Anexos

Anexos

An	exos		1
Α.	iQ-li	nk	7
	A.1.	Introducción	7
	A.2.	Creación de emplazamientos	7
	A.3.	Diseño	8
		A.3.1. Apartado Main Engineering	8
		A.3.2. Apartado Profile	13
		A.3.3. Apartado <i>Design</i>	13
		A.3.4. Apartado Interferencias	14
в.	Eaui	pamiento Huawei	19
	В.1.	• Tarietas radio IF	19
		B.1.1. Tarietas legacy	19
		B.1.2. Tarjetas actuales	19
	B 2	Equipos indoor (IDUs)	19
		B 2 1 Familia RTN905	20
		B 2 2 Familia RTN910	21
		B_{2} = R_{1} = R_{1	21
		B 2 / RTN080	21 22
	RЗ	Equipos outdoor (ODUs)	 22
	D.J.	$\mathbb{R}_{2} = \mathbb{R}_{2} $	∠∠ ງງ
		R 3 2 YMC 3	22 つる
	Dи		∠ວ າວ
	D.4.	Antenas	23
С.	Integ	gración del radioenlace	25
	C.1.	Localización origen	25
	C.2.	Localización destino	26

Índice de figuras

A.1.	Ventana principal de iQ-link
A.2.	Ventana Main Engineering
A.3.	Opciones del desplegable File
A.4.	Banda de frecuencia y conflicto de <i>Frequency Plan</i>
A.5.	Apartado Radio y equipos radio disponibles (a la derecha de la imagen) 10
A.6.	Algunos de los canales disponibles en la base de datos
A.7.	Selección de modulaciones activas y de referencia
A.8.	Parámetros de View Configuration
A.9.	Características de las antenas escogidas
A.10.	Perfil del terreno
A.11.	Apartado Design
A.12.	Apartado Interferencias
A.13.	Detalles del análisis de interferencias
A.14.	Ventana <i>Cum Details</i>
A.15.	Ventana <i>Case Details</i>
B.1.	RTN 905 1A
B.2.	RTN 905 2A
B.3.	RTN 905 2E
B.4.	RTN 905 2F
B.5.	RTN 910
B.6.	RTN 950
B.7.	RTN 950A
B.8.	RTN 980
B.9.	ODU XMC-2
B.10.	ODU XMC-3
C 1	
C.I.	Site origen. A la izquierda, parabola del radioenlace actual. A la derecha, parabola del
C 0	
C.2.	Site origen. A la izquierda, equipo con tarjeta IFU2 antigua. A la derecha, equipo con
<u> </u>	tarjeta ISV3 nueva
C.3.	Site destino. A la izquierda, parabola del radioeniace acutal. A la derecha, parabola
C 4	
C.4.	Site destino. A la izquierda, fotomontaje del lugar que ocuparia el equipo nuevo. A la
	derecna, KIN 905 2E nuevo

Anexo A

iQ-link

A.1. Introducción

iQ-link es un software propiedad de la empresa Comsearch de diseño y análisis de radioenlaces. Además, facilita la gestión del espectro radioeléctrio, así como la planificación y administración de la red, ya que puede crear una base de datos con los radioenlaces existentes.

En este trabajo se utilizará la edición *Enterprise* o de empresa, por lo que para acceder a iQ-link será necesario utilizar un usuario y contraseña proporcionados por la empresa.

	Database Server:	localhost
	Database Name: [iqlink
	User Name: 🛛	usuario
Nink XG	Password:	***
Сомусляси	Status: Connected.	
Microwave Link Design Software		
	,	About
1		
Engineering Database	Utilities 🔻	Quit

Figura A.1: Ventana principal de iQ-link.

Tal y como vemos en la Figura A.1, en el menú principal encontramos tres apartados:

- Apartado Engineering: en este apartado podremos acceder a las funciones principales de diseño de iQ-link.
- Apartado Database: en este apartado se puede administrar la base de datos, desde localizaciones y emplazamientos, bandas y canales disponibles, equipos...
- Apartado Utilities: con este apartado se podrá ver el estado de la red, así como importar archivos de localizaciones, coordenadas...

A.2. Creación de emplazamientos

En primer lugar, tendremos que definir los extremos de nuestro radioenlace. Para ello, seleccionamos, dentro del menú *Database*, el aparatado *Sites*. Entonces, será necesario completar los siguientes datos:

• Site ID: código identificativo del nodo.

- Location:código identificativo de la localización.
- Site Name: nombre del emplazamiento.
- Latitude: coordenadas N/S en formato ED50.
- Longitude: coordenadas W/E en formato ED50.
- Grnd Elev: cota de la localización. Se puede introducir de forma automática, tomando los datos de la base de datos con el botón Terrain DB, o de forma manual.
- Structure Height: altura de torre/estructura del emplazamiento.

A.3. Diseño

En este apartado se explicarán los pasos a seguir, así como las consideraciones necesarias para hacer el diseño de un radioenlace en iQ-link. Para ello, seleccionaremos el apartado *Engineering* del menú principal.

A.3.1. Apartado Main Engineering

Tal y como se muestra en la Figura A.2, en la parte superior del menú encontramos la información relativa a los emplazamientos. Debajo, vemos las características principales de los equipos radio, así como la potencia de transmisión. Después, encontramos el modelo de antena que utilizaremos. También se incluyen los apartado de guiaondas y atenuadores, pero en este trabajo no será necesario hacer uso de ellos. Por último, encontramos el apartado de pérdidas.

