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Abstract: Time-series of background radiation (measured inside a multilayer structure), geomagnetic
activity, and cosmic-ray activity has been analyzed using linear correlation analysis and a new
correlation measure based on the one-dimensional component of the fourth-order cumulant. The new
method is proposed based on the fact that the cumulant of a random process is zero if it is of Gaussian
nature. The results show that this methodology is useful for detecting correlations between the
analyzed time-series.

Keywords: radioactive decay; space weather; geomagnetic activity; cosmic-ray activity;
correlation analysis

1. Introduction

In a previous work of our group [1] it was shown that the measured radioactive decay rates of
different nuclides changed significantly when placed inside a simple enclosure in form of a modified
Faraday cage [1,2]. The variations ranged at least between 0.8% and 5%. This enclosure also showed to
cause anomalous capacitance measurements in ultra-stable capacitors, as well as in the measurements
obtained with other devices. For example, the time constant of a RC low-pass filter increased at least
by 5.5%, and the spectrum of a Cs-137 source was distorted, i.e., the photopeak was shifted to lower
energies and its height increased.

In subsequent works [3,4] we discovered that there can be a correlation between some of the
anomalous decay processes shown in [1] and geomagnetic activity (GMA) as well as cosmic-ray activity
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(CRA). This finding is important since it showed that the measured variability in reference [1] was
not caused by some failure in the electronics of the instruments but rather followed the variations in
GMA and CRA. Besides, it made apparent that a link exists between GMA/CRA and the outputs of the
measuring system, i.e., the measured radioactive decay rates and the capacitance values.

In our most recent analysis [4] we analyzed the correlations with both linear correlation analysis
and statistical tools based on Bayesian statistics. The correlation analysis revealed novel insights with
regard to the relationship between the measured radioactive decay and GMA/CRA. We proposed
some preliminary conclusions about the conditions under which those correlations took place, and on
the circumstances in which the correlations could not be registered. One of the main conclusions
was that the correlations between decay activity (counts per minute registered in the Geiger–Muller
(GM) counter) and GMA/CRA could take place (at least when working with Ra-226) in those time
intervals when the decay values increased (or were increased with regard to the counts outside the
box). Although our analysis revealed new insights, we recognized that the correlation analysis had
limitations and we aimed to extend the correlation analysis with a novel approach. To this end,
correlations are analyzed this time from different points of view, that is, using fourth-order statistics as
by this means one can draw more conclusions about the possible existing correlations. In the present
paper only the background radiation measured with the GM counter was studied. In upcoming
papers, the other processes described in [1] (i.e., decay rates with some radionuclides and capacitance
variations) will be analyzed with the new approach as well.

The aim of this report is to present to the mathematics community a set of data related to the
described enclosures, showing the need for using sophisticate techniques of correlations analysis.

2. Experimental Setup and Data Analysis

The key elements of the setup were a Faraday-like cage (developed by Reich [5]), whose sides are
formed by interleaving sheets of metallic and organic materials (Figure 1a), and the Geiger–Müller
counter tube (Figure 1b,c):
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Figure 1. (a) A small model of metallic shield in form of Faraday cage where the sides are formed
by interleaving structures of metallic and organic (cork sheeting). (b) Lead shield that contains the
Geiger–Müller counter tube. The tube is inserted inside the shield on the upper part opening as looks
as in (c). The radioactive preparation was placed on the tray shown in (b).

On the other hand, in the development of the work, an algorithm was proposed as a measure
of similarity and features extraction; it is based on a time-correlation using the Pearson correlation
coefficient of the one-dimensional component of fourth-order cumulant calculation (see next section).

2.1. Linear Correlation Analysis

As a first analysis and to determine whether or not there is a correlation in the data, Pearson’s
correlation coefficient was used as a measure to assess the similarity of the data in a time series,
based on the covariance matrix.
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Let Y =
{
Y(t)

}
t≥0 be a zeroth-mean stochastic process, then the autocovariance relates directly

to the dispersion of the process and can be expressed in terms of its joint moments, see for instance
references [6–9], where X(t) is the determinist part (i.e., the signal to be detected) and n(t) is a random
process considered as additive noise, then:

CY
2 (τ) = E[X(t)·X(t + τ)] + E[n(t)·n(t + τ)] (1)

where CY
2 (τ) stands for the second-order cumulant. For the discrete model, Equation (1) becomes,

CY
2 (τ) =

1
M

M−1−τ∑
t=0

X(t)·X(t + τ) +
1
M

M−1−τ∑
t=0

n(t)·n(t + τ), (2)

where M is the number of data points to be processed. The correlation coefficient is then given based
on the covariance function:

R(i, j) =
C2(x, y)√

C2(x, x)C2(y, y)
, (3)

where R(i, j) is the correlation matrix and C2(i, j) is the covariance matrix of the two data set to
be analyzed.

