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Abstract: We examine the Cauchy problem for a model of linear acoustics, called the
Moore–Gibson–Thompson equation, describing a sound propagation in thermo-viscous elastic media
with two temperatures on cylindrical domains. For an adequate combination of the parameters of the
model we prove Lp-Lq-well-posedness, and we provide maximal regularity estimates which are optimal
thanks to the theory of operator-valued Fourier multipliers.
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1. Introduction

In this paper, we consider the Moore–Gibson–Thompson equation with two temperatures in a
cylindrical domain Ω = U ×V ⊂ Rn+d endowed with Dirichlet boundary conditions:

τc(I − a∆)∂tttu(x, y, t) + c(I − a∆)∂ttu(x, y, t)

= r∗∆u(x, y, t) + r∆∂tu(x, y, t) + f (x, y, t), for (x, y, t) ∈ Ω× (0, 2π);

BUu(x, y, t) = 0, for (x, y, t) ∈ ∂U ×V × (0, 2π);

BVu(x, y, t) = 0, for (x, y, t) ∈ U × ∂V × (0, 2π);

u(x, y, 0) = u(x, y, 2π), ∂tu(x, y, 0) = ∂tu(x, y, 2π), ∂ttu(x, y, 0) = ∂ttu(x, y, 2π).

(1)

The model (1) has been recently proposed by Quintanilla [1]. This equation considers two distinct
temperatures acting on the heat conduction by means of the Moore–Gibson–Thompson equation:
The conductive temperature and thermodynamic temperature. The two-temperatures theory of
generalized thermoelasticity was introduced by Chen et al. [2–4]. They proved that the variation
between the two temperatures is proportional to the heat supply and both temperatures become
identical for time-independent situations where heat supply does not appear. On the other hand,
when there exists time-dependence both temperatures are distinct, in spite of the heat supply.
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The existence, stability, convergence properties, and spatial behavior of two-temperatures
thermoelasticity were analyzed by Quintanilla [5] and Youssef [6]. Magaña and Quintanilla [7] studied
the uniqueness and growth of solutions based on the theory provided by Youssef [6]. Very recently,
Quintanilla [8] considered a thermoelastic theory where the heat conduction is expressed in terms of
the Moore–Gibson–Thompson equation. See also [9,10] and references therein.

Whereas Quintanilla in [1] found sufficient conditions on the parameters to ensure the
well-posedness and stability/instability of the solutions of (1) in the context of the Hilbert space L2(B),
where B is a three-dimensional domain whose boundary is smooth enough, the present paper analyzes
the time/space regularity, i.e., Lp-Lq-well posedness, as well as optimal (or maximal) regularity
estimates in the context of the Banach space Lq(Ω), 1 < q < ∞, where Ω is a cylindrical domain.
More precisely, Ω will denote the Cartesian product of half spaces and a standard domain V having
compact boundary. It is well known that many situations in applied sciences are naturally modeled in
cylindrical domains Ω. We refer, e.g., to the textbook [11] and [12] and the references [13–15] where a
wide variety of problems on such Ω are considered.

The main tool to address the problem of regularity for (1) is the theory of discrete operator-valued
Fourier multipliers. Applying Fourier series, we asked under which conditions an operator-valued
symbol defines a bounded operator in Lp((0, 2π), X) where X is a Banach space. The answer to
this question was provided by Arendt and Bu in [16], where they obtain a discrete operator-valued
Fourier multiplier result in UMD spaces and they also obtain applications to Cauchy problems
of the first and second order in Lebesgue spaces. An extension of the results obtained in [16] to
certain evolution equations in Lebesgue-, Besov-, and Hölder-spaces was obtained in [17]. In [18],
a suitable treatment for second order differential equations in Lebesgue- and Hölder-spaces is provided.
In particular, the special case of the linearized Kuznetsov equation, i.e., τ = 0, a = 0, c = 1 is
investigated. Recently, the references [19,20] began to treat the case of the Moore–Gibson–Thompson
equation using these methods.

