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ABSTRACT

The objective of this paper is to briefly explore and explain what the TSP is, as well
as the most adequate methods to use depending on the numbers of cities considered, and
the quality of the solution desired. After this, a particular approach using dyadic tilings
and genetic algorithms is explained in further detail. This method basically consists on a
hierarchical heuristic that partitions the unit square into dyadic rectangles. The points
considered for the TSP are grouped into clusters depending on the tile where they belong,
and the geometrical barycenter is represented for each tile or cluster. A ‘coarse’ solution
is found for the barycenters and the midpoints for each line segment is defined. Minimum
tours are calculated for each cluster, connecting these together through the barycenters,
resulting in a solution for the points considered for the TSP. Finally it is explained how

this method has been implemented into Matlab to obtain results using this method.
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1. Introduction

The Traveling Salesman Problem (TSP) is a very much researched problem in our
society. To explain it in a very simple way, it can be considered as a situation in which a
salesman has to travel from his hometown to several other towns and finally return home,
visiting each of these towns only once and following the shortest, most optimal route. The
TSP can be formulated as a combinatorial optimization problem [1], this is as a graph in
which the cities are represented by points (or nodes). The nodes are interconnected
through line segments, also known as arcs or edges. The length of these lines can be seen
as the cost of going from one node to another. Once all the nodes have been connected
forming a closed loop (graph theory term is Hamiltonian cycle) it can be stated that the
TSP solution is complete, as can be seen in Figure 1. From here on this closed loop will

further be described as a tour.

Figure 1: example of a TSP solution.

The path which the salesman must follow may seem obvious when considering a
reduced number of towns. However, when hundreds or thousands of towns are
considered, the solution is no longer trivial. For n towns, the number of possible

combinations is

2

, (1)

which is nearly 2 million possible combinations for just 11 towns. It is obvious that a

brute-force approach in which all possible combinations are tried is not viable and would



require too much time. This is the reason why mathematical algorithms must be used to
find an optimal solution.

The TSP belongs to the NP-complete type [2], short for nondeterministic polynomial-
time complete. This can be described as any of a class of computational problems for
which no optimal solution algorithm has been found that guarantees to offer a solution in
polynomial time [3]. Therefore, when it comes to solving this optimization problem, a
high complexity emerges. Due to this, in many cases there is no assurance that the shortest
possible route or tour will be constructed, instead, a good quality solution is computed.

Depending on the number of points considered and the level of precision needed,
different approaches should be used. These can be classified in two categories: exact and

heuristic methods.

1.1. Exact Methods

Exact methods guarantee that an optimal solution is going to be obtained [4].
However, these methods require an extensive amount of computer time to reach the
optimal solution. For this reason, exact methods are inapplicable in many cases and
should only be utilized when a small number of points is considered. As Gilbert Laporte
stated [5], some of the algorithms and formulations based on this method are:

e Integer linear programming formulations

e The assignment lower bound and related branch-and-bound algorithms
e The shortest spanning arborescence bound and a related algorithm

e The shortest spanning tree bound and related algorithms

e The 2-matching lower bound and related algorithms

1.1.1. Branch-and-cut method

One of the most used exact methods is the Concorde, which uses the branch and cut
method to solve the TSP. The objective is to reduce the number of nodes in the search
tree by generating tight bounds [6]. The upper bounds are found by implementing the
branch-and-bound method, and the lower bounds by using the cutting planes method.
This results in a more optimal procedure than using just the branch-and-bound method
because by cutting planes, a smaller amount of information has to be stored to represent

the search tree [7].



1.2. Heuristic Methods

Heuristic methods, as opposed to exact methods, offer a ‘good enough’ solution, but
not precisely the optimal one. The advantage of these methods is that the computational
time is significantly reduced [8], and hence satisfactory solutions can be reached for a
substantial number of points in a short amount of time. The two main types of heuristic
methods are Tour Construction Methods and Tour Improvement Methods, which will

now be discussed.

1.2.1. Tour Construction Methods

This method consists in gradually building up a solution from scratch by starting with
one node (city) and broadening the subtour by adding another vertex to it, one at a time.
It consists of four steps [9]:

I.  Founding of the initial small subtour (Subtour establishment rule)

This step consists of randomly choosing an initial node for the tour.

Il.  Next node choice (Selection rule)

From the available nodes that do not belong to the subtour that has already been
constructed, the one with the minimum cost or distance to the last node in the subtour is
selected.

I11.  Subtour Expansion

In this step, the node selected in step 11 can either be inserted or added to the existing
subtour. For the insertion method it is chosen where to locate the new node, based on the
cost of the subtour generated. The addition method, however, simply expands the existing
subtour by placing the selected node after the last one present.

IV.  Repetition of steps Il and I11 until a closed loop is formed

Some examples of the most used Tour Construction Methods are [8]: arbitrary

insertion, convex hull insertion, greatest angle insertion and ratio times difference

insertion.

