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ABSTRACT 

The objective of this paper is to briefly explore and explain what the TSP is, as well 

as the most adequate methods to use depending on the numbers of cities considered, and 

the quality of the solution desired. After this, a particular approach using dyadic tilings 

and genetic algorithms is explained in further detail. This method basically consists on a 

hierarchical heuristic that partitions the unit square into dyadic rectangles. The points 

considered for the TSP are grouped into clusters depending on the tile where they belong, 

and the geometrical barycenter is represented for each tile or cluster. A ‘coarse’ solution 

is found for the barycenters and the midpoints for each line segment is defined. Minimum 

tours are calculated for each cluster, connecting these together through the barycenters, 

resulting in a solution for the points considered for the TSP. Finally it is explained how 

this method has been implemented into Matlab to obtain results using this method. 
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1. Introduction  

The Traveling Salesman Problem (TSP) is a very much researched problem in our 

society. To explain it in a very simple way, it can be considered as a situation in which a 

salesman has to travel from his hometown to several other towns and finally return home, 

visiting each of these towns only once and following the shortest, most optimal route. The 

TSP can be formulated as a combinatorial optimization problem [1], this is as a graph in 

which the cities are represented by points (or nodes). The nodes are interconnected 

through line segments, also known as arcs or edges. The length of these lines can be seen 

as the cost of going from one node to another. Once all the nodes have been connected 

forming a closed loop (graph theory term is Hamiltonian cycle) it can be stated that the 

TSP solution is complete, as can be seen in Figure 1. From here on this closed loop will 

further be described as a tour. 

 

 

Figure 1: example of a TSP solution. 

 

The path which the salesman must follow may seem obvious when considering a 

reduced number of towns. However, when hundreds or thousands of towns are 

considered, the solution is no longer trivial. For 𝑛 towns, the number of possible 

combinations is  

(𝑛−1)!

2
, ( 1 ) 

which is nearly 2 million possible combinations for just 11 towns. It is obvious that a 

brute-force approach in which all possible combinations are tried is not viable and would 
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require too much time. This is the reason why mathematical algorithms must be used to 

find an optimal solution.  

The TSP belongs to the NP-complete type [2], short for nondeterministic polynomial-

time complete. This can be described as any of a class of computational problems for 

which no optimal solution algorithm has been found that guarantees to offer a solution in 

polynomial time [3]. Therefore, when it comes to solving this optimization problem, a 

high complexity emerges. Due to this, in many cases there is no assurance that the shortest 

possible route or tour will be constructed, instead, a good quality solution is computed. 

Depending on the number of points considered and the level of precision needed, 

different approaches should be used. These can be classified in two categories: exact and 

heuristic methods. 

1.1. Exact Methods  

Exact methods guarantee that an optimal solution is going to be obtained [4]. 

However, these methods require an extensive amount of computer time to reach the 

optimal solution. For this reason, exact methods are inapplicable in many cases and 

should only be utilized when a small number of points is considered. As Gilbert Laporte 

stated [5], some of the algorithms and formulations based on this method are: 

• Integer linear programming formulations 

• The assignment lower bound and related branch-and-bound algorithms 

• The shortest spanning arborescence bound and a related algorithm 

• The shortest spanning tree bound and related algorithms 

• The 2-matching lower bound and related algorithms 

1.1.1. Branch-and-cut method 

One of the most used exact methods is the Concorde, which uses the branch and cut 

method to solve the TSP. The objective is to reduce the number of nodes in the search 

tree by generating tight bounds [6]. The upper bounds are found by implementing the 

branch-and-bound method, and the lower bounds by using the cutting planes method. 

This results in a more optimal procedure than using just the branch-and-bound method 

because by cutting planes, a smaller amount of information has to be stored to represent 

the search tree [7]. 
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1.2. Heuristic Methods 

Heuristic methods, as opposed to exact methods, offer a ‘good enough’ solution, but 

not precisely the optimal one. The advantage of these methods is that the computational 

time is significantly reduced [8], and hence satisfactory solutions can be reached for a 

substantial number of points in a short amount of time. The two main types of heuristic 

methods are Tour Construction Methods and Tour Improvement Methods, which will 

now be discussed. 

1.2.1. Tour Construction Methods 

This method consists in gradually building up a solution from scratch by starting with 

one node (city) and broadening the subtour by adding another vertex to it, one at a time. 

It consists of four steps [9]: 

I. Founding of the initial small subtour (Subtour establishment rule) 

This step consists of randomly choosing an initial node for the tour. 