The usage of operator-valued Fourier multipliers to treat cylindrical domains was first carried out
in [21] in a Besov-space setting. In that paper the author obtains semiclassical fundamental solutions
for a wide variety of elliptic operators on infinite cylindrical domainsRn ×V. As a result, they succeed
obtaining the key for solving related elliptic and parabolic, as well as hyperbolic problems. Operators
defined on a cylindrical domain with the same splitting property as in the present paper were also
examined by Nau et.al. in [13–15,22,23].

In this paper, we directly apply general results of [20] and [14] to the Moore–Gibson–Thompson
equation with two temperatures (1), and we obtain a Lp-Lq well-posedness result with maximal
regularity estimates. The main difficulty relies in the verification of the so-called R-boundedness
property that must be satisfied by certain sets of operators. To overcome this difficulty, we will employ
a criteria established by Denk, Hieber, and Prüss in the reference [24] that reduces the problem to the
localization of the spectrum of the Laplacian. We highlight that our method is sufficiently general to
admit a wider class of operators than the Laplacian in (1) allowing also the possibility of the fractional
Laplacian, the bi-Laplacian ∆2, or other operators of practical interest. Therefore, we first establish our
main result in an abstract setting, that roughly says that under certain conditions of sectoriality of the
operator A and for all η > 0 the equation:

τc(I + aAη)u′′′(t) + c(I + aAη)u′′(t) + r∗Aηu(t) + rAηu′(t) = f (t), t ∈ T := [0, 2π], (2)

is strongly Lp-Lq-well posed. Then, using the results of [14], we will establish our main findings
concerning (1). It is important to observe that this result covers not only (1) taking A = −∆
and η = 1, but also the cases of the fractional Laplacian: (−∆q)η , 0 < η < 1 which intersects a
recent work by Bezerra and Santos [25] that analyzes fractional powers for evolution equations
of third order in time and the case of the bi-Laplacian operator: ∆2 that appears in case a = 0
(i.e., the Moore–Gibson–Thompson equation) as a possible model for the vertical displacement in
viscoelastic plates [26].
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2. Preliminaries

Let 1 ≤ p < ∞ and X be a Banach space. In this section, we would like to provide optimal
conditions to ensure the well-posedness of the following problem:

τc(I − a∆)u′′′(x, t) + c(I − a∆)u′′(x, t)− r∗∆u(x, t)− r∆u′(x, t) = f (x, t), t ∈ [0, 2π] (3)

for each x ∈ U ×V in the scale of vector valued Lp-spaces: Lp((0, 2π), X), 1 < p < ∞, and where ∆
denotes de Laplacian operator subject to appropriate boundary conditions, and a, c, τ, r, r∗ > 0. For this
purpose, we need to recall the preliminary results obtained in [20] where, in particular, the authors
obtained a full characterization of Lp-well-posedness for the following abstract third order degenerate
equation:

α(Mu′)′′(t) + (Nu′)′(t)− βBu(t)− γCu′(t) = f (t), t ∈ T := [0, 2π], (4)

where α, β, γ are real numbers, M, N, B and C are closed linear operators defined on a
complex Banach space X with respective domains D(M), D(N), D(B), and D(C). Assuming that
D(B) ∩ D(C) ⊂ D(M) ∩ D(N), the M-resolvent of B and C is defined as:

ρM,N(B, C) := {s ∈ R : αis3M + s2N + βB + γisC : [D(B) ∩ D(C)]→ X

is invertible and [αis3M + s2N + βB + γisC]−1 ∈ B(X)}. (5)

Here [D(B)∩D(C)] is a Banach space endowed with the norm ‖x‖[D(B)∩D(C)] := ‖x‖+ ‖Bx‖+ ‖Cx‖.
The notion of Lp-well-posedness is given as follows:

Definition 1. Let 1 ≤ p < ∞ and f ∈ Lp(T, X) be given. We say that Equation (4) is strongly Lp-well-posed
if for each f ∈ Lp(T, X), there exists a unique solution u that belongs to a maximal regularity space and satisfies
(4) for almost all t ∈ T.