File 🔻	Profile	Design	Interfere	nce 📃 🔍 Details	5 🕝 🍓 Print
Location I	ID:				
Site I	ID:			Older Head	
Gov't Annroval	#: Sitio origen			Sitio desti	no
Structure Heig	ht: 10.00 m	n .		30.00	m
Lat Lo	on: GG-MM-S	SS N GG-MM-SS	W	GG-MM-S	SSN GG-MM-SSW
UIM Zone: N Azimut	E: th: 220.71 De	0		40 66 De	a
Ti	ilt: 5.21 Dowr	9 1		5.15 Up	9
Lengt	th:		9.44	km	
Ban	nd: 23.00 GH:	2 💌	Freque	ncy Assignment:	Paired
📄 Radio	RTN_23	G_28M_XMC2_P	SV3	RTN_23G_28M	_XMC2_ISV3
Capacity/Modulatio	on: 37 Mb/s	/ QPSKS ^{ADM} 1	+0	37 Mb/s / QPSK	S ^{ADM} 1+0
Powr	er: 18.00	dBm		18.00	dBm .
Branching Lo:	ss: Tx: 0.00	dB Rx: 0.	.00 dB	Tx: 0.00 dB	Rx: 0.00 dB
Frequency Pla	in: High	Low		Low High	
🚻 Channel	CH			СН	
🕂 Polarizatio	n V H	V H V H	VH	<u> </u>	<u> </u>
	V H	V H V H	V H	VHVH	<u> </u>
📕 Main Ant.	UHPM_S	P_06_23		UHPM_SP_06_2	23
Ga	in: 40.70 dBi			40.70 dBi	
Heigi	ht: 20.00 m i	1GL 5 3 N/0-36-59 3 U	L.	13.00 m AGL	_41_37.0 W
EIR	P: 58.70 dBi	1.2 N/V-38-38.2 V M	VV	58.70 dBm	-41-27.0 00
Diversity An	it.				
Gai	in: dBi			dBi	
neigi ehimeveel 🛤	NI			NU	
Total Lengt	th:			NIL	
Total Lo:	ss: dB			dB	
Are Attenuator	NIL			NIL	
Attenuator Lo	955 V): JD JD	dn		ah ah ah	
Other Local	ov: ub ub se: lo.oo d	D			
	53. <u>0.00</u> u			0.00 08	
Created By:		Field Margin:	1.00 dB	Free Space Loss:	139.19 dB
Region:				Total Bran Liss	1.78 UB
10.				rotal prop. Loss:	140.36 UB

Figura A.2: Ventana Main Engineering.

Emplazamientos remotos

Tal y como se ha dicho antes, para crear el enlace escogeremos primero los emplazamientos extremos seleccionando, dentro del desplegable File, la opción Create Link, mostrada en la Figura A.3.

Figura A.3: Opciones del desplegable File.

Buscaremos los emplazamientos que hemos creado previamente, seleccionando como *Site* Origen aquel más cercano a la red troncal y en el *Site* Destino el más cercano a la última milla.

Bandas de frecuencia

Para elegir la banda de frecuencia que utilizaremos hemos de tener en cuenta tanto la distancia como la capacidad que deseamos que tenga el radioenlace. En el apartado *Frequency Plan* (ver Figura A.2) seleccionaremos la semibanda (alta o baja) en cada uno de los emplazamientos extremos, teniendo en cuenta que usaremos una sub-banda distinta para transmisión y recepción, con el fin de evitar interferencias. En caso de que hubiese conflicto con algún radioenlace cercano que pudiese dar lugar a interferencias, iQ-link mostrará un mensaje de error como el mostrado en la Figura A.4. En caso de usar un canal alquilado, habrá que calcular la semibanda a utilizar con la aplicación IdeSemibanda de la Secretaría de Estado de Telecomunicaciones y para la Sociedad de la Información (SETSI).

Length: Band:	23.00 GHz 💌	9.44 km Frequency Assignment: Paired
Radio apacity/Modulation: Power:	RTN_23G_28M_XMC2_ISV 37 Mb/s / QPSKS ^{ADM} 1+0 18.00 dBm	3 RTN_23G_28M_XMC2_ISV3 37 Mb/s / QPSKS ^{ADM} 1+0 18.00 dBm
Branching Loss: Frequency Plan:	Tx: 0.00 dB Rx: 0.00 High Low CONFLICT	dB Tx: 0.00 dB Rx: 0.00 dB Low High

Figura A.4: Banda de frecuencia y conflicto de Frequency Plan.

Equipamiento radio

Una vez seleccionada la frecuencia, podemos escoger el equipamiento que más se ajuste a las necesidades de nuestro radioenlace (capacidad, suministrador, ancho de banda...) en el apartado *Radio* mostrado en la Figura A.5. Aquí, encontramos los distintos equipos del os diferentes fabricantes que hay disponibles. En este trabajo usaremos equipos Huawei.