1.2.2. Tour Improvement Methods

Tour Improvement Methods begin with an initial solution to the TSP problem, to

which a series of alterations are applied to improve it and therefore obtain a shorter



distance or a smaller cost. This is an iterative process and can be applied several times
until the quality of the solution obtained is suitable for its purpose.

Two different approaches can be identified for Tour Improvement, the local and the
global search method [10]. Tour improvement using genetic algorithm is also commonly

used.

1.2.3. Composite Methods

Composite Methods are just a combination of the two previously mentioned methods,
Tour Construction and Tour Improvement. Firstly, an initial solution is computed using
a tour construction method. Consecutively a tour improvement method is applied to the

initial solution to obtain a more optimal one, for instance the 2-Opt algorithm.

1.3. Genetic Algorithms

This algorithm was developed by John Holland and De Jong in the 1960s and 1970s,
and it basically consists in a method to solve optimization problems, based on Darwin’s
theory of evolution, replicating biological evolution [11]. This is done by using operators
such as mutation, crossover and selection criteria. For the TSP a possible tiling is named
individual, and this individual is defined by its genes (HV-Tree nodes described in
2.1.1.1). At each step the genes are recombined with operators to find a new combination.

The cost of each is calculated and the best one is maintained [8].

1.4. Applications of TSP

The most popular application of the TSP is the one to which its definition refers, a
salesman that has to visit N cities exactly once, and end in the initial spot. This is
applicable to bus routes, package delivery routes and other types of logistic activities
which require round trips with the minimum distance possible between stops. Though this
are the most common, there are also many other applications related to different aspects
of life. Some of them will now be explained [1][5]:

e (Genome sequencing.

In genome sequencing, the objective is to reconstruct a missing or unknown fragment
of the gene by determining the order in which sequences of nucleotides appear. This

sequencing can be approached by using the TSP, in which the cities will be the local maps



and the cost will be how probable it is that one map follows another one. So by combining
biological and mathematical methods (TSP) it can be solved.

e Drilling of printed circuit boards.

In these boards, to connect one conductor layer to another one, holes of different
diameters for different pins must be drilled. Each time a different diameter hole has to be
drilled, the tool of the machine must be changed, which is very time consuming. The
efficient way to approach the drilling is to first drill all the holes of one diameter, and then
move on to the next diameter. Each of the holes can be considered a city in the TSP
problem, and the cost is the amount of time required to go from one hole to another. The
route which minimizes traveling time between the holes is computed using TSP.

e Computer Wiring

In some cases, pins which attach computer modules are linked using wires, in a way
that exactly two wires are attached to each pin. It is desirable to find the shortest possible
route, to minimize the length of the wire used and therefore the cost of the material.

e Paper cutting

When sheets have to be cut from a roll of paper by repeating a particular pattern, the
objective is to minimize the waste of product. The most optimal way of cutting the sheet

to make the most from the roll can be calculated by using TSP algorithms.



2. Methodology

As mentioned before, the TSP is an NP-complete type problem, but despite this, there
are many existing algorithms that provide good quality solutions. The reason for
developing a different algorithm, even if many others already exist, is to investigate a
different approach in the method used to reach a valid solution. The particularity of this
method is that dyadic tiling is used to partition the randomly generated points, forming
small clusters of points (depicted in Figure 2 (b)). Each of these clusters are composed of
the points belonging to the same tile. A representative point of each cluster, the
geometrical barycenter, is generated and an initial TSP solution is found, connecting the
barycenters exclusively, not the randomly generated points. Also, the midpoints of the
segments of the solution are defined. Individual tour solutions with different endpoints
are generated for each cluster, which are subsequently connected to one another through
the previously defined midpoints. To finalize, the barycenters and the midpoints are
excluded from the created TSP solution, and the 2-opt method is applied to improve the

initial solution.
[ ] ® o ¢
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Figure 2: (a) A set of n points, (b) first clustered into disjoint sets. (¢) A subsolution is obtained
for each cluster and (d) these are concatenated. (Source: [8])



2.1. Description of the algorithm

In this section the particularities of the method that has been used to solve the TSP
will be discussed.

2.1.1. Dyadic Tiling

Tiling, also known as tessellation, is the process of completely covering a given shape
with other smaller plane figures, avoiding gaps and any overlapping [8]. The objective of
this thesis is to explore the resolution of the TSP using a particular type of tessellation,
dyadic tiling.

In dyadic tiling, the starting domain is the unit square, to which n successive bisections
are applied. The number of successive bisections by vertical or horizontal cuts, n, is
known as the order of the tile. The vertical or horizontal cuts are equally probable of
occurring independent of the others, and they are responsible for cutting the existing
dyadic rectangle exactly in half [12].