II. Next node choice (Selection rule) 

From the available nodes that do not belong to the subtour that has already been 

constructed, the one with the minimum cost or distance to the last node in the subtour is 

selected. 

III. Subtour Expansion 

In this step, the node selected in step II can either be inserted or added to the existing 

subtour. For the insertion method it is chosen where to locate the new node, based on the 

cost of the subtour generated. The addition method, however, simply expands the existing 

subtour by placing the selected node after the last one present. 

IV. Repetition of steps II and III until a closed loop is formed 

Some examples of the most used Tour Construction Methods are [8]: arbitrary 

insertion, convex hull insertion, greatest angle insertion and ratio times difference 

insertion.  

1.2.2. Tour Improvement Methods 

Tour Improvement Methods begin with an initial solution to the TSP problem, to 

which a series of alterations are applied to improve it and therefore obtain a shorter 
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distance or a smaller cost. This is an iterative process and can be applied several times 

until the quality of the solution obtained is suitable for its purpose. 

Two different approaches can be identified for Tour Improvement, the local and the 

global search method [10]. Tour improvement using genetic algorithm is also commonly 

used. 

1.2.3. Composite Methods 

Composite Methods are just a combination of the two previously mentioned methods, 

Tour Construction and Tour Improvement. Firstly, an initial solution is computed using 

a tour construction method. Consecutively a tour improvement method is applied to the 

initial solution to obtain a more optimal one, for instance the 2-Opt algorithm.  

1.3. Genetic Algorithms 

This algorithm was developed by John Holland and De Jong in the 1960s and 1970s, 

and it basically consists in a method to solve optimization problems, based on Darwin’s 

theory of evolution, replicating biological evolution [11]. This is done by using operators 

such as mutation, crossover and selection criteria. For the TSP a possible tiling is named 

individual, and this individual is defined by its genes (HV-Tree nodes described in 

2.1.1.1). At each step the genes are recombined with operators to find a new combination. 

The cost of each is calculated and the best one is maintained [8]. 

1.4. Applications of TSP 

The most popular application of the TSP is the one to which its definition refers, a 

salesman that has to visit N cities exactly once, and end in the initial spot. This is 

applicable to bus routes, package delivery routes and other types of logistic activities 

which require round trips with the minimum distance possible between stops. Though this 

are the most common, there are also many other applications related to different aspects 

of life. Some of them will now be explained [1][5]: 

• Genome sequencing.  

In genome sequencing, the objective is to reconstruct a missing or unknown fragment 

of the gene by determining the order in which sequences of nucleotides appear. This 

sequencing can be approached by using the TSP, in which the cities will be the local maps 
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and the cost will be how probable it is that one map follows another one. So by combining 

biological and mathematical methods (TSP) it can be solved. 

• Drilling of printed circuit boards. 

In these boards, to connect one conductor layer to another one, holes of different 

diameters for different pins must be drilled. Each time a different diameter hole has to be 

drilled, the tool of the machine must be changed, which is very time consuming. The 

efficient way to approach the drilling is to first drill all the holes of one diameter, and then 

move on to the next diameter. Each of the holes can be considered a city in the TSP 

problem, and the cost is the amount of time required to go from one hole to another. The 

route which minimizes traveling time between the holes is computed using TSP. 

• Computer Wiring 

In some cases, pins which attach computer modules are linked using wires, in a way 

that exactly two wires are attached to each pin. It is desirable to find the shortest possible 

route, to minimize the length of the wire used and therefore the cost of the material. 

• Paper cutting 

When sheets have to be cut from a roll of paper by repeating a particular pattern, the 

objective is to minimize the waste of product. The most optimal way of cutting the sheet 

to make the most from the roll can be calculated by using TSP algorithms.  
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2. Methodology  

As mentioned before, the TSP is an NP-complete type problem, but despite this, there 

are many existing algorithms that provide good quality solutions. The reason for 

developing a different algorithm, even if many others already exist, is to investigate a 

different approach in the method used to reach a valid solution. The particularity of this 

method is that dyadic tiling is used to partition the randomly generated points, forming 

small clusters of points (depicted in Figure 2 (b)). Each of these clusters are composed of 

the points belonging to the same tile. A representative point of each cluster, the 

geometrical barycenter, is generated and an initial TSP solution is found, connecting the 

barycenters exclusively, not the randomly generated points. Also, the midpoints of the 

segments of the solution are defined. Individual tour solutions with different endpoints 

are generated for each cluster, which are subsequently connected to one another through 

the previously defined midpoints. To finalize, the barycenters and the midpoints are 

excluded from the created TSP solution, and the 2-opt method is applied to improve the 

initial solution. 