The following result obtained in [20] gives a computable criterion that completely characterizes
the well-posedness of Equation (4) in terms of some R-boundedness conditions on certain sets of
operators associated with the equation. We refer the reader to [27] where a precise definition and all
the properties preserved under R-boundedness are summarized.

Theorem 1. Let 1 < p < ∞ and α, β, γ ∈ R. Assume A, B and M, N are closed linear operators defined on a
UMD space X such that D(B) ∩ D(C) ⊂ D(M) ∩ D(N). The following assertions are equivalent:

(i) Equation (4) is strongly Lp-well posed;
(ii) Z ⊂ ρM,N(B, C) and the sets {ik3αMNk : k ∈ Z}, {k2NNk : k ∈ Z}, {kγCNk : k ∈ Z} {kNk : k ∈ Z}

are R-bounded where:

Nk := −[iαk3M + k2N + βB + ikγC]−1, k ∈ Z. (6)

Before we show our main abstract result we need to recall some preliminaries on sectorial
operators. All these notions and more information about this class of operators can be found in [28].

Let Σφ ⊂ C be the open sector Σφ = {λ ∈ C \ {0} : | arg λ| < φ}. We define the
following spaces of functions: H(Σφ) = { f : Σφ → C holomorphic} and H∞(Σφ) = { f : Σφ →
C holomorphic and bounded} which is endowed with the norm || f ||φ∞ = sup| arg λ|<φ | f (λ)|.

We also introduce the subspace H0(Σφ) of H(Σφ) as follows: H0(Σφ) =
⋃

α,β<0{ f ∈ H(Σφ) :

|| f ||φα,β < ∞}, with || f ||φα,β = sup|λ|≤1 |λα f (λ)|+ sup|λ|≥1 |λ−β f (λ)|.

Definition 2 ([28]). Given a closed linear operator A in X, we say that A is sectorial if A satisfies the following
conditions (i) D(A) = X, R(A) = X, (−∞, 0) ⊂ ρ(A); (ii) ||t(t + A)−1|| ≤ M for all t > 0 and some
M > 0. The operator A is called R-sectorial if the set {t(t + A)−1}t>0 is R-bounded.
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If A is sectorial then Σφ ⊂ ρ(−A) for some φ > 0 and sup| arg λ|<φ ||λ(λ + A)−1|| < ∞. We denote
the spectral angle of a sectorial operator A by:

φA = inf{φ : Σπ−φ ⊂ ρ(−A), sup
λ∈Σπ−φ

||λ(λ + A)−1|| < ∞}.

Definition 3 ([28]). Given a sectorial operator A, we say that it admits a boundedH∞- calculus if there exist
φ > φA and a constant Kφ > 0 such that || f (A)|| ≤ Kφ|| f ||φ∞ for all f ∈ H0(Σφ). This class of operators will
be denoted as H∞(X) and φ∞

A = inf{φ > φA : || f (A)|| ≤ Kφ|| f ||φ∞ for all f ∈ H0(Σφ) holds } denotes the
H∞(X) angle.

In the context of R-boundedness, we have the analogous notion of operators admitting an
R-boundedH∞-calculus. More concretely, if A ∈ H∞(X) verifies that {h(A) : h ∈ H∞(Σθ), ||h||θ∞ ≤ 1}
is R-bounded for some θ > 0 then it is said that A admit an R-boundedH∞-calculus and that A belongs
to the class RH∞(X). The corresponding angle will be noted as θR∞

A . See [28] for more information
about these concepts.

Remark 1. Given A a sectorial operator on a Hilbert space, Lebesgue spaces Lp(Ω), 1 < p < ∞, Sobolev spaces
Ws,p(Ω), 1 < p < ∞, s ∈ R, or Besov spaces Bs

p,q(Ω), 1 < p, q < ∞, s ∈ R that admit a bounded
H∞-calculus of angle β, then it follows that A also admit a RH∞ calculus on the same angle β on the
corresponding space above mentioned (see Kalton and Weis [29]). Moreover, this property holds whenever X is a
UMD space endowed with the so called property (α) (see [28,29]).