The dyadic tiling can be defined as [13]:

R(a,b,s,t) = [a275,(a+ 1)275] x [b27%, (b + 1)27Y], (2)
where the following conditions must be satisfied:
0<ac<2s,
0<b<?2t. (3)

The number of dyadic rectangles into which the unit square will be partitioned is,
being n the order of the tile:

2", (4)
and the area of each of these dyadic rectangles being:

n (5)



(a) (b)

(c) (d)

Figure 3: Dyadic tilings of (a) 2" order, (b) 3" order, (c) 4" order and (d) 5 order.

We can also define the type of cut that has taken place [13], either vertical, as can be
seen in Figure 3 (a) or horizontal. The case where both a horizontal and a vertical cut have
been done can also arise.

These cuts that are performed to the rectangles can be described using binary trees

labeled with an ‘H’ in the case of a horizontal cut and with a ‘7’ for a vertical cut.



2.1.1.1. HV-Tree Generation

The HV-Tree that is used in this algorithm is a particular case of the general term
binary tree. The term ‘binary’ refers to the fact that each node has exactly two children,
labeled as the left child and right child. It is called HV-Tree because each node has the
label ‘H’ or ‘7’ to determine the type of cut that has been applied to the tile above,
horizontal or vertical, respectively. The height (layers) of the HV-Tree will be equal to
the order of the tiling, n, with the number of nodes present being:

2" — 1. (6)

In Figure 4 we can see the HV-Tree corresponding to the tiling in Figure 3 (a), which
has an initial vertical cut. After this, another vertical cut is performed to the left child, and
a horizontal cut is performed to the right child. No further cuts are executed because
n = 2, which means it is a 2" order tiling and that the height of the HV-Tree is 2. The
number of rectangles generated is 4, according to equation ( 4 ). The number of nodes in

the HV-Tree is 3 according to equation ( 6 ).

Figure 4: lllustration of the subdivision process of a 2" order dyadic tiling corresponding to the
tiling in Figure 3 (a).

The user can decide the order of the tiling, but the partitioning, whether vertical or
horizontal is randomly generated, with a uniform distribution following the recursive

construction [13].



In this method if the parent is labeled 'V’, its children can be of any type; both 'V’,
both ‘H" , or one of each, and can be continued recursively. On the contrary if the parent
is labeled "H' its children cannot be both 'V’, creating a dependency. This is done because
each tiling has the same chance of appearing and otherwise the tiles to which most HV-
Trees correspond would be overrepresented.

The node types of the HV-Tree will therefore be:

e V ifthe parent is labeled V, independently of its children
e H,, if the node is a root (not a leaf), where x, y correspond to its children
e Hyy if the node is labeled H and has no children.
The probability that a particular random tiling will be generated is [13],
Ap_i? 1
Zlnl =2—Pn—12 (7)

P, =

with A,, being the total number of trees of all types (V, Hyy, Hyy, Hyy)-
Therefore, the number of trees of each type can be defined as follows:
V: A%y = prAn,
Hyy: (Ap—1 — A%-3)? = pp(1 = Pn-1)?4n,
Hyy: A 5 (Ane1 — A%23) = PuPp—1(1 — Pr_1)An,
Hyy: A%y (Apq — A%23) = PpPn-1(1 = Pp_1)An.
The 4-tuples ( 2 ) of each generated tile can be calculated knowing if the cut has been

(8)

of V or H type and if the child is left or right (this refers to the position of the children

from the same parent in the HV-Tree) [8]:
HL(a,b,s,t) = (a,2b,s, t + 1),
HR(a,b,s,t) = (a,2b+1,s,t + 1),
VL(a,b,s,t) = (2a,b,s + 1,t),
VR(a,b,s,t) = (2a+1,b,s + 1,t).

(9)

2.1.1.2. Clustering

After creating the dyadic tile, the next step is to plot the points which are arbitrary and
can be either specified or randomly generated. These points must be sorted into their
corresponding tile, forming small clusters. For each non-empty tile, a representative

point, which is the barycenter, is plotted.

10
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Figure 5: (a) Dyadic tiling with points, (b) clusters and barycenters.

2.1.2. Hierarchical Method to obtain the solution

O . B
. 3 1
: - °°
(a) (b)

(c) G))

Figure 6: (a) Partitioning the points, (b) “coarse” TSP solution for the barycenters and
placement of the midpoints, (c) minimum tours are calculated between midpoints and (d) the final
solution using 2-opt. (Source [8])

11



Figure 6 is an example of a solution for the TSP problem, using a hierarchical method
with one partitioning. Considering a set of points X, the method that will be applied to
reach an optimal solution will now be explained.

(a) Tiling, point and barycenter generation

The unit square is partitioned using dyadic tiling resulting in the tiling, as the one in

Figure 6 (a), named T. A set of random points (denoted in °

Figure 6 with a ), X, is generated in the tile, forming clusters of points. Each of these
clusters corresponds to the group of points belonging to the same tile. A representative
point, the geometrical barycenter is calculated and plded (represented by a ).