The use of the covariance matrix to obtain the Pearson correlation coefficient has the disadvantage
of not being immune to noise. This means that if the data to be analyzed presents noise, it can influence
the correlation levels obtained, of one variable with respect to the other.

From previous discussion, it was proposed to use higher order statistics for the calculation of the
correlation matrix. To this end, the use of the one-dimensional component of the fourth-order cumulant
of the data was suggested, which becomes zero for Gaussian processes. Moreover, the referred
background data manifest a clear Gaussian behavior. We will discuss about it further down in
this article.

2.2. Algorithm Based on Second-Order Statistics: Fourth-Order Cumulant-Based Correlation Analysis

For zero-average Gaussian processes, the fourth-order cumulant can be calculated as in [4]

CY
4 (τ1, τ2, τ3) = E

{
Y(t)·Y(t + τ1)·Y(t + τ2)·Y(t + τ3)

}
−

− CY
2 (τ1)·CY

2 (τ2 − τ3) −CY
2 (τ2)·CY

2 (τ3 − τ1) −CY
2 (τ3)·CY

2 (τ1 − τ2)
(4)

Taking the 1-dimensional component of the fourth-order cumulant of the signal, CY
4 (τ1, 0, 0),

and when setting τ2 = τ3 = 0, the same result as in [6] is obtained (it was obtained very similarly),
but doing τ1 = τ2 = τ3 = τ. We obtain the following:

CY
4 (τ1, 0, 0) = E

{
Y3(t)·Y(t + τ1)

}
− 3·E

{
Y(t)·Y(t + τ1)

}
·E

{
Y2(t)

}
(5)

For a discrete number of data points, Equation (5) can be rewritten as,

CY
4 (τ) =

1
M

M−1−τ∑
t=0

Y3(t)·Y(t + τ) − 3

 1
M

M−1−τ∑
t=0

Y(t)·Y(t + τ)

·
M−1∑

t=0

Y2(t)

 (6)

Thus, the correlation matrix can be evaluated as follows,

R(i, j) = C4(i, j)/
√

C4(i, i)C4( j, j), (7)

where R(i, j) is the correlation matrix using higher order statistics, and C4(i, j) is the one-dimensional
component of the fourth-order cumulant.
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For a process described in the following equation,

Cy
4(τ1, τ2, τ3) = Cx

4(τ1, τ2, τ3) + Cn
4(τ1, τ2, τ3) (8)

if n(t) is a Gaussian random signal of zero average value, Cn
4(τ1, τ2, τ3) = 0, then, Cy

4(τ1, τ2, τ3) =

Cx
4(τ1, τ2, τ3). If the random signal is not Gaussian, its fourth-order cumulant is a delta Dirac

function [10].
The idea behind taking the correlation based on the one-dimensional component of the fourth-order

cumulant is to reduce the influence of noise that does not provide useful information, regardless of the
type of distribution it follows, as its fourth-order cumulant is zero if this noise is Gaussian distributed.
On the other hand, if the noise follows another type of probabilistic distribution, its cumulant is a delta
Dirac function.

This results in a greater reliability on the processed information, in the sense that when it is
processed with the usual method of correlation based on the second-order cumulants, the correlation
of the unusable noise is also included, as it is not zero.

A harmonic signal with noise added has been taken as an example. The spectrum of the noisy
signal and of the correlation spectrum of noisy signal can be seen in Figure 2, upper-left and upper-right
panels, respectively. Furthermore, in Figure 2 (lower panel), the spectrum of the one-dimensional
component of the fourth-order cumulant of the noisy signal is also shown. It can be noticed that
the result from working with the fourth-order component (see Figure 2, lower panel) is much more
immune to noise and keeps the deterministic information unchanged.
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Figure 2. Illustrative example of the Fourier Transform spectrums of the noisy signal (upper-left panel),
its correlation function (upper-right panel), and the one-dimensional component of the fourth-order
cumulant (lower panel).
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3. Application Results

In order to check the analysis approaches described above, the data of different tests performed
inside the cage were analyzed. All those results are presented in what follows.