                     

 

                      

 

Figure 2: (a) A set of n points, (b) first clustered into disjoint sets. (c) A subsolution is obtained 

for each cluster and (d) these are concatenated. (Source: [8]) 

(a) (b) 

(c) (d) 
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2.1.  Description of the algorithm  

In this section the particularities of the method that has been used to solve the TSP 

will be discussed. 

2.1.1. Dyadic Tiling 

Tiling, also known as tessellation, is the process of completely covering a given shape 

with other smaller plane figures, avoiding gaps and any overlapping [8]. The objective of 

this thesis is to explore the resolution of the TSP using a particular type of tessellation, 

dyadic tiling. 

In dyadic tiling, the starting domain is the unit square, to which n successive bisections 

are applied. The number of successive bisections by vertical or horizontal cuts, 𝑛, is 

known as the order of the tile. The vertical or horizontal cuts are equally probable of 

occurring independent of the others, and they are responsible for cutting the existing 

dyadic rectangle exactly in half [12].  

The dyadic tiling can be defined as [13]: 

𝑅(𝑎, 𝑏, 𝑠, 𝑡) = [𝑎2−𝑠, (𝑎 + 1)2−𝑠] × [𝑏2−𝑡, (𝑏 + 1)2−𝑡], ( 2 ) 

where the following conditions must be satisfied: 

0 ≤ 𝑎 < 2𝑠, 

0 ≤ 𝑏 < 2𝑡. 
( 3 ) 

      The number of dyadic rectangles into which the unit square will be partitioned is, 

being 𝑛 the order of the tile: 

2𝑛, ( 4 ) 

and the area of each of these dyadic rectangles being: 

2−𝑛. 
( 5 ) 
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(a)                                                                       (b) 

                                        

(c)                                                                      (d) 

 

Figure 3: Dyadic tilings of (a) 2nd order, (b) 3rd order, (c) 4th order and (d) 5th order. 

 

We can also define the type of cut that has taken place [13], either vertical, as can be 

seen in Figure 3 (a) or horizontal. The case where both a horizontal and a vertical cut have 

been done can also arise. 

These cuts that are performed to the rectangles can be described using binary trees 

labeled with an ‘H’ in the case of a horizontal cut and with a ‘V’ for a vertical cut. 
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2.1.1.1. HV-Tree Generation 

The HV-Tree that is used in this algorithm is a particular case of the general term 

binary tree. The term ‘binary’ refers to the fact that each node has exactly two children, 

labeled as the left child and right child. It is called HV-Tree because each node has the 

label ‘H’ or ‘V’ to determine the type of cut that has been applied to the tile above, 

horizontal or vertical, respectively. The height (layers) of the HV-Tree will be equal to 

the order of the tiling, 𝑛, with the number of nodes present being:  

2𝑛 − 1. ( 6 ) 

In Figure 4 we can see the HV-Tree corresponding to the tiling in Figure 3 (a), which 

has an initial vertical cut. After this, another vertical cut is performed to the left child, and 

a horizontal cut is performed to the right child. No further cuts are executed because      

𝑛 = 2, which means it is a 2nd order tiling and that the height of the HV-Tree is 2. The 

number of rectangles generated is 4, according to equation ( 4 ). The number of nodes in 

the HV-Tree is 3 according to equation ( 6 ).   

 

Figure 4: Illustration of the subdivision process of a 2nd order dyadic tiling corresponding to the 

tiling in Figure 3 (a). 

 

The user can decide the order of the tiling, but the partitioning, whether vertical or 

horizontal is randomly generated, with a uniform distribution following the recursive 

construction [13]. 
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In this method if the parent is labeled ′𝑉′, its children can be of any type; both ′𝑉′, 

both ′𝐻′ , or one of each, and can be continued recursively. On the contrary if the parent 

is labeled ′𝐻′ its children cannot be both ′𝑉′, creating a dependency. This is done because 

each tiling has the same chance of appearing and otherwise the tiles to which most HV-

Trees correspond would be overrepresented.  

The node types of the HV-Tree will therefore be: 

• 𝑉 if the parent is labeled 𝑉, independently of its children 

• 𝐻𝑥𝑦 if the node is a root (not a leaf), where 𝑥, 𝑦 correspond to its children 

• 𝐻𝐻𝐻 if the node is labeled 𝐻 and has no children. 