(b) TSP solution for barycenters

A rough solution for the TSP problem is found but considering only the barycenters.
By representing each cluster of points with their corresponding barycenter, the number of
nodes that are considered for the rough initial solution is greatly reduced and the solution
can be found with greater ease and speed. The midpoints of the line segments that join
one barycenter to another in the solution are represented in

Figure 6 with a x.

(¢) Minimum tours

Each barycenter is now dropped from the “coarse” solution and substituted by the
cluster of points it represents, and the two midpoints to which it was connected. For each
tile, a rough solution for the TSP with different starting and end points is computed. This
is done in a way that the solution begins with one of the midpoints that belongs to that
tile, then it goes through all the points in that particular tile and finally ends in the other
midpoint belonging to that tile. The process is repeated for each tile and these subtours
are connected to one another forming a closed tour going through all the points and
midpoints.

(d) Final solution

To obtain the final solution, the midpoints must be deleted from the tour because they
do not belong to the original set of points. This is done by simply joining the point in the
solution that is before the midpoint with the point after it, for all the midpoints.

Finally, a tour improvement method is applied to this solution to make it better. In this
case 2-opt has been implemented to delete the intersections between points and therefore

reduce the tour length.

12



The method described above is only efficient for a limited number of points, a few
hundred of points at maximum. If a considerable number of points is contemplated, the
tiling will have to be of a greater order to avoid clusters with too many nodes in them.
This leads to a great number of barycenters, which may result in two problems. The first
one being that a poor-quality coarse solution in step (b) described above may be obtained,
and the second one that the coarse problem may still be too complicated and therefore
very time consuming to reach a good quality solution. The solution for this is to use
multiple partitioning by forming new clusters with the barycenters O and repeating the
steps previously mentioned. The process is briefly explained in Figure 7, but it will not
be explained in further detail because the purpose of the paper is to solve the TSP using

a single partition.

13
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Figure 7: Method for solving the TSP using multiple partitioning. (Source [8])

2.1.3. Tour Improvement: 2-Opt heuristic

The 2-Opt tour improvement method is a very simple, yet efficient, algorithm that
achieves to yield a better-quality solution for the TSP. It is usually applied to an initial

solution obtained from a tour construction method.

14



The way of working of this algorithm is by exchanging the order of two edges of the
solution by another two proximal edges, in such a way that the combination will result in
atour again [14]. The resulting distance between the edges before and after the considered
exchange is evaluated. Whichever combination offers the shorter route is the one kept.
This step is repeated throughout all the edges, which are replaced as long as a better
solution is obtained. Once no improvement is obtained from further exchanges the 2-Opt
algorithm is stopped. If the existing tour cannot be improved by 2-Opt heuristic, it
receives the name of 2-Optimal.

In Figure 8 a very simple example of the 2-Opt algorithm is described. In this case, in
Figure 8 (a) we can see that there is an intersection between two line segments, which
make the tour longer. The 2-Opt algorithm can detect this imperfection because the
distance between edges after introducing the edge swap is smaller than that of the original
line segments. This can be clearly seen in Figure 8 (b) where the 2-Opt has already been
successfully applied.

.—/‘"\0/_.

/ —e
(a) (b)

Figure 8: TSP Solution (a) before applying 2-opt and (b) after applying 2-opt.
2.2. Implementation of the algorithm to Matlab

The theoretical explanation of the method of dyadic tiling to solve the TSP has already
been accomplished. From this point forward, the intention of the paper is to explain how
this theory, considering only the case of single partitioning, has been applied and how it

has been implemented to the computing platform Matlab.

2.2.1. Random Point and HV-Tree Generation

The code starts with the random generation of a specified number of points, for testing

purposes, with x-y coordinates belonging to the range [0,0] x [1,1], the unit square, for

15



simplicity reasons. However, if desired, a set of specific coordinates could also be
introduced or imported from a database.

%Random Points Generation
Points=0+(1-0) .*rand (NPoints, 2) ;

Figure 9: Random point generation in Matlab.

The next step is the generation of the HV-Tree by firstly indicating the number of tree
levels, this is the order of the desired tiling. This number will depend on the number of
points considered for the TSP. The greater the number of points, the greater the number
of tiles. An excessive number of tiles also must be avoided because this will result in too
many barycenters, so a compromise between the average size of the clusters and the
number of barycenters must be found.

The tessellation process includes either vertical or horizontal cuts of the unit square.
Considering the conditions mentioned in 2.1.1.1, that the HV-Tree is constructed with a
uniform distribution recursively. These cuts are defined by probability, in such a way that
all types of cuts have the same probability of occurring. The probability equation followed

to generate these cutsis (7).