Some operators that admit a boundedH∞-calculus are: M-accretive and normal sectorial operators
defined on Hilbert spaces, generators of C0-groups, whenever bounded, and negative generators
contraction semigroups, whenever positive, on Lp-spaces. See [28] for more information about
well-known operators in the literature that admit a bounded H∞-calculus. The following remark
recalls that the Dirichlet Laplacian operator defined in a suitable space also verifies this property.

Remark 2. Let 1 < q < ∞ and denote by ∆ the Laplacian operator inRn. By [24] [Theorem 7.2] we obtain that
the Lq(Rn) realization ∆q of the Laplacian operator admits an R-boundedH∞–calculus for each 0 < θR∞

A < π.
Moreover, by [24] [Corollary 7.3] the same is true for −∆D, the negative Dirichlet Laplacian inRn+1

+ .

The following result will be the key in our method for establishing Lp-Lq well posedness for
Equation (3) because, under certain conditions on the operator A, the hypothesis of R-boundedness
in Theorem 1 could be restricted to simply checking uniform boundedness of a set of one-parameter
functions on the complex plane. It is obtained in [27] [Proposition 4.10].

Proposition 1. Let A ∈ RH∞(X) be given and assume that the set {hλ}λ∈Λ ⊂ H∞(Σθ) is uniformly
bounded for some θ > θR∞

A , where Λ is an arbitrary index set. Then the set {hλ(A)}λ∈Λ is R-bounded.

3. Main Results

Let a, c, τ, r, r∗ > 0 be given. We start defining a sequence of complex numbers that depends on
the parameters of the general equation:

τc(I + aAη)u′′′(t) + c(I + aAη)u′′(t) + r∗Aηu(t) + rAηu′(t) = f (t), t ∈ T := [0, 2π],

and given by:

dk :=
−ck2(1 + iτk)

(r∗ − cak2) + i(rk− τack3)
k ∈ Z.
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We also define Φ(k) := arg(dk). Let θ∗ := supk∈Z Φ(k). Since Φ(0) = 0 we have 0 ≤ θ∗ ≤ π.
Moreover, we have:

<(dk) =
ck2[τ2ack4 + (ac− τr)k2 − r∗]
(r∗ − ack2)2 + (acτk3 − rk)2

and

=(dk) =
ck3(r− τr∗)

(ack2 − r∗)2 + (acτk3 − rk)2 .

It is clear that Φ(k) = π if and only if <(dk) ≤ 0 and =(dk) = 0. We can then conclude that
conditions r∗ < ca− τr or τr∗ 6= r are sufficient to ensure that Φ(k) < π. After these preliminaries,
we can state the main abstract result of this paper.

Theorem 2. Assume that X is a UMD-space, 1 < p < ∞, θ∗ < π and suppose that A ∈ RH∞(X) with
angle θR∞

A ∈ (0, π−θ∗
η ) and 0 ∈ ρ(A). Then for all η > 0 the equation:

τc(I + aAη)u′′′(t) + c(I + aAη)u′′(t) + r∗Aηu(t) + rAηu′(t) = f (t), t ∈ T := [0, 2π], (7)

is strongly Lp-well posed.

Proof. First observe that, our Equation (7) labels into (4) for M = N = c(I + aAη), β = −r∗,
α = τ,γ = −r and B = C = Aη . As a consequence, in order to prove well-posedness for (3) we
only need to show that condition (ii) in Theorem 1 holds. Now, it suffices to show that the sets
{ik3αMNk : k ∈ Z},{k2NNk : k ∈ Z}, {kγCNk : k ∈ Z} and {kNk : k ∈ Z} are R-bounded.
Indeed, we have:

Nk = [−c(k2 + iτk3) + ((r∗ − ack2) + i(rk− acτk3))Aη ]−1.