TRANSMITTER:	Site A (Down Link) 🛛 🗹 Sy	nchronize Site A & B	A & B I Query by						
	-General Parameters	IC .	Rad	• ID:		Manufacture	er: HUAWE	I	
Model: RTN_23G_28M_XMC2_ISV3					odel:		Capacit	y:	
Capacity/Mod.: 37/QP!	SKS	Bandwidth: 28 MHz				Show C	onditional Statu	s	
Minimum Review Accord		6.6. JD							
Minimum Power: 4.00 d	Bm Maximum Power: 18.	00 dBm		ID	Bandwith	Model		Capacity	Manufactu
	Adaptive Modulation			778	7	RTN_23G_7	м	ADM	HUAWEI
Modulations 12 moi	dulation(s) active	View Configuration	L 2	779	14	RTN_23G_1	4 M	ADM	HUAWEI
Throughput: 228.00	Mbit/s		3	780	28	RTN_23G_2	8M	ADM	HUAWEI
Traffic Distribution: Voice:	0.00	Data: 228.00	4	781	56	RTN_23G_5	6M	ADM	HUAWEI
	RTPC-		5	1191	14	RTN_23G_1	4M_XMC2_ISX	ADM	Huawei
RTPC Max Power: 18	3.00 dBm		6	1192	28	RTN_23G_2	8M_XMC2_I5X	ADM	Huawei
RTPC Attenuator: (7	1193	56	RTN_23G_5	6M_XMC2_ISX	ADM	Huawei
🖌 ADM Auto Power Adj	ust Engineering Refere	ence (QPSKS)	8	1221	7	RTN_23G_7	M_XMC2_ISV3	ADM	Huawei
	ATRC		9	1222	14	RTN_23G_1	4M_XMC2_ISV3	ADM	Huawei 💌
ATPC: Yes	No ATPC	Range: N/A							•
RX ATPC: -43.50	0 dBm	- · ·		0	earch	Recet		Q C	Y Close
ADM	1 Power Boost				Joar en 1				. 01050
	Configuration					Con	figuration		
Config Option: Yes 1	No (for [n+m] radio configur	ation or protection)		Conf	ig Option: 📉	/es No (for	[n+m] radio con	figuration	or protection)
Configuration Optio	n Transmit (dB)	Receive (dB)		Con	figuration	Option	Transmit (d	B) R	eceive (dB)
1 1+0		0.00	1		1+0				
2 1+0		0.00	2		1+0				
3 1+1_A_HSB	1.90	1.90	3		1+1_A_HS	В	1.90		1.90
4 1+1_DOS_ANTENAS		0.00	4	1+	1_DOS_ANT	ENAS			
5 1+1_5_HSB		3.80	5		1+1_S_HS	В			
<u>RECEIVER:</u> Capacity: 37 10 ⁻³ Threshold: -9	Mb/s Bandwi 11.50 dBm 10 ⁻⁶ Thresh	dth: 28 MHz iold: –89.50 dBm	RECE	VER: 1	Capaci 0 ⁻³ Thresho	ty: 37 N ld: −91.50 d	1b/s Bai IBm 10 ^{–6} Th	ndwidth: 2 hreshold: –	8 MHz 89.50 dBm

Figura A.5: Apartado *Radio* y equipos radio disponibles (a la derecha de la imagen).

Canalización

En cuanto a la selección de los canales, intentaremos escoger los preferentes (señalados en verde), ya que de esta forma evitamos alquilar canales que no son propios (señalados en rojo). Esto se muestra en la Figura A.6 Además, se ha de escoger el canal más bajo y de menor ancho de banda posible, con el fin de optimizar el espectro y reservar los canales mayores para enlaces más críticos o que necesiten más capacidad.

Figura A.6: Algunos de los canales disponibles en la base de datos.

Aunque se puede seleccionar al empezar el diseño el canal a utilizar, se recomienda hacerlo como último paso, tras el análisis de interferencias.

En caso de diseñar un enlace XPIC, se han de seleccionar los dos canales o las dos polarizaciones que se utilizarán.

Modulación adaptativa

Tras haber seleccionado los equipos radio, podemos escoger la opción de modulación adaptativa. Con ella, conseguimos que, en caso de que las condiciones meteorológicas no permitan mantener la máxima modulación, esta se disminuirá con el fin de mantener el funcionamiento del enlace y que no se produzca un corte.

Como se ve en la Figura A.7, elegiremos la modulación más baja como modulación de referencia, para que sea la mínima que garantizará el radioenlace.

	Capacity Mbit/s	Modulation	Selected	Engineering Reference
1	37	QPSKS	✓	✓
2	43	QPSK	V	
3	74	16QAMS	✓	
4	86	16QAM	✓	
5	110	32QAM	✓	
6	136	64QAM	V	
7	161	128QAM	V	
8	183	256QAM	V	
9	196	512QAM	V	
10	210	512QAML	\checkmark	
11	217	1024QAM	V	
12	228	1024QAML	V	

Figura A.7: Selección de modulaciones activas y de referencia.

Potencia

Al seleccionar la potencia, tenemos dos opciones de diseño (ver Figura A.5):

- Atenuar la potencia de transmisión de forma manual, desplazando el cursor de la variable RTPC (Remote Transmit Power Control) Max Power.
- Utilizar la opción ADM Auto Power Adjust, con la cual se consigue que cada esquema de modulación pueda utilizar una potencia de salida diferente. Así, al pasar de una modulación a otra, la potencia de salida del equipo radio puede cambiar, con la finalidad de minimizar tanto el gasto eléctrico de los equipos, como las posibles interferencias generadas a otros radioenlaces cercanos.