%HVTree Generation
Treelevels=3; %Order of Tiling
P(1)=0; %generation of tiling with probabilities
for i=2:Treelevels+l
P(i)=1l/(2-(P(i-1))"2)+
end

for i=l:Treelevels
FirstPos=2"(i-1);
LastPos=2*FirstPos-1;
for j=FirstPos:2:LastPos
Pn=P (end-(i-1));
Pnminusl=P (end-i);
if i==1
HVTree(j)=randsrc(l,1,[1,2,3,4:Pn,Pn* (1-Pnminusl)~2, Pn*Pnminusl* (1-Pnminusl), Pn*Pnminusl* (1-Pnminusl) 1)
else Parent=HVTree(((j-2)/2)+1);
if Parent==1
HVTree(j)=randsrc(1,1,[1,2,3,4;Pn,Pn* (1-Pnminusl) "2, Pn*Pnminusl* (1-Pnminusl) , Pn*Pnminusl* (1-Pnminusl) ]);
HVTree(j+1)=randsrc(l,1,[1,2,3,4:Pn,Pn* (1-Pnminusl)~2, Pn*Pnminusl* (1-Pnminusl), Pn*Pnminusl* (1-Pnminusl) 1) ;
elseif Parent==2
HVTree (j)=randsrc(1,1,[2,3,4; (1-Pnminusl) / (1+Pnminusl), Pnminusl/ (1+Pnminusl) , Pnminusl/ (1+Pnminusl) ])
HVTree (j+1)=randsrc(1,1, [2,3,4; (1-Pnminusl) / (1+Pnminusl), Pnminusl/ (1+Pnminusl) , Pnminusl/ (1+Pnminusl) 1) ;
elseif Parent==3
HVTree(j)=randsrc(1,1,[2,3,4; (1-Pnminusl) / (1+Pnminusl), Pnminusl/ (1+Pnminusl) , Pnminusl/ (1+Pnminusl) ) ;
HVTree (j+1)=1;
elseif Parent==4
HVTree (j)=1;
HVTree (j+1)=randsrc(1,1,[2,3,4; (1-Pnminusl)/ (1+Pnminusl), Pnminusl/ (1+Pnminusl), Pnminusl/ (1+Pnminusl) ]) ;

Figure 10: HV-Tree generation in Matlab.

2.2.2. Tile Coordinates

Once the tiles have been defined and the unit square has been completely partitioned,
the coordinates of each of these dyadic rectangles must be defined. This is necessary so

that afterwards the points can be grouped into their corresponding tile.
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Whilst the HV-Tree is being generated, a vector is also created that includes the type
of cut that has taken place, whether vertical or horizontal, and whether it is the left or the
right child. With the information in the previously mentioned vector and using the

equations (9) , the 4-tuples of each dyadic tile can be calculated.

%Tile Coordinates
TValues(l,:)=[0 0 0 0]:
for i=1:LTree
if HVTree(i)==1
TValues (2*1i,:)=[2*TValues (i, 1), TValues (i, 2),TValues (i, 3)+1,TValues(i,4)]; %VL
TValues (2*i+1, :)=[2*TValues (i, 1)+1,TValues (i, 2),TValues (i,3)+1,TValues (i, 4)]: %VR
alse
TValues(2*%i, :)=[TValues(i,1),2*TValues (i, 2),TValues (i, 3),TValues (i,4)+1]; %HL
TValues(2*¥i+l, :)=[TValues (i, 1),2*TValues (i, 2)+1,TValues(i,3),TValues(i,4)+1]; %HR
end
end

Figure 11: Generation of the values of the 4-tuples from the type of cut.

With the 4-tuples generated for the last level of the HV-Tree, which are the ones
corresponding to the final tessellation, we can obtain the position of each tile. The 4

corners of the tile are defined by using the X,,in, Xmax) Vmin ANd Ymax Values, as can be
seen in Figure 12.

Ymax e

Vinin {oeeeeeeeereehorennnennnns .

v v

Xmin Xmax

Figure 12: definition of the coordinates of a tile.

These values are defined by substituting the values generated in (2 ) for each tile, into
the equations (10 ):
Xmin = a275,
Xmax = (@ +1)275,
e (10)
VYmax = (b + 1)27¢,
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for i=(LTValues+l) /2:LTValues
RectCoord(j,1l)=TValues (i, 1) *2~((-1)*TValues(i,3)):; %xmin
RectCoord(j,2)=(TValues (i,1)+1)#*2" ((-1)*TValues (i,3)); %xmax
RectCoord(j,3)=TValues (i,2)*2"((-1)*TValues (i,4)); Zymin
RectCoord(j,4)=(TValues (i,2)+1)#*2"~((-1)*TValues (i,4)); Zymax
j=j+1;

end

Figure 13: Tile coordinates generation in Matlab.

This process is repeated until every tile in the unit square has its corners defined.
These rectangles are all plotted and using the ‘%old on’ command in Matlab, the points

are plotted on the same graph. This is depicted in Figure 14.

&

Figure 14: plotting of tiles and points.