In the first test (denoted by D1), the data were obtained by measurements inside the box starting
on 2014 December 19 at 17:00 h and finishing on 2014 December 22 at 09:00 h (see Figure 3). Those data
are presented in [2] and the results of the correlation analysis are shown in Table 1. The total number
of processed samples was 65.

Mathematics 2020, 8, x FOR PEER REVIEW 5 of 8 

 

3. Application Results 

In order to check the analysis approaches described above, the data of different tests performed 
inside the cage were analyzed. All those results are presented in what follows. 

In the first test (denoted by D1), the data were obtained by measurements inside the box starting 
on 2014 December 19 at 17:00 h and finishing on 2014 December 22 at 09:00 h (see Figure 3). Those 
data are presented in [2] and the results of the correlation analysis are shown in Table 1. The total 
number of processed samples was 65. 

  

Figure 3. Background data (D1), geomagnetic activity (GMA) (Dcx) and cosmic-ray activity (CRA) 
(N) between 2014 December 19 and 2014 December 22. Dcx stands for the Dcx index and N for the 
neutron counts. 

In order to verify the normality of the data, we have chosen Lilliefors test. It represents an 
improvement on the Kolomogorov–Smirnov (K–S) test as it corrects the K–S for small values at the 
tails of the probability distributions. Differently from the K–S test, Lilliefors can be used when the 
population mean or the standard deviation are unknown. Essentially, the Lilliefors test is a K–S test 
that allows you to estimate these parameters from your sample [11]. 

Table 1 shows that in this specific case (where covariance is used), there is a high correlation 
between the background (Bck) fluctuations (D1) and CRA and the GMA with CRA, respectively. 

Table 1. Correlation between the three variables background (D1), GMA (Dcx) and CRA (N), using 
covariance (Equation 3). 

Correlations between Variables 
Bck-GMA Bck-CRA GMA-CRA 

0.2441 0.4104 0.7927 

The above is consistent with the work done in [4], whose results are based on the correlation 
using the Spearman coefficient and show that there is a small correlation between the background 
and GMA (0.2441) and a clear correlation between the background and CRA (0.4104). Here we see 
(as in [4]) that CRA is the dominant factor. 

Both algorithms, the first one used in this work (Equation 3) as well as the one used in [4], are 
based on the covariance matrix of the data. Spearman’s correlation coefficient (used in [4]) is less 
sensitive than Pearson’s coefficient (used in the present paper) for values that are far from expected, 
that is, for isolated values that do not predominate in a set. To illustrate these results and to make a 
comparison with those obtained in [4], see Table 2. 
  

-60

-50

-40

-30

-20

-10

0

10

15

16

17

18

16:00 0:00 8:00 16:00 0:00 8:00 16:00 0:00 8:00

GM
A 

(D
cx

) [
nT

]

Bc
k 

(D
1)

 [c
pm

]

Hours

Bck (D1) [cpm] GMA (Dcx) [nT]
67

68

69

70

71

72

73

74

15

16

17

18

16:00 0:00 8:00 16:00 0:00 8:00 16:00 0:00 8:00

CR
A 

(N
) [

cp
s]

 

Bc
k 

(D
1)

 [c
pm

]

Hours

Bck (D1) [cpm] CRA (N) [cps]

Figure 3. Background data (D1), geomagnetic activity (GMA) (Dcx) (left panel) and cosmic-ray activity
(CRA) (N) (right panel) between 2014 December 19 and 2014 December 22. Dcx stands for the Dcx
index and N for the neutron counts.

Table 1. Correlation between the three variables background (D1), GMA (Dcx) and CRA (N), using
covariance (Equation (3)).

Correlations between Variables

Bck-GMA Bck-CRA GMA-CRA

0.2441 0.4104 0.7927

In order to verify the normality of the data, we have chosen Lilliefors test. It represents an
improvement on the Kolomogorov–Smirnov (K–S) test as it corrects the K–S for small values at the
tails of the probability distributions. Differently from the K–S test, Lilliefors can be used when the
population mean or the standard deviation are unknown. Essentially, the Lilliefors test is a K–S test
that allows you to estimate these parameters from your sample [11].