Tras ajustar la potencia, debemos comprobar en la tabla que aparece en la Figura A.8 al seleccionar el botón *View Configuration* los siguientes parámetros:

- Max Tx Power dBm: potencia mínima necesaria en cada modulación para que no disminuya la disponibilidad ante lluvia.
- Configured power dBm: potencia transmitida por el radioenlace en cada esquema de modulación.
- Composite Fade Margin dB: el CFM es la suma de todos los tipos de desvanecimientos contemplados. Para que el diseño sea adecuado, este valor a de ser mayor de 30 dB para la modulación mínima y mayor de 10 dB para la modulación más alta
- Max Rx Level dBm: potencia recibida por el radioenlace en cada esquema de modulación. Debe estar entre -30 y -50 dBm, con el fin de no trabajar en valores cercanos a la saturación y además poder mantener un valor adecuado de margen frente a desvanecimientos.

	Modulation	Engineering Reference	Max Tx Power dBm	ATPC Tx @ Upper Rx Trigger dBm	ATPC Tx @ Lower Rx Trigger dBm	RTPC Attenuator dB	RTPC Power Limiter dB	Configured Power dBm	Composite Fade Margin dB	Min Tx Power dBm	Distortion RSL dBm	Max Rx Level dBm
1	QPSKS	Х	24.00	N/A	N/A	N/A	6.00	18.00	46.94	4.00	-20.00	-42.56
2	QPSK		24.00	N/A	N/A	N/A	6.00	18.00	36.94	4.00	-20.00	-42.56
3	16QAMS		23.00	N/A	N/A	N/A	5.00	18.00	34.44	4.00	-20.00	-42.56
4	16QAM		23.00	N/A	N/A	N/A	5.00	18.00	32.94	4.00	-20.00	-42.56
5	32QAM		23.00	N/A	N/A	N/A	5.00	18.00	29.94	4.00	-20.00	-42.56
6	64QAM		22.00	N/A	N/A	N/A	4.00	18.00	26.94	4.00	-20.00	-42.56
7	128QAM		22.00	N/A	N/A	N/A	4.00	18.00	24.44	4.00	-20.00	-42.56
8	256QAM		19.50	N/A	N/A	N/A	1.50	18.00	21.44	4.00	-25.00	-42.56
9	512QAM		19.50	N/A	N/A	N/A	1.50	18.00	19.44	4.00	-25.00	-42.56
10	512QAML		19.50	N/A	N/A	N/A	1.50	18.00	17.94	4.00	-25.00	-42.56
11	1024QAM		18.00	N/A	N/A	N/A	0.00	18.00	14.44	4.00	-25.00	-42.56
12	1024QAML		18.00	N/A	N/A	N/A	0.00	18.00	12.44	4.00	-25.00	-42.56

Figura A.8: Parámetros de View Configuration.

Antenas

A continuación, en el apartado *Main Ant.*, escogeremos las antenas que utilizaremos en nuestro radioenlace, como se muestra en la Figura A.9. La elección de la antena adecuada dependerá del campo recibido, la capacidad o modulación y de la polarización del enlace. En este caso también podremos elegir entre las antenas de los distintos fabricantes, aunque, de nuevo, escogeremos Huawei, ya que deben ser compatibles con el equipo radio.

		Site A	Site B
Pri	mary Antenna:	UHPM_SP_06_23	HPM_SP_06_23
	Gain (dBi):	40.70	40.70
	Height (m AGL):	20.00	13.00
Dive	ersity Antenna:	NIL	NIL
	Gain (dBi):		
	Height (m AGL):		
	Spacing (m):		
		rdinate and Mast detai	ls
- Pocot	Latitude:		
Ma Keset	Longitude:		
Alternate:	Region:		
	Northing:		
	Easting:		
🗙 Mast	Mast:	NIL	NIL

Figura A.9: Características de las antenas escogidas.

Otros parámetros

Por último, debemos definir los parámetros Other Losses y Field Margin.

 Other Losses: en ocasiones, tras realizar la instalación, no se consigue el campo requerido, bien por obstrucciones o por la imposibilidad de hacer una orientación correcta. En esos casos, podemos compensar esas pérdidas con este parámetro.

A.3. DISEÑO

• *Field Margin*: es el margen que se añade al enlace por las pérdidas que no se hayan podido tener en cuenta. Se suele seleccionar 1 dB.

A.3.2. Apartado Profile

En este apartado se muestra el perfil del terreno, tal y como se comprueba en la Figura A.10, así como la línea de vista entre los emplazamientos y las posibles obstrucciones que pudiese haber, con las pérdidas correspondientes que generarían.

Figura A.10: Perfil del terreno.

A.3.3. Apartado Design

En la ventana *Design* podremos calcular parámetros como la indisponibilidad ante lluvia, visualizar el nivel de potencia recibido o las pérdidas por obstrucción como se muestra en la Figura A.11.

Objetivos

En este apartado escogeremos la opción G.826 y mediante el botón G826 Settings (ver Figura A.11) podremos definir su parametrización.

Dentro de este menú tendremos que seleccionar:

- Section: Access.
- System: Other.

Método de predicción

Aquí, elegiremos la opción de P-530-14 (ver Figura A.11).