The next step is to sort the points into the corresponding tile. Although visually we
can see in Figure 14 to which tile each point belongs, this is just because the is a reduced
number of points and tiles. This process must be programmed so that the code in Matlab

provides us with this information automatically.

2.2.3. Grouping of Points

The way of proceeding to sort each point into its corresponding tile is very simple.
The coordinates of the corners of each tile are stored in a different row of a matrix, where
each column represents each of the values described in ( 10 ). Taking one row at a time
(this corresponds to one tile at a time), a loop is created in which each point is tested to

see if it belongs to that particular tile. This is done by checking if the x-coordinate of the
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point is found between the x,,;, and x,,,, coordinates of the considered time, and
respectively for the y-coordinates.

If both conditions are met, the point belongs to the tile and it must be stored. However,
it cannot be stored in matrix form as has been done before for the rest of the data. A cell
structure must be used, because not all columns will have the same number of elements
in them. The reason for this is that not all tiles will necessarily have the same number of
points that belong to them. In fact, the case where there are no points belonging to a tile
can also arise.

To avoid going each time through all the points to see if they belong to a particular
tile, once a point has been classified into a tile it is deleted from the point vector. This

makes the process more efficient because less points will have to be tested each time.

$Grouping of points
PointsZ2=Points;
for j=1:LTiles
k=1;
for i=length(Points2):-1:1
if RectCoord(j,1l)<Points2(i,l) && Points2(i,l)<RectCoord(]j,2)
if RectCoord(j,3)<Points2(i,2) && Points2(i,2)<RectCoord(]j,4)
Sorting(k,2*j-1)={Points2(i,1)}:
Sorting(k,2*j)={Points2(i,2)};:
k=k+1;
Points2(i,:)=[1:
end
end
end
end

Figure 15: Point classification into the corresponding tile in Matlab.

2.2.4. TSP Solution for Barycenters

After classifying the points into the corresponding tile, the geometrical center of the
points in each tile is represented. This point has been named before as barycenter.

A special consideration must be made at this point, for the tiles that are empty. The
rows corresponding to the empty tiles should not be considered for the barycenter
calculation since it does not exist. To avoid problems further on in the code the rows

corresponding to the empty tiles should be eliminated.
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%Barycenters
NumPoints=sum(~cellfun(@isempty, Sorting), 1) %Snumber of points in each tile
j=1:
k=1;:
Empty=0;
for i=1:2: (length (NumPoints))
if NumPoints (i)~=0
Barycenter (j,l)=sum([Sorting{:,1i}]) /NumPoints (i)
Barycenter (j, 2)=sum([Sorting{:,i+1}]) /NumPoints (i+l);
j=j+1;
else
Barycenter(j, :)=2;
EmptyTile (k)=(i+l)/2; %this vector is so that we can know which tiles are empty
k=k+1;
j=j+1;
Empty=1;
end
end

%Elimination of rows corresponding to empty tiles

BarycenterZ2=Barycenter; %Barycenter=with original tile size

for i=length(Barycenter):-1:1 %BarycenterZ=length is that corresponding to non empty tiles
if Barycenter(i,l)==2
Barycenter2 (i, :)=[1;:
end
end

Figure 16: Barycenter generation in Matlab.

At this point the barycenters of each non-empty tile are plotted joint with the tiles and

the points that are being considered for the TSP solution.

Figure 17: plotting of barycenters of each tile, @ for the points and [_Jfor the barycenters.

Now that the barycenters have been created, a TSP solution must be found considering
just these, and not the original points. At first the Greedy method was implemented into
the code. This method basically starts the tour at a given point and calculates the distance
from that point to the rest of the points that are available (that do not already belong to

the constructed solution). The point that is nearest is selected and the process is repeated
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until all the points have been included in the tour. Finally, the last point and the first one
are joined together. This method is not the most efficient one but yields a good enough
solution when few points are considered, with the advantage that it is easy and quick to
implement.

In the end a different approach was taken to obtain a more efficient initial ‘coarse’
solution for the barycenters. An already existing TSP solver was implemented into the
code. This function implemented is called TSP_GA Traveling Salesman Problem (TSP)
Genetic Algorithm (GA)’ [15]. This code uses the previously explained in 1.3 genetic

algorithm to find a route going through all the barycenters.

% %TSP Solver for Barycenters
xy=[Barycenter2];

userConfig=struct ('=zvy',xy)s
resultBarycenter=tsp ga(userConfig);
OrderBarycenters=resultBarycenter.optRoute;

Figure 18: TSP solver for barycenters.

The data passed on to the already existing solver, is the coordinates of the barycenters,
and the order of the barycenters forming the tour is returned as the solution, see Figure
19.

/
*—

Figure 19: TSP solution for barycenters|_| and midpoints¥ .

The next step is the plotting of the mid points for each line segment, which are

represented in Figure 19.
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2.2.5. TSP Solution for Points

At this point the barycenters are dropped from the solution, and a minimum tour is
found for the cluster of points that each barycenter represented, linking them to their two
corresponding midpoints.