The probability that a particular random tiling will be generated is [13], 

𝑃𝑛 =
𝐴𝑛−1

2

𝐴𝑛
=

1

2 − 𝑝𝑛−1
2
 ( 7 ) 

with 𝐴𝑛 being the total number of trees of all types (𝑉, 𝐻𝐻𝐻, 𝐻𝐻𝑉 , 𝐻𝑉𝐻).  

Therefore, the number of trees of each type can be defined as follows: 

𝑉:               𝐴2
𝑛−1 = 𝑝𝑛𝐴𝑛,    

𝐻𝐻𝐻:          (𝐴𝑛−1 − 𝐴2
𝑛−2)2 = 𝑝𝑛(1 − 𝑝𝑛−1)2𝐴𝑛,  

𝐻𝐻𝑉:          𝐴2
𝑛−2(𝐴𝑛−1 − 𝐴2

𝑛−2) = 𝑝𝑛𝑝𝑛−1(1 − 𝑝𝑛−1)𝐴𝑛, 

𝐻𝑉𝐻:          𝐴2
𝑛−2(𝐴𝑛−1 − 𝐴2

𝑛−2) = 𝑝𝑛𝑝𝑛−1(1 − 𝑝𝑛−1)𝐴𝑛. 

( 8 ) 

The 4-tuples ( 2 ) of each generated tile can be calculated knowing if the cut has been 

of 𝑉 𝑜𝑟 𝐻 type and if the child is 𝑙𝑒𝑓𝑡 𝑜𝑟 𝑟𝑖𝑔ℎ𝑡 (this refers to the position of the children 

from the same parent in the HV-Tree) [8]: 

𝐻𝐿(𝑎, 𝑏, 𝑠, 𝑡) = (𝑎, 2𝑏, 𝑠, 𝑡 + 1), 

𝐻𝑅(𝑎, 𝑏, 𝑠, 𝑡) = (𝑎, 2𝑏 + 1, 𝑠, 𝑡 + 1), 

𝑉𝐿(𝑎, 𝑏, 𝑠, 𝑡) = (2𝑎, 𝑏, 𝑠 + 1, 𝑡), 

𝑉𝑅(𝑎, 𝑏, 𝑠, 𝑡) = (2𝑎 + 1, 𝑏, 𝑠 + 1, 𝑡). 

( 9 ) 

2.1.1.2. Clustering 

After creating the dyadic tile, the next step is to plot the points which are arbitrary and 

can be either specified or randomly generated. These points must be sorted into their 

corresponding tile, forming small clusters. For each non-empty tile, a representative 

point, which is the barycenter, is plotted. 

 



11 

      

 

Figure 5: (a) Dyadic tiling with points, (b) clusters and barycenters. 

2.1.2. Hierarchical Method to obtain the solution 

 
 

  
 

Figure 6: (a) Partitioning the points, (b) “coarse” TSP solution for the barycenters and 

placement of the midpoints, (c) minimum tours are calculated between midpoints and (d) the final 

solution using 2-opt. (Source [8]) 

(a) (b) 

(a) (b) 

(c) (d) 
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Figure 6 is an example of a solution for the TSP problem, using a hierarchical method 

with one partitioning. Considering a set of points X, the method that will be applied to 

reach an optimal solution will now be explained. 

(a) Tiling, point and barycenter generation 

The unit square is partitioned using dyadic tiling resulting in the tiling, as the one in  

Figure 6 (a), named T. A set of random points (denoted in  

Figure 6 with a  ), X, is generated in the tile, forming clusters of points. Each of these 

clusters corresponds to the group of points belonging to the same tile. A representative 

point, the geometrical barycenter is calculated and plotted (represented by a    ). 

(b) TSP solution for barycenters 

A rough solution for the TSP problem is found but considering only the barycenters. 

By representing each cluster of points with their corresponding barycenter, the number of 

nodes that are considered for the rough initial solution is greatly reduced and the solution 

can be found with greater ease and speed. The midpoints of the line segments that join 

one barycenter to another in the solution are represented in  

Figure 6 with a x. 

(c) Minimum tours 

Each barycenter is now dropped from the “coarse” solution and substituted by the 

cluster of points it represents, and the two midpoints to which it was connected. For each 

tile, a rough solution for the TSP with different starting and end points is computed. This 

is done in a way that the solution begins with one of the midpoints that belongs to that 

tile, then it goes through all the points in that particular tile and finally ends in the other 

midpoint belonging to that tile. The process is repeated for each tile and these subtours 

are connected to one another forming a closed tour going through all the points and 

midpoints.   