It follows that:

Nk =
1

(r∗ − ack2) + ik(r− acτk2)
[

−ck2(1 + iτk)
(r∗ − ack2) + i(rk− acτk3)

+ Aη ]−1

=
−1

ck2(1 + iτk)
dk(dk + Aη)−1,

where dk =
−ck2(1+iτk)

(r∗−cak2)+i(rk−acτk3)
.

Due to the fact that 0 < θR∞
A < π−θ∗

η there exists s > θR∞
A such that s < π−θ∗

η . For each z ∈ Σs and
k ∈ Z, k 6= 0, define:

F(k, z) = dk(dk + zη)−1.

Note that zη

dk
belongs to the sector Σsη+θ∗ where sη + θ∗ < π and then the distance from the sector

Σsη+θ∗ to −1 is always positive. As a result, there exists M > 0 independent of k ∈ Z and z ∈ Στ that
satisfies the following:

|F(k, z)| =
∣∣∣ 1
1 + zη

dk

∣∣∣ ≤ M.

Now, from Proposition 1 we can conlude that the set {F(k, A)}k∈Z\{0} is R-bounded. Moreover,
due to the fact that A is invertible, the operators H(k) := (dk + Aη)−1 exist for all k ∈ Z. As a
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consequence, H(k) belongs to B(X) for all k ∈ Z and the sequence {dk(dk + Aη)−1}k∈Z is R-bounded.
Taking into account the identity Aη(dk + Aη)−1 = I − dk(dk + Aη)−1 we have:

ik3τMNk =
−iτk3

c(iτk3 + k2)
c(I + aAη)dk(dk + Aη)−1

=
iaτk3

(iτk3 + k2)
dkdk(dk + Aη)−1 − iaτk3

(iτk3 + k2)
dk I − iτk3

(iτk3 + k2)
dk(dk + Aη)−1.

Since the sets {dk}k∈Z, { iaτk3

(iτk3+k2)
}k∈Z are bounded and the set {dkdk(dk + Aη)−1} is R-bounded,

it follows from the above identity that the set {ik3τMNk}k∈Z is R-bounded, too. Since M = N we also have:

k2NNk =
1
k

k3MNk

for all k ∈ Z \ {0}. Therefore, the set {k2NNk}k∈Z is R-bounded. On the other hand, using again the
identity Aη(dk + Aη)−1 = I − dk(dk + Aη)−1 we obtain:

krCNk =
−kr

c(iτk3 + k2)
Aηdk(dk + Aη)−1 =

−kr
c(iτk3 + k2)

dkdk(dk + A)−1 +
kr

c(iτk3 + k2)
dk,

where the set { kr
c(iτk3+k2)

}k∈Z is bounded. We deduce that the set {krCNk}k∈Z is R-bounded.
Finally, we have:

kNk =
−k

c(iτk3 + k2)
dk(dk + Aη)−1,

where the set { −k
c(iτk3+k2)

}k∈Z is bounded. This, together with the hypothesis, implies that the set
{kNk}k∈Z is R-bounded. We conclude that Equation (7) is Lp-well posed.

Immediately from Remark 1 we obtain the following useful corollaries:

Corollary 1. Let 1 < p, q < ∞ be given. Suppose that τr∗ 6= r and that A is a sectorial operator that admits a
boundedH∞-calculus of angle θR∞

A ∈ (0, π−θ∗
η ) and 0 ∈ ρ(A). Then for all η > 0 the Equation (7) is strongly

Lp-Lq-well posed.

Taking into account that <(bk) ≥ 0 for all k ∈ Z under the condition r∗ < ca− τr we obtain the
following result.

Corollary 2. Let 1 < p, q < ∞ be given. Suppose that r∗ < ca− τr and that A is a sectorial operator that
admits a bounded H∞-calculus of angle θR∞

A ∈ (0, π
2η ) and 0 ∈ ρ(A). Then for all η > 0 the Equation (7) is

strongly Lp-Lq-well posed.