Nivel recibido

Este parámetro nos muestra el valor de potencia que llega a nuestro radioenlace. El margen adecuado de RSL (*Received Signal Level*) será de entre -30 y -50 dBm, tal y como se ha explicado anteriormente.

Link Id:	Design	ld: Obje	ctives: G.826	G.826 Setting:	Prediction	• Method: P.530-14 💌
Fade Margin	Details					
Threshold/Downs	Site Id/Loca Site Obstructic Receive shift Level: 10 ⁶ BER Threshold Degra Composite Fade I	tion Id: Name: on Loss: e Level: 1 <u>6⁸BER</u> dation: Margin:	Site A -35.98 dBm -87.55 dBm 0.00 dB Manu 51.56 dB	0.00 dBA ai	t 50.0000% -35 -87 0.00 51	Site B
Rain Model/Zor Combined Rai Polarity: Horizo	n and Sleet	- Rain	42.6 mm	/hr Diversit Improvem Frequency Space Div	y XPD ancy Diversity ent Factors A ->B Diversity NIL ersity NIL	B>A NIL NIL
Multipath Geoclimatic: Roughness: Climate: Avg Ann Temp	Details 3.200 x 10 1.00 Defa 1.00 rc	-8 ManualEntry ult Calc. fror	▼ n Terrain	Peri	Dbjective ADM Availability: formance/Outage:	Statistics 37/QPSKS 37/QPSKS
Two Way			Results-			View All Modulations
			Unavailabil	ity		_
Modulation		EIRP (dBm)	Rain	Hardware	Total	ITU Objective
QPSKS QPSK 16QAMS 16QAM 32QAM 64QAM		54.20/58.70 54.20/58.70 53.20/57.70 53.20/57.70 53.20/57.70 52.20/56.70	0.000398 0.001151 0.001652 0.001931 0.002647 0.004082	0.005181 0.005181 0.005181 0.005181 0.005181 0.005181	0.005579 0.006332 0.006834 0.007112 0.007828 0.009263	0.150000 0.150000 0.150000 0.150000 0.150000 0.150000
128QAM 256QAM Generic	Voice Data	52.20/56.70 59.70/54.20	0.005412 0.010549	0.005181 0.005181	0.010593 0.015730	0.150000 0.150000 -

Figura A.11: Apartado Design.

Pérdidas por obstrucción

Estas pérdidas las calcula iQ-link en función del perfil del vano. También existe la posibilidad de definirlas de forma manual, en el campo *User Defined*, pudiendo así modificar el valor definido en el caso de que el escenario mostrado no coincida con la viabilidad realizada en campo.

Umbral de recepción

El umbral de recepción o *Thershold* que deberemos seleccionar será el adecuado para conseguir una tasa de error de bit (BER) de 10^{-6} .

Modelo de lluvia y polarización

A través del desplegable *Rain Model/Zone* podemos acceder a los diferentes modelos de lluvia existentes para realizar el cálculo de disponibilidad del radioenlace. Nosotros utilizaremos el P.837-5, correspondiente a la Recomendación de la UIT-R con el mismo código.

Para que el radioenlace sea viable, será necesario que en la modulación mínima o de referencia, la disponibilidad ante lluvia se cumpla un 99.95 % del tiempo, mientras que en la modulación más alta, un 99 %.

A.3.4. Apartado Interferencias

En este apartado encontramos la ventana mostrada en la Figura A.12. Antes de realizar el análisis de interferencias, debemos tener en cuenta los siguientes parámetros:

- General Filters-	Adaptive Modulation
Search Radius: 60.0 km Count: Filter	Modulation Scheme: Highest Lowest Eng. Ref. Lowest -> Highest Worst Case
Design Path Polarity: H Both	- PMP
Assign Existing Polarity First?: Yes No.	Exclude Design Carriers: Down Link Up Link Up Link in Sector
Allow Polarity Change?: Yes No.	
Channel Selection	Additional Analysis Options
Analyze Channels: Assigned Channels Only Partial Band Full Band	Cumulative Analysis: Yes No
ssign Existing Channels First?: Yes No	Cumulative OH Threshold: dB
Partial Band Filter: Min: Max: Channel Pool	Antenna Discrimination Mode: 20 30
Frequency Window: 56 MHz(+/-)	Use Correlated Criteria: Yes No.
If more than 1 channel is	USE KPIP: YES NO
available, then assign a <u>Most</u> Least Degradation, or First Channel in List channel based on the:	
IRF Method Parameters	
Single TD Margin: 0.20 dB Cumulative TD Margin: 0.34 dB	
Default IRF Value: 0.00 dB	
C/I Method Parameters	
Margin: 5.00 dB Default C/I Obj.: 30.00 dB	
Cumulative Degradation Limit: dB	
0111	
Calculate OH Loss: Ves No A - Continental Temperate	
Profile Start Distance: 0.5 km Profile K Factor: 1.33 🔻	
ATPC-	
Use ATPC Criteria: Yes No	
Design Path Power: TXmax TX ATPC	
Environment Path Power: TXmax TX ATPC	

Figura A.12: Apartado Interferencias.

Search distance radius

iQlink tendrá en cuenta los radioenlaces que puedan ser interferentes dentro de este radio. En función de la banda de frecuencia seleccionada, se cargará por defecto una distancia adecuada para el radio.