(d) Final solution 

To obtain the final solution, the midpoints must be deleted from the tour because they 

do not belong to the original set of points. This is done by simply joining the point in the 

solution that is before the midpoint with the point after it, for all the midpoints.  

Finally, a tour improvement method is applied to this solution to make it better. In this 

case 2-opt has been implemented to delete the intersections between points and therefore 

reduce the tour length. 
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The method described above is only efficient for a limited number of points, a few 

hundred of points at maximum. If a considerable number of points is contemplated, the 

tiling will have to be of a greater order to avoid clusters with too many nodes in them. 

This leads to a great number of barycenters, which may result in two problems. The first 

one being that a poor-quality coarse solution in step (b) described above may be obtained, 

and the second one that the coarse problem may still be too complicated and therefore 

very time consuming to reach a good quality solution. The solution for this is to use 

multiple partitioning by forming new clusters with the barycenters a  and repeating the 

steps previously mentioned. The process is briefly explained in Figure 7, but it will not 

be explained in further detail because the purpose of the paper is to solve the TSP using 

a single partition. 
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Figure 7: Method for solving the TSP using multiple partitioning. (Source [8]) 

2.1.3. Tour Improvement: 2-Opt heuristic 

The 2-Opt tour improvement method is a very simple, yet efficient, algorithm that 

achieves to yield a better-quality solution for the TSP. It is usually applied to an initial 

solution obtained from a tour construction method.  
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The way of working of this algorithm is by exchanging the order of two edges of the 

solution by another two proximal edges, in such a way that the combination will result in 

a tour again [14]. The resulting distance between the edges before and after the considered 

exchange is evaluated. Whichever combination offers the shorter route is the one kept. 

This step is repeated throughout all the edges, which are replaced as long as a better 

solution is obtained. Once no improvement is obtained from further exchanges the 2-Opt 

algorithm is stopped. If the existing tour cannot be improved by 2-Opt heuristic, it 

receives the name of 2-Optimal. 

In Figure 8 a very simple example of the 2-Opt algorithm is described. In this case, in 

Figure 8 (a) we can see that there is an intersection between two line segments, which 

make the tour longer. The 2-Opt algorithm can detect this imperfection because the 

distance between edges after introducing the edge swap is smaller than that of the original 

line segments. This can be clearly seen in Figure 8 (b) where the 2-Opt has already been 

successfully applied. 

 

 

Figure 8: TSP Solution (a) before applying 2-opt and (b) after applying 2-opt. 

2.2. Implementation of the algorithm to Matlab 

The theoretical explanation of the method of dyadic tiling to solve the TSP has already 

been accomplished. From this point forward, the intention of the paper is to explain how 

this theory, considering only the case of single partitioning, has been applied and how it 

has been implemented to the computing platform Matlab. 

2.2.1. Random Point and HV-Tree Generation 

The code starts with the random generation of a specified number of points, for testing 

purposes, with x-y coordinates belonging to the range [0,0] × [1,1], the unit square, for 

(a) (b) 
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simplicity reasons. However, if desired, a set of specific coordinates could also be 

introduced or imported from a database. 

 

Figure 9: Random point generation in Matlab. 

 

The next step is the generation of the HV-Tree by firstly indicating the number of tree 

levels, this is the order of the desired tiling. This number will depend on the number of 

points considered for the TSP. The greater the number of points, the greater the number 

of tiles. An excessive number of tiles also must be avoided because this will result in too 

many barycenters, so a compromise between the average size of the clusters and the 

number of barycenters must be found. 

The tessellation process includes either vertical or horizontal cuts of the unit square. 

Considering the conditions mentioned in 2.1.1.1, that the HV-Tree is constructed with a 

uniform distribution recursively. These cuts are defined by probability, in such a way that 

all types of cuts have the same probability of occurring. The probability equation followed 

to generate these cuts is ( 7 ). 

 

 

Figure 10: HV-Tree generation in Matlab. 

2.2.2. Tile Coordinates 

Once the tiles have been defined and the unit square has been completely partitioned, 

the coordinates of each of these dyadic rectangles must be defined. This is necessary so 

that afterwards the points can be grouped into their corresponding tile. 
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Whilst the HV-Tree is being generated, a vector is also created that includes the type 

of cut that has taken place, whether vertical or horizontal, and whether it is the left or the 

right child. With the information in the previously mentioned vector and using the 

equations ( 9 ) , the 4-tuples of each dyadic tile can be calculated.  

 

Figure 11: Generation of the values of the 4-tuples from the type of cut. 

