic actions approaches . 15

Basic actions using Odometry . 15
Basic actions using Kalman Filter . 16
Basic actions using Particle Filter . 16

Protocol avoidance approaches . 17
Protocol avoidance using Proximal (reactive) . 17
Protocol avoidance using Distal (rule-based) . 18

Concurrence approaches . 19
Concurrence using Thread . 19
Concurrence using Runnable . 19

Implementation issues (excluding programs listings) 20
Structure of the system (Java side) . 20
Structure of the system (C side) . 22
Odometry as approach used . 24
Distal (rule-based) as approach used . 25
Thread as way used . 26
Communication Java and E-puck . 27
Improvements for resource limitations of e-puck . 29

Analysis of system performance 30
First experiment . 30

First experiment - Scenario . 30
First experiment - Results . 30

1

First experiment - Conclusion . 31
Second experiment . 32

Second experiment - Scenario . 32
Second experiment - Results . 33
Second experiment - Conclusion . 33

Conclusions 35

Reflections 37

Program listings 40

2

List of Figures

1 E-puck robot . 10
2 Electronic e-puck . 10
3 Webots steps to develop . 12
4 Differential drive kinematics . 12
5 Class diagram (Java side) . 20
6 Comparison BRW, between Computer and Robot 31

3

List of Tables

1 Variables for e-puck . 14
2 Java messages for sending to each e-puck . 27
3 Example encoding message from Java . 28
4 Comparison coordinates BRW, between Computer and Robot 32
5 Second experiment . 33

4

Listings

1 Java. Class extends Thread . 19
2 Java. Class implements Runnable . 19
3 C. Atan function customized . 40
4 C. Distal approach . 40
5 C. Odometry forward . 40
6 C. Odometry counterclockwise . 41
7 C. Odometry clockwise . 41
8 Java. Methods class . 41
9 Java. Connect with E-puck by Bluetooth . 42
10 Java. Disconnect with E-puck by Bluetooth . 42
11 Java. Send message to E-puck by Bluetooth . 42
12 Java. Receive message from E-puck by Bluetooth 43
13 C. Send message to Java by Bluetooth . 43
14 C. Receive message from Java by Bluetooth . 43
15 C. Regular expression for two doubles received 44
16 C. Regular expression for one double received 44
17 C. Regular expression for one integer received 44
18 C. Orders interpreter . 45
19 C. Release memory . 47
20 C. Management agenda e-puck . 47
21 Java. Output first experiment . 47
22 Java. Output second experiment . 49

5

Introduction

Artificial Intelligence (AI) is the study of intelligence machines and is one of the branches of
computing which was invented by John McCarthy and defined as he said “the science and
engineering of making intelligent machines, especially intelligent computer programs. It is
related to the similar task of using computers to understand human intelligence, but AI does
not have to confine itself to methods that are biologically observable” [7]. Since then, many
approaches to simulate intelligence have emerged, such as bio-inspired approaches which have
achieved that AI has enormous progress.

Bio-inspired AI approaches have proven valuable, for example: Genetic Algorithms (GA),
Particle Swarm Optimization (PSO) and Ant Colony Optomization (ACO).

This project intends to explore the potential of Artificial Reaction Network (ARN) as a
source to simulate cellular intelligence in a particular robot. The Ideas Research Institute is
part of Robert Gordon University and could consider this type of project like the first project
using e-puck robot, an educational robot with an emerging use in Engineering.

The first aim of this project has been to establish a contact with every term involved with
the robot, studying its characteristics, as well as its limitations.

The secondary aim has been to research how to communicate the robot with programs
in java, so this may be very useful for a future research projects related to simulated cellular
intelligence using Java as a principal programming language, due to the extensibility and power
that resides in this language.

The third aim has been to apply ARN to simulate the Biased Random Walk (BRW) asso-
ciated with Escherichia Coli, combining the first aim as well as the secondary aim, to simulate
artificial intelligence in e-puck robots.

6

Requirements analysis

ARN is a novel method of simulating cellular intelligence that can be described as a modular
S-System, with some properties in common with other Systems Biology and AI techniques
[6]. Its biological basis has been validated using real biochemical data by creating a working
model of the Cell Signalling Networks (CSN) of the well characterized signalling network of
Escherichia Coli.

ARN is an abstract model of a CSN and are described as networks of biochemical reactions
with allow communication, response and feedback within and between the cells. The charac-
teristics of this cellular intelligence like recognition, classification, response, communication,
learning and self-organization [5] are the result of these complex networks and are examined as
a source of inspiration for development of novel AI techniques using this novel method, ARN.

Escherichia Coli, to highlight the explanation, may be described as unicellular bacteria that
present an ideal pathway to explore emergent properties of cell intelligence. This bacterium
has chemoreceptors which recognise and bind to specific chemicals within the environment.

BRW is one of the behaviours that Escherichia Coli can be experiment, and may be described
as a series of ”runs” and ”tumbles”. ”Run” refers to motions in a straight line for a period
of time, whilst ”Tumble” can be described as a random turn. For the project developed all of
these theories are applied like:

• Bacteria bias their walks based on the concentration gradient of a particular chemical
and bacteria can be in a good or bad condition depending the position which is it.

• There is an environment that each cell can move in, and there are three cells moving
around this environment, where each cell may be in a high concentration or in a low
concentration of a determinate characteristic, for instance food.

• The centre of the environment represents the best concentration and when each bacterium
moves outwards, this value of concentration decreases till it reaches the bad conditions
which correspond to lowest concentration.

• The cell will increase its run length as it moves towards the centre, decreases its run if it
moves outwards from the centre, trying to gravitate towards more favourable conditions.

Thus, ARN has been applied to simulate the BRW of Escherichia Coli and indeed it is the
reason of these clarifications.

In the following section, “Detailed specification” how to adapt BRW to produce cellular
intelligence with a particular robot will be explained.

7

Detailed specification

BRW is the behaviour chosen to simulate in a real environment using robots. To adapt this
cell behaviour, details of the needed requirements will be explained below:

Basic actions

• The robot always starts in a particular point given by x coordinate as well as y coordinate.
So, it can be affirmed that the robot is always in a coordinate (x, y) located in a particular
environment.

• ”Run” is translated as a motion in a straight line where the duration of this depends on
the distance between current coordinates and coordinates to reach.

• ”Tumble” refers to angle needed to turn the robot from the current coordinates to reach
the new coordinates.

Why are the basic actions implemented not according to BRW? Because another program
executes these actions and indeed this program is responsible for implementing BRW using
ARN as a source. So, the program developed for this project has received a file with different
orders to go for each robot, thus this orders are in accordance with the results produced by the
program which really implements BRW.

Protocol avoidance

• The number of robots sharing the environment is reduced to three and each one is simu-
lating a cell. Each robot must have implemented the avoiding protocol.

• They need to be able avoid collision with the walls.

• They need avoid crashing each other, taking into account that they probably are in
motion.

Concurrence

• There is a computer which controls each robot, hence instances need to be run simulta-
neously.

• There is need to manage every request which is coming from the computer program, hence
various input channel are needed.

• There is need to send orders to robots simultaneously, therefore various output channel
are needed.

8

• The program must be run in Java as the language to exchange information between
robots.

Environment to simulate

• The robots must be run in an enclosed surface.

• The width is measured in centimetres and corresponds to x. Also the height is measured
in centimetres and corresponds to y.

• There are four walls around the surface, and the height is four centimetres so the robots
are expected to avoid crashing with them.

• The ground of the enclosed surface is like a green carpet which is appropriate for the
wheels as it is not slippery.

E-puck robot, selected to simulate

The e-puck robot is a differential drive robot designed by Dr. Francesco Mondada and Michael
Bonani in 2006 at École Polytechnique Fédérale de Lausanne (EPFL). It was intended for
educational use but also has been used for research [20]. The project is based on an open
hardware concept; similarly the software developed is fully open source, offering unlimited
extension possibilities.

The design of the robot is based on two criteria [8]:

• Desktop size: A robot which can evolve on the desk near to computer improves drastically
the student efficiency during experimentation.

• Flexibility: Various fields of education (signal processing, automatic control, embedded
programming and distributed intelligent systems, among others) as well as a wide set of
functionalities can be applied to this robot.

Overview

The robot e-puck shown in (Figure 1) has a diameter of 75 mm. The user can connect physical
extensions to provide additional sensors, actuators or even computational power. There are
three physically different types of extensions (top, bottom and sandwich). The height of the e-
puck depends on the connected extensions. The battery can be extracted easily from the bottom
of the e-puck. The hardware and the software which has this robot as well as mechanisms and
useful theories will be explained below.

Hardware

E-puck hardware has an electronic structure (Figure 2) built around a microchip dsPIC mi-
crocontroller. This microcontroller has a CPU which runs at 64 MHz and provides 16 Millions
Instructions Per Second (MIPS). This processor is supported by a custom tailored version of
the GCC C compiler. The random access memory is 8 KB and also has 144 KB of flash memory
to store user programs. The e-puck contains various sensors, identified as blue (Figure 2) to
ensure a broad range of experimentation possibilities. Details of each one is given below:

• Low battery detection: It is enabled when robot detects low charge battery.

9

Figure 1: E-puck robot

Figure 2: The outline of the electronic of the e-puck

• 8x IR proximity: They measure the closeness of obstacles or the intensity of the ambient
light. These are placed around the body.

• CMOS colour camera: A colour CMOS camera with a resolution of 640 x 480 pixels is
placed in front of the robot. The size of acquisition is limited by the memory size of the
dsPIC and the rate is limited by its processing power.

• 3D accelerometer: Measures the acceleration produced by its own motion and to measure

10

the inclination of the e-puck.

• 3x micro: Localize the source of the sound by triangulation.

The e-puck provides various actuators, identified as red (Figure 2) to send orders:

• Power-on: It is located under the chip and next to the right wheel.

• 2x stepper motors: They control the motion of the wheels. They receive a value from
-1000 till 1000. A negative value moves the wheel backward and a positive value moves
forward.

• Body light: A set of lights placed in the transparent body offer the possibility to interact
with the user.

• 8x red lights: They are placed around the e-puck and are emitting diodes (LED). They
provide a visual interface with the user and could be useful for other e-pucks which are
using the camera.

• Speaker: Connected to an audio codec. Offers another possibility to interact with the
user.