Polaridad

Se consideran los radioenlaces que tengan la polaridad seleccionada.

Search Frequency

Se puede seleccionar calcular las interferencias de los radioenlaces de toda una banda, un rango determinado de canales o, en el caso de haber asignado ya un canal, sólo en ese.

Frequency Window

Este es el rango de frecuencias alrededor de la portadora en el que se hará el análisis. Por defecto, será de 56 MHz.

Margin

Indica la diferencia entre el valor de la relación portadora a señal interferente (C/I) calculada y el valor de C/I objetivo. Se mostrarán todos los casos potenciales de interferencia dentro de este margen.

OH Loss

Se seleccionará entre Temperatura Continental, Temperatura marítima sobre tierra o Temperatura marítima sobre el mar, en función de donde esté localizado el vano.

Cummulative Analisis

Con esta opción se calcula la contribución de interferencias dentro del radio y ventana de frecuencias especificados anteriormente para cada canal.

Adaptative Modulation

Encontramos cinco posibilidades de cálculo de interferencias en cuanto a la modulación entre el radioenlace interferente y el interferido:

- Highest: usa la modulación más alta diseñada.
- Lowest: usa la modulación más baja diseñada.
- Eng. Ref: utiliza la modulación de referencia, que suele ser la menor.
- Lowest -> Highest: usa la modulación más baja diseñada en el radioenlace interferente y la más alta diseñada en el interferido.
- Worst Case: analiza todos los estados de modulación posibles tanto para el enlace interferente como el interferido, reflejando el caso peor.

Para asegurar que nuestro radioenlace funcionará en todos los casos, escogeremos la opción de *Worst Case*.

Una vez hemos seleccionado todas las opciones y realizado el cálculo, aparecerá la ventana mostrada en la Figura A.13.

		<u>Design</u>	Path Details			
Site ID / Location ID:						
Site Name:						
Latitude Longitude:						
UTM Zone: N E:	1467.00		0.44 lun	010.00		
Gnd Elev & Length: Dath Azimuth	1467.00 m		9.44 km	618.00 m		
Patri Azimuth: Radio Model:	RTN 23C 2	8M XMC2 ISV3		RTN 230	28M XMC	2 161/3
Modulation	102400ML			10240AM	20M_AMC	
Conscitu / Dub	1024QAML	200 MUI2		220 Mb/cov	- 7.00 MUN	
Capacity / Bw:	228 MD/Sec.	/ 28 MH2		228 MD/Sec	28 19 112	
Channel Number:	10.00 00111	•		10.00 00111		-
Frequency:				<u> </u>		
Antenna Model:	UHPM SP (16 23		UHPM SP	06 23	
Antenna Height:	20.00 mAGL			13.00 mAG	L	
Antenna Coordinate:						
Waveguide Loss:	0.00 dB			0.00 dB		
Free Space / Abs. Loss:		139.19	dB / 1.78 dB			
Receive Signal Level:	-41.56 dBm			-41.56 dBm	1	
Threshold:	-61.50 uBm			-61.30 ubn	1	
		Channe	I Summary —			
Include OH Loss: Yes	No					
Channel Number	r Number s of Paths	Cumulative into Site A (dBm)	Channel Number	Number of Cases	Number of Paths	Cumulative into Site B (dBm)
	o	100.07	Humber	di cases	1	102.12
2	2	-100.97			1	-102.12
	Channe					Defined therein d
	Channe	er Polarity: Vertica				Unpaired Unpaired
		Preferred	Channel(s) Only	/		
L						

Figura A.13: Detalles del análisis de interferencias.

En primer lugar, aparece el canal disponible, seguido por el número de casos y enlaces que interfieren y la suma de interferencias en cada canal. Una buena elección de canal sería aquel que no tuviese ningún radioenlace interferente y/o un valor de suma de interferencias por debajo de -90 dBm. Si no se da el caso, habrá que tener en cuenta las dos siguientes ventanas:

 Cum Details: aquí se muestra lo que los radioenlaces interferentes afectan al que estamos diseñando. Para asegurarnos que nuestro radioenlace funcionará bien, habremos de tener en cuenta que la degradación, tanto en A como en B, sea menor a 3 dB.

A.3. DISEÑO

 Cum Details: en esta ventana se exponen los márgenes de interferencias con cada uno de los casos interferentes. Si el margen es positivo, la interferencia es constructiva; mientras que si el margen es negativo, la interferencia que se da es destructiva. En general, podremos dar el diseño por válido siempre y cuando el margen sea mayor a -3dB.

Site A:			Site B:								
	Link Id		Interferi		Channel / Pol	Free Loss					
1	RE1		CH V - CH V	144							
2	RE2		СН н – СН н	144							
3	RE3		СНН - СНН	144							
4	RE4		CH - CH V	147							
5	RE5		CH V - CH V	152							
6	RE6		CHV - CHV	153							
7	RE/		CH V - CH V	145							
8	RE8		CH V - CH V	153							
•			140								
			Cumulativ	e Summary							
C/I Obj (A/B): 28.79 / 28.79 dB C/I Calc (A/B): 26.47 / 27.62 dB Int Level (A/B): -100.97 / -102.12 dBr											
FKTB (A/B): –97.42 / –97.42 dBm FKTB Margin A: 3.55 dB FKTB Margin B: 4.70											
Threshold(A/B): -74.50 / -74.50 dBm Degradation A: 1.59 dB Degradation B: 1.27 d											

Figura A.14: Ventana Cum Details.