 

With the 4-tuples generated for the last level of the HV-Tree, which are the ones 

corresponding to the final tessellation, we can obtain the position of each tile. The 4 

corners of the tile are defined by using the 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛 𝑎𝑛𝑑 𝑦𝑚𝑎𝑥 values, as can be 

seen in Figure 12. 

                                 

Figure 12: definition of the coordinates of a tile. 

 

These values are defined by substituting the values generated in ( 2 ) for each tile, into 

the equations ( 10 ): 

                              𝑥𝑚𝑖𝑛 = 𝑎2−𝑠, 

                              𝑥𝑚𝑎𝑥 = (𝑎 + 1)2−𝑠,  

                              𝑦𝑚𝑖𝑛 = 𝑏2−𝑡,  

                              𝑦𝑚𝑎𝑥 = (𝑏 + 1)2−𝑡. 

( 10 ) 

𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥  

𝑦𝑚𝑖𝑛 

𝑦𝑚𝑎𝑥  
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Figure 13: Tile coordinates generation in Matlab. 

 

This process is repeated until every tile in the unit square has its corners defined. 

These rectangles are all plotted and using the ‘hold on’ command in Matlab, the points 

are plotted on the same graph. This is depicted in Figure 14. 

 

Figure 14: plotting of tiles and points. 

 

The next step is to sort the points into the corresponding tile. Although visually we 

can see in Figure 14 to which tile each point belongs, this is just because the is a reduced 

number of points and tiles. This process must be programmed so that the code in Matlab 

provides us with this information automatically.  

2.2.3. Grouping of Points 

The way of proceeding to sort each point into its corresponding tile is very simple. 

The coordinates of the corners of each tile are stored in a different row of a matrix, where 

each column represents each of the values described in ( 10 ). Taking one row at a time 

(this corresponds to one tile at a time), a loop is created in which each point is tested to 

see if it belongs to that particular tile. This is done by checking if the 𝑥-coordinate of the 
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point is found between the 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 coordinates of the considered time, and 

respectively for the 𝑦-coordinates.  

If both conditions are met, the point belongs to the tile and it must be stored. However, 

it cannot be stored in matrix form as has been done before for the rest of the data. A cell 

structure must be used, because not all columns will have the same number of elements 

in them. The reason for this is that not all tiles will necessarily have the same number of 

points that belong to them. In fact, the case where there are no points belonging to a tile 

can also arise. 

To avoid going each time through all the points to see if they belong to a particular 

tile, once a point has been classified into a tile it is deleted from the point vector. This 

makes the process more efficient because less points will have to be tested each time.

 

Figure 15: Point classification into the corresponding tile in Matlab. 

   

2.2.4. TSP Solution for Barycenters  

After classifying the points into the corresponding tile, the geometrical center of the 

points in each tile is represented. This point has been named before as barycenter. 

A special consideration must be made at this point, for the tiles that are empty. The 

rows corresponding to the empty tiles should not be considered for the barycenter 

calculation since it does not exist. To avoid problems further on in the code the rows 

corresponding to the empty tiles should be eliminated. 
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Figure 16: Barycenter generation in Matlab. 

 

At this point the barycenters of each non-empty tile are plotted joint with the tiles and 

the points that are being considered for the TSP solution.  

 

  

Figure 17: plotting of barycenters of each tile,    for the points and     for the barycenters. 

 

Now that the barycenters have been created, a TSP solution must be found considering 

just these, and not the original points. At first the Greedy method was implemented into 

the code. This method basically starts the tour at a given point and calculates the distance 

from that point to the rest of the points that are available (that do not already belong to 

the constructed solution). The point that is nearest is selected and the process is repeated 
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until all the points have been included in the tour. Finally, the last point and the first one 

are joined together. This method is not the most efficient one but yields a good enough 

solution when few points are considered, with the advantage that it is easy and quick to 

implement. 

In the end a different approach was taken to obtain a more efficient initial ‘coarse’ 

solution for the barycenters. An already existing TSP solver was implemented into the 

code. This function implemented is called TSP_GA ‘Traveling Salesman Problem (TSP) 

Genetic Algorithm (GA)’ [15]. This code uses the previously explained in 1.3 genetic 

algorithm to find a route going through all the barycenters. 

 

Figure 18: TSP solver for barycenters. 

 

The data passed on to the already existing solver, is the coordinates of the barycenters, 

and the order of the barycenters forming the tour is returned as the solution, see Figure 

19.  

 

 

Figure 19: TSP solution for barycenters     and midpoints    . 