The e-puck has two communication possibilities, identified as orange (Figure 2) to interact with
devices:

• RS232 connector: Serial interface to communicate with a computer using a cable.

• Bluetooth radio link: Wireless communication with a computer or with up to 7 other
e-pucks.

Software

There are different software available for e-puck and these will be defined below:

• Bootloader: Permits transfer programs in format file .hex, previously compiled using
particular software recommended by www.e-puck.org, whose name is MPLAB and allows
programs to be created using C as a language, to compile them and create a .hex file.
The recommended name to upload .hex files to the robot is ”Tiny Bootloader”.

• Standard library: A collection of modules for using the different sensors, actuators as well
as communications to facilitate the use of the e-puck hardware is provided.

• Simulation: There are various simulators of the e-puck, for instance Webots, is a devel-
opment environment used to model, program and simulate mobile robots [3]. The fourth
step (Figure 3) would be to transfer the program which Webots generates to e-puck using
software to upload the file or files. One of the advantages of using this environment is the
possibility to program the behaviour for the robot in different languages as (python, c#
or Java) and then automatically translate to C.

• Monitor: To check the sensors and actuators of the e-puck, there are two possibilities; one
is .exe program, which runs in Windows platforms and the other, a program that runs
inside of Matlab. These programs help to detect if there is any sensor or actuator which
does not work.

11

Figure 3: Webots steps to develop

Interface with the robot

The robot contains several devices to interact with as can be seen in (Figure 1) to identify each
one. The different devices to interact will be explained below:

• There are three connectors: in-circuit debugger, to program flash memory and to debug
code.

• ON – OFF: This switch permits powering on and off. It cannot be seen in (Figure 1) but
is located under the chip.

• Reset: This button restarts the program running in the robot when robot is power on.

• Mode selector: The robot has sixteen positions which can be used. In each position a
different program can be executed. Remember, when position is changed, there is need
to press Reset button.

Mechanisms and useful theories

The robot e-puck has a differential configuration. It consists of two drive wheels mounted on a
common axis, and each wheel can independently move either forward or backward [4]. There

Figure 4: Differential drive kinematics

are 2 steppers motors with gear reduction. A stepper motor can move in accurate angular

12

increments known as steps in response to the application of digital pulses to an electric drive
circuit from a digital controller. The number and rate of the pulses control the position and
speed of the motor shaft. E-puck motors have 20 steps per revolution.

The wheels diameter is about 41 mm and they are separated by distance of 53 mm. The
maximum speed of the wheels is 1000 steps per second, which corresponds to one wheel revo-
lution per second [21].

By varying the speed of the two wheels, the trajectories that the robot takes can be varied.
There are three interesting cases:

1. If, V r = V l robot moves in a straight line.

2. If, V l = −V r robot turns clockwise. Whether V r = −V l, robot turns counter clockwise.

3. If, V l = 0 there is a rotation about the left wheel. Whether V r = 0, there is a rotation
about the right wheel.

As robot has a differential drive configuration, imposes non-holonomic constrains on establishing
its position. It means that robot cannot move laterally along its shaft. So, cannot simply specify
an arbitrary robot position and find the speed needed to reach that position.

To control the robot and reach a given configuration
[
x y θ

]T
there is need to know the

inverse kinematic:

x(t) =

t∫
0

υ(t)cos[θ(t)] dt (1)

y(t) =

t∫
0

υ(t)sin[θ(t)] dt (2)

θ(t) =

t∫
0

ω(t) dt (3)

where υ refers to linear speed and ω is the angular speed. To apply this principle for a motion
in a straight line, the (Equation 4) shows how to reach the position:x′y′

θ′

 =

x+ υcos(θ) dt
y + υsin(θ) dt

θ

 (4)

If the robot rotates over itself (Equation 5) is used which allows the position to be got:x′y′
θ′

 =

 x
y′

2υ dt
l

 (5)

The variable l refers to diameter of the robot axis, as can be seen in (Figure 4). Below, the
(Table 1) represents a summary of useful data for solving any problem related with the project.

13

Table 1: Variables for e-puck

Variable Value Meaning
l 53 Distance in mm between the wheels.
d 41 Diameter in mm per each wheel.
s 1000 Speed in steps per second.
w 2π Angular speed in radians per second, per each wheel
Θ dπ Maximum speed in mm per second.
V l ι

s
Θ Speed for left wheel giving ι steps, where ι is an integer value [-1000,1000].

V r ι
s
Θ Speed for right wheel giving ι steps, where ι is an integer value [-1000,1000].

14

Design discussion

In this chapter has been explained the different alternatives studied to reach each requirement.
Each alternative as well as its advantages and disadvantages are explained. Regarding the
environment to simulate and the robot selected (e-puck) are not discussed nothing since these
requirements are closed without possible changes.

Basic actions approaches

”Basic Actions” explained in the previous chapter, involve know where is located the robot
every-time. Localisation involves determine the Cartesian coordinates (x, y) and the orientation

θ known as the state
[
x y θ

]T
. Three alternatives are studied in this project:

Basic actions using Odometry

Odometry, also known as Dead Reckoning, is the measurement of wheel rotation as a function
of time[2]. If the two wheels are joined to a common axle, to estimate position in time t the
previous position as well as the linear speed v and angular speed w are used, the (Equation
1,2,3) show how get the position. Thus, the change of position during time, is known through
encoders of the wheels.

It is considered as the first approach to know an estimation about robot position
[
x y θ

]T
.

The advantages of this approach are:

• It requires only the use of encoders of the motors to get the position and there not need
to use other sensors for estimating of position.

• If length paths are short, it provides good accuracy of position estimation.

• It is compatible with other positioning approaches. Hence, this approach combined with
other allows get better results.

The disadvantages of this are:

• Encoders return discretized values, losing precision due to the motors are represented as
continuous function really.

• The estimation of position can be better or worse depending on floor type where robots
are located.

• The wheels diameter inequalities influence in the estimation of position.

• If the wheels produce slippage, a loss of position is got.

15

Basic actions using Kalman Filter

The Kalman Filter (KF) provides an efficient computational tool to estimate the state of a
process, minimizing the mean squared error [19]. KF has two steps:

• The update uses the dynamical model of the system (forward kinematics in e-puck),
requiring an initial position to start.

• The predictor uses a sensor model, such as the error distribution calibrated from its
sensors, for getting an improved estimation.

Hence, KF updates the state of the system, that are the position for the robot as well as its
variance.

xk = Axk − 1 +Buk − 1 + wk − 1
zk = Hxk + vk

(6)

where x ∈ <n is the state vector, u ∈ <u is the input vector and z ∈ <m is the measurement
vector. wk,vk represent process and measurement noises at time k. They are considered to have
an independent, white, normal probability distribution with zero mean. The exact values of
wk and vk at time k are normally unknown but it is assumed the knowledge of the covariance
matrices, Qk and Rk respectively(assumed to be constant). The KF aim is to estimate the
state xk of (Equation 6) based on the knowledge of the system dynamics (linear model), the
covariance matrices (disturbance characteristics) and the availability of the noisy measurements
zk. More details about how works this approach can be found in [19]. The advantages of this
approach are:

• It is obtained better accuracy than using odometry since with this approach are fused
various sensors for getting better estimation of position.

• It is possible to apply this filter for different purposes like speed of the wheels or speed
of the robot.

• There are more extensions for this filter that provide better estimation for robot position,
for instance extended KF.

The disadvantages of this approach are:

• If the platform where the filter is implemented has limited resources, as e-puck robot, it
is difficult develop the approach due to resources limitations.

• Calibration of the wheels is need to get good estimation of position, that are, measure
the diameter for each wheel and remove slight differences in wheels speed.

Basic actions using Particle Filter

Particle Filter (PF) is an approach that can be used to estimate position of the robot. The
main objective of PF is to ”track” a variable of interest as it evolves over time [10]. The variable
of interest has multiples copies (particles) and each copy has a weight which corresponds with
quality of that specific particle. Hence, the value of interest variable is got by the weighted
sum of all particles.

The PF algorithm has three phases:

1. Prediction: It uses a model in order to simulate the effect an action has on the set of
particles with appropriate noise added. For instance, to estimate robot position, odometry
can be used, adding after a noise model for motions performed. According authors [10]
if an arbitrary motion is performed as a rotation followed by a translation, is needed to
apply a noise model separately, because these motions are independent.

16

2. Update: It uses information obtained from sensors like (proximity sensors, laser, camera)
to update the particle weights in order to accurately describe the moving probability
density function (pdf) of the robot.

3. Re-sampling: This phase removes particles with small weights since these particles
become to small to contribute to the (pdf) of the moving robot.

There are three methods of evaluation to obtain an estimate of the position, according authors
[10]:

• Weighted mean:
[
x y θ

]T
=
∑M

j=1wjxj, where M is the number of particles sampled,
wj is the weight associated with the particle and xj refers to particle j.

• Best particle: It selects the particle with maximum weight associated.
[
x y θ

]T
=

max(wj) : j = 1...M .

• Robust mean: A weighted mean in a small windows around the best particle. It is the
method most computationally expensive.

The advantages of this approach are:

• If sensors like camera o laser are used, allows get a global estimation of the position,
being more reliable than others approaches which obtain only a local approximation of
the position.

• If the number of samples are increased, allows get better estimation of position.

• There is not restrictions in model, so can be applied to non-Gaussian models, hierarchical
models or even others.

and the disadvantages are:

• If the number of samples are increased, it can be inefficient computationally or even
inaccessible for e-puck.

• It can be hard find programming errors due to different phases and their associated
calculations.

Protocol avoidance approaches

Protocol avoidance, explained in the previous chapter, involves avoid crashing with the walls
and the other robots located in the environment. There are two alternatives for explaining
these requirements:

Protocol avoidance using Proximal (reactive)

In this approach the robot sensors control the speed of the motors and these are changed
according the value got by sensors. To implement this approach a matrix is used normally
where rows represent each sensor and columns are associated to each motor. Thus, the speed
is the sum of rows associated with the column that represents the motor. For instance, e-puck
robot has eight proximity sensors, each one would be associated in a row and it has two motors
where would be represented in two columns [9].

17

The weights of the matrix are determined empirically and they depend on the problem to
solve. The (Equation 7) estimates the speed of the motors:

speedmotors =
∑

0<i<m
0<j<n

matrix(i, j) · (1.0–(sensorV alue(i)/v)); (7)

where i is weight associated for each sensor, j is each motor, sensorV alue(i) represents the
value got from the sensor and v is a value estimated empirically to normalize the sensor value,
for instance could be 512. The advantages of this approach are:

• There is not need to establish actions to do when an obstacle is detected since it tries to
avoid obstacles, varying motors speed.