Table 1 shows that in this specific case (where covariance is used), there is a high correlation
between the background (Bck) fluctuations (D1) and CRA and the GMA with CRA, respectively.

The above is consistent with the work done in [4], whose results are based on the correlation using
the Spearman coefficient and show that there is a small correlation between the background and GMA
(0.2441) and a clear correlation between the background and CRA (0.4104). Here we see (as in [4]) that
CRA is the dominant factor.

Both algorithms, the first one used in this work (Equation (3)) as well as the one used in [4],
are based on the covariance matrix of the data. Spearman’s correlation coefficient (used in [4]) is less
sensitive than Pearson’s coefficient (used in the present paper) for values that are far from expected,
that is, for isolated values that do not predominate in a set. To illustrate these results and to make a
comparison with those obtained in [4], see Table 2.
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Table 2. Correlation between the three variables background (D1), GMA (Dcx) and CRA (N). A
comparative study using Pearson and Spearman Coefficients.

Coefficient
Correlations between Variables

Bck-GMA Bck-CRA GMA-CRA

Pearson 0.2441 0.4104 0.7927
Spearman 0.1691 0.3528 0.4594

After analyzing the correlations pairs using the one-dimensional component of the fourth-order
cumulant, the following results were obtained (Table 3):

Table 3. Correlation between the three variables background (D1), GMA (Dcx) and CRA (N), using the
one-dimensional component of fourth-order cumulant (Equation (7)).

Correlations between Variables

Bck-GMA Bck-CRA GMA-CRA

−0.1972 −0.4432 0.6751

Table 3 shows that there is a linear correlation between the three analyzed data. In two of the cases,
the results show a negative correlation. All the other available measurements of the background inside
the cage were analyzed with this methodology. The results are presented in Table 4, which confirms
the dominancy of CRA over GMA on Bck radiation [4].

Table 4. Correlation between the three variables background (D1), GMA (Dcx) and CRA (N).

Data
Using Covariance (Equation (3)) Using the One-Dimensional Component of

Fourth-Order Cumulant (Equation (7))

Bck-GMA Bck-CRA GMA-CRA Bck-GMA Bck-CRA GMA-CRA

J1 0.8735 0.8747 1.000 0.9401 0.9407 1.000
J2 0.1166 −0.0001 0.0657 −0.2628 −0.0156 0.123
D1 0.2448 0.4104 0.7948 −0.1974 −0.4432 0.6705

The first analysis in Table 4 corresponds to the period labelled as J1 (10 July 2014). From the
experimental data measured on that day, taken from 08 h until 12 h, there is a high correlation between
the three variables, using both covariance (second order statistics) and cumulant (four order statistics).

The second analysis in Table 4 corresponds to the period labelled as J2 (11 July 2014). From the
obtained experimental data, taken from 09 h until 11 h, one can derive the lack of correlation between
the variables using covariance (second order statistics) and cumulant (four order statistics).

The last analysis in Table 4 corresponds to the period labelled as D1 (19 December 2014).
The experimental data were measured, starting on 19 December 2014, (at 17:00 h) and finishing on 22
December 2014, 2014 (at 09:00 h).

Table 4 shows that when there is a correlation between the environmental variables (geomagnetic
activity and cosmic neutrons flux), there is a correlation between the background and these variables.

Specifically, when there is a correlation above 0.6 between GMA and CRA, there is a non-negligible
probability of finding a correlation between the background radiation and these variables.

The cases show just a few analyzed experimental data. Thus, more measurements are necessary
to gain more insights into their behavior under similar experimental conditions and to understand the
involved phenomena.
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4. Conclusions

In this work, two methods to study the correlations have been shown, one based on using the
Pearson correlation coefficient as the first measure of similarity, and another using a correlation measure
based on the one-dimensional component of the fourth-order cumulant.

From the experimental results and from both methods of analysis, we can conclude that:

(i) There is a linear, direct (as well as inverse) relationship between the background-GMA and
background-CRA data when there is a correlation higher than 0.6 between the space weather
variables, Dcx and N.

(ii) We carried out the experimental tests in different periods (called J1, J2 and D1) and our methodology
reveals the presence (or not) of correlations in those periods. Because of these facts, we consider
that it is necessary to establish a more complete measurement planning in order to derive a model
to understand this phenomenon.
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