 

The next step is the plotting of the mid points for each line segment, which are 

represented in Figure 19. 
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2.2.5. TSP Solution for Points 

At this point the barycenters are dropped from the solution, and a minimum tour is 

found for the cluster of points that each barycenter represented, linking them to their two 

corresponding midpoints. 

Initially the ‘Greedy Method’ was also going to be used, but finally it was decided to 

implement another existing TSP solver, because this would yield a better solution. 

However, this time a different function than the previously mentioned TSP_GA had to be 

implemented. The reason for this is that the normal TSP solver tries to find the shortest 

round trip. In this step however, we need the tour to start at one midpoint and end at the 

next one, so the first and last points are different. To overcome this inconvenience a 

different function was used, TSPOF_GA, ‘Fixed Open Traveling Salesman Problem 

(TSP) Genetic Algorithm (GA)’ [16]. 

 

Figure 20: Minimum tour construction between midpoints. 

 

The process shown in Figure 20 is repeated for each cluster of points that the 

barycenters represented. The TSP solver returns the order of the points forming the tour, 

so these can be plotted.  

It is important to remember to delete the midpoints that were previously generated 

from the overall solution because they have been created to help construct the solution 

but are not part of the original points considered for the solution.  

At this point an approximate solution has been found for the original set of points by 

using dyadic tiling and a genetic algorithm TSP solver. 
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Figure 21: TSP solution for points before 2-Opt. 

2.2.6. 2-Opt Implementation 

This is the last step of the developed code. Although an approximate solution has been 

found, it can be improved by using a Tour Improvement Method (1.2.2) based on the 

obtained solution. In Figure 22 it can be seen that 2-Opt is a simple method to implement, 

in which the distances of two edges are computed, as well as the distances corresponding 

to the edges that would result if they were switched. If the distance of the switched edges 

is in fact shorter, these are swapped, otherwise they remain unchanged. By doing this the 

number of intersections present in the solution is reduced, and therefore the total length 

of the tour decreases. 

 

Figure 22: 2-Opt implementation. 
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Figure 23: TSP solution for points after 2-Opt implementation. 

 

By comparing Figure 21 and Figure 23 we can observe that indeed, the use of a tour 

improvement method as is 2-Opt has yielded a better quality solution than the one initially 

obtained. 
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3. Results 

In this section the results obtained by testing the code with different sets of points and 

tilings will be presented. Depending on the number of points 𝑁, the order of tiling chosen 

varies to guarantee that the average estimated number of points in each tile is less than 

10. The number of iterations performed for each set of points has been 100. 

The following tests have been performed: 

 

Number of Points Order of tiling Average number of points per cluster 

25 3rd 
25

23
= 3.125 3 or 4 points 

50 4th 
50

24
= 3.125 3 or 4 points 

75 4th 
75

24
= 4.6875 4 or 5 points 

100 4th 
100

24
= 6.25 6 or 7 points 

Table 1: characteristics of tests performed. 

 

3.1. Mean solution lengths and standard deviations 

The developed code works correctly and ensures the objective of obtaining a solution 

for given number of points. However, the quality of the solution obtained must also be 

evaluated. A possible way to do this is by using the approximation formula stated by 

Beardwood [17], in which the expected optimal tour length is: 

lim
𝑛→∞

𝐿𝑚𝑖𝑛

√𝑛
= 𝛽 

𝐿𝑚𝑖𝑛 = 𝛽√𝑛 + 𝐶 

( 11 ) 

 

The values for the constants in equations ( 11 ) that will be used are taken from [18] 

and are 𝛽 = 0.71 and 𝐶 = 0.63. 

3.1.1. 25 Points 

For 𝑁 = 25 an example is shown in Figure 24 of the different steps undergone by 

the code to obtain the solution.  
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Figure 24: TSP solution construction for 𝑵 = 𝟐𝟓. 

 

For the tests performed the results obtained are the following: 

 

Mean tour 

length 

before 2-

Opt 

Mean tour 

length after 

2-Opt 

Standard 

deviation 

before 2-Opt 

Standard 

deviation 

after 2-

Opt 

% of tour 

length 

reduction 

% of 

standard 

deviation 

reduction 

5.6460 4.7953 0.8694 0.4866 15.067 44.024 

Table 2: Results for 𝑵 = 𝟐𝟓. 

 

It can be observed from Table 2 that the 2-Opt algorithm efficiently accomplishes its 

aim, resulting in a solution with a tour length 15% shorter than the initial one. This reflects 

the importance of using Tour-Improvement Methods, which are easy to implement and 

give a better quality solution. 
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3.1.2. 50 Points 

For the case of 50 points a higher order tiling has been used, which results in a greater 

number of barycenters to compute the initial ‘coarse’ solution. 