• The motions for avoiding obstacles are less abrupt since the speed is controlled by prox-
imity sensors.

The disadvantages of this approach are:

• It is needed a very good calibration of the sensors for avoiding behaviours in motors speed
unexpected .

• It is needed find out weights of the matrix, changing depending on problem.

• Whether the robot is crossing over a narrow passage, it will remain in this situation
probably.

• If the robot has objects in front of it, as well as in its left and right, it will remain in this
situation probably. This type of scenario is known as ”U-shaped”.

Protocol avoidance using Distal (rule-based)

In this approach is established a threshold for each sensor and when this value is overcome, it
is decided the actions to do [9]. For instance, the next code provides an example combining
the sum of two sensors:

sensorV alue(i) + sensorV alue(j) > k{action or actions to do} (8)

where k is a value (threshold) established empirically, although exist other examples for deter-
mining the actions to do. The advantages of this approach are:

• There is flexibility to establish the behaviour which performs the robot, allowing to choose
action or actions to do depending on the criteria satisfied.

• It is easy to detect possible mistakes in code since the actions can be separated depending
on the sensor.

The disadvantages of this approach are:

• Whether the robot is crossing over a narrow passage, it will remain in this situation
probably.

• If the robot has objects in front of it, as well as in its left and right, it will remain in this
situation probably. This type of scenario is known as ”U-shaped”.

18

Concurrence approaches

Concurrence, explained in the previous chapter, involves run a program which controls robots
in one computer simultaneously. Moreover, there is another restriction to satisfy, the program
must run in Java. So, in Java exists thread approach which allows an application to have
multiple threads of execution running concurrently [13].

A Thread has a priority and depending on its priority will be executed before or after
another. There are two ways to create a new thread of execution:

Concurrence using Thread

It must be declared a subclass which extends from Thread and it should modify the run method.
The principal disadvantage using this way is that Java language does not allow more than one
class to extend, providing less flexibility. (Listing 1) provides an example which uses this
approach. Firstly, there is need to create an object myThread, and after, call start method for
starting to run the Thread.

Listing 1: Java. Class extends Thread

1 c l a s s myThread extends Thread{
2 i n t va lue ;
3 myThread(i n t va lue){
4 t h i s . va lue = value ;
5 }
6 pub l i c void run (){
7 // Overr ide t h i s method
8 }
9 }

Concurrence using Runnable

It must be declared a class that implements the Runnable interface. This type of approach
provides more flexibility than previous approach, above mentioned, because in Java language
it is possible implements various classes. (Listing 2) provides an example which uses this
approach. Firstly, there is need to create an object myRunnable, and after, call start method
for starting to run the Thread.

Listing 2: Java. Class implements Runnable

1 c l a s s myRunnable implements Runnable{
2 i n t va lue ;
3 myRunnable (i n t va lue){
4 t h i s . va lue = value ;
5 }
6 pub l i c void run (){
7 // Overr ide t h i s method
8 }
9 }

19

Implementation issues (excluding
programs listings)

In this chapter it is explained the structure of system in two sides, Java and C. Java is the
language chosen to achieve requirements like concurrence and C is the language supported by
e-puck. Further, the approach chosen for each requirement as well as its code developed are
explained.

Structure of the system (Java side)

Java has been the language chosen since one of the aims, explained in ”Introduction”, requires
a communication between this language and e-puck robots. Thus, following the principles of
Software Engineering a class diagram has been created to provide a general vision about the
code implemented in Java. Bellow, each class in (Figure 5) will be explained:

Figure 5: Class diagram (Java side)

• DiscoveryBluetoothDevice: This class searches bluetooth devices installed in the ma-
chine where it is running. It implements DiscoveryListener which allows to receive device
discovery and service discovery events [1]. It has two attributes, Devices (a vector of
RemoteDevice) and Lock (an object to lock the process until inquiry is completed). The
method getDevicesFound() returns a vector of RemoteDevice found in the computer or
null if an error happens.

20

• Controller: This class is the entry point to the system. It has four methods,

– main() it is the method executed when program starts. It allows to choose between
different actions (looking for e-pucks, proximity sensors calibration...).

– lookingForEpucks() it shows in screen, friendly name and bluetooth address for each
e-puck installed in the machine.

– launchMethod() it launches the method selected in main() method.

– epucksInConfiguration() it reads each e-puck and its attributes in a configuration
file.

• Epuck: This class is a abstraction of an e-puck. It has five attributes,

– BluetoothAddress: it is an unique identifier for each e-puck. It is used to connect
with the e-puck. For instance, e-puck 2479 has 1000E8AD6AC4 as identifier.

– FriendlyName: It is the name for each e-puck and it is different for each one. For
instance, e-puck 2479 has e-puck 2479 as friendly name.

– Position: It represents the position (x, y) that robot has.

– Angle: It represents the angle θ that robot is facing.

– Near: It represents the threshold for taking into account that there is an object near.

and has ten significant methods,

– connect() it tries to connect with the e-puck, through its BluetoothAddress identifier.

– disconnect() it tries to disconnect the e-puck.

– sendPosition() it sends a position (x, y) where the robot is located. It is useful when
robot loses the reference position.

– sendAngle() it sends an angle θ where the robot is facing. It is useful when robot
loses the reference angle.

– sendStop() it sends a signal to stop the process running in the robot.

– sendGoToAvoidingObstacle() it sends a position to reach, taking into account avoid
crashing with obstacles.

– sendGoTo() it sends a position to reach.

– sendNear() it sends a new threshold. It is useful when ambient light is changing.

– sendOverallTime() it sends this order, for receiving the overall time elapsed of the
orders that (Algorithm 1) executes.

– sendObstaclesDetected() it sends this order, for receiving the number of obstacles
detected for orders that (Algorithm 1) executes.

• Method: it is the class which allows to connect various e-puck simultaneously. It receives
an Epuck object as well as an integer m that determines the method to run. It has
various methods but run() is the most important since decides the method to execute
concurrently.

• BluetoothCommunication: It is the class that implements the communication between
Java and e-puck. It has four methods connect(), disconnect(), send() and receive(). They
are explained in ”Communication Java and E-puck”.

• Camera: This class interacts with an IP Camera through http. It has three attributes,

21

– Address: It is an http address where the camera is installed.

– User: I is the user name to connect with the camera.

– Password: It is the correct password to connect with the camera.

and has one method, takePicture() that takes a picture of the environment where camera
is pointing.

• Picture: it represents an abstraction of an image. It has one attribute, path that refers
to path where the picture is stored. It has two methods,

– locateRobotPosition() it finds the coordinates (x, y) where the robot is located in the
picture.

– locateRobotLookAt() it finds the angle where the robot is facing in the picture.

• Configuration: This class implements Singleton pattern to avoid more than one in-
stance can be run simultaneously when the program is executing. It has two attributes
INSTANCE that references the class (itself) and p that represents the different proper-
ties, reading them from CONFIGURATION.txt file. These properties allow to update
the different attributes of some classes, mentioned previously. Properties is a class which
represents a persistent set of properties, more information [12].

• Language: This class has an important attribute p which represents the different prop-
erties, reading them from english.txt and these properties represent messages that ap-
plication produces. It can be useful if it is required translate the messages to another
language.

Structure of the system (C side)

E-puck robots can be programmed using C language and through the standard library, the
sensors, the actuators as well as the communications are possible to control. It is recommended
to read the standard library documentation that can be downloaded in the official site of e-
puck [22] and it provides good explanations about the different files integrated and the data
structures which has.

In order to show the structure of the system in e-puck side a list of functionalities, that
robot have implemented, has been created. Below, each functionality, the files which contains
and the different functions developed will be explained:

• runbrw: It is the controller for the system and every action, that robot performs, is
managed on this functionality. This contains two files, runbrw.h and runbrw.c. Also it
has these functions:

– void run brw(): It is the main function for the project. It always is waiting until an
order is coming for doing the correct action associated with order.

– void protocol(char *data, int length): It is the order interpreter which decides the
action to do depending on the order received.

• runbrw bluetooth: It allows to send and receive data through bluetooth. This contains
two files, runbrw bluetooth.h and runbrw bluetooth.c. Its functions associated are:

– char * receive(int *length)

– void send(char *output, int length)

22

these are explained in ”Communication Java and E-puck” section.

• runbrw motion: It implements every action related with motions and it is the function-
ality which implements the simulation associated with Escherichia Coli. This contains
two files, runbrw motion.h and runbrw motion.c. Also it has these functions:

– void go to(float x, float y): it allows to reach (x, y) from current coordinates without
obstacles avoidance.

– int go to avoiding obstacles(float x, float y): it tries to reach (x, y) from current
coordinates taking into account possible obstacles in the path. If there is an obstacle
on coordinates objective it cannot achieve (x, y), stopping as near as possible.

– void odometry clockwise(): it is explained in ”Odometry as approach used” section.

– void odometry counterclockwise(): it is explained in ”Odometry as approach used”
section.

– void odometry forward(): it is explained in ”Odometry as approach used” section.

– void turn angle(double x): it is explained in ”Distal (rule-based) as approach used”
section.

– void forward(double x,double y): it is explained in ”Distal (rule-based) as approach
used” section.

– void forward avoidance(): it is explained in ”Distal (rule-based) as approach used”
section.

• runbrw protocol: This functionality implements regular expressions to convert string
data coming from Java and it adapts those in its correct format. This contains two files,
runbrw protocol.h and runbrw protocol.c. Its functions are:

– void regExp(char *data,int length,double *x,double *y): it is explained in ”Commu-
nication Java and E-puck” section.

– void regExp2(char *data,int length,double *x): it is explained in ”Communication
Java and E-puck” section.

– void regExp3(char *data,int length,int *n): it is explained in ”Communication Java
and E-puck” section.

• runbrw proximity: it allows read data coming from proximity sensors and it determines
the behaviour to do. This contains two files runbrw proximity.h and runbrw proximity.c
and its function programmed is int something near(void) which allows to detect an obsta-
cle and where it is located. More details can be found in ”Distal (rule-based) as approach
used” section.