Finally, we consider the Moore–Gibson–Thompson Equation (1) with two temperatures in a
cylindrical domain Ω = U ×V ⊂ Rn+d where U = Rn

+, n ∈ N and V ⊂ Rd, d ∈ N0 is bounded, open,
and connected. Moreover, in (1) ∆ denotes a cylindrical decomposition of the Dirichlet Laplacian
operator on Lq(Ω) with respect to the two cross-sections i.e., ∆ = ∆1 + ∆2 where ∆i acts on the
according component of Ω. Following [14] we introduce Lq-realizations ∆q,i = ∆i as follows:

D(∆q,1) := {u ∈W2,q(Rn
+, Lq(V)) : BU = 0};

D(∆q,2) := W2,q(V) ∩W1,q
0 (V),
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see also [30] for the description of ∆q,2. We define the Laplacian ∆q in Lq(Ω) subject to the Dirichlet
boundary conditions BU and BV to be:

D(∆q) := D(∆q,1) ∩ D(∆q,2)

∆qu := ∆q,1u + ∆q,1u = ∆u, u ∈ D(∆q).

Suppose now that V is a C2-standard domain (see [14] [Definition 3.1] for the precise definition).
Then, applying [14] [Theorem 4.2] we have that−∆q ∈ RH∞(Lq(Ω)) and 0 ∈ ρ(∆q). Moreover, by [14]
[Proposition 5.1 (i)] we have θR∞

−∆q
< π

2 . Consequently, from Corollary 2 with η = 1 and A = −∆q we
deduce the following result:

Theorem 3. Let 1 < p, q < ∞ and a, c, τ, r, r∗ > 0. Assume the condition r∗ < ca − τr then, for any
given f ∈ Lp(T, Lq(Ω)) the solution u of the problem (1) exists, is unique and belongs to the space
W3,p

per(T, [D(∆q)]) ∩W3,p
per(T, Lq(Ω)). Moreover, for any 1 < p, q < ∞ the estimate:

‖u‖Lp(T,Lq(Ω)) + ||u′||W1,p(T,Lq(Ω)) + ||u
′′||

W2,p
per (T,Lq(Ω))

+ ||u′′′||
W3,p

per (T,Lq(Ω))

+ ||∆u||Lp(T,[D(∆q)]) + ‖∆u′‖
W1,p

per (T,[D(∆q)])
+ ‖∆u′′‖

W2,p
per (T,[D(∆q)])

+ ‖∆u′′′‖
W3,p

per (T,[D(∆q)])
≤ C|| f ||Lp(T,Lq(Ω))

holds.

The last estimate follows from the Closed Graph Theorem. We remark that an analogous result
holds when we replace the Laplacian by the fractional Laplacian (−∆q)η , 0 < η < 1. We observe
that a fractional power approach for abstract evolution equations of third order in time has been
recently proposed by Bezerra and Santos [25]. Finally, we note that also very recently it has been
pointed out in [26] that in the particular case where A = ∆2 with proper boundary conditions,
the Moore–Gibson–Thompson equation, i.e., (1) with a = 0, appears as a possible model for the vertical
displacement in viscoelastic plates [31]. Of course, this last case is also included in our findings.

4. Conclusions

Taking into account a suitable combination of the parameters of the Cauchy problem for the
Moore–Gibson–Thompson equation, treated in this article with two temperatures and in cylindrical
domains, we could provide the existence, uniqueness, and estimates of maximal regularity for
the solution in Lebesgue spaces. Our original method combined the theory of operator-valued
Fourier multipliers, that reduced the problem to verify a certain property of R-boundedness of
an operator-valued symbol, and a criterion established by Denk–Hieber and Prüss that gave
computable conditions on the data of the problem (the closed linear operator A) and that we used to
verify the mentioned property of the R-boundedness. We note, for future works on this topic, that the
maximal regularity estimate provided in this article is the starting point for the analysis of the existence,
uniqueness and regularity of the nonlinear problem: The Jordan–Moore–Gibson–Thomson equation,
by using the implicit function theorem and fixed point arguments, see for example the reference [27]
for an overview of this method.
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