    
 

    
 

Figure 25: TSP solution construction for 𝑵 = 𝟓𝟎. 

 

Mean tour 

length 

before 2-

Opt 

Mean tour 

length after 

2-Opt 

Standard 

deviation 

before 2-Opt 

Standard 

deviation 

after 2-

Opt 

% of tour 

length 

reduction 

% of 

standard 

deviation 

reduction 

8.9188 6.8995 1.1837 0.5785 22.641 51.131 

Table 3: Results for 𝑵 = 𝟓𝟎. 

In this case, the 2-Opt heuristic significantly reduced the mean tour length by more 

than 20%. 
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3.1.3. 75 Points 

For 𝑁 = 75 the same order of tiling has been used as for 𝑁 = 50 and it can be 

observed in Figure 26 that in this case the number of points contained in each cluster is 

bigger than previously, and hence a lower quality solution can be expected. 

   

    

Figure 26: TSP solution construction for 𝑵 = 𝟕𝟓. 

 

Mean tour 

length 

before 2-

Opt 

Mean tour 

length after 

2-Opt 

Standard 

deviation 

before 2-Opt 

Standard 

deviation 

after 2-

Opt 

% of tour 

length 

reduction 

% of 

standard 

deviation 

reduction 

11.892 8.6489 1.6788 1.1120 27.271 33.761 

Table 4: Results for 𝑵 = 𝟕𝟓. 

 

Since there are more points in each dyadic tile, it is harder to obtain such a good 

solution as would be obtained with less points. This means that the quality of the initial 

solution is not expected to be of very good quality due to the intersections present. This 

is the reason why applying 2-Opt in this case has more effect than when applied to 

solutions for TSPs with a lower number of points. 
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3.1.4. 100 Points 

For 𝑁 = 100 3rd order tiling has been used again. Although the mean number of 

points per cluster is still under 10, it has increased. 

 

   

    
Figure 27: TSP solution construction for 𝑵 = 𝟏𝟎𝟎. 

 

Mean tour 

length 

before 2-

Opt 

Mean tour 

length after 

2-Opt 

Standard 

deviation 

before 2-Opt 

Standard 

deviation 

after 2-

Opt 

% of tour 

length 

reduction 

% of 

standard 

deviation 

reduction 

14.591 10.373 1.8798 0.7413 28.908 60.561 

Table 5: Results for 𝑵 = 𝟏𝟎𝟎. 

 

3.2. Comparison with expected values 

In Figure 28 a graph comparing the optimal value for the tour length calculated with 

( 11 ) and the results obtained with the developed Matlab code is shown, the difference 

between the values is also represented numerically in Table 6. 
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Figure 28: Comparison of optimal and obtained value. 

 

 

Nº of 

Points 

Mean Tour 

Length 

with 2-Opt 

𝑳𝒎𝒊𝒏 
Mean error 

(%) 

25 4.7953 4.1800 14.720 

50 6.8995 5.6504 22.105 

75 8.6489 6.7787 27.587 

100 10.373 7.7300 34.191 

 

Table 6: Comparison of expected and obtained values. 

 

It can be observed that as the number of points has increased, the mean error between 

the minimum expected length and the one obtained with the code has also increased. For 

𝑁 = 25 the error was acceptable, around 14%, but for the largest number of points 

considered (𝑁 = 100) the error has increased to 34%, which shows that the solution could 

be of a better quality. The reasons for this and possible improvements will be explained 

in the next section.  
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3.3. Future improvements 

From Table 6 it can be observed that the order of the tiling chosen has been adequate 

for 𝑁 = 25, but from the high value obtained for the error in the rest of the cases, it can 

be deduced that perhaps a better solution could have been obtained if a higher order tiling 

had been used. This is because the number of points in each cluster would have been 

smaller. However, a higher order tiling would have also resulted in a greater number of 

barycenters and hence a lower quality ‘coarse’ solution.  

For the case of 𝑁 = 100 and further, to minimize the number of points per cluster, a 

higher order tiling should be used. To avoid getting a low quality ‘coarse’ solution for the 

barycenters, multiple partitioning, as explained in Figure 7, should be used. 

Also, as mentioned in [8] another possible way of improving the solution would have 

been by using GAEHS, Genetic Algorithm Enhanced Hierarchical Solution, which is a 

method that recombines the random dyadic tiling to obtain a better solution. 
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