• runbrw utility: it provides support for different utility functions, allowing have a good
structure of the code programmed and avoiding duplicate code in parts different of the
program. The files that it contains are runbrw utility.h and runbrw utility.c. Also the
functions implemented are:

– void flicker leds(int seconds): it allows to the eight led blink during the seconds
given.

– double get angle(double x, double y, double x , double y): it calculates the angle
between points given. Further details in ”Distal (rule-based) as approach used”
section.

23

– double get angle calibrated(double x, double y, double x , double y): it calculates
the angle between points given, changing the range values. More details in ”Distal
(rule-based) as approach used” section.

– double get distance(double x, double y, double x , double y): it obtains the Euclidean
distance for the points given.

– void time pause(): it increments a variable of time one millisecond.

– void pause brw(int seconds): it pauses the process which calls to this function.

• runbrw variables: it stores every useful constant variable and it has all references for
global variables that can be used in every part of the program. It contains only one file
runbrw variables.h and it has defined inside twenty-one variables (constants or global).
For instance, MOTOR SPEED refers to the motors speed when robot moves forward,
whilst MOTOR SPEED ANGLE refers to the motors speed when robot turns over itself.
All of these variables are capitalized.

Odometry as approach used

Odometry has been the approach chosen for reaching the requirements related with ”Basic

Actions”. Generally the position of a robot is represented by the vector
[
x y θ

]T
. For

a differential-drive robot the position can be estimated starting from a known position by
integrating the movement (Equation 1,2,3). Thus, using information about the encoders during
interval t, it is possible to know the distance travelled by each wheel. Below, the following
equations [11] allow to get position at time t:

∆x = ∆s · cos

(
θ +

∆θ

2

)
(9)

∆y = ∆s · sin
(
θ +

∆θ

2

)
(10)

∆θ =
∆sr −∆sl

l
(11)

∆s =
∆sr + ∆sl

2
(12)

∆sl =
Θ · steps elapsed left

s
(13)

∆sr =
Θ · steps elapsed right

s
(14)

where the incremental travel distances (∆x,∆y,∆θ) are the path travelled in the last sampling
interval t. ∆sl and ∆sr are travelled distances for the right and left wheel respectively and (Θ,
l) are described in (Table 1). Hence, the current position in interval t is:x′y′

θ′

 =

xy
θ

+

∆x
∆y
∆θ

 (15)

How have equations been implemented in e-puck?
The most important thing to get a maximum precision is to determine the sample period

which has been established to 1 ms because in one second the robot runs 1000 steps, thus in 1
ms robot runs 1 step theoretically. Then, using agenda which consists in establish a function

24

to run every t ms, update the position of the robot every 1 ms has been possible. This agenda
is implemented in standard library coming with e-puck.

(Listing 5) updates each millisecond ∆x and ∆y, reading the number of elapsed steps in
left and right wheel for the last sample period, the distance travelled for left and right wheel is
calculated using (Equation 13,14) and (x, y) is updated finally.

(Listing 6,7) update ∆θ either counterclockwise or clockwise, reading the number of elapsed
steps per each wheel, after the distance travelled is calculated in each wheel using (Equation
13,14) and θ is updated finally. Though, there are two functions to solve the negative or positive
angle, exists only one difference between them, that is, the negative increment is on left for
anticlockwise and is on right for clockwise.

It is assumed that Θ in (Equation 13,14) is a constant value associated with the distance
travelled in one second and it is similar in wheels left and right. Also s in (Equation 13,14)
which corresponds with the speed in steps and it is the same for both wheels. As can be seen
in these functions the elapsed time to achieve every distance can vary depending on the speed
established in motors, thus high values for motor speed allow to reach the objective soon than
low values.

Distal (rule-based) as approach used

In order to achieve the requirements associated with ”Protocol avoidance” has been chosen
approach Distal since it is possible manage better the actions that robot need to do when an
object is detected.

Hence, the values of proximity sensors 0 and 1 are combined to determine an obstacle on
right and the values of proximity sensors 6 and 7 are merged to detect obstacle on left. Thus,
using an extension of (Equation 8) it is possible to apply approach Distal and later the actions
decided to do. The (Algorithm 1) written in pseudocode shows the behaviour for achieving
avoid obstacles. Below, the actions associated with this algorithm will be explained:

• turn angle(θ
′
). As can be seen in (Algorithm 1.2) and supposing that robot is facing 0

degrees, the robot turns over itself θ
′

radians. To obtain θ
′
, a trigonometric function in

(Equation 16) is used,

angle = arctan

(
y

′ − y
x′ − x

)
(16)

but this function returns a value between [π
2
, −π

2
] and would involve that robot moves

forward and backward, complicating avoidance protocol. So (Listing 3), a customized
function, returns a value between [π,−π] preventing the robot moves backward.

• forward(x
′
,y

′
). As can be seen in (Algorithm 1.4), this action allows to the robot

moving forward from (x, y) to (x
′
, y

′
). When this function detects an obstacle, motors

speed are updated to 0 and the source of the obstacle is notified. The source can be, an
obstacle located or left either right. (Listing 4) determines where is located the source of
the obstacle and counts the number of times that something is detected.

• turn anticlockwise. As can be seen in (Algorithm 1.9), this action is executed when
an obstacle on right is detected, that is, if sensors 0 and 1 detect an obstacle. Hence,
the action is turn the robot θ′′ anticlockwise and the value selected is π

4
radians for this

project.

• turn clockwise. As can be seen in (Algorithm 1.12), this task is executed if and only if,
an obstacle on left is detected, that is, whether sensors 6 and 7 detect an obstacle. Thus,
the action is turn robot θ′′ clockwise and the value selected is −π

4
radians for this project.

25

Algorithm 1 Obstacles avoidance algorithm

1: while ((x 6= x
′ ∨ y 6= y

′
) ∧ try < OPPORTUNITY) do

2: θ = turn angle(θ
′
)

3:

4: forward(x
′
,y

′
)

5:

6: if OBSTACLE then
7: while OBSTACLE do
8: if RIGHT then
9: θ = turn angle(θ

′′
)

10: end if
11: if LEFT then
12: θ = turn angle(−1 · θ′′

)
13: end if
14: forward avoidance()
15: end while
16: ∆try
17: else
18: x = x′ y = y′

19: end if
20:

21: θ = turn angle(0)
22: end while

• forward avoidance . As can be seen in (Algorithm 1.14), this task moves the robot
forward during k steps established empirically for avoiding the obstacle detected but
during this action it is possible to detect other obstacle, so it is need going back (Algorithm
1.7).

• turn angle(0). As can be seen in (Algorithm 1.21), this action moves the robot to 0
degrees. It always involves to know where the robot is facing for turning to 0 degrees. It
is need to do this action since (Equation 16) assumes that robot is facing 0 degrees.

Therefore, the algorithm finishes when (Algorithm 1.1) is satisfied, otherwise remains in this
algorithm. But, what is up if the robot tries to reach coordinates and an obstacle is there?
Well, to simplify this behaviour coordinates objectives are tried to reach during try times and
if it is not possible to achieve them, the robot stops as near as possible from aim coordinates.

Summarizing, the principal actions, that algorithm does, has been explained because various
actions are done in different parts when an obstacle is detected. Firstly, the source of the
obstacle (right or left) is detected, secondly turn clockwise either anticlockwise depending on
where the source is located, third move it away from obstacle and finally the new angle for
coordinates that are away from obstacle detected is calculated.

Thread as way used

To achieve the requirements associated with ”Concurrence”, Thread way has been chosen,
although is less flexible than Runnable it can be selected because it is not need to extend from
another class for this project.

(Listing 8) shows the class which implements this approach. This class receives an object
e-puck as well as an integer for deciding which method it is need to execute. Moreover, to allow

26

the concurrence run() method has been overwritten and it is executed per each e-puck switch
on and installed in computer properly.

Communication Java and E-puck

One of the most important things that has been developed for this project is the communication
needed between e-puck and Java. Thus, after hard research in different sources it is concluded
that nobody has developed an Application programming interface (API) to communicate Java
language with e-puck. Hence, a challenge with success has been the development of a protocol
to allow this communication.

This communication is established by the program in Java which is a Bluetooth client in
each e-puck. In this communication bytes codified in ASCII are sent, then each e-puck waits
till the end of the message is reached, posteriorly these bytes are decoded and finally the action
to do is decided, sending a reply to Java program which is waiting for sending another order.

The message always starts with STX, start of text whose representation in ASCII is the
number 2. Posteriorly, a letter representing the action to do followed by the parameters for this
action and the end of the communication ETX, end of text, whose representation in ASCII is
the number 3. Below, the (Table 2) shows the different messages for sending to each e-puck:

Table 2: Java messages for sending to each e-puck
Message Meaning
sendPosition(double x, double y) Updates coordinates in e-puck.
sendAngle(double a) Updates angle in e-puck.
sendGoTo(double x, double y) coordinates objective to reach.
sendGoToAvoidingObstacle(double x, double y) coordinates objective to reach, avoiding

obstacles.
sendNear(int n) Updates threshold in proximity sen-

sors.
sendStop() Interrupts whatever action running in

the robot.
sendOverallTime() Allows get elapsed time over actions

”goto” done.
sendObstaclesDetected() Allows get number of things detected

over actions ”goto” done.

This protocol has the following actions (in Java side):

• Connection: It allows to connect with e-puck. First, it tries to connect with the e-puck
passing its ”bluetoothAdress”. Then if there is success it is established a channel for
input and other for output, returning true or false whether something happens. (Listing
9) shows how to do that.

• Disconnection: it allows to disconnect with e-puck. It tries to close channels and
connection, returning true or false if something happens. (Listing 10) shows how to do
that.

• Send: This method receives a string of characters. First, it writes 2 (STX in ASCII),
posteriorly converts each character in ASCII and it writes 3 (ETX in ASCII) finally.
(Listing 11) shows these explanations.

27

• Receive: This method locks the program till something is coming. First, it removes 2
(STX in ASCII), then creates a string with characters received and finishes when 3 (ETX
in ASCII) is coming. (Listing 12) shows these explanations.

and has the following actions (in e-puck side):

• Send: It allows to send a message from e-puck to Java, creating an string that has 2
(STX in ASCII) first, then the message and 3 (ETX in ASCII) finally. (Listing 13) shows
how to do that.