	Site IEL/ Locati	on IEr		느	nvironment	<u>Path Deta</u>	<u>115</u>						
	Site I	Name:											
	Latitude Long	itude:											
	UTM Zone: North East												
	Gnd Elev & Length: 1582.00 m			18.25 km 1				1467.00 m					
	Path Azimuth: Radia Madel: RTN 22C 20M MMC2 101									161/2			
	Modulation: 10240AM			•v3				10240AMI					
	Capacity	/ BW: 228 Mb/sec / 2	228 Mb/sec / 28 MHz						228 Mb/sec / 28 MHz				
	P	ower: 18.00 dBm						18.00 dBm					
	Channel Nu	mber:	<u> </u>										
	Frequ	iency:											
	Antenna M Antenno M	lone: VHIPX4-23 H	UNSIN					VHI PX2-23 HUNSN 20.00 mACL					
	Antenna Coordinate: 42–18–6.6N			20.00 MAGL 24-6.4W 42-20-35.2N 0-36-58.2W									
			714175.7										
	Waveguide Losse: 0.00 dB				0.00 dB								
	Free Space / Abs. Loss:				144.91 dB/3.44 dB								
	Receive Signal Level:45.43 dBm45.43 dBm45.43 dBm												
	11110.	511010. 01.30 0B11			-Calculat	ion Results-		1.50 00111					
Include C	OH Loss: Yes No							Exclu	de Environ	ment Link In F	uture Analyses		
	Interference Calculation	Radio Modulation	OH Loss (dB)	FSPL (dB)	int Level (dBm)	C/I Calc (dB)	Int Obj	Int Mode	Margin (dB)	S. TD Calc (dB)	C. TD Calc (dB)		
	A->D												
Profile	D->A	(QPSKS)->(64QAM)	0.00	144.91	-103.93	29.43	28.78 dB	T/I	0.65	0.87	1.59		
	D >C												
Profile	C->B	(QPSKS)->(64QAM)	0.00	139.22	-103.10	28.60	28.78 dB	T/I	-0.18	1.04	1.27		
												Prev.	
												More	
	Next Path	Prev. Pa	th				Prev.	Channel	Upd	late Desig 🔽	🗶 Quit	N	
Design Ch	annei A:	B: IN	terrering Pati	n i or 2									
Site A										Site C			
				Ac									
							-						
Site R	Site D												
once b										b sice b			
		8											

Figura A.15: Ventana Case Details.

Finalmente, tras hacer el análisis de interferencias y seleccionar el canal que se adecue a nuestro caso, podemos dar por finalizado el diseño del radioenlace.

Anexo B

Equipamiento Huawei

Entre los distintos fabricantes que ofrecen equipamiento para radioenlaces, en este trabajo se desarrollarán los equipos Huawei, pues serán los que utilicemos en el diseño de nuestro enlace. Un radioenlace está formado por la antena, una unidad *outdoor* o exterior (ODU) y otra unidad *indoor* o interior (IDU). Además, existen distintos tipos de tarjetas radio IF, responsables de la modulación alcanzada por el radioenlace.

Dentro de estos equipos, distinguimos entre:

- Equipos legacy: son equipos antiguos que podemos encontrar en red pero ya están descatalogados, por lo que no se pueden comprar.
- Equipos actuales: son los equipos disponibles en el mercado actualmente.

En este capítulo se expondrán las características de los principales equipos Huawei presentes en la red actual.

B.1. Tarjetas radio IF

Las tarjetas radio son las encargadas de gestionar los esquemas de modulación que podrá alcanzar el radioenlace.

B.1.1. Tarjetas legacy

Encontramos la IFU2, ISU2, ISU3 o IFX2. Estas tarjetas permiten únicamente un radioenlace y alcanzan las modulaciones QPSK, 16QAM, 32QAM, 64QAM, 128QAM, y 256QAM.

B.1.2. Tarjetas actuales

En cuanto a las tarjetas que se pueden adquirir actualmente, encontramos la ISV3, ISM6 e ISM8. Estos tres modelos son capaces de trabajar con QPSK Strong, QPSK, 16QAM Strong, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, 512QAM, 512QAM Light, 1024QAM Light y 2048QAM. Además, la tarjeta ISM6 es capaz de llegar a 4096QAM, mientras que la ISM8 llega incluso a 8192QAM.

B.2. Equipos indoor (IDUs)

La unidad *indoor* o IDU se encarga de gestionar los aspectos del radioenlace relacionados con el control de errores, el procesamiento de la señal, la modulación y demodulación, la entrega de datos o la alimentación.

Huawei tiene dos familias de IDUs, los RTN900s y los RTN300s.

B.2.1. Familia RTN905

Los equipos de la familia RTN905 son equipos compactos; es decir, estos equipos ya incluyen una tarjeta radio determinada, por lo que no admiten ninguna otra configuración. Todos ellos ocupan una unidad dentro del bastidor físico del emplazamiento.

Encontramos los modelos RTN905 1A y RTN905 2A como equipos legacy y RTN905 2E y RTN905 2F como equipos actuales.