Initially the ‘Greedy Method’ was also going to be used, but finally it was decided to
implement another existing TSP solver, because this would yield a better solution.
However, this time a different function than the previously mentioned TSP_GA had to be
implemented. The reason for this is that the normal TSP solver tries to find the shortest
round trip. In this step however, we need the tour to start at one midpoint and end at the
next one, so the first and last points are different. To overcome this inconvenience a
different function was used, TSPOF_GA, ‘Fixed Open Traveling Salesman Problem
(TSP) Genetic Algorithm (GA)’ [16].

TSP Sol for tiles 2 to the last one
for k=2:LBarycenters
PointsforTSP=[]:
Dummy=1[] 7
Pointsxz=[]:
Pointsy=[]~
Dummy (1, :)=Dummies (k-1,:);
Pointsx=cellZmat (Sorting(:,2*0OrderBarycenters (k)-1));
Pointsy=cell2mat (Sorting (:,2*0OrderBarycenters(k))):
Pointsxy=[Pointsx, Pointsy]:
PointsforTSP=[Dummy;Pointsxy]:
Dummy (1, : )=Dummies (k, :) s
xy=[PointaforTSP;Dummy] ;
userConfig=struct ('=zy',=xy):
resultStruct=tspof ga(userConfig):

OrderPoints=resultStruct.optRoute;
Li=length (xy) ;

Figure 20: Minimum tour construction between midpoints.

The process shown in Figure 20 is repeated for each cluster of points that the
barycenters represented. The TSP solver returns the order of the points forming the tour,
so these can be plotted.

It is important to remember to delete the midpoints that were previously generated
from the overall solution because they have been created to help construct the solution
but are not part of the original points considered for the solution.

At this point an approximate solution has been found for the original set of points by

using dyadic tiling and a genetic algorithm TSP solver.
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Figure 21: TSP solution for points before 2-Opt.
2.2.6. 2-Opt Implementation

This is the last step of the developed code. Although an approximate solution has been
found, it can be improved by using a Tour Improvement Method (1.2.2) based on the
obtained solution. In Figure 22 it can be seen that 2-Opt is a simple method to implement,
in which the distances of two edges are computed, as well as the distances corresponding
to the edges that would result if they were switched. If the distance of the switched edges
is in fact shorter, these are swapped, otherwise they remain unchanged. By doing this the
number of intersections present in the solution is reduced, and therefore the total length

of the tour decreases.

:
for i=1:(length (AllPointsNoDummies)-3)
for j=i+2: (length(AllPointsNoDummies)-1)
minchange=0;
Distl=sqrt ((AllPointsNoDummies (i, 1)-AllPointsNoDummies (j, 1)) "2+ (AllPointsNoDummies (i, 2)-AllPointsNoDummies(j,2))"2);
Dist2=sqrt ((AllPointsNoDummies (i+1,1)-AllPointsNoDummies (j+1,1))~2+ (Al1PointsNoDummies (i+1,2)-Al1PointsNoDummies (j+1,2))"2);
Dist3=sqrt ((AllPointsNoDummies (i, 1) -AllPointsNoDummies (i+1,1))~2+(Al1PointsNoDummies (i,2)-AllPointsNoDummies (i+1,2))~2);
Dist4=sqrt((AllPointsNoDummies (j, 1) -AllPointsNoDummies (j+1,1))~2+ (AllPointsNoDummies (j,2)-AllPointsNoDummies (j+1,2))"2) ¢
change=Distl+Dist2-Dist3-Distd:
if minchange>chan
minchange=c
AllPointsNo

nge;

mmies([i+1 j],:)=AllPointsNoDummies ([j i+1],:);:

end

end

Figure 22: 2-Opt implementation.
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Figure 23: TSP solution for points after 2-Opt implementation.

By comparing Figure 21 and Figure 23 we can observe that indeed, the use of a tour
improvement method as is 2-Opt has yielded a better quality solution than the one initially

obtained.
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3. Results

In this section the results obtained by testing the code with different sets of points and
tilings will be presented. Depending on the number of points N, the order of tiling chosen
varies to guarantee that the average estimated number of points in each tile is less than
10. The number of iterations performed for each set of points has been 100.

The following tests have been performed:

Number of Points Order of tiling Average number of points per cluster

25 3rd 2—5 =3.125 3 or 4 points
50 4t i—g =3.125 3 or 4 points
75 4t ;—f — 4.6875 4 or 5 points
100 4t 120—40 = 6.25 6 or 7 points

Table 1: characteristics of tests performed.