• Receive: This function is waiting till something is coming. If the character received is
2 (STX in ASCII) or 3 (ETX in ASCII) it is discarded but when 3 (ETX in ASCII) is
received, the function ends, returning the string and its length. (Listing 14) shows how
to do that. To have a good feedback, body light is switch on when the robot is waiting
data.

The encoding and decoding are done in both sides. Thus, to encoding the data each char-
acter of the data is converted to ASCII. For instance to convert the message sendPosition(22.50,
14.36) as a string, it is ”P22.50;14.36” and its ASCII is in (Table 3).

Table 3: Example encoding message from Java
Character ASCII

STX 2
P 80
2 50
2 50
. 46
5 53
0 48
; 59
1 49
4 52
. 46
3 51
6 54

ETX 3

To decoding each message the creation of different regular expressions has been needed
since the string received can have various numbers inside and it is need to separate each one and
later convert to double or integer depending on the first letter received in the string. (Listing
15) provides the code needed to get two doubles, the delimiter ”;” allows to separate each one.
This regular expression is used for messages sendPosition(double x, double y), sendGoTo(double
x, double y), sendGoToAvoidingObstacle(double x, double y), whilst if only is coming a double
(Listing 16) provides it and whether is coming an integer (Listing 17) offers it. Both are for
messages sendAngle(double a), sendNear(int n) respectively.

To decide the action to do, the first letter in the string decoded allows to determine the
function for executing in the e-puck. Thus, this type of communication established between
Java and e-puck is like an ”orders interpreter”, because each e-puck executes a determinate
function depending on the first letter of this string received. (Listing 18) provides the method
which determine the action to do.

Summarizing, to establish communication between Java and e-puck has been created:

28

1. A determinate format for messages.

2. Connection, disconnection, send and receive methods in Java.

3. Send and receive methods in e-puck.

4. Encoding and decoding messages in both sides, due to channel accepts bytes only.

5. Regular expressions to allow e-puck understands what is coming.

6. Order interpreter to decide which action execute in e-puck.

Improvements for resource limitations of e-puck

E-puck robot has limitations of memory, so the amount of memory which it has is 8KB. There-
fore, it is necessary to take into account this amount of memory for every code programmed
otherwise it can be locked sometimes. Thus, there are two examples performed in this project
trying to avoid full memory of e-puck. These examples are:

• Release memory: This action is done in last line at principal loop of the program since
a pointer of size TAMBUFFER is created every time in a function that is waiting for
everything coming through Bluetooth. Thus, once order interpreter sends the reply to
Java, the memory created is released, avoiding getting it filled by useless data. Line 11
of (Listing 19) shows how this action is done.

• Management of agenda: This action allows a good management of agenda to be
done. This is an approach developed in standard library of e-puck which provides the
possibility of executing functions at certain times. For instance, to obtain estimation of
position, wheels increments are calculated each millisecond but this function is not always
called, only when robot speed is different from 0. Thus, if the agenda for this function is
activated and then destroyed when wheels speed are 0, the function for destroying agenda
does not release the memory, so in a short time the memory of the e-puck is full. Thus,
the behaviour for a good management of agenda is:

1. Create an agenda (once) for each function which needs to update a particular action
in a certain time.

2. Pause agenda when the function is not needed for updating the action.

3. Restart agenda when the function is needed for updating the action.

(Listing 20) shows the code for the example explained previously.

29

Analysis of system performance

In this chapter is presented two experiments for trying to achieve every requirement imposed
in the project. The first experiment executes one e-puck and the second executes three e-
pucks concurrently. For each one the scenario chosen is detailed as well as the result ob-
tained. Experiments execute orders coming from the program which executes BRW really.
This program has been developed by authors [8] and produces a file which the format is
friendy name;x coordinate;y coordinate. An example line would be e-puck 2479;39.0;95.0.

For overall time is summing elapsed time for performing turns and motions forward without
counting pause and communication times.

First experiment

The first experiment executes BRW in one robot trying to achieve ”Basic Actions”.

First experiment - Scenario

The scenario for this experiment has the following characteristics:

• The start coordinates are (4.00, 3.50).

• It receives twenty-five orders.

• The speed to move forward the robot is 800 steps.

• The speed to turn the robot is 1000 steps.

• The environment where the robot is placed is an enclosed surface with green carpet floor.

• Each order is received from computer through Bluetooth.

First experiment - Results

The blue line (Figure 6) corresponds to path which one robot performs in simulation mode and
the red line (Figure 6) corresponds to path which does e−puck 2479 robot. (Table 4) shows the
values represented in (Figure 6), where ”(x, y) BRW” refers to coordinates executing program
simulation in Java, whilst ”(x, y) BRW robot” refers to coordinates reached at e-puck 2479
robot. The average absolute error in x is 2.752 and average absolute error in y is 2.988,
the overall time for executing these orders is 54.914154 seconds. It is not produced slippage
in wheels during this experiment and the communication for sending works without errors. The
output created by Java is shown in (Listing 21), the video executing this experiment can be
downloaded from [17].

30

Figure 6: Comparison BRW, between Computer and Robot

First experiment - Conclusion

Looking at (Figure 6), the robot (red line) performs the same path that (blue line), despite the
path is shifted slightly from original it keeps same shape. The principal problem detected is
when robot executes a motion which involves a long path since the error of position is increased,
whilst if it is executing short path, the error of position can be considerate acceptable. ”Basic
actions”, that are ”Run” and ”Tumble”, explained in ”Detailed specification”, are achieved
since each order received in the robot turns the degrees needed to facing objective coordinates
and then goes to those coordinates. The error of position is due to deterministic errors in this
experiment. Thus, deterministic errors are slight differences in wheels diameter or in motors
speed.

Moreover, errors coming from encoders are possible since they have to return an integer value
and motors are represented as a continue function really, loosing precision in each reading of
each encoder.

31

Table 4: Comparison coordinates BRW, between Computer and Robot
x BRW y BRW x BRW robot y BRW robot abs error x abs error y

39.00 95.00 43.00 93.00 4 2
26.00 91.00 30.50 89.50 4.5 1.5
33.00 92.00 37.00 90.50 4 1.5
45.00 87.00 48.50 84.50 3.5 2.5
55.00 74.00 58.50 71.50 3.5 2.5
41.00 60.00 44.50 57.50 3.5 2.5
27.00 59.00 30.50 56.00 3.5 3.0
25.00 52.00 28.50 49.50 3.5 2.5
26.00 47.00 29.50 44.20 3.5 2.8
31.00 46.00 34.50 43.10 3.5 2.9
26.00 44.00 29.50 41.00 3.5 3.0
56.00 32.00 59.00 28.60 3.0 3.4
54.00 45.00 56.50 41.50 2.5 3.5
41.00 50.00 43.50 46.20 2.5 3.8
38.00 63.00 40.00 59.20 2.0 3.8
51.00 64.00 53.00 61.00 2.0 3.0
33.00 58.00 35.00 54.50 2.0 3.5
36.00 68.00 38.00 64.70 2.0 3.3
41.00 79.00 43.00 75.70 2.0 3.3
49.00 64.00 51.00 60.50 2.0 3.5
42.00 79.00 43.50 75.40 1.5 3.6
29.00 89.00 30.70 85.50 1.7 3.5
21.00 96.00 22.90 92.20 1.9 3.8
19.00 88.00 20.50 85.00 1.5 3.0
24.00 87.00 25.70 84.00 1.7 3.0

Second experiment

For second experiment has been used three e-pucks simultaneously with the aim of achieve
every requirement mentioned in ”Detailed specification”.

Second experiment - Scenario

The scenario for this experiment is:

• e-puck 2478, e-puck 2479 and e-puck 2481 simultaneously.

• The start coordinates are (90.00, 60.00) for e-puck 2478, (90.00, 50.00) for e-puck 2479
and (100.00, 55.00) for e-puck 2481.

• They receive twenty-five orders.

• The speed to move forward the robot is 800 steps.

• The speed to turn the robot is 1000 steps.

• Threshold for proximity are 650, 480, 620 respectively, keeping numeric sort in the e-
pucks.

32

• The environment where the robot is placed is an enclosed surface with green carpet floor.

• Each order is received from computer through Bluetooth.

Second experiment - Results

Results are shown in (Table 5). That summarizes the important things performed for each
e-puck. Start time means start sequence, being e-puck 2479 the first. End time refers to

Table 5: Second experiment

e-puck 2478 e-puck 2479 e-puck 2481

Start time Third First Second

End time First N/A Third

Overall time 61.532501 seconds N/A 60.659618 seconds

Completed orders 25
25

7
25

24
25

Overcomes threshold-proximity 3 N/A 11

Obstacles avoids 1
3

N/A 4
11

Ambient light influences 2
3

N/A 7
11

sequence for finishing twenty-five orders, concluding that e-puck 2479 is locked at order eight.
Overall time means elapsed time for performing twenty-five orders, where is not added pause
times neither communication times. Completed orders refers to number of coordinates that
has been reached respect to total. Overcomes threshold-proximity means the number of times
that sensors detect something. Obstacles avoids refers obstacles avoided during the experiment,
where e-puck 2481 detects once a robot e-puck 2478 and three times detects a wall. Ambient
light influences means number of times which is detected something, not being this an obstacle.

The output created by Java is shown in (Listing 22) and the video executing this experiment
can be downloaded from [18]. For this experiment is need to calibrate proximity sensors. There
is a video [16] which shows the execution of calibration procedure which allows to get the value
for threshold in each e-puck.

Second experiment - Conclusion

”Basic actions” has been proved in the first experiment but can be highlighted that is need to
use another approach to estimate better the position of the robot since the paths which the
robot runs can be shorts or long, having to work well in every situation.

”Protocol avoidance” requirements are achieved since there are three robots located at the
environment and they are avoiding to crash each other and walls. Despite sensor proximity has
been calibrated before, there is noise due to ambient light, although it does not influence for
detecting the obstacles.

Regarding ”Concurrence” is satisfied since three robots are running simultaneously in one
computer. Although, e-puck 2479 is locked after seven orders it can be due to computer which

33

runs the program has resources limitations or due to data loss through Bluetooth communi-
cation. If it is run this experiment in another computer, over seventy orders without losing
communication are reached. Hence, ”Concurrence” is achieved also.

34

Conclusions

BRW is one of the behaviours which performs Escherichia Coli and it is implemented in ARN.
ARN approach is a source of inspiration for creating new AI techniques and can be applied for
simulating cellular intelligence in robots. Thus, e-puck robot has been selected as a candidate
for executing BRW, being new in the research group that works with ARN where there has
been the need to study characteristics which provide the e-puck.