RTN905 1A

El RTN905 1A sólo admite un radioenlace de tipo 1+0, ya que la tarjeta radio que incluye es la ISU3.

Figura B.1: RTN 905 1A.

RTN905 2A

Este modelo admite hasta dos tarjetas ISV3, por lo que se puede utilizar para configurar dos radioenlaces 1+0, aunque habitualmente sólo se usa para hacer un XPIC 2+0.

Figura B.2: RTN 905 2A.

RTN905 2E

El RTN905 2E permite hasta dos tarjetas ISV3, posibilitando la configuración de dos radioenlaces 1+0 o un XPIC 2+0.

Figura B.3: RTN 905 2E.

RTN905 2F

Este equipo es el más reciente e incluye hasta dos tarjetas radio ISM8. Por lo tanto, existe la posibilidad de configurar radioenlaces 1+0 y XPIC. Además, puede trabajar en la canalización de 112 MHz, por lo quebincluye cuatro puertos de 10GE para poder dar salida a los radioenlaces de alta capacidad.

Figura B.4: RTN 905 2F.

B.2.2. Familia RTN910

Estos equipos son legacy y modulares; es decir, admiten distintas tarjetas radio. Al igual que la familia RTN905, ocupa una sola unidad, pero puede utilizar hasta dos tarjetas IF. Por lo tanto, se pueden configurar radioenlaces 1+0 o XPIC. Se ha de tener en cuenta que estos RTNs no son compatibles con las ODUs XMC-3 actuales, por los que se deben sustituir por equipos RTN905.

Figura B.5: RTN 910.

B.2.3. Familia RTN950

La familia de RTN950 también es modular y ocupa dos unidades dentro del bastidor. Distinguimos entre RTN950 (legacy) y RTN950A (actual).

RTN950

El RTN950, a pesar de tener 8 slots, sólo permite cinco tarjetas IF (ISV3 o ISM6), ya que se suele incluir una tarjeta específica para puertos ethernet en el slot 2 y los slots 7 y 8 se reservan para la controladora.

Figura B.6: RTN 950.

RTN950A

Este equipo admite hasta 6 tarjetas IF (ISV3, ISM6 o ISM8), reservándose el slot 7 para la controladora. En este caso, la controladora del equipo suele tener suficientes puertos ethernet, por lo que no sería necesario reservar un slot para este tipo de tarjetas. Con el RTN950A se pueden hacer radioenlaces 1+0 y XPIC.

Figura B.7: RTN 950A.

B.2.4. RTN980

El RTN980 ocupa 5 unidades y permite hasta 14 tarjetas radio, por lo que se usa en emplazamientos con muchos enlaces. Permite radioenlaces 1+0 y XPIC.

Figura B.8: RTN 980.

B.3. Equipos outdoor (ODUs)

El equipo *outdoor* u ODU es la unidad de radiofrecuencia, y se ocupa de la conversión entre frecuencias de IF y RF, amplificación de potencia, control automático de ganancia y de la entrega y recepción de la señal a la antena. Cabe destacar que es específica para un ancho de banda en concreto dentro de una banda de frecuencias.

Los modelos de ODUs que podemos encontrar en red a día de hoy son el XMC-2 y el XMC-3. Ambos modelos son compatibles; es decir, se pueden enfrentar en un radioenlace. Sin embargo, presentan algunas diferencias.

B.3.1. XMC-2

La XMC-2 trabaja en las bandas de 6, 7, 8, 10, 11, 13, 15, 18, 23, 26, 28, 32, 38 y 42 GHz. Además, alcanza hasta la modulación 2048QAM en las bandas más altas.

Figura B.9: ODU XMC-2.

B.3.2. XMC-3

La XMC-3 puede trabajar en las bandas de 13, 15, 18, 23, 26, 28, 32 y 38 GHz, y es capaz de llegar hasta 4096QAM en la mayoría de sus bandas de trabajo.

Figura B.10: ODU XMC-3.

B.4. Antenas

Los modelos de antena Huawei que utilizaremos son los UHP-M, bien de una polarización, UHP-M SP o de dos polarizaciones, UHP-M DP, para el caso de XPIC.

Anexo C

Integración del radioenlace

Como se ha explicado durante el documento, este ha sido un trabajo real realizado a petición de un cliente, dentro de un proyecto para liberar la banda de 26 GHz. Como complemento, se muestra a continuación un reportaje fotográfico de los emplazamientos, equipos y material pertenecientes al radioenlace diseñado.

C.1. Localización origen

Para la implementación del nuevo radioenlace, en la localización origen, se reutilizaba la IDU del radioenlace actual, pero era necesario cambiar la tarjeta radio, la parábola y la ODU.

Figura C.1: *Site* origen. A la izquierda, parábola del radioenlace actual. A la derecha, parábola del radioenlace nuevo.

Figura C.2: *Site* origen. A la izquierda, equipo con tarjeta IFU2 antigua. A la derecha, equipo con tarjeta ISV3 nueva

C.2. Localización destino

En la localización destino, fue necesario actualizar todos el equipamiento: parábolas, IDU y ODU.

Figura C.3: *Site* destino. A la izquierda, parábola del radioenlace acutal. A la derecha, parábola del radioenlace nuevo.

Figura C.4: *Site* destino. A la izquierda, fotomontaje del lugar que ocuparía el equipo nuevo. A la derecha, RTN 905 2E nuevo