3.1. Mean solution lengths and standard deviations

The developed code works correctly and ensures the objective of obtaining a solution
for given number of points. However, the quality of the solution obtained must also be
evaluated. A possible way to do this is by using the approximation formula stated by

Beardwood [17], in which the expected optimal tour length is:

L. :
lim -2 =
L (11)
Lmin=.8\/ﬁ+c

The values for the constants in equations ( 11 ) that will be used are taken from [18]
andare f = 0.71 and C = 0.63.

3.1.1. 25 Points

For N = 25 an example is shown in Figure 24 of the different steps undergone by
the code to obtain the solution.
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Figure 24: TSP solution construction for N = 25.

For the tests performed the results obtained are the following:

Mean tour Standard % of
Mean tour Standard .. % of tour 0
length . deviation standard
length after deviation length -
before 2- 2-Opt before 2-Opt after 2- reduction deviation
Opt P P Opt reduction
5.6460 4.7953 0.8694 0.4866 15.067 44.024

Table 2: Results for N = 25.

It can be observed from Table 2 that the 2-Opt algorithm efficiently accomplishes its
aim, resulting in a solution with a tour length 15% shorter than the initial one. This reflects

the importance of using Tour-Improvement Methods, which are easy to implement and
give a better quality solution.
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3.1.2. 50 Points

For the case of 50 points a higher order tiling has been used, which results in a greater

number of barycenters to compute the initial ‘coarse’ solution.
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Figure 25: TSP solution construction for N = 50.

Mean tour Standard % of
Mean tour Standard .. % of tour 0
length . deviation standard
length after deviation length L
before 2- 5-Opt before 2-Opt after 2- reduction deviation
Opt P P Opt reduction
8.9188 6.8995 1.1837 0.5785 22.641 51.131

Table 3: Results for N = 50.
In this case, the 2-Opt heuristic significantly reduced the mean tour length by more
than 20%.
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3.1.3. 75 Points

For N = 75 the same order of tiling has been used as for N = 50 and it can be
observed in Figure 26 that in this case the number of points contained in each cluster is

bigger than previously, and hence a lower quality solution can be expected.
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Figure 26: TSP solution construction for N = 75.

Mean tour Standard % of
Mean tour Standard .. % of tour 0
length . deviation standard
length after deviation length L
before 2- 2-Opt before 2-Opt after 2- reduction deviation
Opt P P Opt reduction
11.892 8.6489 1.6788 1.1120 27.271 33.761

Table 4: Results for N = 75.

Since there are more points in each dyadic tile, it is harder to obtain such a good
solution as would be obtained with less points. This means that the quality of the initial
solution is not expected to be of very good quality due to the intersections present. This
is the reason why applying 2-Opt in this case has more effect than when applied to

solutions for TSPs with a lower number of points.
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3.1.4. 100 Points

For N = 100 3" order tiling has been used again. Although the mean number of
points per cluster is still under 10, it has increased.

: . .:D.D. .. -..m... -.D‘.. “ wa‘
R

Figure 27: TSP solution construction for N = 100.

Mean tour Standard % of
Mean tour Standard .. % of tour 0
length . deviation standard
length after deviation length L
before 2- 5-Opt before 2-Opt after 2- reduction deviation
Opt P P Opt reduction
14.591 10.373 1.8798 0.7413 28.908 60.561

Table 5: Results for N = 100.

3.2. Comparison with expected values

In Figure 28 a graph comparing the optimal value for the tour length calculated with
(11) and the results obtained with the developed Matlab code is shown, the difference

between the values is also represented numerically in Table 6.
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Figure 28: Comparison of optimal and obtained value.

N° of MeLaerrl];[zur L Mean error
H min
PoINtS —ith 2-Opt (%)
25 4.7953 4.1800 14.720
50 6.8995 5.6504 22.105
75 8.6489 6.7787 27.587
100 10.373 7.7300 34.191

Table 6: Comparison of expected and obtained values.

It can be observed that as the number of points has increased, the mean error between
the minimum expected length and the one obtained with the code has also increased. For
N = 25 the error was acceptable, around 14%, but for the largest number of points
considered (N = 100) the error has increased to 34%, which shows that the solution could
be of a better quality. The reasons for this and possible improvements will be explained

in the next section.
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3.3. Future improvements

From Table 6 it can be observed that the order of the tiling chosen has been adequate
for N = 25, but from the high value obtained for the error in the rest of the cases, it can
be deduced that perhaps a better solution could have been obtained if a higher order tiling
had been used. This is because the number of points in each cluster would have been
smaller. However, a higher order tiling would have also resulted in a greater number of
barycenters and hence a lower quality ‘coarse’ solution.

For the case of N = 100 and further, to minimize the number of points per cluster, a
higher order tiling should be used. To avoid getting a low quality ‘coarse’ solution for the
barycenters, multiple partitioning, as explained in Figure 7, should be used.

Also, as mentioned in [8] another possible way of improving the solution would have
been by using GAEHS, Genetic Algorithm Enhanced Hierarchical Solution, which is a

method that recombines the random dyadic tiling to obtain a better solution.
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