After the characteristics has been studied, the need to develop a protocol for communicat-
ing the robot with Java platform has been discovered since no API developed in Java exists.
Thus, after creating this protocol the understandability between the device and Java platform
is possible.

The next step has been the programming of the behaviour associated with BRW which are
”Runs” and ”Tumbles”. This behaviour has been implemented using Odometry approach
since there is need to know where the robot is located in the environment every-time. De-
spite this approach does not work with accuracy, for data evaluated in the first experiment,
it is however acceptable, taking into account that this data corresponds with real behaviour
performed by BRW in ARN. Hence, ”Basic Actions” have been achieved, getting good results
when robot runs short paths and increasing the error estimation of position when robot runs
long paths. But there are errors that can be solved, those are systemic errors, so a proper
calibration can remove them, improving estimation of position. Some of these systemic errors
are (misalignment of the wheels, slight differences in wheels diameter or even slight differences
in motors speed). However, there are non-systemic errors where removal without use an
external source is impossible. Some of these non-systemic errors are (slippage of the wheels,
variation in the contact point of the wheel).

Regarding obstacles avoiding, this requirement is very important since the scenario of
the project involves running three e-puck simultaneously without crashing with the walls. This
requirement has been solved using Distal approach, concluding that is working very well if
proximity sensors are calibrated correctly. Indeed, to obtain a good calibration is available a
method which runs in the environment where the robots must execute BRW, since the value
for threshold is changing every-time due to influence of ambient light. However, possibility
of differentiate walls or other robots when threshold is overcome does not exist, concluding
that the use of the camera which robots have or an external camera, removing uncertainty and
improving avoidance protocol is needed. This improvement of avoidance protocol would allow
remove try approach used currently and could improve the response time for deciding actions
to do when something is near, so using another sensor like the camera, the system would have
more information over the environment.

Talking about concurrence, this requirement is solved through Java platform, allowing
every request coming from e-puck simultaneously and establishing the needed resources for
each e-puck, concluding that approach selected works well for project purposes. However, as
the communication is done via Bluetooth some data can be lost during execution time and is
thought that improving communication using errors control, would remove this loss and would
avoid robots becoming locked. It should also be noted that it is impossible to manage robots
simultaneously in a computer having resources limitations.

35

Although, e-puck robot has resources limitation it has responded very well for project pur-
poses since BRW behaviour can be executed without any problem, so using this robot for future
project related with cellular intelligence could be carried out, but the most important thing
now is that it is possible to do complicated calculations in Java side, using a computer with
good computational resources and after transferring to e-puck basic actions through Bluetooth,
allowing the simulation of other behaviours of cellular intelligence.

Hence, it can be affirmed that e-puck robot is available for performing experiments related
with ARN and now the first contact with e-puck has been established, allowing other new
projects to focus on other behaviours provided by ARN.

36

Reflections

In this chapter possible improvement are talked about with the intention of getting better
results in the simulation of cellular intelligence.

Firstly, to improve motions that robot performs, using odometry is not enough since the
removal of systemic errors is first needed and after an estimation of position should be used
through external source, that is, the camera available in the lab where robots run experiments.
Regarding the use of the camera, work is currently been done to eliminate the distortion that it
has and with a software for recognizing the objects located in a picture. This software is imageJ
and now is capable of recognize position of robots in the picture, although due to distortion of
camera, these positions are wrong.

Secondly, to differentiate objects detected by proximity sensors in protocol avoidance,
the camera that robot has can be used for sending by Bluetooth the image (when threshold is
overcome), so it would allow this uncertainty to be removed doing system more accurate.

Thirdly, at the moment Bluetooth communication has been customized for this project,
that is, really is like an order interpreter adapted for project requirements. Thus, developing
an API in Java which implements a mapping of standard library of the e-puck can be consid-
ered useful doing more extendible communication and avoiding programming in two languages
simultaneously.

37

Bibliography

[1] Bluecove 2.1.0 API. Interface discoverylistener. http://bluecove.org/bluecove/

apidocs/index.html, 2006.

[2] Kok Seng CHONG and Lindsay KLEEMAN. Accurate odometry and error modelling for
a mobile robot. MECSE, June 1996.

[3] Cyberbotics. Webots overview. http://www.cyberbotics.com/overview, 2012.

[4] Gregory Dudek and Michael Jenkin. Computational Principles of Mobile Robotics. Cam-
bridge University Press, February 2000.

[5] Brian J. Ford. Are cells ingenious? MICROSCOPE, 52:3/4:135–144, September 2004.

[6] Claire E. Gerrard, John McCall, George Coghill, and Christopher MacLeod. Artificial re-
action networks. 11th UK workshop on Computational Intelligence, University of Manch-
ester, September 2011.

[7] John McCarthy. What is artificial intelligence? http://www-formal.stanford.edu/jmc/

whatisai/whatisai.html, November 2007.

[8] Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh, Christopher Cianci,
Adam Klaptocz, Stephane Magnenat, Jean-Chistophe Zufferey, Dario Floreano, and
Alcherio Martinoli. The e-puck, a robot designed for education in engineering. Technical
report, École Polytechnique Fédérale de Lausanne, 2009.

[9] University of Colorado. Introduction to robotics, obstacle avoidance. http://correll.

cs.colorado.edu/?p=974, September 2011.

[10] Ioannis M. Rekleitis. A particle filter tutorial for mobile robot localization. February 2004.

[11] Roland Siegwart and Illah R. Nourbakhsh. Introduction to autonomous mobile robots.
Bradford Books, 2004.

[12] API specification for the Java 2 Platform. Class properties. http://docs.oracle.com/

javase/1.4.2/docs/api/java/util/Properties.html, 2010.

[13] API specification for the Java 2 Platform. Class thread. http://docs.oracle.com/

javase/1.4.2/docs/api/java/lang/Thread.html, 2010.

[14] Robert Gordon University. Code implemented in c side. https://www.dropbox.com/sh/
n4yz3w9o91jss2t/ooeBdCWc4C, Julio 2012.

[15] Robert Gordon University. Code implemented in java side. https://www.dropbox.com/

sh/90q1zcgnzhinz1y/Z_KjtUitAA, Julio 2012.

38

[16] Robert Gordon University. Video for calibrating proximity sensors. https://www.

dropbox.com/s/v08ebi5lh2seler/CalibrateSensors.avi, Julio 2012.

[17] Robert Gordon University. Video for first experiment. https://www.dropbox.com/s/

i9ufm4jp8cjjjm6/FirstExperiment.avi, Julio 2012.

[18] Robert Gordon University. Video for second experiment. https://www.dropbox.com/s/

wmjtgbscduwvfna/SecondExperiment.avi, Julio 2012.

[19] Angel Valera, Marina Valles, Leonardo Marin, and Pedro Albertos. Design and imple-
mentation of kalman filters applied to lego nxt based robots. 18th IFAC World Congress,
Agost 2011.

[20] Wikibooks. E-puck and webots. http://en.wikibooks.org/wiki/Cyberbotics%27_

Robot_Curriculum/E-puck_and_Webots, March 2011.

[21] École Polytechnique Fédérale de Lausanne. Mechanics of the e-puck. http://www.e-puck.
org/index.php?option=com_content&view=article&id=7&Itemid=9, 2010.

[22] École Polytechnique Fédérale de Lausanne. E-puck education robot. http://www.e-puck.
org/index.php, 2012.

39

Program listings

In this chapter, part of the code implemented in the project is attached, there are code for two
languages C and Java. The entire Java code can be downloaded from [15] and C code from
[14].

Listing 3: C. Atan function customized

1 double g e t a n g l e c a l i b r a t e d (double x , double y , double x , double y
){

2 double ang le = g e t a n g l e (x , y , x , y) ;
3
4 i f (y == y && x > x) re turn PI ; /∗x axis , l e f t d i r e c t i o n

∗/
5 e l s e i f (x > x && y < y) re turn (ang le + PI) ; /∗ second

quadrant ∗/
6 e l s e i f (x > x && y > y) re turn −1∗(PI − ang le) ; /∗ th i rd

quadrant ∗/
7 e l s e re turn ang le ;
8 }

Listing 4: C. Distal approach

1 i n t something near (void){
2 OBSTACLE = 0 ;
3 i f ((e g e t p ro x (0)+e ge t p ro x (1)) > NEAR) { OBSTACLE = 1 ;

OBSTACLES DETECTED++; return 1 ; }
4 i f ((e g e t p ro x (6)+e ge t p ro x (7)) > NEAR) { OBSTACLE = 2 ;

OBSTACLES DETECTED++; return 1 ; }
5 re turn 0 ;
6 }

Listing 5: C. Odometry forward

1 void odometry forward () {
2 s t e p s l e f t n o w = e g e t s t e p s l e f t () ;
3 s t ep s r i gh t now = e g e t s t e p s r i g h t () ;
4 l e f t i n c r e m e n t = WHEEL DIAMETER/10∗PI ∗(abs (

STEPS ELAPSED LEFT − s t e p s l e f t n o w)) /WHEEL REVOLUTION;
5 r i gh t in c r ement = WHEEL DIAMETER/10∗PI ∗(abs (

STEPS ELAPSED RIGHT − s t ep s r i gh t now)) /WHEEL REVOLUTION;
6 CURRENT X = CURRENT X + (r i gh t in c r ement+l e f t i n c r e m e n t) /2∗

cos (LOOK AT ROBOT) ;
7 CURRENT Y = CURRENT Y + (r i gh t in c r ement+l e f t i n c r e m e n t) /2∗

s i n (LOOK AT ROBOT) ;

40

8 STEPS ELAPSED LEFT = s t e p s l e f t n o w ;
9 STEPS ELAPSED RIGHT = st ep s r i gh t now ;

10 TIME ELAPSED = TIME ELAPSED + T;
11 }

Listing 6: C. Odometry counterclockwise

1 void odometry counterc lockwise () {
2 s t e p s l e f t n o w = e g e t s t e p s l e f t () ;
3 s t ep s r i gh t now = e g e t s t e p s r i g h t () ;
4 l e f t i n c r e m e n t = WHEEL DIAMETER∗PI ∗−1∗(abs (

STEPS ELAPSED LEFT − s t e p s l e f t n o w)) /WHEEL REVOLUTION;
5 r i gh t in c r ement = WHEEL DIAMETER∗PI ∗(abs (

STEPS ELAPSED RIGHT − s t ep s r i gh t now)) /WHEEL REVOLUTION;
6 LOOK AT ROBOT = LOOK AT ROBOT + (r ight inc r ement−

l e f t i n c r e m e n t) /WHEELS DIAMETER;
7 STEPS ELAPSED LEFT = s t e p s l e f t n o w ;
8 STEPS ELAPSED RIGHT = st ep s r i gh t now ;
9 TIME ELAPSED = TIME ELAPSED + T;

10 }

Listing 7: C. Odometry clockwise

1 void odometry c lockwise () {
2 s t e p s l e f t n o w = e g e t s t e p s l e f t () ;
3 s t ep s r i gh t now = e g e t s t e p s r i g h t () ;
4 l e f t i n c r e m e n t = WHEEL DIAMETER∗PI ∗(abs (STEPS ELAPSED LEFT

− s t e p s l e f t n o w)) /WHEEL REVOLUTION;
5 r i gh t in c r ement = WHEEL DIAMETER∗PI ∗−1∗(abs (

STEPS ELAPSED RIGHT − s t ep s r i gh t now)) /WHEEL REVOLUTION;
6 LOOK AT ROBOT = LOOK AT ROBOT + (r ight inc r ement−

l e f t i n c r e m e n t) /WHEELS DIAMETER;
7 STEPS ELAPSED LEFT = s t e p s l e f t n o w ;
8 STEPS ELAPSED RIGHT = st ep s r i gh t now ;
9 TIME ELAPSED = TIME ELAPSED + T;

10 }

Listing 8: Java. Methods class

1 pub l i c c l a s s Methods extends Thread{
2 p r i v a t e Epuck e ;
3 p r i v a t e I n t e g e r m;
4 pub l i c Methods (Epuck e , I n t e g e r m){
5 t h i s . e = e ;
6 t h i s .m = m;
7 }
8 pub l i c void run () {
9 super . run () ;

10 i f (m==1)
11 t h i s . c a l i b r a t e i r s e n s o r s () ;
12 i f (m==2)
13 t h i s .runRBW() ;

41

14 i f (m==3)
15 t h i s . runRBWAvoidingObstacles () ;
16 i f (m==4)
17 t h i s . testBluetoothCommunication () ;
18 i f (m==5)
19 t h i s . odometry er ror s () ;
20 }
21 }

Listing 9: Java. Connect with E-puck by Bluetooth

1 pub l i c Boolean connect (S t r ing bluetoothAddress){
2 try {
3 sc = (StreamConnection) Connector . open (” btspp ://”+

bluetoothAddress +”:1”) ;
4 i s = sc . openInputStream () ;
5 os = sc . openOutputStream () ;
6 whi l e (i s . read () !=3) { ;}
7 re turn true ;
8 }
9 catch (IOException i o e){

10 re turn f a l s e ;
11 }
12 }

Listing 10: Java. Disconnect with E-puck by Bluetooth

1 pub l i c Boolean d i s connec t () {
2 try {
3 i s . c l o s e () ;
4 os . c l o s e () ;
5 sc . c l o s e () ;
6 re turn true ;
7 }
8 catch (IOException i o e){
9 re turn f a l s e ;

10 }
11 }

Listing 11: Java. Send message to E-puck by Bluetooth

1 pub l i c Boolean send (St r ing data){
2 try {
3 os . wr i t e (2) ;
4 os . f l u s h () ;
5 f o r (i n t i =0; i<data . l ength () ; i++){
6 os . wr i t e ((i n t) data . charAt (i)) ;
7 os . f l u s h () ;
8 }
9 os . wr i t e (3) ;

10 os . f l u s h () ;
11 re turn true ;

42

12 }
13 catch (IOException i o e){
14 re turn f a l s e ;
15 }
16 }

Listing 12: Java. Receive message from E-puck by Bluetooth

1 pub l i c S t r ing r e c e i v e () {
2 St r ing data =””;
3 i n t d ;
4 t ry {
5 whi l e ((d = i s . read ()) != 3){
6 i f (d != 2){
7 data = data + (char)d ;
8 }
9 }

10 re turn data ;
11 }
12 catch (IOException i o e){
13 re turn ”” ;
14 }
15 }

Listing 13: C. Send message to Java by Bluetooth

1 void send (char ∗output , i n t l ength){
2 char b [TAMBUFFER] ;
3 s p r i n t f (b,”%c%s%c ” ,2 , output , 3) ;
4 e s en d ua r t 1 cha r (b , l ength +2) ;
5 }

Listing 14: C. Receive message from Java by Bluetooth

1 char ∗ r e c e i v e (i n t ∗ l ength){
2 char c ;
3 char ∗ data = (char ∗) mal loc (TAMBUFFER) ;
4 i n t i = 0 ;
5 e s e t b o d y l e d (1) ;
6 whi l e (1) {
7 whi l e (! e i s c h a r u a r t 1 ()) { ;} /∗ Wait u n t i l a r r i v e a

message ∗/
8 whi l e (e i s c h a r u a r t 1 () !=0) { /∗While the robot

r e c e i v e data , s t o r e i t ∗/
9 e g e t c h a r u a r t 1 (&c) ;

10 i f (c != 2 && c !=3){
11 ∗(data+i) = (char) c ;
12 i ++;
13 }
14 }
15 i f (c == 3){ break ; }
16 }

43

17 e s e t b o d y l e d (0) ;
18 ∗ l ength = i ;
19 re turn data ;
20 }

Listing 15: C. Regular expression for two doubles received

1 void regExp (char ∗data , i n t length , double ∗x , double ∗y){
2 char xs [2 0] , ys [2 0] ;
3 i n t i = 0 , j = 0 ;
4 i ++; /∗ F i r s t cha rac t e r r e p r e s e n t s i n i t i a l l e t t e r ∗/
5 whi l e (∗ (data+i) != ’ ; ’) {
6 xs [j] = ∗(data+i) ;
7 j++;
8 i ++;
9 }

10 ∗x = a t o f (xs) ;
11 i ++;
12 j = 0 ;
13 whi l e (i<l ength){
14 ys [j] = ∗(data+i) ;
15 j++;
16 i ++;
17 }
18 ∗y = a t o f (ys) ;
19 }

Listing 16: C. Regular expression for one double received

1 void regExp2 (char ∗data , i n t length , double ∗x){
2 char xs [2 0] ;
3 i n t i = 0 , j = 0 ;
4 i ++; /∗ F i r s t cha rac t e r r e p r e s e n t s i n i t i a l l e t t e r ∗/
5 whi l e (i<l ength){
6 xs [j] = ∗(data+i) ;
7 j++;
8 i ++;
9 }

10 ∗x = a t o f (xs) ;
11 }

Listing 17: C. Regular expression for one integer received

1 void regExp3 (char ∗data , i n t length , i n t ∗n){
2 char xs [2 0] ;
3 i n t i = 0 , j = 0 ;
4 i ++; /∗ F i r s t cha rac t e r r e p r e s e n t s i n i t i a l l e t t e r ∗/
5 whi l e (i<l ength){
6 xs [j] = ∗(data+i) ;
7 j++;
8 i ++;
9 }

44

10 ∗n = a t o i (xs) ;
11 }

Listing 18: C. Orders interpreter

1 void p ro to co l (char ∗data , i n t l ength){
2 char output [TAMBUFFER] ;
3 double x , y ;
4 i n t s u c c e s s ;
5 i n t n ; /∗Var iab le to s e t proximity s enso r ∗/
6 switch (∗ (data+0)){
7 case ’A’ :
8 regExp2 (data , length ,&x) ;
9 s p r i n t f (output , ”SEND ANGLE(% f) ” , x) ;

10 send (output , s t r l e n (output)) ;
11 LOOK AT ROBOT = x ;
12 break ;
13 case ’D’ :
14 s p r i n t f (output , ”X:%f ,Y:%f ,ANGLE:% f ” ,

CURRENT X,CURRENT Y,LOOK AT ROBOT
) ;

15 send (output , s t r l e n (output)) ;
16 break ;
17 case ’G’ :
18 regExp (data , length ,&x,&y) ;
19 go to (x , y) ;
20 s p r i n t f (output , ”GO TO(%f ,% f) ” ,x , y) ;
21 send (output , s t r l e n (output)) ;
22 break ;
23 case ’N’ :
24 regExp3 (data , length ,&n) ;
25 s p r i n t f (output , ”SEND NEAR(%d) ” ,n) ;
26 send (output , s t r l e n (output)) ;
27 NEAR = n ;
28 break ;
29 case ’O’ :
30 regExp (data , length ,&x,&y) ;
31 s u c c e s s = g o t o a v o i d i n g o b s t a c l e s (x

, y) ;
32 i f (s u c c e s s == 1){ s p r i n t f (output , ”

GO TO AVOIDING(%f ,% f) ” ,CURRENT X,
CURRENT Y) ; }

33 e l s e { s p r i n t f (output , ”STOPS AT(%f ,%
f) ” ,CURRENT X,CURRENT Y) ; }

34 send (output , s t r l e n (output)) ;
35 break ;
36 case ’P’ :
37 regExp (data , length ,&x,&y) ;
38 s p r i n t f (output , ”SEND POSITION(%f ,% f)

” ,x , y) ;
39 send (output , s t r l e n (output)) ;

45

40 CURRENT X = x ;
41 CURRENT Y = y ;
42 break ;
43 case ’S ’ :
44 s p r i n t f (output , ”SEND STOP() ”) ;
45 send (output , s t r l e n (output)) ;
46 break ;
47 case ’T’ :
48 s p r i n t f (output , ”OVERALL TIME(% f) ” ,

OVERALL TIME) ;
49 send (output , s t r l e n (output)) ;
50 break ;
51 case ’U’ :
52 s p r i n t f (output , ”OBSTACLES DETECTED(%

d) ” ,OBSTACLES DETECTED) ;
53 send (output , s t r l e n (output)) ;
54 break ;
55 case ’X’ :
56 s p r i n t f (output , ”PROX0:%d−PROX1:%d−

PROX7:%d−PROX6:%d” , e g e t p ro x (0) ,
e g e t p rox (1) , e g e t p rox (7) ,
e g e t p rox (6)) ;

57 send (output , s t r l e n (output)) ;
58 break ;
59 case ’ a ’ :
60 regExp2 (data , length ,&x) ;
61 g o t o a n g l e (x) ;
62 s p r i n t f (output ,”%d;%d;%d;%d” ,

e g e t p rox (0) , e g e t p rox (1) ,
e g e t p rox (7) , e g e t p rox (6)) ;

63 send (output , s t r l e n (output)) ;
64 break ;
65 case ’b ’ :
66 regExp2 (data , length ,&x) ;
67 tu rn ang l e (x) ;
68 s p r i n t f (output , ”GO TO ANGLE(% f) ,TIME

ELAPSED(% f) ” ,LOOK AT ROBOT,
TIME ELAPSED) ;

69 send (output , s t r l e n (output)) ;
70 break ;
71 case ’ c ’ :
72 regExp (data , length ,&x,&y) ;
73 forward (x , y) ;
74 s p r i n t f (output , ”FORWARD,TIME ELAPSED

(% f) ” ,TIME ELAPSED) ;
75 send (output , s t r l e n (output)) ;
76 break ;
77 case ’ i ’ : /∗ Star t connect ion ∗/
78 s p r i n t f (output , ”

CONNECTION ESTABLISHED() ”) ;

46

79 send (output , s t r l e n (output)) ;
80 break ;
81 d e f a u l t :
82 s p r i n t f (output , ”UNKNOWN ORDER,

l ength s t r i n g i s : %d” , l ength) ;
83 send (output , s t r l e n (output)) ;
84 break ;
85 }

Listing 19: C. Release memory

1 void run brw () {
2 char ∗data ;
3 i n t l ength =0;
4 e i n i t m o t o r s () ;
5 e i n i t a d s c a n (ALL ADC) ; /∗Proximity ∗/
6 e c a l i b r a t e i r () ; /∗Ca l ib ra t e proximity s e n s o r s ∗/
7 e s t a r t a g e n d a s p r o c e s s i n g () ;
8 whi l e (1) {
9 data = r e c e i v e (& length) ;

10 p ro to co l (data , l ength) ;
11 f r e e (data) ; /∗Free memory space used by po in t e r

data ∗/
12 }
13 }

Listing 20: C. Management agenda e-puck

1 i f (enabled3 == 0){ e a c t i va t e ag en da (odometry forward ,T
∗10000) ; enabled3 = 1 ;}

2 e l s e e r e s t a r t a g e n d a (odometry forward) ;
3 e s e t s p e e d l e f t (MOTOR SPEED) ;
4 e s e t s p e e d r i g h t (MOTOR SPEED) ;
5
6 /∗Actions to perform here ∗/
7
8 e s e t s p e e d l e f t (0) ;
9 e s e t s p e e d r i g h t (0) ;

10 e pause agenda (odometry forward) ;

Listing 21: Java. Output first experiment

0 . Looking f o r e−pucks connected in computer
1 . Launch proximity s e n s o r s c a l i b r a t i o n
2 . Launch Biased Random Walk
3 . Launch Biased Random Walk with o b s t a c l e avoidance
4 . Test o rde r s customized
5 . Odometry e r r o r s
3
BlueCove ve r s i on 2 . 1 . 0 on winsock
Connection f a i l s with e−puck 2478
Order r e c e i v e d from e−puck 2479 i s SEND POSITION(4 .000000 ,3 . 500000)

47

Order r e c e i v e d from e−puck 2479 i s SEND ANGLE(0 .000000)
Order r e c e i v e d from e−puck 2479 i s SEND NEAR(6000)
Connection f a i l s with e−puck 2481
Order : 0 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(39 .000000 ,95 .000000)
Order : 1 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(26 .000000 ,91 .000000)
Order : 2 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(33 .000000 ,92 .000000)
Order : 3 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(45 .000000 ,87 .000000)
Order : 4 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(55 .000000 ,74 .000000)
Order : 5 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(41 .000000 ,60 .000000)
Order : 6 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(27 .000000 ,59 .000000)
Order : 7 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(25 .000000 ,52 .000000)
Order : 8 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(26 .000000 ,47 .000000)
Order : 9 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(31 .000000 ,46 .000000)
Order : 10 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(26 .000000 ,44 .000000)
Order : 11 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(56 .000000 ,32 .000000)
Order : 12 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(54 .000000 ,45 .000000)
Order : 13 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(41 .000000 ,50 .000000)
Order : 14 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(38 .000000 ,63 .000000)
Order : 15 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(51 .000000 ,64 .000000)
Order : 16 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(33 .000000 ,58 .000000)
Order : 17 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(36 .000000 ,68 .000000)
Order : 18 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(41 .000000 ,79 .000000)
Order : 19 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(49 .000000 ,64 .000000)
Order : 20 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(42 .000000 ,79 .000000)
Order : 21 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(29 .000000 ,89 .000000)
Order : 22 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(21 .000000 ,96 .000000)

48

Order : 23 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING
(19 .000000 ,88 .000000)

Order : 24 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING
(24 .000000 ,87 .000000)

e−puck 2479 OVERALL TIME(54 .914154)
BlueCove stack shutdown completed

Listing 22: Java. Output second experiment

0 . Looking f o r e−pucks connected in computer
1 . Launch proximity s e n s o r s c a l i b r a t i o n
2 . Launch Biased Random Walk
3 . Launch Biased Random Walk with o b s t a c l e avoidance
4 . Test o rde r s customized
5 . Odometry e r r o r s
3
BlueCove ve r s i on 2 . 1 . 0 on winsock
Order r e c e i v e d from e−puck 2478 i s SEND POSITION

(90 .000000 ,60 .000000)
Order r e c e i v e d from e−puck 2478 i s SEND ANGLE(0 .000000)
Order r e c e i v e d from e−puck 2478 i s SEND NEAR(650)
Order r e c e i v e d from e−puck 2481 i s SEND POSITION

(100 .000000 ,55 .000000)
Order r e c e i v e d from e−puck 2481 i s SEND ANGLE(0 .000000)
Order r e c e i v e d from e−puck 2481 i s SEND NEAR(620)
Order r e c e i v e d from e−puck 2479 i s SEND POSITION

(90 .000000 ,50 .000000)
Order r e c e i v e d from e−puck 2479 i s SEND ANGLE(0 .000000)
Order r e c e i v e d from e−puck 2479 i s SEND NEAR(480)
Order : 0 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(39 .000000 ,95 .000000)
Order : 1 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(26 .000000 ,91 .000000)
Order : 0 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING

(38 .000000 ,31 .000000)
Order : 0 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING

(184 .000000 ,27 .000000)
Order : 2 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(33 .000000 ,92 .000000)
Order : 1 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING

(38 .000000 ,26 .000000)
Order : 3 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(45 .000000 ,87 .000000)
Order : 4 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING

(55 .000000 ,74 .000000)
Order : 1 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING

(134 .000000 ,11 .070000)
Order : 2 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING

(24 .000000 ,19 .000000)
Order : 2 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING

(129 .000000 ,9 . 011000)

49

Order : 5 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING
(41 .000000 ,60 .000000)

Order : 3 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(125 .000000 ,12 .000000)

Order : 3 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING
(59 .000000 ,18 .000000)

Order : 6 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING
(27 .000000 ,59 .000000)

Order : 4 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING
(66 .000000 ,21 .000000)

Order : 7 r e c e i v e d from e−puck 2479 i s GO TO AVOIDING
(25 .000000 ,52 .000000)

Order : 4 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(127 .000000 ,20 .020000)

Order : 5 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING
(76 .000000 ,22 .000000)

Order : 5 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(118 .000000 ,24 .000000)

Order : 6 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING
(84 .000000 ,31 .000000)

Order : 7 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING
(88 .000000 ,15 .000000)

Order : 6 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(108 .000000 ,13 .039999)

Order : 8 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING
(97 .000000 ,11 .000000)

Order : 7 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(104 .000000 ,22 .030001)

Order : 8 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(98 .000000 ,36 .020000)

Order : 9 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING
(88 .000000 ,8 . 010000)

Order : 9 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(93 .000000 ,18 .000000)

Order : 10 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING
(87 .000000 ,10 .000999)

Order : 10 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(101 .000000 ,27 .000000)

Order : 11 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(87 .000000 ,18 .070000)

Order : 11 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING
(80 .000000 ,13 .000000)

Order : 12 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(93 .000000 ,29 .000000)

Order : 12 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING
(75 .000000 ,7 . 030000)

Order : 13 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING
(75 .000000 ,12 .003000)

Order : 13 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(93 .000000 ,13 .000000)

50

Order : 14 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(101 .000000 ,19 .000000)

Order : 15 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(96 .000000 ,30 .090000)

Order : 16 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(89 .000000 ,45 .000000)

Order : 17 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING
(95 .000000 ,41 .000000)

Order : 14 r e c e i v e d from e−puck 2481 i s STOPS AT(68 .255150 ,7 . 976673)
Order : 18 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING

(94 .000000 ,20 .000000)
Order : 15 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING

(59 .000000 ,35 .000000)
Order : 19 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING

(105 .000000 ,13 .000000)
Order : 20 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING

(95 .000000 ,14 .030001)
Order : 16 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING

(57 .000000 ,49 .000000)
Order : 21 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING

(101 .000000 ,7 . 040000)
Order : 17 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING

(73 .000000 ,47 .000000)
Order : 22 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING

(106 .000000 ,12 .000000)
Order : 18 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING

(83 .000000 ,65 .000000)
Order : 23 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING

(100 .000000 ,20 .020000)
Order : 19 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING

(83 .000000 ,71 .000000)
Order : 24 r e c e i v e d from e−puck 2478 i s GO TO AVOIDING

(91 .000000 ,32 .000000)
e−puck 2478 OVERALL TIME(61 .532501)
e−puck 2478 OBSTACLES DETECTED(3)
Order : 20 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING

(83 .000000 ,65 .000000)
Order : 21 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING

(80 .000000 ,71 .000000)
Order : 22 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING

(78 .000000 ,76 .000000)
Order : 23 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING

(72 .000000 ,77 .000000)
Order : 24 r e c e i v e d from e−puck 2481 i s GO TO AVOIDING

(68 .000000 ,73 .000000)
e−puck 2481 OVERALL TIME(60 .659618)
e−puck 2481 OBSTACLES DETECTED(11)

51

